

## PUBLICLY RELEASABLE  <br> $2-23-96$ 2

WORT DONE BY:
Martin Doutsoh ararat Ramsey

ExPORT WRITTEN BY:
Martin Deutsch

Clamationtion changes to TINCIASSTFIED by axtherity of the U. S, Atomic Energy Commission
 human ubsarx zn. oiled

$$
3-30-56
$$



The pairs of simultanoous fission fragnents were observed in a double ionication chamber using electron collection. The most probable energy of the heavy fragaents is for $\mathrm{J}^{235}$ : 60 Mov; $\mathrm{U}^{233}: 59$ Hev: $\mathrm{Pu}{ }^{239}: 65$ Wevo The most probable eaorgy of the light fragnents is in the sams order, 94,95 and 93 ldevn The over $l_{\text {e,z }}$ of the two groupe is about equal in all three cases and may woll be ontirely instrumental. The most probabla total-kinotiooenorgy reloase is, for tho three substanoes in the mbove order: 153 , Mey, 151 Mev, and 156 Mov. The most probable mass sfiter amission oi the prompt neutrons for the hoavy fragraent in all three casos seens to be about 140 mass unitsc The most proa bable mass of the light fragment for $\mathrm{u}^{235}$ is about 938 for $\mathrm{U}^{233}$, 91 ; for pu 239 : 98 。 The higlest fission yield for a singla mass number should be about $51 / 2 \%$ in all thres sasaso The onergy roleaso for sjlitting in a given ratio seeme to bo neariy tho samo for the threo substances.


MEUTRONS

The kinoticoenergy relesse and the nass ratios ocourring in the fission of $\mathrm{J}^{235}$ ， $\mathrm{U}^{238}$ and $\mathrm{Th}^{233}$ has beon stuaiod by Jontschke ${ }^{(1)}$ and for $\mathrm{U}^{235}$ by Flammersfeld ot
 periment we studied the fission prosess in the oqso of thermel fission of $0^{235}, 0^{233}$ and Pu 239 by a mothod very simd lar to that of jentischke。

## EXFERIMENLAL METHOD

Fig． 1 shows a diagrar of the ioniantion chamber used．The material under investigation－pure isotopes in the case of $\mathrm{D}^{i 33}$ and Fu 239 and about 80 parcent $\mathrm{V}^{236}$－ were u8ed in the form of nitrates．These wore dissolved in a mixture of aloohol and＂Zapon＇ thinner．This solution mas aded to an appropriate amount of diluta（ 1 to 50）solution of＂Zapon＂lacquer．About 0.2 of of this solution was spread over an area of about $40 \mathrm{~cm}^{2}$ on freshly cleaved mica．After drying for an hour at $60^{\circ} \mathrm{C}$ this filn was floated off on water and imediately lifted out cn a fine nickel grid．The operation had to be oarriod out quite rapidly since otherwiso a large fraction of the active salt dissolved in the water．Attempts＇to spread the films on other liquids，inoluding mercury，failed for various reasons of The niokel grids wero sitaniped with square holos about 0.15 min to the aict and about did5 mm thici．Thair optical transmission vias about 20 peroant．Particles leaving the filnf on the side on which it was supported were therefore quite well coilimated． Tho grid，supporitiog the film was then mounted in the chamber in the place indioated in Fig。 1 。

Tho total thickness of the filn never exoeeded $1.2 x 10^{-5} \mathrm{gm} / \mathrm{om}^{2}$ ．The amount of active matarial was about $5 \dot{x} \cdot 10^{-7}$ ga in the entiro film（ $40 \mathrm{~cm}^{2}$ ）in the case of puan，ebout 1．Zoit．fur Physik：120， 165 （1943）．
2．Zait．fur Pysik，120， 450 （1943）．
3．CN 1840
$3 \times 10^{-6} \mathrm{gm}$ in the oase of $\mathrm{V}^{233}$ and about $4 \times 10^{-5} \mathrm{gm}$ in the case of $\mathrm{U}^{233}$ 。
The assomblies of soreen and collooting olectrcde were mounted on the lids of the chamber, identica? on both sides of the high-voltago electrode. The screans were mede of parallel nickel wires, $0.001^{\prime \prime}$ thiok spaced $0.030^{\prime \prime}$ apart. They served to shield the colleoting electrodes against oharges induced by the positive ions. This wes necessary because of the high lownerequenoy outoff of the amplifiers used. By applying pulses to the highovoltage electrode it was showi that the screens were over 99 percent el'iective. The amplifiers used wore of the type known as "Model 100" oat the project, stabilized by inverse feedback and had a frequenty response such"stop" pulses showed a rise time of 0.5 microseconds had a dooay time of about 35 mioroseoonds. The chamber was filled to about 50 cm Hg with argon to which about 2 percent $\mathrm{CO}_{2}$ was added. Ihe ges fire purified contimuously by ciroulating over calcium metal at about $250^{\circ} \mathrm{C}$ 。 No organic materials were used anywhere in the chamber, other than the film oomaining the aotivo material, in order to maintain gas purity. The addition of the oarbon dioxide Wes required to speed the oollection of the electrons to permit use of the highofrequency circuit, neoded in turn to reduce noise due to fonization by the gama rays from the neutron source and by the alpha rays from the active meterial. The observed collootion time was slightly over a microsecond. The gas pressure was high onough to ensure that all of the ioniaation took place in the space between the highovoltage olectrode and the sereens. The high voltage electrode was kept at - 4200 volts while the soreens had a.cout- 1700 volts applied to them. This makes the field between soresn and colleating oleotrode somemat higher than that outside the sereen. Ihis soems to be necossary in order to "funnel" the electrons through the soreen. If the voltage on the screen is too low a large fraction of the electrons fails to resoh the colleoting olectrode. The pulse height is however quite inclepeadont of soreon voltage onge it oxceeds a certain minimura value, about 1500 volts in our osso.

Alpha ray pulses were saturated with a total voltage of about 250 volts on the chamber o abcut 100 volts on the soreen. Fission pulges however required about 1500
volt for saturation. This was tosted by plsoing somewhat heavier film of aotive material in the chanber so that the fission counting rate was high enough to mesaure pulse heijhts conveniontly with an electronic differontial pulse height section。 This difference in saturation voltarge 18 undoubtedly due to the much highor ionization deno sity in the case of the fission fragmentso since the voltage used in the actund oxperiment pas almost threse times as high as required for saturation, this should not sause any difficulty, hoveror. The purity of the gas was tested before overy run by oheoking the saturation voltaga for alpha particlos.

The output of each ampliifier was put onto the norizontal plates of a $5^{\prime \prime}$ osoillosnope tubo. The operatinir voltages oi the tubes including the high voltage wore supplied by a special stabilized supply。 The two tubes wero photographed sime inltaneously on"SoB. Pan" film by a General Radio osaillograph reoordex aqmera. No sweep wre used on the osoilloscope. Suocessive pulses were displaced by the motion of the film, which moved about one foot a minuto There are of course more than five times as many pulses from the half of tho ohamber facing tho unsupporied side of the active film than from tho half facing the supporting grid. In order to avoid confusion whioh right be caused by a large number of pulses which do not have mates, the intensifiers of both oscilloscopes were triggered by the amplifier carrying the sualler number of pulsos. The photographio tracks ware projeoted in a nicrofilm reador and measured with e transparent scalo.

The noutron source used for these measuroments was the chain reaoting "waterbofler" of Los Alamos. A bean of thermai noutrons was allowed to omerge from the race of the graphito colunn after passing through $4^{n}$ of bismuth to reduco tho gamra eay ionization. About 30 pairn per minuto woro observed with Fu 239 and about 100 with $0^{235}$. In the latter asse the intensity of the source wes reduced somewhat below its maximum value to provent occasional overlapping of pialsos in-tras ohamber hale faoing the unsupported side of the film.

Soveral films, each running about 200 minutes, wore taken with sach of the threo substanoss and the best ones solectod for Einal sualuation. The criteria for eoloction were absence of oxtonsive strageling similarity of the data for both chamber halves and good olear photographic traces. The differences between various records were small, but some of the active zapon films gave consistently cleaner results than others.

The ovaluation of the observod ionication by the fission fragments in terms of kinetio energy was besed on the assumption that the same onergy is exponded by them in producing an ion pair as in the caso of alpha partiolos. The gein of the amplifiers was set so that the output pulse height of the alpha particle pulses due to the activities of the foils wme approxirately the same as that of the fission pulsos. during neutron exposure. These pulses were photographed on the double oscilloscope. "Stop" pulses from a pulse generator of the type known on the project as "Model 100 Pree cision Pulser" were then put on the soreen grids of the ohamber and photographed in the same fashion. In this manner it was found that 1 Mev of partiola energy correspanded to 0.842 millivalt applied to the ecreena This value agreed within the uncertainty of the oaloulation with that expected from the ealculated oapacity of the chamber. It was identical within the experimental uncertainty of qbout ono percent for both sides of the ohamber. At the beginning of each neutron exposure the oalibration was verified using ax electronic pulse height moasurement which has bean found to agree with the velue found by the photographic method. Then, with the amplifior gain set at the same value as ubed to observe fission pulses, pulse-s from the precision pulser betwoen 20 and 120 millivolt were photographod on the same film as the fission pulses. This served as calibration for this partioular run and oliminated uncertaintios of all feators irom aplifier gain to those of magnification of the miorofilm projector. It also cheoked the Jinearity of the amplifior and osoilloscope. The response of the ontire amplifier - oailloscope arrangenent varied by less than 3 peroent during soveral woikso No oorrection was made for tho enorgy loss oi the fragmenas in the fot

was probably on the average slightly less than one poroents end almost half of this is componsated by the onergy loss of the alpha particles used for calibration. A correction of about 0.5 peroent should perhaps be applied to all our energy valuer, but this is oonsiderably less than tho uncertainty in the absolute values. The oomparison of the threo fissionable substanoes is, of course, not affeoted by thiso
"'ho ioniaation "noise" due to radietions flom the neutron source was equivalent to a particle anergy of about 1.5 hov.

A measure of the resolution of the measuremonts is obtained from the fact that the alpha partiole groups from tho foils showad a wicith at half maximum of about 2.5 percent. About 97 percent of the pulses showed erergies in the peakg the remeining 3 percont straggled over a considelable range. Thls is porhaps not as good as one aisht hope for, but the difficulty in keopiag the films and grids free from dust may qooount for most of the stragglingo

One phonomonon whioh remaned kithout a complately satisfactory explanation was the ocourance of considerable number of fission pulses on the side supported by the grid which did not have metes on tho unsupported side. Their number varied fron film to İlm betweon 5 and 50 percent of the number of paired pulses. There was no relation between the fraction of such single pulses and the quount of aotive material or the amount of stragfilig. They were disregardod in evaluating the datao The most reasono able explanation seems to be that thers is a creepage of aotive material onto the surface of the grid, including the lower surfaco, perhaps while the filn is weto It mast be renembered that because of the rathar low transmisaion of the eride only a few percent of the active material need sproad onto the supporting grid to oange the observed eifeot. A rumbor of othor possiblis oxplanations wero ruled outcoy oxperimentas


About 1600 pairs were messured for $U^{235}$ ，about the same number for $\mathrm{U}^{233}$ ，and about 900 for Pu ${ }^{239}$ 。 Figso 2 to 13 show histograme of our resultis．Pigs． 14,15 and 16 show smoothod curves drawn from the same reisults．

The singlo－fragment distributions（Figs． 2 to 7）summarized in ilg． 14 were obtained in each case by combining the results of both halves of the chamber．The distributions on the side whioh facod the unsupportod surface of the film Eeneralily showed less tailing off，possibly because of scattering in the grid．The onergy values at tho peaks are

|  | $0^{235}$ | $\mathrm{U}^{233}$ | Pu ${ }^{239}$ |
| :---: | :---: | :---: | :---: |
| Heavy traginent（Mov） | 60 | 69 | 65 |
| Light fragront（Mev） | 94 | 95 | 93 |
| Rrtio | 1.67 | 1.61 | 1.43 |

In the chse of the light fragnents the three substances give very similar dise tributions although the shift towards lowar energies for Pu ${ }^{239}$ ，shown in fig． 14 ，seems outside the experimental error．The heavier fragments show nearly identiond distributions for the two uraniwn isotopes but in plutonium the peak is clearly shiftod to higher energies．Tho ratios of the peak anergios seem to indicate that the fission of plutonium is appreciabiy more symmetrical than that of $0^{235}$ and that of $0^{233}$ is slifhtly more asymatrio．Wo shall presently seo othor ovidence for this．

Another point of interest in connection with the singlo－fragment curvef is the amount of overlap of the two groups．It mounts to about a poroent of all fragments for the uranium isotopes and to about 6 percent for plutonium．This is the order of magnitude of the stracigling observad with alpha particles in our arrangement．dent．－ sohke found appreciably less overlap and Snyder（LABS 299）found no pulses at all at the bottor of the＂vallay＂for $\mathrm{U}^{235}$ ，using a single ionization chambor．It seems therefore

 $-90$

In that esse it would bo expectad that the over lap is greater in the osse of plutonium since the＂valley＂is narrower so that the samo experimontal braadening will have a more pronounced effect．Prok．bly thore is very little true overgap in either of the three substances．

The total kinotiosenergy ralase（Figso 809 and 10 ），ioo．tho sum of tine onergios of the two fracments of each pajrs is summarizadin Figo 15．Themost probablo onergy
 oaso the peak soems to bo shifted somewhat townris higher onergios with respeat to the wirgs of the distribution．This ngain is connooted with the fact that tho more syms metrical modes of fission are more probable in plutonium than in tho uranium isotopeso since these modes show a higher entegy release。 The mean anergies，in the smatorder as the most probable onergies givon above，are 103,151 ，and 153 绝ev，respeotivelyo olearly indionting the asymnetry in tine distribution for purn．

The ratios of the kinetic onargios of tho members of the pairs of fregments（Figa． 11，16s and 1．5）are sumarizod in Figo 16。 These distributions show moro slearly tho degrea of asynotry of the fissions in the three caseso The most probable ristios are for $U^{235}: 1.49 \%$ for $0^{233}: 1.52 \%$ and for $\mathrm{Pu}^{239}: 1.32$ 。 These show exactly the samo trend es the ratios of the peaks in the single partiole curveso Beause of the oonservation $0 J^{2}$ monentum the ratios shown in Fig． 16 should also represeat the mass ratios of tho pairs．This atatement must bo modified somowhat booause of the monentual imparted by the prompt neutrons．These neutrons are probably omitted isotropioally from the moving fragnents with velocitios oomparable with those of the fragmenta themselveso Thus their effect will be to causo one particular initial．mass ratio to appar as a spread of ratios of kinetic eneriaios，tho maximum spread boing about 7 percent in the ratio for the cases where all of the neutrons cone from the slow framents in the formard direotiono ompared with those whore they are amitted from the fast fragment in the backurd dirootion．These extreme cases are certainly quite rareo If there is a definite


final mass ratios will bo different fron the initial ratios deduced frore the kinetic energies. The curves of fig. lef do not quito indicate the relative probabilities of portrin mass numbers in the fission of the threo substances since tho ordiagtas are diram for eotal intervials instesd of equal mass number intervalso in figo 17 we have drawn tho expected fission yields for various mass numbers from the three substanoes. Flnese ourves were obtained by rodrawing figa 16 for equal mass intervals, and using the finkl total mess, ioo. tha mass after omission of the average number of prompt noutrons. Although the figure is somewhat confusing, oloser inspection shovs the following featuress the distribution of the heavy group is alnost identioql for 2.11 three substanses: the most probable heavy mass is about 140, perhaps e iittle lower in the case of plutonium; the most probablo light mass for $\mathrm{U}^{235}$ is about 93 (tho distribution for $0^{233}$ is shifted by two units towards lover mosses and that for pa 239 is shifted almost 5 units torard heavier masses). The highest expected yield for one mase number is about $51 / 2$ percent in all caseso Also on 1 ig o 17 we havo indicated by the azshed and dotited lines the fission yields observed by ohemical methods. we are indebted to Dr. Sugarman for these ourves. It can be seen thet the agreanent is very good both for $0^{235}$ and plutonium. There is no cheraical ovidence in the case of $0^{233}$, The laostion hoight of the poaks is almost identical by the two metnodso Tho greater width of the surve obtaimed by the fragment onergy mothod is due partly to the effeot of the recoil from prompt neutrons as disoussed above and partly to experimental uncertainties. There is some indication that the ohemial method indicatos slightly greater symmotry of fission fhan do our experiments This may be explained by assuming e tendency for tho aeutrone t.o leave the heavier rather than the lighter fragmentso or it may be due to experimepalel olieots such as a sliuht difforenoe in the energy raquired to make an ion pair in argan botwoen the fastor and the slower fragments. It may bo notod in passing that if theref ware a difieronce in tho probability of prompt neutron omission between the more and 1088 symmetrical modes of fission: the "heavy" and "light" peaks as found by chemical motinods should show different hotghts and widths. No such differgnoo sems indioged
 absaisse shows the total enargy relosso，the ordinate，the onergy ratio：while the density of the dashos indicates the frequency of occurrence of a partioular gombination c ratio and eagrgys This presentation is the gquivalent of a three－dimensional ploc。 In ＂Figo 19 we have also dram in the lines corresponding to definite values of the energy of the light or the heavy fragrants separatelyo These plots really sumarize the results oompletely．Adding＂columns＂on the graphs ive should obtain the curves of Fig． $15_{p}^{\circ}$ ． adding＂rows：＂，the curves of Figo 16 。 Adding strips along the lines of the grid drawn in lige 19，we get the ourves oí Fís．14。

To can see at a glance thrit one particislar onorgy of a light fragment may correspon to all possible values of the mass ratio． $0: 2$ the other hand there is a definite oorre： Lation betseen the onergy of the havy fragment and the mass ratio，low values of the energy corresponding to high mass ratios，ani vico vorsa．the graphs are out off arbitrarily at onorgies below 130 Mev to save space。 OnIy a very small number of pairs had energies less than this valuo and these showad all possible mass ratioso

In Figs． 21 and 22 wo plot the avarage and maximum enorgy releaseo rospeotiveling for verious mass ratios for the thres substanceso Tho smooth curve in figo 22 rspo resents tho calculated maximum energy for $U^{235}$ as given Jentschko（i．Although slightly bottor packing fraotion values are now available it did not secm worth while to recalculate this ourve．Unforbunately the avorage energy（figo 2l）is greatly ino fluonced by the small number of straggling tracks，while the maximum onergy（Fige 22） is a somewnet acoidental quantity since it dapends on the last track in a distribution。 The following conclusions seem fairly reliablo，though the dopendence of maximum enorgy release on mass ratio follows roughly the expeoted behaviourg the observed variation is about 20 percent for the oxtremo modes of fissiong tho onergy release for the same ratio of splitting does not differ freatly for the three substances investigated． Iherelis some indioation that the energy ralseso deponds somewhat more steaply on mass ratio in the case of plutoaiun then in the cixse of uraniume Some orude considerations of packing fractions indioato that plutonium should release about 4 Mev more energy

APPROVED FOR PUBLIC RELEASE

on fission than $0^{235}$ for the same mass retio. Howeter about 2 kev, on the averago, is used up to provide the great;or numbor of prompt neutronso The remaining 2 key mey well be only partly doleased as kineitio onergy, the rest going into bacloar excitation。 It is not surprising, therefore, that no difference in energy reluaso for the same mass ratio is observed in our measurementso The greater oñergy release by plutonium is apparently due oniy to the tendency to more symmetrical fission。


APPROVED FOR PUBLIC RELEASE
U UNCLASSIFIEB
Fig. 1


APPROVED FOR PUBLIC RELEASE





$$
P_{u}{ }^{239}
$$

Energies of the Heavy Fragments Fig. 6



## $U^{233}$ <br> Total Energy

Fig. 8



APPROVED FOR PUBLIC RELEASE





## . Energies of the Fragments

Fig. 14

## Total Kinetic Energy

Fig. 15


## Mass Ratios

Fig. 16

APPROVED FOR PUBLIC RELEASE






UNCLASSIFIED



