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Stability of some stationary solutions for the forced

KdV equation
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and
“Division of Engineering and Applied Sciences,
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Pasadena, CA U.S.A. 91125

The forced KdV (fKdV) equation has been established by recent studies as a simple mathematical
r-r del capable of deacrlbing the physics of a shailow layer of fluid subject to external forcing, For a
particular one-parameter family of forcinga which is characterized by a wave arnp~itude parameter for
supercrltlca] forcing d~tr; butions, exwt gtatlonary ~l~tio~ are known. We stl!dy the stability of these

solutions aa the parameter varies. The linear stability analysis is first carried out, and we discuso the
structure of the spectrum of the associated eigenvalue prcb!em using a perturbation approach, about
isolated parameter values where eigenfunctions can be expressed in closed form and are the fixed-point
S01!JLiOn8 af the f’KdV equation corresponding to zero eigenvaluea. The results identify a set of intervals
in the parameter space corresponding to different typea of manifestation of instability. In the region of
the parameter space where the linear stability analysis fails to provide an answer, we have developed a
nonlinear analysis to provide a sufficient condition for stability,



1 Introduction

BY adopting appropriate similarity variables, the forced Korteweg-de l’ries equation

(fKd\”) can be expressed as

(t – (s - :((=- ;(==Z=P=(X + R), (1)

where ((z, t) refers to the free surface elevation of the liquid, while the source term

P represents the bottom topography or an applied surface pressure, which is moving

to the left with uniform constant velocity F. The physical units have been scaled out

in ( 1), with ~ and z scaled by the undisturbed uniform water depth h, t by @,

and velocity by ~, so that F = 1 corresponds to the critical speed ~fi, g being

the gravity acceleration[5]. This equation has drawn considerable attention in recent

years, as it. offers perhaps the simplest mathematical description of the interaction of a

shallow layer O( liquid with external forcing agents (s= for instance [1 -5]), Equation

( 1) can be derived, in analogy to the free KdV equation, under tbe assumption of weak

nonlinearity and weak dispersion, for u,lidirectional wave propagation under a forcing

which is sufficiently weak and moves at a near critical speed.

One of the most striking phenomena predicted by the fKdV model, which is fully

confirmed by experimental observations, is the periodic mission of solitary waves propa-

gating ahead of a steadily moving transcritical source (see e.g. [3]). However, it is known

Ihat in some cases ~he effects of the forcing term can remain locally confined to the forc-

ing region, giving rise to a “pinned” solitary wave profile. Inded. for some (%oic~s of

I Ill’ forcing distribution P it is possible to evaluate stationary solutimir of ~quation ( I !

in rl(mml forrn[6][5][7]. The prohlcrn of existence and ~tal)ility of these states i~ !MIPof

flln(lammt al irltm=st (SW ~,g. mfs. [6][5][7]), and in the CIMewiwr~ instahii; tim earl arisr

it iS ll~dlll t.{) Sh~f! W)ITW?]i~ht on the t)~~k lIldl~IlkIlll Of [)~rk)di~ ~)idh (If !Mdil’)!ls ill



response to a forcing which is stationary in nature.

The following sections are devoted to a study of stability of one class of pinned wave

profiles. For definiteness, we choose to work with an explicit form of the forcing function,

the one introduced by Patoine and Warn[6] and a member of the family of solutions of

\Vu[5], which is supercritical and can vary with a single amplitude - parameter. However,

the following considerations a~ply equally well to any symmeh”c (and rapidly decaying

at infinity) forcing distribution. In particular, our results can be used to prove the

conjectures reported in ref. [7] based on the adiabatic approximation. We first introduce

in section 2 the forcing distribution with the corresponding stationary solutions, and

discuss their linear stability. In section 3 we

be exploited to establish nonlinear stability.

show how the Hamiltonian formalism can

2 Linear stability analysis

\Vith the forcing P and its (supercritical) velocity chosen to be

‘(z)=a(ka-:a)‘=h’(kz)$‘-1 ‘;kz~ (1)

respectively, an elementary calculation shows that ( 1) has the solution(s)

(,(J + Ft) = a sechz [k(x + Ft)] . (2)

‘rhus, for any value of the forcing amplitude below K’/? we can have two sw:tlz-like

~(~llltions for (, one of which becomes negative in response to a negative forcing. ‘1’hr

factor k in (2) me~ures the length scale of the source, and, accmrcling to the aS!”’llllPt~(JIl

of wrfik ~iispmsion and near critical speed, is mmummi to be a small parametcr[fi]. I “sing

II]c w“alil]g l)ro[)(~rty of thr KdV qumtion, mm CM clill~inate the explirit (lqmI(lmI(o (m

fhr paramotm k ill (2)[5][8]: it is also t-onvenicnt to rt’write ( 1) in R rrffmmw frallw Iiml

:)



with the source term. Introducing the new varia~les

Xt = k(z + Fi)q t’ = ;k%, (’ ~ ;(

tk fKd~ equation assumes the form

(f + w - 9((. – (... = 7.s.,

where

(3)

(4)

(.5)

am-! we have dropped the primes for the new variables.

\Ve now address the issue of the stability of the larger branch of the two steady state

solutions given by (2) and (2) for the same forcing P with y <2, i.e.,

Accordingly, we translate the dependent variable by

((z, t) = (,(z) + q(z,t), (7)

which yields for the perturbation function q the homogeneous equation

(8)

Following the standard procedure for linear stability analysis, we linearize (8) by dropping

the q2 term and separate the variables

1[cm o and ~ CAUbe complex, in which c~~e the real part of the right hand side is lln-

{lurstomi. V!itli this Substitution, (/3) reduc~ to the third order, non-wdfadjoint, singular

rigmvalm problrrn

(10)



where the boundary conditions for / can be taken (for the discrete spectrum) as

f(’)(z) — o, exponentially fast. for at least n = O, 1,2 ,
IxI-m

(11)

j(n) denoting the n-th derivative of j. This type of third order eigenvalue problems

have been considerd recently by various authors (see e.g. refs.[6][5][9]), but very little

appears to be known about the structure of their spectrum. The rest of this section will

concentrate on addressing this question.

We first notice that the symmetry property of & imply that if u is an eigenvalue,

then also -u, +U= wili be eigenvalues, u“ being the complex conjugate of u. Hence, the

stationary state is unstable aa soon aa an eigenvalue with a non-vanishing real part is

found to exist. Furthermore, the fact that Cd is factoriasd into the two operators $ and

-(Ka+A)s
dz

~ + [a sechz(r) -4] , (12)

can be exploited to find the eigenfunctions corr~ponding to the zero eigenvalue. In fact,

these are the solutions (regular at infinity) of

(Iia + 4)f(x) = o, (1:1)

and /{a is the well known Schroedinger operator with the secha-potential which is familiar

in quantum mechanics[l 1]. Acceptable solutions will only occur for ~pecial values of m

a=(2+n)(3+n), n=~,l,.., ,

and have alternating symmetry, starting with an even function for

thr first two eigenfunctions corresponding to zero eigeuvalue are

(11)

m = 6. For imtanrr,

(!5)

(1(i)



\vhere 13 is an arbitrary constant. Once the special ~~alues of o at \vhich eigenfunctions

corresponding to ~ = O of La are known, we can assume that the spectrum has continuous

dependence on the parameter o and look for eigenvalues close to zero using a perturbation

approach. Thus, in a neighborhood of an we take

c1 = dn + St, n=o, l,..., 0<6 <1, S= *1,

so that ( 10) becomes

Ca”f(x; a) = -St: [ sech2zf(r; a)] + u(c)~(x; a),

and we expand o(c) and ~(x; a) into the as asymptotic series

a(c) = Uh(c)al + dz(c)q + . . . . (19)

f(~:~) = fo(~) + ol(f)f,(~) + ti2(~)f2(~) + . . . . (20)

The explicit form of the scaling functions ~m, ~~ is suggested by the solvability tondition,

i.e. orthogonality of the R.H. S, of ( 15) to the eigenfunction corresponding to zero eigen-

value for the adjoint of the operator LO. [t is easy to show, by integrating by parts, that

these functions, denot~+ by go(ir; on) can be obtained from the ones of La via integration,

(17)

(1s)

/

r

gO(~; an) = _m fo(Y; anhfv . (21)

}1fter some exploration one can see that

symmetry ofthe eigenfunctions, and we

‘ia for odd ~o. Thus,(’m(c) = IJm(c) = e

~o(r; no) (which is even) is

the right scaling is uniquely dictated by the

have #m(c) = +m(c) = cm for even JO and

the equation for the first order correction to

(’P))



and the solvability condition determines al,

So far the perturbation

J

CT(q)+ St) = St

approach looks

J-CO J-m

; + 0(:2) .

quite straightforward

(~~)

and seems to yield

the desired continuation of the fixed-point solution with the zero eigenvalue. However,

integrating both sides of equation ( 15) and using the boundary conditions ( 11), one can

see that

u
/

‘~~(z) dz =0 . (25)
-w

This is an additional constraint on eigenvalues and eigenfunctions that can be traced

back to the mass conservation property of the KdV (and fKdV) equation,

d +00

/
((z, t)dz = 0, (26)

z -m

Therefore, when u = O the integral of the correspondir.g eigenfunction may very well be

different from zero, and indeed such is the case for ~O(Z) in our exam’ ‘ However, as

soon as the eigerivalue is continued away from zero, the eigenfunction integral must then

vanish, inferriug a singular behaviour that indicates that a regular perturbation approach

is doomed to fail. The same conclusion can also be reached from ( 19) and the expression

( ‘.0) for La. Imposing the boundary condition ~1 = O at -cm, we have

fl(~:%)=~m-: /+mfo dx ,
(~~)

-m

\vtlich implies that the boundary condition at +00 cannot be met by the asymptotic

series ( 17).

‘[’he bchaviour at w can be corrected using the methods of matched asymptotic

rxpansion and multiscalrs (cfr. [12]), ‘Ihe idea is to fit in a “boundary layer” when I is

7



of order O(C–l). N’e will not go into the details of this analysis, which are reported in

ref. [s], and only quote the result for the uniform expansion of f(z; a), to order O(f):

{
f(.r; a) = fo(x; %) -i-~ fl(~; clo) + ?H(’)[’-e’p(+’’)l}+o(”)‘2’)

where y. = f~~ j’o(z; ao) ~z,

of ~1 is not important at this

and H(x) is the Heaviside step function. The explicit form

order, only the limit (23) is, showing that (24) satisfies the

boundary conditions (11 ) provided al

in (21), i.e., the branch of eigenvalues

the right of a = a. = 6,

> 0. Hence, only the case s = 1 can be accepted

originating from zero at o = ao can only exist to

The analysis for the “odd eigenfunction” casa (e.g., a = al) proceeds along similar

lines, although the expansion must be carried to higher orders for consistency with (22).

The resulting expression for the eigenvalue to order O(C* ) at Q = al + M is

;Si
C)’((Y1+ St) = c*— —+ (3(J) ,/iix+’ 1:s

(WJ)

which shows that the stationary state <, is unstable for a on both sides of al, however.

with quite different growth rates of the perturbation (9), of order O(C) for a < al and

O(c* ) for a > nl, respectively. Furthermore, the evolution of the perturbation can be

expected from (25) to be in the form of a periodic oscillation with (slowly) growing

amplitude for a > al (with s > O), due to the O(C* ) imaginary part of the eigenvalue.

This oscillatory behaviour is associated with the forcing (i.e. ,y) becoming negative for

a > crl, We remark that the structure of the branches of eigenvalues starting at the other

points tin, n >1 will repeat, with alternating order, the pattern of Lhe first two. Indeed

this pattern depends only on the symmetry of the appropriate fixed-point eigenfmctions,

and this holds for any symmetric wave shape (, replacing sechz~, provided it decays

sufficiently fast at infinity, The considerations above are illustrated by fig, 1, where the

eigenvalue branches have been continued numerically using the high precision numerical

8



scheme described in ref. [8]. This plot provides the additional information that the purely

real branch originating at a. connects to the one going to the left of U1, arid the real part

of the complex eigenvalue to the right of al remains small, in fact decre~s to be many

orders of magnitude smaller than the imaginary part, the latter of which is monotonically

increasing. Thus, in the range al < a < Oz the pinned state (a is weakly unstable, with

a time periodic oscillation whose frequency increa~ with a.

3 The nonlinear stability property

In the previous section we have seen that the continuation method does not provide any

eigenvalue for a c ao.Thus, the question of the stability of the lower-amplitude branch

solution for a <6 is still open. However, in the following we will show that it is exactly

in this range that we can provide a sufficient condition for stability. The definition of

stability is here taken to be in the usual Lyapunov sense, i.e., we can determine a distance

in some appropriate functional space, where the dependent variable is defined, such that,

if the perturbation superimposed to the stationary state is initially ‘close” to it according

to this distance, it will remain close for all times[13].

We first notice that (4) can be derived from the Harniltonian

which is an integral of motion. The total variation of thio functional

same an the Eaxni.ltonian for the q *W (8),

(1)

at ~,, which is the

~J-mL-

has a quadratic term in the difference q

crucial observation is that the quadratic

(’q

s ( -(, and a term which is cubic in q. The

part can be positive definite for some valum of

9



the parameter a in (,, so that the overall positivity of AH is assured provided q is “small

enoughn (but still finite). In order to render this heuristic argumetl. rigorous one has to

ascertain the bounds on q so as to precisely define the meaning of “small enough”. The

proof is rather technical and follows the lines of ref. [14] for the free solitary wavm; the

details are reported in ref.[8].

Once the positivity of AH is established, one can basically use this functional as

“defining” a distance. The invariance of H with respect to time will then assure that

this distance will not grow, or, in other words, that ~ will remain close to ~. provided it

does so at time t = O.

In order to -tablish the positivity of the quadratic part of AN, &2fi say, we notice

that it can be rewritt=m as

J2H = (q, Kaq) + 4(%7?) ? ● , (3)

where (g, /) denotes the usual inner product J~~ ●g (z)~(z)dz, and K. is the Schroe4 ~ger

operator introduced in (12). From Sturm-Liouville theory, the first term can be estimated

to be

where Jo(a) deuotes the infimum of the “pectrum of Ka. Hence, 42M will be positive

provided

Ao(a) + 4>0. (s)

It is exactly at Q = ~. = 6 that the “potential” -a sech2(z) is deep enough to support a

bound state, in the language of quantum mechanics, and the infimum of the Ka spectrum

reaches a negative value, which coincides with –4. The positivity of A?i can ‘herefore be

established whenever a < ao. We notice that for negative a, i.e., negative wave profiles,

the spectrum of K. is purely continuous, and coincides with the positive real axis. Thus,

10



negative wave profiles are always stable. We remark at this point that the nonlinear

analysis is quite general and can be carrid out for any w-ave profile, not necessarily

sech2 or even symmetric, and depends solely on the spectrum of the operator Ka. In

this sense it can immediately be applied to the pinned states described in ref.[7].

In 3un12nary, ~ere are three basic regimes of different stability responses of the steady

solitary wave solution to the pertinent one-parameter family of forcings considered here

over the entire range of –m < u < m. First, the steady solution ~, is globally stable for

a < a. (with y < y(ao)) provided the perturbations are within the estimated bounds.

Next, for a. < CM< al,the ~. wave is unstable since the purely red eigenvalue u dictates

an exponential growth, a trend which will repeat in the regions of CXam< a < cr2n+1

(n=l,2 , . . .). The third type o: response occurs in al < a < aa,which is weakly

unstable and is characterized by a con~picuous periodic feature basically reievant to the

phenomenon of periodic production of upstream-advancing solitons. A similar behavior

of ~, is implied for Crzm+l< Q < azn+a(72=:1, 2,. . .).

Lf the parameter 7 = “y(a)characterizing the forcing strength is used as the inde-

pendent variable, there will be two branches of possible steady solutions. The answer to

the question of uniqueness as to which one will result from the forcing and the stability

of the resulting motion is thought to dependent critically on the initial conditions and

the level of instability of (a invoIved. For 7 > y(ao)no stationary state can be found.

These r-ults should be compared to the ones reported in ref. [7] which are deri~ed for a

&function forcing distribution,
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Figure captions

Figure 1. _ a) The real part of 0/6 vs. cr. b) Imaginary part of u/6 vs. a.
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