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INVESTIGATION OF LINEAR-DISCONTINUOUS ANGULAR
DIFFERENCING FOR THE 1-D SPHERICAL-GEOMETRY
Sy EQUATIONS (U)

W. F. Walters and J. E. Morel
Los Alamos National Laboratory
Los Alamos, NM 87544

ABSTRACT

In this paper two new angular differencing schemes for use in spheres are derived and
examined. These two schemes are the standard linear discontinuous (SLD) scheme and
& hybrid scheine. In the hybrid scheme the angular flux is assumed to be quadratic and
continuous ir the angular cell whose boundary is the starting direction (4 = -1) and SLD in
all other angular cel's. The hybrid scheme is called the LDQ scheme. For smooth probiems,
both schem=s are shown to exhibit fourth-order convergence as the angular mesh is refined
while weighted-diamond (WD) and diamond-diflerence (DDB schemes are second order.
For more difficult problems, all methods exhibit approximately second-order convergence,
but the discontinuous schemes are always more accurate. The LDQ scheme is shown to
have all the advantages of the SLD scheme while yielding in a more nearly isotropic flux
at the center of the sphere Hence, the LDQ scheme should be the method of choice in
problems where the WD and DD schemes are not sufficiently accurate.

Linear-dizcontinuous (LD) spatial differencing schemes for the Sy equations have heen
in use for many years, and their accuracy relative to other schemes has been well
charactcrized.! However, LD angular differencing schemes have received very little at-
tention. The schemes that have been developed treat several variables rather than the
angular varinbles alone. For instance, Mordant? developed a space-angle LD scheme for
the 2-D Sy equations in r-z gecometry, and Honrubia and Aragones® developed « space-
angle-energy LD scheme for the Fokker-Planck equation in 1-D spherical geometry. These
studies focused upon the performance of each respective differencing scheme as a wlhole,
i.e.. as the entire multivariate mesh was refined. In contrast, th= main purpose of our work
is to investigate the accuracy of LD angular differencing when all but the angular mesh
is fully refined. In addition, we address the treatment of highly anisotropic scattering in
conjunction with an LD angular flux representation.

We have developed twe angular differencing schemes for the 1-D spherical-geometry Sy
cquations. The first is a “standard” LD (SLD) scheme that represents a direct general-
ization of LD spatial schemes. The second is a hybrid LD/quadrati --continuous (LDQ)
scheme which was developed in response to nnexpected deficiencies in the SLD schie ne, In
this puper, the standard LD scheme is user! for spatial differencing in sl the codes nsed to
generante results for comparing angular dit teneing schemes,



The derivation of the SLD scheme begins by first partitioning the angular domain into a
set of N contiguous intervals [/‘m—é'l‘m+§]v with g =: —1 and pypy =1 Next we assume

a linear-discontinuous dependence of the angular flux within each interval:
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where uZ denotes the local Gauss Sy quadrature points for the m’th angular interval, and
¥Z denotes the angular flux at those points. We obtain two equations for the two unkrowns
in angular cell m by substituting from Eq. (1) into the transport equation, and taking the
zero’th and first angular moments of the resulting ejquation, respectively. The local Gauss
quadrature formula associated with the flux representation is used in conjunction with
integration by parts to evaluate these moments exactly. The corresponding equations take
the %-cl;llowing form:
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where 'J)m—é 18 known from initial conditions, and 'J’mﬂ is defined in terms of 1_1)5,,_) and

(g by Eq. (1‘). The two equations for each cell are snlved simultaneously, beginning with
the equations for the first cell. The solution for cell m provides the initial flux for cell m +
1. However, note that an initial flux value is not nceded for the first cell. Thus, the SLD
scheme does not require the calculation of n starting-direction flux.

Computational testing indicates that SLD schemne gives high-order accuracy for simple
prol)E-ms witli sinooth solutions. However, for certain classes of problemns murqumlrntur(-
orders, the SLD scheme ean be considerably less accurate than the diamond-difference
(DD) scheme. This deficiency arises from the fact that the starting divection flux. which
dloes not appear in the SLD scheme, stron ly contributes to the nceuracy of the DD seheme
near the ongin. To compensate for this ﬁnw. we hiave developed a hybrid seheme which



uses a quadratic-continuous scheme in the first angular cell and the SLD scheme in all
other cells. The unknowns in the first cell are the angular fluxes at the three local Radau
quadrature points, the first of which is 4 = —1. The flux along this direction corresponds
to the starting-direction flux, and is obtained by solving the slab-geometry equation at
u = —1. Equations for the two other fluxes in the cell are obtained by using the local
Radau quadrature formula to obtain zero'th and first moment equations. The quadrature
formula is exact for this purpose. Note that the starting-direction flux is weighted in the
LDQ scheme, whereas it is always unweighted in standard angular differercing schemes.
Thus, the LDQ scheme effectively gives rise to an asymmetric quadrature set. An obvious
way to eliminate this asymmetry is to use a quadratic-continuous scheme in both the first
and last cells, but this scheme gives very inaccurate solutions in certain types of problems.

To clarify this point, let us consider the form of the starting-direction equation used for
spheres
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Normally we set u=-1 in this equation and solve the slab starting-direction equation in
which the second term in Eq. (4) is zero. If the angular flux contains a delta function in y
at -1, then this term can not be set to zero, and & simple slab starting-direction equation
can not be obtained. Normally the angular flux near u=-1 is a smooth function, and there
is no problem.

Now to generate a symmetric quadrature set, one could solve a finishing-direction equation
obta.ineg by setting u=+1 in Eq. (4). There is a problem with doing this! The angular flux
from a point source in a vacuum exhibits delta function behavior at u=+1, and the second
term in Eq. (4) can not be set to zero. If this term were set to zero for this problem, then

the finishing-flux would not fall off as 1/r? as it should; and in fact, the angular flux ut
=+1 would be a constant at all points! This is the reason an asymmetric sct is used, and
a finishing-direction equation is not solved. The angular flux at u=+1 is determined from
the lincar relation in the angular interval bordering u=+1. "The ‘ux is thus not pinned at
u=+1.

Using the transport cquation, it is easy to show that the angular flux at the center of
a sphere should be isotropic and equel to the starting direction value. At the center of
the sphere, the LD scheme used in the spatial differencing computes the angular flux for
all incoming directions and does not assume that the value for all the incoming directions
i3 fized at the sturting direction value as some other methods do. At the center of the
S{)hcre, the agreement between the valie of i" » angular flux at the sturting direction and
the values of the angular flux for ell other incoming discrete directions is then a measiire
of the nccuracy of the method.

In Fig. 1 we show the results from a simple test problemn which clearly demonstrates
the superiority of the LDQ method. In this problem: the only source is assumed to be
an isotropic boundary source at the surface of A homogeneous purcly-nbsorbing sphere.
That is, all incoming directions have the same amplitude at the surface. The problein is
examined using an S4 quadrature set so there are two incoming directions for all the schemes
except the LDa scheme which has three incoming directions because of the inclusion of the
starting direction. Clearly, the WD and LDQ schemes yield an angular Aux that is more
nearly isotropic at the center of the sphere ns mmpurml to the SLD seheme. The values
of the ungular Hux at the two incoming directions in the SLD scheme are nearly equi but
they vary considerably from the starting dircetion value of 3.64. This purely-absorbing
test problem is used beenuse it is the most difficult test of the isotropic flux condition nt



sphere center. Scattering tends to smooth out the flux, and it is difficult to discern the
relative accuracy of the various angular differencing schemes.

In order to treat highly anisotropic scattering, we have developed Galerkin quadratures®
for the SLD and LDQ schemes. These quadratures were tested on electron transport
calculations and gave very accurate solutions.

We have performed a series of celculations to compare the accuracy of our schemes with
that of the DD scheme and the weighted-diamond (WD) scheme of Morel and Montry.®
All of these calculations werz performed for the same problem: a homogeneous purely-
absorbing sphere with an absorption cross section of 1 cm™*, a radius of 1 cm, u constant
isotropic distributed source, and a vacuum condition at the outer surface. Standard linear-
discontinuous spatial differencing was used with 1000 cells in all of the calculations to
ensure spatial convergence. The errors in the global particle leakage from the sphere are
compared for the various schemes in Table 1. Both the SLD and LDQ schemes give
essentially fourth-order accuracy for this problem, while the DD and WD schemes give
essentially second-order accuracy. It is conjectured that these high orders of convergence
are obtained for two reasons. First, the angular flux is extremely smooth in this problem.
Second, an integral quantity is being examined.

To test this conjecture, a third test problem is examined. This is a 5§ cm radius purely
absorbing sphere with an absorption cross section of 1 cm~! with a point source at the
center. The angular flux in this problem is not at all smooth. Analytically, all of the
angular flux is concentrated in the u=+1 direction. That is a delta function at u=+1. The
numerical results for net leakage at the surface and the scalar flux at the surface are shown
in Figs. 2 and 3 along with the exact analytical result. The LDQ and the SLD schermes
%)'bve the same result because the starting-direction flux is not involved in the calculation.

D/DSN is the weighted diamond in angle using double Gauss quadrature. "WD/SN is
the weighted diamond in angle using Gauss quadrature. The spatial mesh is very fine for
all runs; it is 1000 meshes per mean free path. In both cases the discontinuous method is
seen to be niore accurate. It is clear that the LDQ/SLD results are more accurate than the
WD/SN and WD/DSN results. The Gauss results are murh niore accurate than the double
Gauss results because the Gauss set always has a poiat nearer to +1 than ihe double Gauss
set ast the same SN order. The discontinuous scheme fairs well in this problem, in spite
of employing equal y intervals and having no points near -1, simply because there are
two degrees of freedom in each interval including the one bordering u=+1. For the LDQ,
WD/DSN, and WI%/SN results, the order of convergence for the leakage is 1.95, 1.68, and
1.83, respectively. For the angular flux at the surface (5 cm), these arders of convergence
are 2.2, 1.68, and 1.83, respectively. Thus, the prior conjecture is true; the fourth-order
convergence of the previous test problem is not observed in this problem. The order of
convergence here is approximately 2.0. Notice that the discontinuous result tends to reach
the asympotic limit at a lower Sy order than do the two weighted diamond results.

In all cases studies, the accuracy of the LDQ scheme was found to be equal to or superior
to that of the diamond or weighted diamond schemes. For most prob(}cms the WD and
DD schemes could be sufficient. For classes of problems where this is not true. the LDQ
scheme is now an alternative. No attempt has been made to optimize the coding for these
discontinuous schemnes. These schemes are really bilinear space-angle schemes with four
unknowns per space-angle cell.
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TABLE 1. Computational Results

Method Quadrature Order Error Order Accuracy
LDQ 8 3.024 x 104 -

~ LDQ 16 1.496 x 1075 4.3
LDQ 32 8.764 x 10~ 4.1
SLD 8 3.195 x 104 -
SLD 16 1.532 x 103 4.4
SLD 32 8.664 x 10~ 4.1
DD 8 9.868 x 10~4 -
DD 16 2.951 x 104 1.7
DD 32 7.886 x 103 1.9
WD 8 9,722 x 10—4
WD 16 2940 x 104 1.7
WD 32 7.885 x 1073 1.9



ANGULAR FLUX AT R=0.0

Fig. 1. Angular Flux at r=0.0 for Incoming Directions.
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Leakage

Fig. 2. Leakage vs Sy Order.
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Scalar Flux

Fig. 3. Scalar Flux at Surface vs Sy Order.
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