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Stability of some stationary solutions for the forced
KdV equation
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and
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The forced KdV (fKdV) equation has been established by recent studies as a simple mathematical
- cdel capable of describing the physics of a shailow layer of fluid subject to external forcing. For a
particular one-parameter family of forcings which is characterized by a wave amplitude pararaeter for
supercritical forcing distributions, exact stationary solutions are known. We stndy the stability of these
solutions as the parameter varies. The linear stability analysis is first carried out, and we discuss the
structure of the spectrum of the associated eigenvalue prcblem using a perturbation approach. about
isolated parameter values where eigenfunctions can be expressed in closed form and are the fixed-point
soluiions »f the fKdV equation corresponding to zero eigenvalues. The results identify a set of intervals
in the parameter space corresponding to different types of manifestation of instability. In the region of
the parameter space where the linear stability analysis fails to provide an answer, we have developed a
nonlinear analysis to provide a sufficient condition for stability.



1 Introduction

By adopting appropriate similarity variables, the forced Korteweg-de Vries equation

(IKdV) can be expressed as
= C 3 ! = P F
Ge —Cr— §CC: - EC::.': = t(‘r + t)v (l)

where ((z,t) refers to the free surface elevation of the liquid, while the source term
P represents the bottom topography or an applied surface pressure, which is moving
to the left with uniform constant velocity F. The physical units have been scaled out
in (1), with ¢ and z scaled by the undisturbed uniform water depth A, t by \/;1/_
and velocity by \/gh, so that F = 1 corresponds to the critical speed \/gR, g being
the gravity acceleration[5]. This equation has drawn considerable attention in recent
years, as it offers perhaps the simplest mathematical description of the interaction of a
shallow layer of liquid with external forcing agents (see for instance [1-5]). Equation
(1) can be derived, in analogy to the free KdV equation, under the assumption of weak
nonlinearity and weak dispersion, for uuaidirectional wave propagation under a forcing
which is sufficiently weak and moves at a near critical speed.

One of the most striking phenomena predicted by the fKdV model, which is fully
confirmed by experimental observations, is the periodic 'mission of solitary waves propa-
gating ahead of a steadily moving transcritical source (see e.g. [3]). However, it is known
that in some cases \he effects of the forcing term can remain locally confined to the forc-
ing region, giving rise to a “pinned” solitary wave profile. Indeed. for some choices of
the forcing distribution P it is possible to evaluate stationary solution- of equation (1)
in closed forin[6][5)[7]. The problem of existence and stability of these states is oue of
fundainental interest (see e.g. refs. [6][5][7]), and in the case witere instabiiities can arise

it is nseful to shed some light on the basic mechanism of periodic birth of solithus in

')



response to a forcing which is stationary in nature.

The following sections are devoted to a study of stability of one class of pinned wave
profiles. For definiteness, we choose to work with an explicit form of the forcing function,
the one introduced by Patoine and Warn[6] and a member of the family of soluticns of
Wu(5], which is supercritical and can vary with a single amplitude - parameter. However,
the following considerations apply equally well to any symmetric (and rapidly decaying
at infinity) forcing distribution. In particular, our results can be used to prove the
conjectures reported in ref.[7] based on the adiabatic approximation. We first introduce
in section 2 the forcing distribution with the corresponding stationary solutions, and
discuss their linear stability. In section 3 we show how the Hamiitonian formalism can

be exploited to establish nonlinear stability.

2 Linear stability analysis

With the forcing P and its (supercritical) velocity chosen to be

P(z)=a (k2 - %a) sech'(kz), F-1= %k’ , (1)

respectively, an elementary calculation shows that (1) has the solution(s)
Co(x + Ft) = a sech? [k(z + Ft)] . (2)

Thus, for any value of the forcing amplitude below k*/3 we can have two sech®-like
«olutions for {, one of which becomes negative in response to a negative forcing. The
factor k in (2) measures the length scale of the source, and, according to the asr1umptiun
of weak dispersion and near critical speed, is assumed to be a small parameter[5]. 'sing
the scaling property of the KdV equation, one can eliminate the explicit dependence on

the parameter & in (2){5)(8): it is also convenient to rewrite (1) in a reference frame fixed



with the source term. Introducing the new variables

. P a1
r’'=k(z+ Ft), t'= gkf’t, ¢''= FC (3)
th: fRKdV equation assumes the form
Ce+ 4Ce = 9¢Cz = Crzzr = 752, (4)
where
= a(12-1), a=3, S(z)= sech¥() 5)
Y=o 7), a=45, z) = sech®(z), 3

and we have dropped the primes for the new variables.
We now address the issue of the stability of the larger branch of the two steady state

solutions given by (2) and (2) for the same forcing P with ¥ < 2, i.e,,
(o(2) = a sech’(z), a26 . (6)
Accordingly, we translate the dependent variable by
¢(z.t) = G(z) + n(z, ), (7)
which yields for the perturbation function n the homogenous equation
n+ 58; [(4 -a sech’(r)) n— gn’ e[ =0 . (8)

Following the standard procedure for linear stability analysis, we linearize (8) by dropping

the n? term and separate the variables

n(z.t) = e’ f(z). (1)

ilcre @ and f can be complex, in which case the real part of the right hand side is un-
derstood. With this substitution, (8) reduces to the third order, non-selfadjoint, singular

cigenvalne problem

l‘i f‘zf 2
= — | —= - = 10
Lof = 7 |75 + (asech’(e) = 4) f| = af, (10)



where the bounda:y corditions for f can be taken (for the discrete spectrum) as

f"Nz) — 0, exponentially fast, for at least n =0,1,2, (11)

FIR

f denoting the n-th derivative of f. This type of third order eigenvalue problems
have been considered recently by various authors (see e.g. refs.[6][5][9]), but very little
appears to be known about the structure of their spectrum. The rest of this section will
concentrate on addressing this question.

We first notice that the symmetry property of £, imply that if & is an eigenvalue,
then also —¢, £o* will be eigenvalues, o* being the complex conjugate of o. Hence, the
stationary state is unstable as soon as an eigenvalue with a non-vanishing real part is

. ) . . d
found to exist. Furthermore, the fact that £, is factorized into the two operators — and

dr

—(Ka+4)= -‘;i:;+[asechz(:)~4], (12)

can be exploited to find the eigenfunctions corresponding to the zero eigenvalue. In fact,

these are the solutions (regular at infinity) of
(Ko +4)f(2) =0, (13)

and K, is the well known Schroedinger operator with the sech?-potential which is familiar

in quantum mechanics[l1]. Acceptable solutions will only occur for special values of o
a=(2+4+n)(34n), n=0,1,..., (14)

and have alternating symmetry, starting with an even function for a = 6. For instance,

the first two eigenfunctions corresponding to zero eigenvalue are

o =6, folfiag) = Bsech?(r), (15)

a, =12, folr;a,;) 11 sech?(r) tanh{s} (16)

o |



where B is an arbitrary constant. Once the special values of a at which eigenfunctions
corresponding to 7 = 0 of £, are known, we can assume that the spectrum has continuous
dependence on the parameter o and look for eigenvalues close to zero using a perturbation

approach. Thus, in a neighbourhood of a, we take
a=a,+se, n=0,1,..., 0<ekl, s==l, (17)

so that (10) becomes

Cauflzi0) = —see | sechiz f(zi0)] + o(6)f(z: ) (19)
dr

and we expand o(¢) and f(z;a) into the as asymptotic series
o(e) = o1(€)oy + da(e)oa + ..., (19)

flzia) = folz) + ¥ile) filz) + Yale) falz) + ... . (20)

The explicit form of the scaling functions ¢,,, ' is suggested by the solvability condition,
1.e. orthogonality of the R.H.S. of (15) to the eigenfunction corresponding to zero eigen-
value for the adjoint «f the operator £,. It is easy to show, by integrating by parts, that

these functions, denoted by go(z; a,) can be obtained from the ones of £, via integration.

go(z:ian) = /_; foly: an)dy . (21)

After some exploration one can see that the right scaling is uniquely dictated by the
symmetry of the eigenfunctions, and we have ¢, (¢) = Y,(€) = €™ for even fy and
Um(€) = () = €™/ for odd f,. Thus, the equation for the first order correction to

folriag) (which is even) is

1 ,
L:nofl = —.Ql;—x [ SP('ll)I fo(.l’.()o)] +01f0(.l',(]o),

—
to
[ £+

~—



and the solvability condition determines oy,

+ 0
/ / Soly sech (r)folx, ao)] dydr = o, / / foly) fo(z)dydz . {23)
or
16 2

o(ag + se€) = se -3'+O(f. ). (24)
So far the perturbation approach looks quite straightforward and seems to yvield
the desired continuation of the fixed-point solution with the zero eigenvalue. However,
integrating both sides of equation (15) and using the boundary conditions (11), one can

see that

+00

a/ f(z)dz =0 . (25)
This is an additional constraint on eigenvalues and eigenfunctions that can be traced

back to the mass conservation property of the KdV (and fKdV) equation,

d +00
d—t/_w ¢(z.t)dz = 0. (26)

Therefore, when ¢ = 0 the integral of the correspondir.g eigenfunction may very well be
different from zero, and indeed such is the case for fy(z) in our exam' ™ However, as
soon as the eigervalue is continued away from zero, the eigenfunction integral must then
vanish, inferring a singular behaviour that indicates that a regular perturbation approach
is doomed to fail. The same conclusion can also be reached from (19) and the expression
(".0) for £,. Imposing the boundary condition f, = 0 at —oo, we have

J,

Hirian) — —— fo dr | (:

r—4+ 4

o
-~J

which implies that the boundary condition at +oco cannot be met by the asymptotic
series (17).
The behaviour at oo can be corrected using the methods of matched asymptotic

expansion and multiscales (cfr. {12]). The idea is to fit in a “boundary layer™ when r is



of order O(e~'). We will not go into the details of this analysis, which are reported in

ref.[3], and only quote the result for the uniform expansion of f(z;a), to order O(e):

flzia) = foziaq) + e {fl(x;aa + () [1 — exp (—“—j—x)]} +0(), (28

where yo = J2, fo(z; aq) dz, and H(z) is the Heaviside step function. The explicit form
of fi is not important at this order, only the limit (23) is, showing that (24) satisfies the
boundary conditions (11) provided ¢; > 0. Hence, only the case s = 1 can be accepted
in (21), i.e., the branch of eigenvalues originating from zero at @ = a, can only exist to
the right of a = agp = 6.

The analysis for the “odd eigenfunction” cases (e.g., @ = a,) proceeds along similar
lines, although the expansion must be carried to higher orders for consistency with (22).
The resulting expression for the eigenvalue to order O(¢?) at a = a, + se is

151 16
bt T+ O(e) (29)

which shows that the stationary state (, is unstable for a on both sides of a;, however,

ola) + 3¢) = ¢

with quite different growth rates of the perturbation (9), of order O(¢) for a < a; and
O(eé) for a > ¢, respectively. Furthermore, the evolution of the perturbation can bhe
expected from (25) to be in the form of a periodic oscillation with (slowly) growing
amplitude for a > a; (with s > 0), due to the O(e?) imaginary part of the eigenvalue.
This oscillatory behaviour is associated with the forcing (i.e.,y) becoming negative for
a > a;. We remark that the structure of the branches of eigenvalues starting at the other
points an, n > 1 will repeat, with alternating order, the pattern of J}e first two. Indeed
this pattern depends only on the symmetry of the appropriate fixed-point eigeniunctions,
and this holds for any symmetric wave shape (, replacing sech’z, provided it decays
sufficiently fast at infinity. The considerations above are illustrated by fig.1, where the

eigenvalue branches have been continued numerically using the high precision numerical
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scheme dacribed. in ref.[8]. This plot provides the additional information that the purely
real branch originating at ao connects to the one going to the left of a), and the real part
of the complex eigenvalue to the right of a; remains small, in fact decreases to be many
orders of magnitude smaller than the imaginary part, the latter of which is monotonically
increasing. Thus, in the range a; < a < a; the pinned state (, is weakly uastable, with

a time periodic oscillation whose frequency increases with a.

3 The nonlinear stability property

In the previous section we have seen that the continuation method does not provide any
eigenvalue for a < ap. Thus, the question of the stability of the lower-amplitude branch
solution for a < 6 is still open. However, in the following we will show that it is exactly
in this range that we can provide a sufficient condition for stability. The definition of
stability is here taken to be in the usual Lyapunov sense, i.e., we can determine a distance
in some appropriate functional space, where the dependent variable is defined, such that,
if the perturbation superimposed to the stationary state is initially “close” to it according
to this distance, it will remain close for all times{13].

We first notice that (4) can be derived from the Hamiltonian

MO =5 [ [+ e - 36~ 625¢] dz i

which is an integral of motion. The total variation of this functional at (,, which is the
same as the Hamiltonian for the 7 tlow (8),

+o00

A'H——/ n2 - 9¢.(z)n? +4n]d1—2/ n° dz , (2)

-0

has a quadratic term in the difference n = ¢ — ¢, and a term which is cubic in n. The

crucial observation is thai the quadratic part can be positive definite for some values of



the parameter a in (,, so that the overall positivity of AH is assured provided 7 is “small
enough” (but still finite). In order to render this heuristic argume.. rigorous one has to
ascertain the bounds on 7 so as to precisely define the méa.ning of “small enough™. The
proof is rather technical and follows the lines of ref.{14] for the free solitary waves; the
details are reported in ref.[8].

Once the positivity of AH is cstablished, one can basically use this functional as
“defining” a distance. The invariance of H with respect to time will then assure that
this distance will not grow, or, in other words, that { will remain close to ¢, provided it
does so at time ¢t = 0.

In order to establish the positivity of the quadratic part of AH, §*H say, we notice

that it can be rewritten as
M = (7’; Ka") +4('7v '7) ’ ' (3)

where (g, f) denotes the usual inner product [+ g°(z) f(x)dz, and K, is the Schroed iger

-oo
operator introduced in (12). From Sturm-Liouville theory, the first term can be estimated

to be
(1. Kan) 2 Mola)(n,n) (4)

where Ao(a) denotes the infimum of the epectrum of K,. Hence, §*H will be positive
provided
Xo(a) +4 > 0. (9)

It is exactly at a = g = 6 that the “potential” —a sech?(z) is deep enough to support a
bound state, in the language of quantum mechanics, and the infimum of the K, spectrum
reaches a negative value, which coincides with —4. The positivity of AH can therefore be
established whenever a < ap. We notice that for negative a, i.e., negative wave profiles,

the spectrum of K, is purely continuous, and coincides with the positive real axis. Thus,

10



negative wave profiles are always stable. We remark at this point that the nonlinear
analysis is quite geueral and can be carried out for any wave profile, not necessarily
sech? or even symmetric, and depends solely on the spectrum of the operator K,. In
this sense it can immediately be applied to the pinred states described in ref.[7].

In summary, 1ere are three basic regimes of different stability responses of the steady
solitary wave solution to the pertinent one-parameter family of forcings considered here
over the entire range of —00 < a < 0o. First, the steady solution (, is globally stable for
a < ap (with ¥ < 4(ao)) provided the perturbations are within the estimated bounds.
Next, for ag < a < a, the (, wave is unstable since the purely real eigenvalue o dictates
an exponential growth, a trend which will repeat in the regions of azn < a < a4
(n =1, 2,...). The third type ol response occurs in a; < a < aiz, which is weakly
unstable and is characterized by a conspicuous periodic feature basically reievant to the
phenomenon of periodic production of upstream-advancing solitons. A similar behavior
of ¢, is implied for agny; < @ <@gz (n =1, 2,...).

If the parameter ¥ = y(a) characterizing the forcing strength is used as the inde-
pendent variable, there will be two branches of possible steady solutions. The answer to
the question of uniqueness as to which one will result from the forcing and the stability
of the resulting motion is thought to dependent critically on the initial conditions and
the level of instability of (, involved. For v > y(ap) no stationary state can be found.
These results should be compared to the ones reported in r=f.[7] which are derived for a

é-function forcing distribution.
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Figure captions

Figure 1. _ a) The real part of /6 vs. a. b) Imaginary part of ¢/6 vs. a.
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