LEGIBILITY NOTICE.

A major purpose of the Technical Information Center is to provide the broadest dissemination possible of information contained in DOE's Research and Development Reports to business, industry, the academic community, and federal, state and local governments.

Although a small portion of this report is not reproducible, it is being made available to expedite the availability of information on the research discussed herein.

Los Alamos National Leboratory is operated by the University of California for the United States Department of Energy under contract W-1405-ENG-66

TITLE

SELF LIMITING FEATURES OF ACCIDENTAL CRITICALITY IN A SOLUTION SYSTEM

LA-UR--88-3124

DE89 000347

AUTHOR(S)

Richard E. Malenfant, DIR-ESD

SUBMITTED TO

Proceedings of DOE Criticality Alarm System Workshop, Richland, WA, September 20-22, 1988

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Covernment any agency thereof, not any of their employees, makes any warranty express or implied, or assumes any legal liability or responsibility for the accuracy completeness or usefulness of any information, apparatus, product, or process dockned, or represents that its use would not intringe privately owned rights. Reference herein to any specific or inner out wording, process, or service by trade name, trademark, manufacturer or otherwise does not zero sourly constitute or imply its endorsement, zerom mendation, or favoring by the United States Covernment or any agency thereof. The views and opinious of authors expressed terein do not necessarily state or reflect those of the limited States Covernment or any agency thereof.

By an ephane of this grip is the pulphyter recognizes had the C.S. Covernment retends a number by everyally free to ease to publish or republic a The pulphyter, have of this contribution or the allow allows in the sc., he 11.5. Upwarement purposes

The Los Algerius Ngbiorar Latiniahus sampasis that the publisher claimly this article as wink partisment motor the ansurer of the H.S. Dapartinant of Lieuty.

Los Alamos, New Mexico 87545

کخ

SELF LIMITING FEATURES OF ACCIDENTAL CRITICALITY IN A SOLUTION SYSTEM

Richard E. Malenfant
Director's Staff
Los Alamos National laboratory
P.O. BCX 1663, Mail Stop A-103
Los Alamos, New Mexico 87545

ABSTRACT

Experience with the SHEBA solution critical assembly during validation testing of accidental criticality alarm detectors provided several insights into the character of potential accidental excuisions. Two observations were of particular interest. First, it is nearly impossible to maintain a solution system, particularly one employing low-enrichment material, in a constant state. If super-critical, the system will heat up, expand (or form bubbles), return to a sub-critical state, and shut down of its nwn accord without going into short period oscillations. Second, a very slow change in the system could produce a long "pulse" resulting in lengthy exposures, a high dose, but a low dose rate. The experiments dramatically contradicted the popular contention that accidental criticality is characterized by a blue flash, a clap of thunder, and violent expulsion of material.

INTRODUCTION

The purpose of a criticality accident alarm system is, or should be, to reduce the risk associated with fissile material operations [1]. In order to fulfill this purpose, the accident alarm system must be carefully designed to promptly and accurately respond to the class of likely accidents while minimizing false alarms. The class of potential accidents will be addressed, and then the possible characteristics of such accidents will be described.

MAJOR RADIATION ACCIDENTS WORLDWIDE

The Radiation Emergency Assistance Center/Training Site (REAC/TS) at Oak Ridge Associated Universities [2] maintains a complete data base on serious radiation accidents throughout the world. "Major" radiation accidents include those which deliver 25 rads whole body to at least one of those exposed. The tabulation from the 1987 report is indicated on Table 1. Of the 290 accidents included for the 43 year period, only 19 are defined as accidental "criticalities." These are further divind into 5 critical assemblies, 9 reactors, and 5 chemical operations. Results for all major radiation accidents are plotted as a histogram function of time in Fig. 1. As a first observation, the incidence of accidental criticalities is dwarfed by the other serious accidents.

TABLE I
MAJOR RADIATION ACCIDENTS: WORLDWIDE
1944-1987

MBER
5
4
5
28
63
14
ŀ
77
19
7
19
4

2917

DEFOI

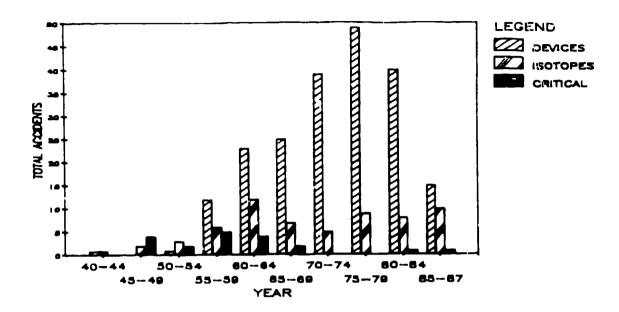
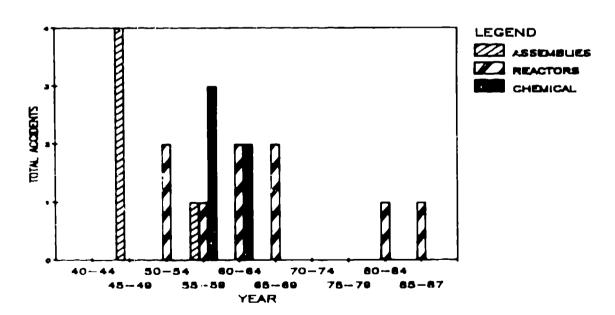



FIGURE 1
FREQUENCY DISTRIBUTION OF
MATOR RADIATION ACCIDENTS (BY DEVICE)
#ORLDWIDE: 1940-1987

FIGURE, 2 FREQUENCY DISTRIBUTION OF MATOR CRITICALITY ACCIDENTS (BY TYPE) WORLDWIDE: 1949-1987

With information provided by Ann Sipe of the DOE/REAC/TS, these accidental criticalities are further broken down by time as indicated in Table 2, and as plotted on Fig. 2. As a second observation, the accidental criticalities are broadly grouped by time and type of accident. In the first 20 years, the dominant type of accident was in a critical assembly. Major accidents in chemical processes dominated the middle years, and major accidents in reactors generally dominate the later years. However, the scale of total accidents is hardly overwhelming:

at most five major accidents in a five year period (1955-1959); only two major accidents in the last 21 years; no major accidents in critical assemblies in the last 30 years; eight of the last 14 major accidents in reactors; and only one major accident in reactors in each of the last two five year periods.

TABLE 2
CHRONOLOGY OF MAJOR CRITICALITY ACCIDENTS

YEAR	LOCATION	TYPE
1945	LOS Alamos, USA	Critical Assembly
1945	LOS Alamos, USA	Critical Assembly
1945	Las Alamos, USA	Critical Assembly
1946	Los Alamos, USA	Critical Assembly
1952	Argonne, USA	Reactor
1953	Russia	Reactor
1958	Oak Ridge, USA	Chemical Operation
1958	Yugoslavia	Reartor
1958	Los Alamos, USA	Chemical Operation
1958	Russia	Critical Assembly
1959	Idaho, USA	Chemical Operation
1961	Washington, JAA	Reactor
1962	Hanford, USA	Chemical Operation
1962	Puerto Rico	Reactor
1964	Wood River, USA	Chemical Operation
1965	France	Reactor
1965	Belgium	Reactor
1983	Argentua	Reacon
1986	Russia	Reactor

CHARACTERISTICS OF SOLUTION EXCURSIONS

The SHEBA Solution Critical Assembly [3,4] was designed to evaluate accidental criticality alarm detectors. In the experiments in the early 1980's, it became apparent that the behavior of SHEBA in some excursions completely contradicted the common lore of an accidental purst. At Los Alamos, we had accumulated a wealth of experience with bare metal fast burst machines. With initial reactivity of 6¢ (\$0.06) above dela; critical (DC), rapid expansion of the metal system would produce a "crack" like a rifle shot, the thump of the rugged stand on the concrete floor, and the tremendous stress of thermal expansion that could distort the steel clamps necessary to hold the system together. In a typical Godiva IV burst of 4x10exp16 fissions (~1 lb. of high explosive equivalent), 50 usec (peak width at half maximum), the temperature would increase about 250°C. Complete shutdown was effected by mechanical dissembly of the machine. Dose rates near the device exceeded 10exp8 rads/s, and the integrated dose at 2 m was likely to be 50° rads.

TABLE 3
COMPARISON OF TYPICAL BURSTS*

CHARACTERISTIC	GODIVA IVa	SHEBA b
Initial Period	5.96961 5	150 5
Peak Width at Half Maximum	5.56965 s	480 5
Espical Time To Peak (sourceless start)	2 5	3990 5
Initial Excess Reactivity (above Dc.)	\$1.56	\$0.55
Critical Mass (235)	6.7 KK	8.5 kg
Vritical Volume	3/cliters	85 liters
Temperature duse	~25%* C	*4 * C*
Peak Power	100,000,000 км	1.5 kW
linergy Release	I MJ	I W I
Prak Dose Rate At 2 m	Siv ⁸ cades	-800 rad/s
Integrated Dose A+2 m	*509 rad	" 700 rad
total fissions'	-4x19 ¹⁶	*4x // ⁶

^{*}figures are given to illustrate differences for a characteristic burst-flev are not precise for a specific burst.

drast metal system

Slow solution system

Note that the total number of fissions and delivered dose are nearly equal in spite of several orders of magnitude difference to perturent parameters.

SHEBA, however, was vastly different (Table 3). In fact, it became a challenge to run the "bursts" so slowly that accidental criticality alarm detectors designed to detect a fast transient could be spooted into non-response. Control room operations during a typical slow "transient" had all the excitement of glacier watching. Whereas the burst of radiation from Godiya IV would blank part of one line in the raster of the T.V. monitor, the slow burst of SHEBA [5] (Table 4. Fig. 3) gave absolutely no indication that anything at all was happening. The real surprise was that shutdown, or quench of the reaction, resulted from temperature increases of the order of 2-3 degrees C. Expansion - infinitesimal. Although many predicted that the system would oscillate, there was absolutely no tendency to do so. Post analysis indicated that with only 2-3 degrees delta T between the solution and the outside air, coupled with differences of heat capacity between the two media, that the solution would probably evaporate before a recriticality would occur. Indeed, the characteristics of SHEBA were such that most any change to the system (including loss of moderator) would reduce reactivity. The only deviation from this conservatism was that SHEBA was the classical short fat cylinder - that is, tree surface expansion would tend to produce a more favorable geometry.

TABLE 4
SLOW BURST CHARACTERISTICS OF SHEBA
FOR THREE TYPICAL TRANSIESTS

Solution Volume 780 liters Solution Density 72.16 kg liter Initial Femperature 720°C

Excess Reactivity	\$9.114	\$7.982	5 7.766
Initial Period	80 5	122 >	160 51
Peak Power	2.;7 k₩	1.51 kW	1.46 k #
Peak Width, 1/2 Max	487 5	531.5	511 S ^a
Integrated linergy Release	1.27 MI	7.98 MT	7.95 MI
Integrated hissions	4x19 ¹⁶	3x17 ¹⁶	3x17 ¹⁶
Peak Dose Rate, citi	TADAT CK8	1559 rad/lir	150% rad/hr
Entegrated Dose, 2 %	Det OCC	*375 rad	3/5 cm
Lemperature Increase	-4.8°t	14,5°C	1. 2"C

A The long period case was affected by changes or room temperature during the course of the experiment, SHLBA was located or a metal weather enclosure that was not temperature controlled during the experiments.

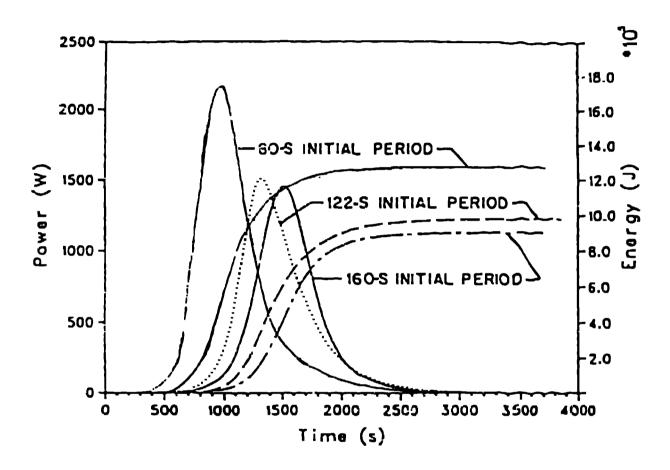


FIGURE 3

TIME VERSUS POWER AND INTEGRATED ENERGY RECEASE FOR THREE TRANSFERTS OF SHEBA

CONCLUSIONS

The conclusions to this discussion are not all new. Some are repeated from [4].

- 1. Is the general interpretation of the ANSI Standard adequate to ensure the intended response to an accidental criticality?
- 2. Are the concepts of accident scenarios sufficiently broad to include the class of slightly supercritical systems?
 - Could accidents similar to those simulated occur without detection?
- 4. Could accidents similar to those simulated occur without detection until routine dosimeter readout, and would the results of the dosimetry be dismissed as unlikely?
- 5. Does the recent incidence of major criticality accidents indicate too much concern for the problem?

REFERENCES

- 1. D. R. Smith, "The Function and Characteristics of Criticality Accident Alarm systems," Trans. 4 m. Nucl. Soc., 39, 554 (1981).
- 2. S. A. Fry, A. Sipe, C. C. Lushbaugh, W. W. Burr, R. C. Ricks, DOE-REACITS, Radiation Accident Registries: Serious Radiation Accidents Worldwide, Jupidated Fall, 1987, Oak Ridge Associated Universities, P.O. Box 117, Oak Ridge, TN 3783:-0117.
- 3. R. E. Malenfant, H. M. Forehand, Jr., J. J. Koelfing, "SHEBA: A Solution Critical Assembly," Trans. Am. Nucl. Soc., 35, 279 (1985).
- 4. R. E. Malentant, H. M. Forehand, Jr., "Facility liesci prion of a Solution Critical Amembly," Trans. Am. Nucl. Soc., 39, 555 (1981).
- 5. R. E. Malentant, H. M. Forehand, Ir., "Semala ion of Principal Plant Accidents," Trans. Am. Nucl. Soc., 43, 495 (1982).