

ABSTRACT

-2-

On prolonged heating in dilute nitric acid (0.5M to 6.8M) a consider. able amount of Pu⁴⁴ is oxidized to Pu⁴⁶. Precipitation of the plus three plutonium oxalate is complete in fifteen minutes. Oxidation of Pu⁴⁴ to Pu⁴⁶ by bromine is quantitative at 105°C after 1/2 hour; at 50°C the rate of oxidation is slow, but measurable. At room temperature the rate is too slow to measure. A method of converting PuCl₃ to Pu(NO₃)₄ is given. A solubility of NaPuO₂Ac₃ increases with temperature, the value at 25°C being 19.5 g/L and that at 95° C, 37.5 g/L. Supersaturation was observed on slow cooling of a saturated solution.

UNCLASSIFIED

-3-

SOME OBSERVATIONS ON THE BASIC CHEMISTRY OF PLUTONIUM

OXIDATION OF Pu²⁴ TO Pu⁴⁶ BY NITRIC ACID

In order to determine the oxidation state of plutonium in stock solution and in solution which had stood for 22 hours at 90° C in various concentrations of nitric acid, two methods were used. The first consisted of a rough determination of the solubility of the hydroxide; the results obtained through use of this method are presented in the fourth column of Yable I: The second method involved the precipitation of any Pu⁺⁶ as MaFu0₂Ac₃.

In the second method the supernatant was removed and the precipitate was washed twice and dissolved in a known volume of nitric acid. A cut of the dissolved precipitate was taken and assayed. The NaPuO₂Ac₃ was then reprecipitated and a cut of the supernatant was taken and assayed. The amount of Fu in the final precipitate, as determined by the difference of these two assays, was taken as the amount of Pu⁴⁶ in the original solution. The conditions for the NaPuO₂Ac₃ precipitations throughout were:

 $HAo = Ac^{-} = \sim 1 M$

The results are shown in Table I.

Ta	pï	e	I
		_	

Concentration HNO3	Initial concen- tration Pu ⁺¹ 4	Treatmont	Hydroxide solubility mg/2	%Total Fu ppt : NaPuO2nc
1.5 M	0.08 M	None	1-1	2
0.5 M	0.08 M	22 hrs. 90°C	276	33
1.5 #	0.08 M	n	22.5	;i8
6.6 M	0,17 M	15	111	89
13.0 M	0.08 M	Tđ	8∍8	none *

*Failure to obtain a procipitate may be due to the low concentration of Pu during the attempted precipitation. Dilution was necessary to obtain the conditions of precipitation.

In order to show more conclusively that the Pu in the acetate presipitations was in the Pu⁴⁶ state, ether extractions were tried on two precipitates obtained after treatment as above in 1.6M HNO₂. In the first attempt 3.7.4% of original Pu was extracted by ether; in the second, 8.4% was extracted.

RATE OF Put OXALATE PRECIFICATION

In order to determine roughly the rate of the Pu⁴³ exalate precipitation, four tubes were prepared, each containing about 1 mg Pu⁴⁴. Sufficient XI solution was added to reduce all Pu⁴⁴ to Pu⁴³ and to give an excess such that $I_2^2/I^2 = 1/3$. About one hour was allowed for the reduction. At the end of the reduction period exalic acid was added, and the exalate was precipibated. The precipitates were stirred for various times, after which they

the solubility of the presipitate. Conditions of supernatant were $\begin{cases} HNO_7 = .75 \text{ M} \\ H_2C_2O_4 = .25 \text{ M} \end{cases}$. The results were as follows:

Table II					
	Time allowed after oxalic acid addition	Solubility Pu ⁴³ cxalato			
1.	5 min	40.6 mg/ 2			
2	1 5 min	18.4 mg/2			
. 3.	60 min	23.5 mg/2.			
4-	7 hours	¥/38₀8 mg			

The solubility product as determined from an average of 2 and 3_p since the concentrations in these two were most accurately known, is 53×10^{-10} OXIDATION OF Pu⁻¹⁴ TO Pu⁻¹⁶ BY BROMINE

An excess of liquid bromine was added to tubes containing about 1 mg Pu⁴ in 1.54 HNO₃. The tubes were sealed and placed at various temperatures for various times. After the oxidation period the excess Br_2 was removed, and HF KNO₃ solutions were added in order to precipitate Pu⁴⁴ as $S_2PuF_{6^2}$ La⁶³ was added to carry traces of Pu⁴⁴ if almost complete oxidation had occurred.

Conditions in supernatant wore:

 $H^{+} = 2.7 M$

A cut of the supernatant was taken and assayed giving the amount of in oxidized by Br_{2^n} . In some cases the supernatant was removed and the precipitate washed, dissolved and assayed giving a somewhat more accurate

	Control,		Temperature			and Time of Oxidation Period							
	no cxida- tion treat-		2	25°C	a da an	50°C			105 ⁰ 0				
	ment	≩ hr	l hr	2 hrs	4 hrs	l hr	l hr	2 hrs	4 hrs	🛓 hr	1 hr	2 hrs	4 hrs
%Pu in su- pernatant (Pu ⁵⁶)	1%	<1%	<1%	<1%	< 1%	10%	15%	20%	45%	32% 93% 120%*	92% 92%	90% 120%*	97% 80%
%Pu in ppt (Fu ⁺ 4)			-Not d	otormir	0d~~~~			~~~~		2.2%	2.0%	2.6%	2.3%

Tablo III.

* The presence of percentages above one hundred is indicative of the inaccuracy of the assay.

uu 2.0 5.

1

unaressed with bromine.

.

1

1111

tite entry

undergramme der sterre

۲,

Same wanter

N 11 D

UNIN MOLE NO.

The results are given in Table III.

4

Some difficulty was encountered in the subsequent use of bromine so an oxidant after one hydroxide precipitation away from 1N H_2SO_4 solution. A test was made to determine the effect of sulfate ion on the oxidation after one and after two hydroxide precipitations. After a period of oxidation of four hours at $50^{\circ}C_5$ the percentage oxidized was determined as before.

Ta	b1	8	IV	.,

	After one hydroxide ppt.	After two hydroxide ppto
% Pu in supernatant (oxidized)	I. 7 %	51 %
% Pu in ppt. (not oxidized)	85 %	71 %

ATTEMPT TO CONVERT PUCK TO PU(NO3)4

The PM(OH)₃ was precipitated, washed and dissolved in a mixture of HMO₃ and H₂SO₄ so that the final solution was 2N in each acid. The solution was heated on a steam bath for about 30 minutes in order to oxidize Pu⁴³ to Pu⁴⁴. After oxidation the hydroxide was precipitated, washed, dissolved in 5N HMO₃ and reprecipitated. The insoluble residue left after the second precipitation was dissolved in hot concentrated HNO₃, assayed, and found to contain 4_{2} 8% of the original material. 95% of the material which went into solution precipitated as K₂PuF₆ showing that it was in the Pu⁴⁴ state. Less than 1% was found in the supernatant after this precipitation. In a subsequent use of this method 2.3% of material was lost in an insoluble residue.

-8-

SOLUBILITY OF NaPuOpAc3 AT VARIOUS TEMPERATURES

Three washed and dryed NaPuO₂Ac₃ procipitates, each containing p(x) = 1of Pu, were prepared from stock solution which had been exidized with NaPuO₂ Fifty microliters of water was added to the first tube, after which it was placed on a steam bath. Water was added at 15-minute intervals, at first an 25-microliter portions and later in 10-microliter portions. When the precipitate just went into solution the tube was removed, cooled, and the volume marked. Later the tube was calibrated to this mark, and the volume of solution was found to be 200 microliters. After removal from the steam bath the tube was placed in dry ice and cooled to $5^{\circ}C_{p}$ where it was left for 2 hours while when NaFuO₂Ac₃ settled out. The supernatant was removed as completely as possible without washing. The precipitate was dissolved in nitric acid and both precipitate and supernatant were assayed.

A known volume of water was added to each of the other two tubes, after which they were left standing overnight - one at $25^{\circ}C_{p}$ the other at $55^{\circ}C_{2}$. The undissolved precipitate settled out, and the solubility was determined by assaying a cut from the supernatant. Results were as follows:

Tomporature, ^o C	Solubility as NaPuO2Ac3
. 5	12.3 g/2 sol.
25	19.5 g/ 1H20
55	22.0 g/ 2 H20
95	37.5 g/ 2 801.

Her midempted frustional crystallization just sufficient water

-9-

was added to a 7.5-mg NaPuO₂Ac₃ precipitate to dissolve it at 95° C. When the precipitate was dissolved, it was immediately placed in a Dowar flask containing water at 90° C and was allowed to cool to room temperature over a period of two days. When the tube was removed, the solution was supersaturated, no precipitate having settled out. After shaking, crystals began to form on the sides of the tubes. The crystals grew over a period of about five hours.

APPROVED FOR PUBLIC RELEASE

UNCLASSIFIED

for the second a the of the general

UNCLASSIFIED

