

A number of copper-oylinder and copper-ball orusher gauges were disposed at near distances during the explosion of the atomic bomb at Trinity on July 16, 1945. The gauges were protected mechanically by steel containers sunk flush with the ground, the tops of the containers being provided with nozzles which restricted the rate of rise of pressure sufficiently so that the gauges would give reliable readings. Maximum pressures of 1.3 (4 readings) and 5.0 tons per sq. in. were recorded at distances of 324 ft and 208 ft respectively from the center of the base of the 100-foot tower supporting the bomb. Then these values are compared with those which would be expected in free air from a bomb having a blast equivalent of 10,000 tons of TNT, it is seen that the multiplication due to the proximity of the ground is 6.0 and 8.0 at 324 ft and 208 ft, respectively. These values relate to the region of Mach reflection where calculation of the multiplication is not at present possible.

APPROVED FOR PUBLIC RELE

UNCLASSIFIC

MEASUREMENT OF MAXIMUM BLAST PRESSURE NEAR THE CENTER

INTRODUCTION

It was suggested by G. I. Taylor that maximum blast pressures should be recovered vory near the center during the explosion of the atomic bomb at Trinity, as the measurements would be extremely valuable if such a bomb had to be used with a low height of burst against fortifications or other heavy structures. Taylor also suggested that the pressures could be conveniently measured by erusher gauges of the type used in registering pressures in gun barrels during firing. Gauges of this type have the advantage that they do not require synchronization and unlike electrical recording equipment will record in the presence of intense ionization; for this reason it seemed desirable to make use of these gauges in the Trinity trial. Accordingly a number of orusher gauges were obtained and ranged along two lines extending northwards and southwards from the center under the hundred-foot tower on which the bomb was supported, the distances of the furthest gauges being about 300 ft from the center. A description of the gauges and the method of use, together with the results obtained, is given below.

Description of Gauges

Two types of gauges were used in these experiments, one utilizing the deformation of a copper cylinder and the other the deformation of a copper ball. The cylinder gauges were of the type used by the Army Ordnance Department and the Navy Bureau of Ordnance, and comprised a copper cylinder 1/2" long and 3/8" in diameter, fitting loosely into a strong hollow steel cylinder provided with a piston and obturating cup. The maximum pressure to which the piston has been subjected is computed from the change in length of the copper cylinder, negative, with micrometer calipers before and after the test of the copper cylinder, negative, this type were recovered,

The copper-ball crusher gauges were of the type suggested by C. N. Hickman in NDRC report A-21, and comprised a small spherical copper ball enclosed in a steel cylinder similar to that used with the copper cylinder gauges and provided with a piston and obturating cup. The ball gauges had the advantage that, since the area of the compression member increases with increase in compression, a much larger useful range is attained. A section of the type of gauge used is shown in Fig. I. The ball gauges were supplied and celibrated by the California Institute of Technology, and in the actual gauges used the copper balls were 0.1240" in diameter and were obtained from the Bartford Steel Ball Company, Hartford, Connecticut. The balls were annealed according to the procedure outlined by C. N. Hickman, and were calibrated statically by applying hydraulic pressure to the piston and flattening the ball. A single compression was applied to each ball and the compression was measured after the load had been removed. The average variation between two ball gauges was found to be about 30 psi. The calibration curve obtained was found to be a straight line with a slope of 238 psi/mil compression. This value is somewhat smaller than that given by Hickman probably owing to differences in the copper, which are known to affect the calibration considerably.

UNCLASSIFIED

FFED

Design of Steel Gauge Container

In order to provide adequate anchorage and machanical protection for the gauges, a steel gauge container of the type shown in Fig. 1 was prepared. This comprises a hollow steel cylinder screwed to the top of a 1-1/4" diameter steel bar 18 inches long. The whole container was driven into the ground before the gauge was inserted so that the top was flush with the surface. After the insertion of the gauge the open end was fitted with a nozzle, the purpose of which was to govern the rate at which pressure was applied to the singe include.

APPROVED FOR PUBLIC RELEASE

sisting medium in which the resistance is proportional to the deflection, if a uniform pressure is suddenly applied the maximum deflection attained is double that which would be produced by the same pressure applied infinitely slowly. Accordingly, reliable readings can only be obtained with crusher gauges of the type described, provided that the pressure is applied gradually. As the time constant of the gauge is extremely short, (\sim 0.02 millisec.), it is sufficient in view of the slow rate of fall of the blast pressure (\sim 25 millisec.) if the maximum pressure in the container is attained in two or three milliseconds and the nextles used on the containers in the present tests were designed so that the maximum pressure inside was attained in approximately this time. Two types of nozzles were used, one comprising a single $5/8^{\circ}$ diameter hole and the other comprising three $1/4^{\circ}$ diameter holes, the former type being used at stations A, B, C, D (see Table I), while at stations E and F half the gauges had single-hole nozzles and half had triple-hole nozzles.

Layout of Gauges

The layout of the gauges along each of the two lines extending northwards and southwards from the center is shown in Table I. It will be seen that the cylinder gauges were used only at the nearer stations, and that, in view of the unknown size of the expected explosion, the gauges were well distributed along the two lines. Frecise details of the layout are given in Table II for those guages which were recovered after the shot.

Recovery of Gauges

Four weeks after the shot an attempt was made to recover the gauges, and for this purpose a number of search parties were sent into the area¹. Only five of the thirty-two gauges were recovered and particulars of the locations and measurements obtained from these gauges are given in Table II, whilst Fig. 2 shows a photograph of a typical station from which gauges were recovered after the shot. All the other 1) The authors wish to thank the various bedple who helped in the search for the gauges. The mast of those participating, together with the radiation dosage received are given in Appendiz 1.

RELEAS

APPROVED FOR PUBLIC



stations were located but it appeared that at the nearer distances the earth movement and the stresses involved were such that the upper steel container was torn from the 1-1/4" steel bar and only the steel bar remained (see Fig. 3). The gauges at these stations would accordingly have come out of the steel containers and have been subject to severe accelerations: in view of this and of the radiation hazard it was considered inadvisable to make a further extensive search.

Discussion of Rosults

It will be seen from Table 2 that maximum pressures of 1.3 (4 radings) and 5.0 tons per sq. in. were recorded at 324 ft and 208 ft from a point on the ground under the center of the tower.

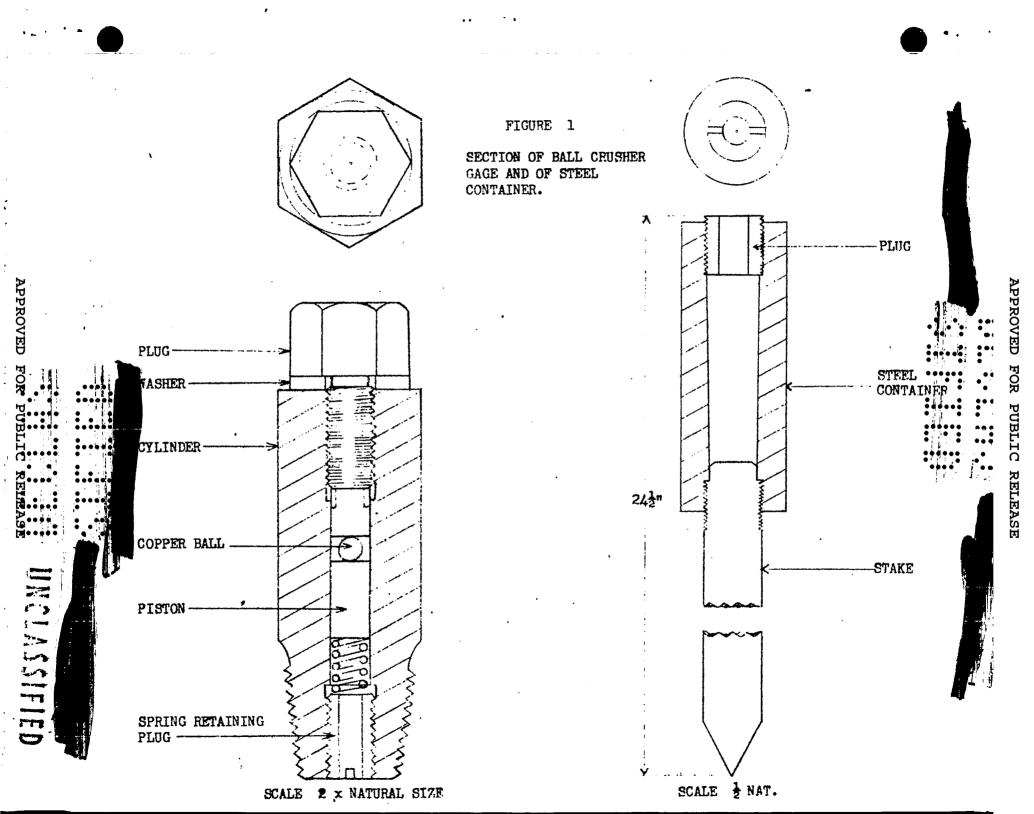
In Fig. 4, a curve is given for the maximum blast pressure in free air as calculated by the IBM's for a gadget having the same blast pressure at somewhat greater distances (e.g., 5 psi level) as 10,000 tens of TNT. When the measured pressures given above are compared with this curve, it is seen that the reflection from the ground apparently causes a multiplication of about six times and eight times at distances of 324 ft. and 208 ft respectively. These values for the multiplication are shown in the figure which also gives the calculated values for the multiplication in the region of regular reflection, assuming $\gamma = 1.25$. This region only extends on the ground to 30 ft from the conter, and the measured pressures thus fall in the region of Mach reflection where calculation of the multiplication is not at present possible.

APPROVED FOR PUBLIC RELEASE

TABLE I- Layout of Gauges Along Each Line

Station	Nominal distance from center: feot	No. of ball gauges	No. of cyl. gauges
A	50	Q	l
B	75	2	1
C	100	2	2
D	150	2	2
E	210	2	O
Ę	325	2	· 0

TABLE II- Measurements from Ball Gauges Recovered


Station	Nozzle holes	Dist. from center: fest	Compression mils	Max prossure tons/in ²
N-F1	Triple	327	9.3	1.10
N-F2	Single	328-1/4	11.2	1.34
S-F1	Triple	320-1/4	10.6	1.26
S-F2	Single	322	11.4	1.36
S-E2	Single	208	41.5	4,95

APPENDIX 1

4 3

The following persons assisted in locating the gauges after the shot, and the amount of radiation received by each is shown below.

		•	
	J. Ashkin	1.5 R	
	T. Cuykendall	3.0 R	
	J. Keck	1.2 R	
	W.G. Marley	2.0 R	
	L.G. Parratt	3.0 R	
	M. Peshkin	4.3 R	
	F. Reines	Q.3.R	
	T. A. Welton	5.3 R	
	•••••	• • • • •	UNCLACETTER
			UNCLASSIFIED
AP]	PROVED FOR PUBLIC	RELEASE	

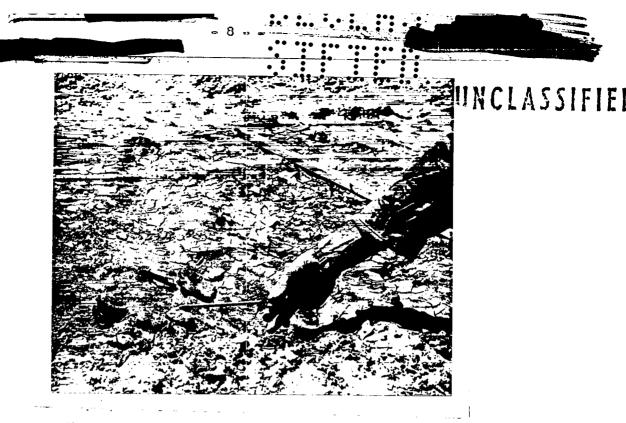
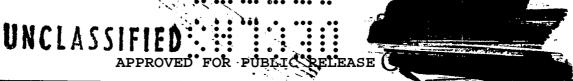
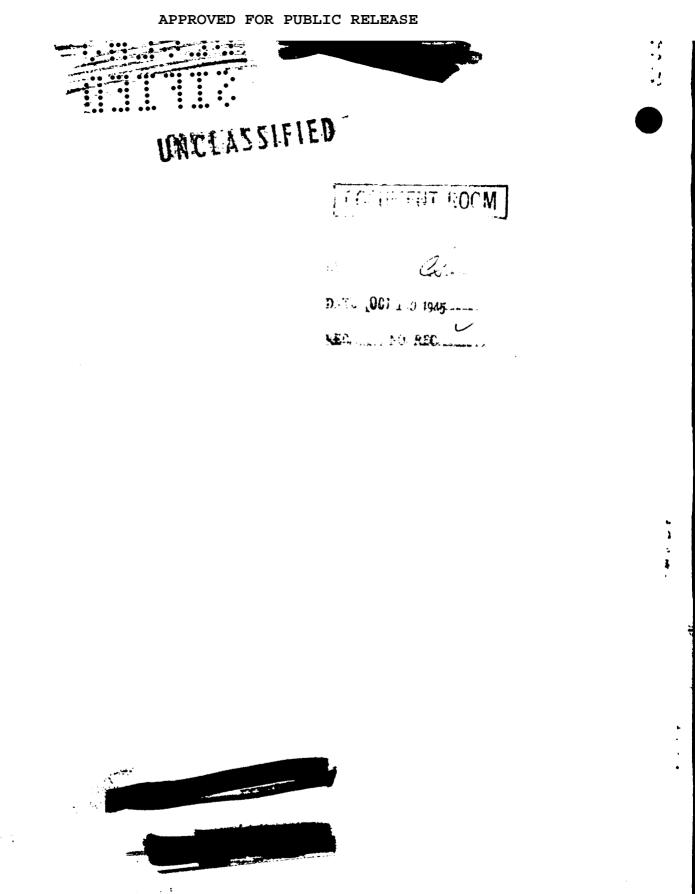



Fig. 2. Photograph of station North-F showing position of gauge containers after the shot.


Fig. 3. Photograph of station North-D excavated after the shot, showing ends of three anonor stakes from which containers have been form.

· · · · · · · · · · · · · · · · · · ·			::=			Ŧ	<u>.</u>				¥ 15: 1	:		 			1						51		1.1.1.1 1.2.1.1					1								
i			<u> </u>											- di	127										T.		1.1.		-1-1				• •	<u>+</u> +;				
					<u> </u> -					••.		<u> </u>					: -			-												<u></u>						•
									-		<u> -</u>	-					• •			<u>TF</u>		<u></u>																
	1.	1		Ē			1						- <u> </u>		Ŧ										-	<u>.=</u> 1		23. 	14								*	
-	(u)			ĻΕ			4-1	11:E 11:E									ī	-12									7							F			1	1
	inch)								117			+			<u>.</u>	1				÷				510	, 7	5										· 11 - 11	-	<u>.</u>
	തി	÷.			T T			t i i			i i				<u>.</u>	ĨÉ	14									1-1-						<u>:,-</u>						
2.0	square							Ţ.		1.3		-		H					F		ΙŢ	r re	e-1	ir ar	d	331	μσ					1, 2				Г ¹ ,1		
2.0	5						-	<u>.</u>							I					· + .		Rei	le	tic	n F	act	or			Ē	1			ŧF.	i :			-
1	tons,'									Ē					Ľ.	L								tic ers ron	us.		B			i i i i								
1.8	- Ĕ	+		· [1.17.7		1.1 1.1	1443 1517	;							4													E.							:+)- 		1
	-0				Ţ							7		14:1			<u></u>			I	sr .	104	To	is -1	174	Eq	11.V	ler										7
	oosure																		1794		-19-74	5,	<u></u>		4.1	1.117				1					121	I ES		-
	•••				ŦE							1				X:																			11	57.	S.	
•••	50 • • •			ц.		山		neli .	1						1		1		i e		ea	nr	sđ	def]	ec	hi o	r-f	T	1	i.				111			Fact	
								÷.	1 -H							; · · ·						nea.	eur	a i	jeal		res	ur	1 01	S	cou	đ			 +;	14-1-1 14	A No	
-	ц С	- 14		18	-									1	- 91	71	j	<u> </u>				dal	dul	ter	1.1	ree	ai	d P	ak	pr	935	ure		1			·.	
	Let.	1	Re	8	n	of			1				- 70-	: 		of					1.	Ţ.	<u> </u>	-													0	11
•••	••	<u> </u>	fo	€∏÷ r†	8	;= ;=	1.2	5 -	β. Γ		- 1	¥	act	R	eП	ect	5 cr			SIL	.11 <u>-</u> 1 - 1 - 1								1					E	1. +4. 		Refle	
1.0							•		1					1		1		11				- Bi	ei		on	Ra	ta	11										
				70	5		2. 1	ļ	1		-					11	I-I				4				-								1	-				•
p. e		1	Ref	lec	t,	σø		5	÷	=		= -							-		K							111	1									
	++			Fae	tþ	¥-	7		Ŧ			E :					TT		<u>.</u>	-			•					r			- 1						•	
0.6	$\left + \right $			+		Ť								1.						-											17							
	4			<u> </u>	븪			1			i -			11.21			<u> </u>			=			 		5	\mathbf{t}		, -				Antr	Pre	*	are.]	
0.4											-		<u>;</u>							1	- 1 - 1 -	+							5		(I	BM.	Pre	J 1	atic	on)		
¥1 1 1	1		1	ЦÝ				15	-							<u> </u>																-						1
	4	} i i		i) ,	4		-1: +	1,				二.1.2	44					<u>.</u>			1								<u> :</u>		<u>' </u>				1.1	1		
0.2		' -	Ţ														† 	-							1					· · · · ·	-			+	! [_]			
							, T			ĒĒ									1	· · · ·			1.1	:=::						-		-		+		21	50	1
0.4) 				50	_					10	0					150				2	00				1.	250	. 	: ' :				1 - G	.			50	+
		- 1 -			-		Ħ		il:							01	sta	nce	fr	OR:	Tow	er	Bas	e ()	fee	t)		11.		* 								:

C
KEUTERI – ELSER CUL, N.Y., NO. 1999 – U.S. 6
Processor of deficiency water sectors.

.

.