CIC-14 REPORT COLLEGTION REPRODUCIIUN COPY

APPROVED FOR PUBLIC RELEASE

LAMS - 345

This document contains 10 pages

SPINODEPENDENT PART OF THE NEUTRON - DEUTERIUM CROSS SECTION

by
To Hell
Fo de Hoffmann

A matrix method for the spinalependent part of the neution deuterium scattering cross section is worked out in detailo The methoa follows closely the treatment of Condon and Shortley for the evaluation of the dot product of matriceso

We wish to present a method for the spinedependent part of the soattering cross section for slow neutrons from ortho and pera diouteriumo To introduce the problem let us quote from a forthcoming paper by Schringer and Hammermesh ${ }^{1)}$ ：
＂We wish to calculate the differential cross section for a scattering process in which a neutron with momentum p^{0} collides with a D_{2} molecule with momentum $\circ p^{\circ}$ in the internal state specified by the vibrational，rotational and spin quantum numbers V, J, S ，thereby producing a neutron with momentum p which has been scattered through the angle（H）into the solid angle d_{N} ．leaving the molecule in the state characterized by $\propto \mathrm{p}, \mathrm{V}^{8}, \mathrm{~J}, \mathrm{~S}^{\circ}$ 。 The differential aross saction as computed by the Born approximations is

which differs formally for the corresponding H_{2} molecule cross section ${ }^{2}$ ）only by the replacement of the pumerical factor 409 ，the square of the reducod mass of the neutron－H_{2} molecule system。 by $16 / 25$ ，the square of the reduced mass of the neutron $-D_{2}$ molecule systemo These reduced mass factors arise

[^0]In calculating the number of final neutron states per unit range of tho total energy, and in the value of the neutron flux relative to the molecule o"

Now we know that the interaction can bo written as 3)

$$
\begin{aligned}
& =\frac{2 \pi^{*}{ }^{2}}{n}\left[2\left(a_{3 / 2}{ }^{-a_{1} / 2}\right) \sigma_{n} \circ\left(\sigma_{1} \omega_{2}\right)\right]\left[\left(r_{n}-r_{1}\right) \cdots \quad\left(r_{n} \alpha_{2}\right)\right]
\end{aligned}
$$

where If is the mss of the neutron: $a_{3} / 2$ and $a / 2$ are the scattering amplitudes for a neutron - deuteron quadruplet interaction and a neutron a deuteron doublet interaction respectively: σ_{1} and σ_{2} are the spin vectors of the deuterons; σ_{n} is the spin vector of the neutron: r_{1}, r_{2} and r_{n} are the respective position vectors and is the Dirac delta function Units are such that the spin of the neutron is one hall. The nature and use of these vectors is exatily as that given in condo and Shortly "Theory of Atomic Spectra", Cambridge 1935 (hereafter referred to as C and S) and we follow their method in deriving the interaction matrices Let us set

$$
\left.\begin{array}{rl}
a & =4 a_{3} / 2+2 a_{1 / 2} \tag{3}\\
\beta & =2\left(a_{3} / 2-a_{1 / 2}\right)
\end{array}\right\}
$$

thus

$$
\begin{align*}
& V=\frac{2 \pi \hbar h^{2}}{M}\left[\alpha+\beta \sigma_{n}\left(\sigma_{1}+\sigma_{2}\right)\right]\left[\left(r_{n} \sigma_{1}\right)+\left(r_{n}-r_{2}\right)\right] \\
& \frac{\sigma^{2 \pi \hbar^{2}}}{M}\left[\beta \sigma_{n} \circ\left(\sigma_{1}+\sigma_{2}\right)\right]\left[\delta\left(r_{n} \sigma_{1}\right)-\delta\left(r_{n}-x_{2}\right)\right] \tag{4}
\end{align*}
$$

5). One way of deriving this formula is given by Schwinger and Hammermesh and leads to their equation (6) a The apparent difference is due to their definition of σ, in particular $\sigma_{n}=(1 / 2) \sigma_{\text {Schoringer }}$

We note that 0 is divided into a symmetrical and antimsymáerical part and
rewrite U as

$$
0=U_{1} \delta(f) \& v_{2} \delta(\Phi)
$$

Further we may rewrite the summation part of (1) using this symbolising as

$$
\begin{equation*}
\sum_{m^{1} m_{j}, m_{S}} \sum_{n_{1} m_{j} n_{S}}\left|\psi_{f}=\frac{m V}{2 \pi h^{2}} \quad u \psi_{i}\right|^{2}=A_{1} B_{I}+A_{2} B_{2} \tag{6}
\end{equation*}
$$

where

$$
\left.\left.\begin{array}{l}
A_{1}=\sum_{m^{I}{ }_{p} m_{S}^{I}} \sum_{m_{p} m_{S}} \mid\left(m_{1} m_{S}\right. \tag{7}\\
\left.0_{1} m_{0}^{I} m_{S}^{I}\right)
\end{array}\right|^{2}\right\}
$$

and

$$
\begin{aligned}
& B_{1}=\sum_{m_{J}} \sum_{m_{90}} \int\left\{\left.\xi_{\xi} \delta(J) \xi_{i} d \tau\right|^{2}\right. \\
& B_{2}=\text { same with } \delta(-)
\end{aligned}
$$

where and i are the final and initial spacial wave functions of the whole system and is their coordinate space.

In the following we wish to show the method for evaluating A_{1} and $A_{2}{ }^{\circ}$ Let us recall that

$$
\begin{aligned}
& m=z \text { component of neutron spin } \\
& m_{3}=z \text { component of the rotation vector of the molecule } \\
& m_{S}=2 \text { component of } \sigma_{2}+\sigma_{2}
\end{aligned}
$$

Our problem is essentially to obtain the elements of the matrices $\sigma_{n}{ }^{\circ}\left(\sigma_{1}\left\{\sigma_{2}\right)\right.$
and $\sigma_{n}{ }^{\circ}\left(\sigma_{1} \sigma_{2}\right)_{0}$ wo shall perform this by ovaluating $\sigma_{n} \sigma_{1}$ firsto mint ovaluation of $\sigma_{n} \sigma_{2}$ is virtually the same problozo To get $\sigma_{n} \sigma_{1}$ instead off suinming over m and m_{S}, we change to a complete set of commuting variables sum over jo y_{2} where

$$
\begin{aligned}
J_{1} & =\sigma_{1}+\sigma_{2} \\
J_{2} & =\sigma_{n} \\
J & =\sigma_{1}+\sigma_{2}+\sigma_{n} \\
J_{z} & =\text { the } \% \text { component of } J \\
; & =\text { the remaining variables completing the set }
\end{aligned}
$$

and small letters donote the eigenvalues of these variableso we note that our J_{2} and σ_{1} now satisfy the conditions for vectors P and Q as given by C and S page 70 where a schems for the evaluation of $P \cdot Q$ is giveno

The matrix elements of $P \circ Q$ are seen to be evaluated in terms of tro quantities of the form ($-Q_{i}^{\vdots}$) and (quantitios in detail is given by equation C and $S 10^{5}$ 2a and 10^{3} 2bo Their subo stitution into the evaluation of $12^{3} 2$ then gives PoQo

For a given molecular spin S, the values of $J_{.} J_{1}$ and J_{2} will determine the role of the second deuteron spin so that we may apply the argumant of C and S regarding relative phases (cf C and S_{2} last paragraph of page 69) with the following results: for elements diagonal in j, j_{1} and j_{2} the valuo of $\sigma_{n}{ }^{\circ} \sigma_{1}$ and $\sigma_{n} \sigma_{2}$ are the same: elements off the diagonal are the negative of each othero Thereo fore the diagonal elements of $\sigma_{12}{ }^{\circ}\left(\sigma_{1} \omega_{2}\right)$ are zero and the offodiagonal elements of $\sigma_{n} \cdot\left(\sigma_{1} \sigma_{2}\right)$ are zeroo

This means that collisions in which the total molecular spin changes are due only to interaction terms of the form $\sigma_{n} \circ\left(\sigma_{2} \sigma_{2}\right)$ iseo only dus to Ug, the
antisymetrical part of the interaction Thus for the oas e in which total molecular spin changes $A_{1}=0$ and we need to evaluate only $A_{2}-x$ similarly in those cases in which the total molecular spin remains unchanged $A_{2}=0$ end wo need to evaluate only A_{2} 。
 treat the individual cases by the method outlined above:
I. STMPEIRIC
$A_{2}=0$ and

$$
\begin{equation*}
A_{I}=\sum_{j, j_{z}} \sum_{j^{I} j_{z}^{I}} \left\lvert\,\left(\left.j_{0} j_{s}\left|a+\beta \sigma_{n}^{0}\left(\sigma_{1}+\sigma_{2}\right)\right| j j^{\frac{1}{2} j_{2}^{I}}\right|^{2}\right.\right. \tag{9}
\end{equation*}
$$

By our previous arguments regarding $\sigma_{n} \sigma\left(\sigma_{2}+\sigma_{2}\right)$ the matrix $a+\sigma_{n} \cdot\left(\sigma_{1} * \sigma_{2}\right)$ is diagonal (a being just a constant l. Substitution into the formula for Pol also shows that two elements with the same f and different j_{z} are equal o The summation over I_{z} therefore gives

$$
\begin{equation*}
A_{1}=\sum_{j}(2 j+1)\left\{\alpha+\beta \sigma_{n} \circ\left(\sigma_{1}+\sigma_{2}\right)\right\}^{2} \tag{10}
\end{equation*}
$$

 Let us now look at all the possible symmetric cases in detail

Case I-1:
S goes from $0 \rightarrow 0$
The only possible eigenvalues are

$$
j=1 / 2, j_{1}=0, \quad j_{2} \times 1 / 2
$$

Substitution of these values in $P \circ Q$ gives $\sigma_{n} \circ\left(\sigma_{1}+\sigma_{2}\right)=0$
Hence

$$
A_{1}=2 x^{2}
$$

or

$$
j=11 / 2, \quad j_{1}=1, \quad j_{2}=1 / 2
$$

Here

$$
\sigma_{n}{ }^{\circ}\left(\sigma_{1}+\sigma_{2}\right)=1 / 2
$$

Hence

$$
A_{1}=6 a^{2}+3 \beta^{2}
$$

Case I - 3

S goes from $2 \longrightarrow 2$
There are two possible sets of eigenvalues

$$
j=1 \quad \sqrt{2}, \quad j_{1}=2, \quad j_{2}=1 / 2
$$

Here $\quad \sigma_{n} \circ\left(\sigma_{1}+\sigma_{2}\right): o 3 / 2$
or

$$
j=21 / 2, j_{1}=Z_{s} \quad j_{2}=1 / 2
$$

Here

$$
\sigma_{n} \cdot\left(\sigma_{1}+\sigma_{2}\right)=1
$$

Hence

$$
\Lambda_{1}=10 \alpha^{2}+15 \beta^{2}
$$

By analogous arguments to the symmetrical case wo obtain $A_{1} \rho 0$ and

$$
A_{2}=\sum_{j}(2,+1)\left\{\beta \sigma_{n} \cdot\left(\sigma_{1} \sigma_{2}\right)\right\}^{2}
$$

In all antyosymmotrical cases (-mp) has the value $2 / 2$ and $\left.(-)^{2}\right)$ takes on different values as listed in each case

Case II-I

$$
S \text { goes from } 0 \leadsto 1
$$

There are two possible sets of eigenvalues

$$
j=1 / 2, \quad j_{1}=0-\infty, \quad j_{2}=1 / 2
$$

Here

$$
\sigma_{n^{0}}\left(\sigma_{1} \sigma_{2}\right)=\sqrt{2}
$$

or $\quad J=11 / 2_{g} \quad J_{1}=0 \rightarrow I_{s} \quad J_{2}=1 / 2$

Here $\quad \sigma_{n} 0\left(\sigma_{y}-\sigma_{2}\right)=0$

Hence

$$
A_{2}=4 \beta^{2}
$$

Case II - 2
S goes from $1 \rightarrow 0$
This is analagous to the $0 \rightarrow 1$ case, and yields

$$
A_{2}=4 \beta^{2}
$$

Case II-3
S goes from $1 \rightarrow 2$
For this case $(-: Q i-m)=\frac{1}{2 \sqrt{3}}$
There are two possible sets of eigenvalues

$$
j=1 \quad 1 / 2, \quad J_{1}=1 \rightarrow 2_{\Omega} \quad j_{2}=1_{0}, 2
$$

Here $\quad \sigma_{n} \circ\left(\sigma_{1} \sigma_{2}\right)=\sqrt{15}$
$0 x^{*}$

$$
j=21 / 2, \quad j_{1}=1 T_{T}, 2, \quad j_{2}=1 / 2
$$

Here $\quad \sigma_{n} \circ\left(\sigma_{1} \omega_{2}\right)=0$

Hence

$$
A_{2}=5 \beta^{2}
$$

Ths above method is interesting largely because it can be extended to other slements with relative easeo

The calculation of the hydrogen case is almost no extra work once the deuterium case is dealt witho If the intaraction is written of the form of equation (4) where a and fimply have a different meaning then the values of
 in the case of hydrogeno

Wo are contomplating the estension of this method to CH_{4} and possibly $\mathrm{NE}_{3}{ }^{\circ}$

Unit

 Sa DATE FEE 14 . 1946 --

REC.
NO. REC.

APPROVED FOR PUBLIC RELEASE

[^0]: 1）．Schringer and Hamermesh，the acattering of slow noutrons by ortho and deuteriumo To be published in the Physical Reviewo

 2）。 Schranger and Teller，Phys Rev 52，1937，286－295 equation 21

