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Green’s Function Monte Carlo in Nuclear Physics

J. Carlson

T-5, MS B283, Los Alamos National Laboratory, Loa Alamos, NM 87545

We review the status of Green’s Function Mon*~ Cailo (GFMC) methods as applied

to problems in nuclear physics, New methods have been developed to handle the spin

and isospin degrees of freedom that are a vital part of any realistic nuclear physics

problem, whether at the level of quarks or nuckms. We discuss these methods and then

summarize results obtained recently for light nuclei, including ground state energies,

three-body forces, charge form factors and the coulomb sum. As an illustration of the

applicability of GFMC to quark models, we also consider the possible existence of bound

exotic multi-quark states within the framework of flux-tube quark models.

Int reduction

Only within recent times has it become possible to solve realistic few-body problems accuratcl y

in nuclear physics, Although there pr’ ‘blems have a long history (one of the first Green’s function

Monte Carlo applications W= to s-shell nucleii ), the highly non-pcrturbative nature of the inter-

actions, along with their strong state-dependence, kept few-body problems largely out of reach.

Within the last ten years, these problems have been successfully addressed by several Computalicma]

techniques. Faddeev methods, in particular, have been very valuable in solving three-body prob.

lems. In this lecture I will address the current status of Green’s function Monte Carlo (G k’h4C)

methods as applied in nuclear physics.

I will first discuss the application of GFMC methods to light nuclei, and then review it (UW

intriguing new results obtained in flux-tube quark models. To a large degree, the Monte (.’iirl~

techniques involved are the same, although of course different motivations undedy the two arms,

In light nuclei, we are interested in studying problems such as three-nucleon fG-cm, two. bmly

correlations and exchange currents. ‘I%ese calculations are all undertake[l within a framework of

nuckons interacting through a complicated, primarily meson-induced, interaction,

In the latter case, our goal is to obtain a qualitative understanding of the underlying field thvcry

in the low energy and momentum regime typical of problems in nuclear physics. To” ~ard this end,

we examine flux-tube quark models which are based upon the strong-coupling limit QCLJ. Wc l]i}v~

recently employed G FMC techniques to Study t hc so.called ‘exotic’ states in the flIIx-:IIl)c nKId(4;

we find them to he unbound in thv cxtrome strong-coupling limit. Many experimental rwiux’ho~

for thenc particlcn arc current.ly underway; fur cxnlllple the II particle ocarch at Urookhavrm. ‘1’hu

prcsencc or abscm.o of lhww Ht:~tw oxpmimcntidly ‘-m‘.. - .. ....l= ..- ....bL !.. r-m.-..b: -.. .._ .. ....-.. !.... , l...

applicability of the ~trnng-roupling lilnit,
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In this equation, the Hamiltonlan is determined by fitting two (and possibly three-) body ~xPer-

imental data. Clearly such a non-relativistic treatment is only a first approximation; nevertheless

a great deal of physics can be examined in this way.

11314 GFMC) methods have prove]] 10Variationa,12 (VMC) and Green’s Function Monte Carlo (

he very valuable in the study of light nuclei. These methods have for the most part originally l)IXI~

dev~!cped in condensed matter physics, where they have been used to study quantum fluids and

solids. s’e The Harriltonian in nuclear physics is at le~t superficially similar to these condensed mat-

ter systems, as ii consists of a very strong short-range repulsion coupled with long-range attractive

terms.

The nuclear Hamiltonian, though, is complicated by the strong state-dependence of the inter-

action. We will concentrate chiefly on the Argonne7 NN interaction, which may be written:

Vij = ~ Vk(rij)ofi (’2)
k,i<j

multiplied by either an isosp; n-independent ( 1) or -dependent (~i . Tj) operator. In these expressions

~ and ~ represent the spin and isospin of a nucleon, Sij is the tensor operator (Sij = 3~i . FiJuj .
.
Tlj - ~i . Uj), and Lij ~s the relative angular momentum of nucleons i and j. AH modern interactions

( Argonne,7 Bonn,8 Nijmegeng ...) may be written in a similar manner, although the choice

of non-local operators varies. These interactions consist of a one-pion interaction (which has a

strong tensor component) at long distances, an intermediate range attraction, and a short-range

phcnomcnological repulsion; they are fit to deuteron properties aa well as tw~body scattering data.

In a similar spirit, the three-nucleon-interaction (TNI) at lcng distances is assumed to have tlIP

structure of a t.w~pion-exchange interaction, but its precise strength is adjusted to fit the thrce-

body binding energy, 1“ The full TN1 consists of the two-pion exchange piece V2Wand a short. r;mgu

repulsive term:

(4)

where the sums run over cyclic permutations of the particles, and the function War haN the range

O( a two-pion interaction. ‘1’hc parilnlrtcr~ /10 and A. can be cetimatcd from calculating 111Pvlruct.s

of ~uppressing A degrees of frccdo[ll, I}ut their prccisc values are determined by fitting thr I)ill(lillg

oncrgy of A=3 nuclei. The thrw~-i]()(ly force is quite small compared to the two- nuckon intvriwt.ion,

but ncvcrthclwis providm ml in~port,ant fraction of the total binding energy,

Variational Monte (’ado (Vh4(I) stu(lim of light nuclei often Pmploy a gwwrwlizrd .Iwstr(w (( JrIll

for Ihc wave fut)ction:

()1~) =.$ ~ 1;,14).
I<J

(:))

(fi)



which include the most important spin -isospin operators in the Hamiltonian. The operators for

different pairs do not commute, so we introduce the symmetrization operator S to obtain an overall

anti-symmetric wave function. The pair correlations are obtained by solving tw~body differential

equations of the general form:

[-~V2 + v(r)+ A(r)]F = O,

where the function A contains several variational parameters. The

(7)

U3 correlation in equation 6 is

a three-body term which reduces the strength of the operator-dependent two-body correlations for

some configurations of the nucleons. 2 The complete wave function W is constr~cted to have the

coirect asymptotic properties as one nucleon is separated from the system.

The straightforward variational Monte Carl@ algorithm is timited to treating sma!l systems,

optimistically up to A x 8. For the spin-independent interactions in condensed matler physics,

it is possible to simulate one to two hundred particles. For the interactions of interest in nuclear

physics, however, the problems are much more complex, The wave function of a nucleus consists of

2A* spin-isospin components, the first factor represents the spin (up or down for each nucleon)

and the second the isospin. These states are explicitly summed in light nuclei.

This wave function (Eq. 5) is adequate for many purposes, yielding ground state energie:~ within

a few per cent of the Faddeer values for A=3. It also gives similar results for the electromagnetic

form factors,ll Further improvements are possib:e by including L . S correlations and three-body

term.s,’z For other purposes, though, especially for the study of three nucleon interaction terms in

the Hamiltonian, it is necessary to develop e.:act methods.

Since we are interested in projecting out the ground state of the system, GFMC methods o[Yer

an attractive method for determining the exact solution, The ground state is projected through:

I’UO)= /~&exp(-Hr)l’Jr~), (8)

where [~T) is an initiid trial state, for cxainple the Jaatrow wave function dc.scribmi above, In

general one uannot compute cxp (-lfr), but by rlividing the propagation time T into many small

steps Ar:

exp(-ffr) = ficxp(-HAT) = JG(Rn, En-l) .. ..G(Rl!&)
I

(9)

the full propagator can be evaluated by Monte Car!o. [n practice, one must use scvcrrd time steps

Ar and extrapolate to Ar = q i., ~]r~]~r [~ ~]i]ninat~ tinle ~tep errors amocia!ed with tll~’ 1~~~1~-

commuting nature of the kinetic and potential, terms, Since the potential i~ not merely a numbvr

here, but takm c,n dilrcrcnt val IIw iu various spin -isospin chunnels, it is not clear how to ilt]l)lelllvnt

the exact sampling ~ck(Im(Iri urmd for gtnt{;-ill(l(~pcn(~cnt potential problems in atomic and condo nsrxl-

mattcr phy Rictr. A Htatc. indopul)t!cnt potontia.1 can be incorporated into an equation for tho t]xart

Green’g function aA a l)rol)ability for al)sorption, imd hence used to terminate a randotll walk. ‘1’llv

fact that tho potrnlial is Illoru rl~llll~licatwi Il(!ro nle~ns th&t various ehort,-tirne al~llroxllll’’{i{)lls 10

the f]r(!(![l’n flln~tioll ilr(! V;L]I1;LI)I(’,l:lIII ~)ur (;FMC ralculation~, wc usc time Mtcps on tlic ~)r[lvr t)f

I – 5 x 10-4 Me\ -1, wlli( !l yit’1(1very ~ti)idl vxtrup(dationo to zero time Ntt’p,



For short propagation times Ar and static potentials, the following approximationlq to the

propagator is quite useful:

G(ii, i’) [
} ,(F),,7),)

2 GO(R,F)SH :
1)<1 ll)lm~)l) m

(1(l)

In this equation, the full G for 3A coordinates is approximately given by the free particle propa-

gator (a gaussian) times a product of all pair propagators divided by their respective free particle

propagators. The simplest approximation to the ratio in equation 10 is, of course,

!7ij/9!j = exP[-(~~/2)(Uj(r) + Vij(r’))1, (11)

where V, and consequently gij, are operators in spin- isospin space. Exponentiating the momentum-

independent terms in the two-body potential is rather straightfoward; momentum-dependent and

three-body terms are generally small and a linear approximation to the Green’s function ~ilnbe

used.

In fact, we employ a generalization of this expression, using antithetic sampling techniques to

sum over a variety of ‘sub-paths’ in order to determine the full two-body Green’s function. One

could akio employ the methods used by Ceperley and co-workersl’ to evaluate the pair Green’s

function analytically. Here, thollgh, this technique is not u valuable as in studies of bulk-helium.

There are two reaaons for this difference between condensed matter and nuclear problems. First,

the core repulsion in nuclear systems is comparatively soft, so that simple approximations to the

two-hod y propagator arc not M bad, In acidition, the strong state-dependence of the interaction

implies rather large three-budy cfrccts, since the potential acting between various pairs does I)ot

commute. Thus, equation 10 is not as effective an approximation for the full Green’s function, One

simple indication of the importance of three-body spin-dependent effects i~ the difference between

Jutrow variational calculations and exact results, For the 3-body problem with central interactions.

variational calculations and exact methods give ground state energies that agree within (!,02 McV;

for more re;distic interactions the di!rcrcncc is ),3.0,5 MeV,

Incorporating rnorllclltum-(~ cr)cll(lcl]t interaction terms in GFMC calculations is more diflicu]t.

Realistic model~ of the NN intcrilctioli do cotltain such pieces, including L . S, L , $J, I,z, aII(l

p;, operators. To date, wc have only hecn able to include the first of the~e operators, 1, , .5’,

l~uccem.ifully in the exact G FMC algorithm, The diiliculties in treating the second. ordrr (l~rivil[ivus

term are discussed in reference 13, i~n(larc csscntia]]y due to the fact that the nucieons gain difrcr(’nt

effective masees in the difrcr( nt spil~-isospin rhan:tcla, Of course, i~corporating state-ill(lcpell(l(!llt

but tnolnentllm-d(!pen(l{’t]t tvr;u~ is fw~sil)lc. !C nlay be feasible to employ point symmetry Kroup

methods to treat a’ Ic[wit n fcw Ilighvr-nr[lm partiid waveo with Gk’!d C, although the statistical

errors associated with this proc,wlurv Illay IN i)rohibitive,

‘1’110Argontw illterartioll, tlloIIglI, II;LS I)(w’n contitructcrl to .qome degree with th(~ i(lva tll;it 1lIIISfI

tmnn ~hou]d h! ~lliall. [II fw:t, lII(s (’xl) o(’tation value of tho Hum of thmic terms in ii~]ll 1111(1{’i

is only ono to two McV, .’ t)l~Iw(lIiolitly, wc Holvr vxactly for a modified Argonne Vtl ((’ollti~illil~g

only the vight oporators thrwlgh 1, . ,$) illtrrmrtion which bent approximates thu full Arupn]]o V 1,1

mmlcl. Thi O nmdol rvproducw 1110 duutt~ron, the Minglct S, and triplet 1’ wmvea (with the (’xcol)~ioll

r~fcr}lirblinw in II’ w5u.9. \ ..w,t,. tli, 1),, .1 ,,. l... i: r... i i,..,.-., :M *l, ..m ..-...1 4.. ..-d:.--h - iL - .I:tr.. . . . . .. .. 1. ..1 . . . .. .. . .



the V14 and V8 models, this difference is small (@.9 MeV) in the alpha particle. Finaily, we “~otc

that this Argonne V8 model is somewhat different than that used in previous ca.lculations.13

Ground State Results for Light Nuclei

I will first present a new set of results for the alpha particle with the Argonne V8 NN interaction

plus Urbana model 8 TNI.15 The GFMC method converges very rapidly for the alpha particle. as

demonstrated in figure 1. This figure shows the ground state energy plotted as a function of the

total iteration time r. The variational energy is shown at ~ = O; the energy then quickly drops to

the exact ground state energy. In fact, the plot covers only the initial part of the calculation, up to

a total iteratiorl time of 0.012 McV-l. The actual calculation includes 5 times ~ many iterations to

generate additional statistics, the horizontal lines in the figure are statistical error bounds obtained

by averaging the results between 0.024 and 0.060 MeV-l. Other quantities, of course, may not

converge as rapidly w the energy. In this case, the energy con~erges very quickly because ( 1)

there are no bound excitations in the four-nucleon system, the lowest resonance is approximately

20 MeV above the ground state, and (2) the primary deficiencies in the wave function seem to be

short-range high-energy excitations.

Ooo 0,06 O.ou O.ooa 0.000 0.o1o O.om
T (PM/-’)

——. ——. ——

Figure 1) Alpha Particle (~round State Energy vs. iteration time T.

We obtain a ground state {~nor~y of -29.20 + 0.15 MeV for the Argonne V8 plus ~’IfI IIIodul H

interaction, approximately one MeV wwrbound compared to the experimental -28.3 M(’V, \Jsiug

Ilrat-order perturbation theory, wc witimate the dit~crence between the Argor,ne V14 NN intcracti,)ll

and the V8 model is 0,9 MeV; yi[’lding a totalenergy of -28.3 + 0.2 MeV, in relnarkahly K(XMI

agrmmmt with the (!xpcri[l]~lltid r(”sult.

l[cnce, it apprars ti~at thr ,qmmc tllrcc body force can be used ! o provide very ~Curilt(! bindiug

encrgicq for thrw and four. Imly Iluclvi. ‘l’he l.Jrlm]a TN] model H w~ constructed to l)rcvidv iL

,“ . . . . . . ,,, . . . .



-8.48 MeV. The expectation value of the three nucleon interaction is a smaU fraction ( < 5%) O(

the total potential energy, so at this level there is no apparent reason to introduce four- or lligher-

body interaction terms. Other models (Reid, Nijmegen , . ..) of the NN potential give a similar

underbidding for the three- and four-body nuclei, hence it should be possible to fit the binding

energies of these nuclei as well with an appropriate TN I model.

The variational wane function used in this calculation was optimized for the Argonne V14 plus

Urbana model 7 TNI.4 Consequently, it does lot provide a very gocd estimate for the ground state

energy with the model 8 TNI, which has a stronger repulsive component and a weaker two-pi on-

exchange term. However, the rms radius of this trial wave function is very near the exact result,

hence it requires smaller extrapolations for the estimates of o~i-rer properties. GFMC produces a

wave function only in a statistical sense, and hence ground state energy expectation values other

than the energy are extrapolated from ‘mixed’ and variational estimates via:

(Vo[fllwo) % (VTIHI*O) - (WTIO~WT). (12)

The extrapolations required with the present variational wave function are generally quite small.

The most accurate variational calculations to date12 give a binding energy approximately

higher than this GFMC calculation.

O.@ 0,0 1.0 1.s i.o
r (fro)

—.—. —.. .—— ——— .. . . .. ——— ——.

Figure 2) VMC and Gk’M(~ rcsu]ts for the pruton density in the alpha particle

one lMeV

We have also computed the proton density [or both the variational and GFMC wave functions

(Fig. 2). In the impuisc a~)l)roxilrlat,i~~n, the charge f~rm factor of the nucleus can be ol)t;litlml

aa the fouricr transfoim of t!~e oilc-lmdy charge di~trihution. The GFMC one-body density tl;~s n

slight lip in the core which dots Ilot ;~ppear in the variational results. ‘[’his dip i~ woci:lhvl with

a very small region of phase spnw, ;u)(I romwquvntly dotw not afrcct the rma radius or chargv forlil

factor significantly at mall [IluInr[)tIIIIltrilll!lfc!r, It doe~ make a ~ignificant difkrf’nrv’, thollgh, ill

the lcglon near and I)tyond thr first (Iiirrartion ltlinimum,



The effects of two-body charge and current operators can be important even at relatively low

momentum transfer, and must be included when trying to make comparisons with experimental

results. Since the nuclear force arises from the exchange of charged mesons, there must be two-body

contributions to the charge and current operators. In particular, the importance of pion exchange

currents has been know for a long time. Riska17 has developed a method for constructing models

of the exchange currents which satisfy the continuity equation:

V.~,=+i[V,j, p]=O (13)

with an arbitrary potential Vij. This equation is used to constrain the ‘model-independent’ exchange

currents. In addition, there are transverse pieces in the current ( e.g. lViAy, pry, and umy) which

are not so constrained. Using this method, Schiavilla and Risks have computed the magnetic form

factors of 3He and 3H, as well as the backward cross-section for the electrodisintegration of the

deuteron. Their results a good agreement with experiment up to quite high values of momentum

transfer.

They have also computed the charge form factors of the three-body nuclei,18 and obtain good

agreement with experimental results, The charge operators are more speculative since they involve

relativistic corrections and are not constrained by the continuity equation. However, in the alpha

particle some of the uncertainties are decreased because of the isoscalar nature of the system. ‘*Ye

have combined the following one-body charge operator:

qz 1
(u(q)= [1- ~]#G;(q) + G~(q)rz!

-i” ~m’ ‘~ {[Gi(q) - zc~(q)l + [~g(q)- 2G~(q)17.}. (14)

incorporating the Darwin- Foidy term and a small L . S correction, with a tw~body charge operator

due to pions:

Pr(fi’) = ~{[Ff(q)Ti t 1 “kj)ti~(~j)+~j+F,v(q)~js(Ui“9UJ

[ ()
Ffqri. 1T-I+~lv(q)~iz(aj ‘ q~i “ ~i)fim(~i)} (15)

to calculate the charge form factor of the alpha particle. This form of charge operator was first

considered by Kloet and Tjon in examirling pion photoproduction. lg We have also included thu

remaining terms of $ chiavilla and Iliska, but their effect is an order of magnitude smaller than the

terms above up to a momentum transfer of = ,5.5 fro-l,

Figure 3 illustrates the c,a-rtribution of one-body and pion-exchange terms to the :hargc form

{actor. As is appiirent in the figure, the VMC and GFMC results give nearly identical results for thr

exchmnge currents, Ilowcvcr, the onu.lm[]y terms do show a significant diflcrence in the rrgioll of

the second maximum. This difrcrcrlcq is a result of a .wnsitive cancellation in the fourwr transforrr]

(it is down by two orders of magnituflr from its value at k = O) and hcncc small changw irl ~ler~<ity

can produce Iarf;e drcd~.
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Figure 3) VMC and GFMC results for one-body and pion con~ributions to the alpha particle

charge form factor.

The full calculations are compared to experiments’, results in figure 4. The GFMC calculation.

is in excellent agreement with experimental results up to a momentum transfer of = 4.5 fm-’.

Beyond that point, the calculated form factor is significantly larger than experimental results.

Nevertheless, the overall agre~ment is excellent, particularly at lower moment urn transfers where

one would expect the theory to work best.
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Figure 4) Alpha particlo charge form factor, experimental and calculated,



The two-body distributions can also be measured to some degree with electron scattering ex-

periments. The Coulomb sum depends upon the total inelastic cross section summed over all finai

states, and is defined as:
1

/

m R~(q,~) ~,
( 16)

s = ~ ~$ [GE(q2)]2

where RL is the longitudinal response of the nucleus and GE is the proton form factor. The integral

extends from energies just above elastic scattering to infinity, which allows us to use closure to

calculate the Coulomb sum as a ground state expectation value.

s=;

[

[ZFc(q2)]2 1(01~P:(d&t(do)-~GE(q2)~J
J=l k=l

(17)

where
1 + ~xk

Pk(q) = exp(~q” rk)[~] (18)

if we ignore small neutron contributions (which Me included in the calculations) and two-body

terms. In this approximation, the Couiomb sum is simply:

(19)

where Fc is the charge form factor of the nucleus md ppp(q) is the fourier transform of the two-body

distribution function integrated over the pair’s center-of-mass.

Figure 5 compares the theoretical and exp~rimental calculations. Since experiments extend

only to a finite energy, they have been extrapolated using energy- and energy-squared weighted

sum rules by SchiaviUa et al. m’21 using variational wave functions. The contributions of this tail

region are given by the difference between the points labeled ‘extr’ and ‘trunc’; the latter includes

only the response up to the experimental limit. As shown in the figure, the VMC and CF\lC

curves are nearly identical, and both agree very well with the extrapolated results.

Coulomb Sum

●

9
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Beckzz extracted pPP(q) from the experimental results in the three-nucleon system using it
slightly different extrapolation technique and the theoretical results for the neutron contributions.

Although the qualitative features of the experimental and theoretical curves are similar, the ex-

perimental ppp(q) is much higher beyond the first minimum. This would indicate even a stronger

correlation in the protons than is present theoretically, but contributions of tw~body operatcrs to

the Coulomb sum should be included before strong conclusions are drawn.

We seem to have in hand a theoretical picture of light nuclei that is consistent with a wide

range of nuclear propfirties. This picture relies upon the importance of three-body forces and also

of exchange current contributions to the electromagnetic properties of light nuclei. Several avenues

for future research remain open, however. In particular, the effect of relativistic dynamics may be

important. This could in principle be studied with light cone methods, but little has been done to

date with realistic interaction models. In addition, of course, one would like to study heavier nuclei

to determine whether their properties can also be explained within a consistent scheme.

Low-Energy Scattering

The five- nuclmn system is particularly interesting in this regard. Although there are no five-

nucleon bound states experimentally, the J% = 1/2- and 3/2- states do exist as sharp low-energy

resonances. In the simplest picture, these states are one-body p-wave scattering off an alpha particle

core; with an L . S splitting describing the difference between the J=l/2 and 3/2 states. These

states have been studied variationall~ by enclosing the system within a spherical box,23 ;]id t hen

matching the asymptotic wave function to the nodes at the boundaries of the box. Variational

calculations of the five-body system give fair agreement with e~perimcntal results for the 1/2 state,

which is somewhat higher !n energy, but indicate that the Harn.iltonian is not attractive znough ill

the J=3/2 channel.

Other methods are available for extremely low-energy calculations or calculations in non-

resonant channels. By specifying the logarithmic derivative at the boundary and then minimizing

the energy with respect to changes in the variational wave function, the scattering length (and

effective range) can be determined, something that is often important in the study of astrophysical

reactions. This method haa recently been used to study the thermal capture of neutrons by ‘l[e, a

very interesting reaction in that it is dominated by two-body currents. z’ The impulse approxima-

tion (one-body currents only) Would give a zero cross section for this reaction in the abscncc of LIle

tensor force due to a pseudo-orthogonal ity condition. Even with the ftirly strong tensor force; in

the Argonne V14 + TNI 7 model, wc find that the impulse approximation gives only x 107o of the

me=ured cross section. These same methods are currently being used to study the weak.capture

reaction in the four-body system. 25 This reaction produces the highe~t-energy end-point neutrinos

from the sun, and it might be feasible to distinguish their contribution to the total flux in futuw

solar neutrino observatories,

I have described these methods in terms of a one-channel problem. [n principle they can a,lso

be applied to rnally-channel problems, in which case one specifies the l)oudary conditions ill all

channels. The solutions thlls obla~ncd are called cigenph~e solutions, and are charactr, izcd by thr

r--- AL-A AL -.. . –– 1. .,, . ,, .,. . .



to experimental situations). By determining several independent solutions at each energy, the full

S-matrix can be ex,, acted. This method should be practical for simp!e interaction models where

the variational calculations themselves are rather straightforward, but whether it is practical for

realistic problems remains to be seen.

Each of these methods can be employed in GFMC calculations = well. A node in the sc.lttering

wave function can be specified by using the well-known image method for the Green’s function.

The same idea can be used when fixing the logarithmic derivative; one must simply incorporate the

flux entering the internal rt”gion from the scatter~ Lgwave function outside the box. By setting the

magnitude of the image as well as its distance from the box surface, it is po~sible to gu~antee that

the wave function at the surface has a specific logarithmic derivative. GFMC scattering calculations

are currently being undert ~ken for 5He in order to verify or disprove the results of the variational

calculations.

GFMC and Flux-Tube Quark Models

Another area in nucle.r physics where Monte Carlo methods are valuable is the study of con-

stituent quark models. These models are designed to study some of the basic features of full QCD

with a limited number of degrees of freedom. It is hoped that we will be able to understand some

of the behaviour of the underlying field theory with these models, in particular to study the rich

spectral properties of mesons and baryons and also the nature of confinement.

Of course, lattice QCD algorithms are steadily progressing; they are described elsewhere in

this volume. It may be possible in t!~e fairly near future to understand some vital features of

QCD, for example the lowest-lying hadronic masses, from first-principlec calculations of the field

theory. Nevertheless, simple pheric,menologica,l quark models may prove useful in understanding

the structure and excitation properties of ha. drons.

In particular, we examine !lux-tube quark models based upon the strong-couphng limit of QCD.

In the past, these models have been used to describe the meson and baryon spectra; 2g’27 they

produce spectra which are generally in good agreement with experiment, Here, we review recent

work on the so-caJlcd ‘exotic’ states in the flux-tube model; states composed primary of other than

q~ p~~ or qqq triplets. Predictions of bound exotic staies abound, the most fainous being the

Ii-particle originally proposed by Jaffe,2s a six-quark state compcmed of u, d, and s quarks. Tl:c

nature of confinement plays a vital role in these calculations.

Predictions of the H and other exotics must, to some extent, be influenced by the assumptions

inherent in the various models, In particular, a mean-field type of approximation is inherent in

the confinement picture of many models.z&32 including bag models. Here, we study multi-quark

hadron.s (MQH) having ‘2q - 2(j, lq - q, aIId tiq states in a flux-tube model with quite a different

confinement mechanism. Thcw ‘rxotic’ multi-quark states have not previously been c,dculatwl

within this model.

In the flux-tube quark model it is assumed that the color electric flux is confined to narrow,

stringlike tubes joining the quarks. A flux tube starts from every quark i and ends on an antiquark

i, and three flux-tubes i~, k can end or start from an anti -Symmetric ~,)k junction called the Y-

junction. The resulting Ilux-tut)e pattcrna for the familiar q~ and 3q states, as well as the exotic



iMQIf having four to six particles are shown in figure 6. As is apparent in the figure, a StatC

with N+l particles is generated b,y replacing a quark or an antiquark in an N particle state by a

Y-juncti~r tmd two anti-quarks or quarks.

– A )-<

Figure 6) Poss!ble flux tube configurations states of 2 to 6 quarks.

The quarks are treated w semi-relativistic spin 1/2 Pauli particles. In contrast, bag2e-31 and

other mean -field 32’33 m~dcls trust quarks more accurately as relativistic Dirac sp!nors. We SOIVC

for eigenstates of a I{amiltoniap /fQ with three terms involving only quark degrees of freedom:

flQ = flo + l[F + HI, ( ’20

where Ho is the relativistic kinclic ~’ncrg-y of the quarks:

//() = ~ (7n~+pf)’/2. (2 I
i=i, N

The confiiling intmaction I/P, rcprmmt~ the energy of the flux tube~. 1’ is obtained by minimizing

the f,ota.1 Icngth of the tuhcs for finy given position of the Y-junctions, [f L ifi the minimum lvngth

for a ronligur~tion {rl, i = 1, N} (If 1]10 (llliirk~, the cnorgy is:

11/. ~ fil.( r,) - A’fihl. (11)

‘1’he factor W is [hi’ string tl’nsiljll ()[ t hv LIIIMIH aII~l fiM iMa constant term, Whcll littiil~ Iliwsuns

and baryonn, thi~ rI~IIstaIIt al)~)l’itrs it) I)(I I)rnl)ortional LO N, hence it in natural to a.wu)ciiltv 111(11]1

with the trcr ends {)( thv tul]m,

}// r~pr~nontn tho flh~)rt rau~v {IIIV KIIIIJII oxclIallflo interaction lJt’lwcen tho qunrkH, It cflllsists

()( A (;oult~rlll), Hl)irl-sl)irl, Ionwm, nll{l sl~ili lrllit t(’rmn, our prirnmry intprost hcrv in ill Iou .otlvr~y

f, II’

2!{)



Here F’: is l/2A~ for quarks and -1/2(~~)* for antiqua.rks, and a. is the QCD fine structure

constant.. The usual 6 function in the spin-spin interaction is broadened by assuming exp(- $A2q2)

vertex form factols, so that

~)3exp(-~).
‘(r) = ‘fiA

(24)

The interaction parameters used are obtained b~ fitting the masses of light mesons and baryons.zi

The interpretation of this model is trivial for qq and 3q states, however things are not as simple

for A’ z 4. Three different flux-tube arrangements are possible for the 2q – 2@state, w shown in

figure 7. Even when the quark positions are the same, in the extreme strong-coupling limit the

states 11), [11), and [111) are orthogonal to each other due to differences in the. lirik operators (flux

tubes), They have different flux topologies, and hence are not coupled by the ,,amiltonian }fQ.

11> In> lm~

Figure 7) The three flux tube configurations for 2q - 2@states.

Of course a more realistic QCD IIamiltonian would have other terms in addition to 11~. One

such term is a string-breaking term which couples states with different numbers of p;’ rticles. Models

for this term have been used LO study the decay of mesms into two mesons, 34 the rncson-baryon

couplings, ‘s’~ and the A z N +m width,37 [t gives second-order corrections to the hadron cnergim37

which can p~ti)’ be absorbed into the values of the parameters @ and 6h4. }lB can COU]JIC(ho

four-quark states l]) and Ilf) in 4th order. It cannot chamge the number of Y-junctions, and hcncc

dom not couple 1111) to either If) or III).

There should also be a term which 1roatos or de~troy~ closed plaquettes of flux tul~cM; thi~ Lvrn]

can create or annihiliatc Y-junctions, l’hc clrcct of this term on hadron spectroscopy htaa not beCII

~tudied. In the limit that the qumk miws is Iargc one can take the point of view that thww torlm

can change tlm flux tol:ology f.wqtvr than the motion of the quarks, [n thifl limit one mny IN’able to

use the topology that giww thv Iowvst fll.. for a givun con figuratiori of quarks, an hiui boon awIIInd

in rmmc nmdcls,:w In the prownt w~lrk wc ;MNIIIIIP thflt for light quarhfi it is more rrwnnnfihk 10 tiliwt

with //Q WI(I tr~at (’h-h of ~~~ ;lII(I III) l)orturbativ~ly,

‘1’hme arr ah .qomo n~wol allti-~ymmt”try roquircmcntn impoucd by this Ilamiltonian, (Il}vilmsly,

a flprrific collligur~ti[)n of !Iux-tlllwi; for IIx,aInpl I~ qllarkn ( 1,2), (3,4 ), ILIId (5,0) p:~irwl t~)g[’tht’r

within Y.junctionn ill h fiq slatv; (I{NIHIl(]t {Icnrribo n fully ~ymmctric tlnlniltonilm. III (act,, ill

~trong rouplillg Q(;l) nthtvs with tlilt’or(~nt l~mirings are in gmwrul orthogonal to (Inch olhw hy tho

rnmno nrgunmnto given :d)ovv. ‘1’IIM, th~’rv i~ t)o spvci~l i-mti-nymmvtry rwlulrwl Iwtwmw tluark~ ill



different pairs, or for that matter between diflerent baryons. 3*42 However, we must anti-symmetry

between quarks connected to the same Y-junction, and also must respect the symmetry when pairs

of quarks are exchanged,

Quark Model Calculations

We have studied the MQH states in the flux-tube model with both L’ariational Itlonte Carlo

(VMC)2e127 and Green’s Functicn hfonte Carlo (GFMC)44 methods. For the most part, the algm

rithms are very similar to those used to study light nuclei, here I only briefly discuss the variational

wave functions and the few ~ovel techniques required,

Our choice of variational (trial) wave functions for the ‘exotic’ hadrons (states in which all

quarks are confined into one region by flux tubes) was guided by previous studies of the lnt’soi~~

and baryons. Init”ally, we consider only the lowest-energy spatial wave function, determining the

lowest state of the spin-independent Hamiltonian; the sum of kinetic, flux-tube and color coulomb

energies. The symmetry requirements can then be satisfied by an appropriate choice of spin-flavor

wave functions. For the 2q - 2q SJ’SbEVTI,the Spatial part of the wave function ~T is:

where particles 1 and 2 are quarks and 3 and 4 are anti-quarks. The ~ij are functions of tlte

distance between particles i and j, and have the same functional form used previously in the meson

and baryon studies:

~(r) = dmrp[-w(r)(y,r + y2r2) - (1 - w(r))yl.~rls]. (M)

The futors y and the constant 6 arc variational parameters, and w(r) is a Woods-Saxon function

whose strength and range arc additional variation parameters. This form interpolates bctwccn a

Coulomb.like solution near the origin to the behavio: appropriate to a linear potential at Iargu

separations, The function F d.:~crilws correlations between the center-of-ream of the quarks ( 1&2)

and the anti. quarks (W4), and it is chosen aa:

}’(n) = Pxp[-y.11’’c], (27)

The conutant ye ie an adrlitionfit variational pi-wamctcr.

The epatial part of the trial fu ncliom for the other flyf4tema arc Bimilar; pair correlations Iwtwvon

quarks attachmi to the Ramo Y-jlll~rti(lll aro II)llltil)licd hy correlations brtwwm the rvntral jllnctimls

thcmmlww, Fur rxan~l)lc, tl]v Mix.(lliilrk wave function in given by



nrm-pairwi$e components of the six-body potential into the trial wave function. ‘l?h~:se variational

wave functions give accurate energies for the ground states of the spin-i ndepdnent Hamiltonian,

typically within nearly one standard error (N 20 MeV) of the exact GFMC result.

I will not describe the spin-flavor parts of the wave functions here, they are presented in dcta.il

in reference 43. I merely note that it is energetically favorable to couple quarks paired to the same

Y-junction to a total spin O; these quarks are more strongly correlated by the confining interaction,

hence they are most affected by the hyperfine interaction. For example, in the H-dibaryon all

the paired qua:ks can be coupled to spin O, giving a more attractive hyperfine interaction than is

present in two isolated baryons.

Evaluating the tw>body po~ential terms is straightforward using traditional Monte Carlo meth-

ods; the many-body confining interaction is only slightly more complicated. For example, given

a specific set of quark coordinates in the six-quark state; we guess the position of the central Y-

junction (figure 6). The position of the remtining Y-junctions then be determined algebraically

using the formul= given in reference 26. The remaining task is to minimize the total length by

varying the position of the central Y-junction. The simplex method works quite well here, and

typically requires of the order of 10 iterations to provide a very accurate potential energy.

We also need to evaluate the propagator for the semi-relativistic kinetic energy operator, w well

u devising a method for evaluating the kinetic energy in a variational calculation. This operator

involves all powers of the momentum; hence the free-particle propagator

(WTlexp(-~_”Ar) lWT)

is l~on-local in character. The free particle propagator is given in refereltce 44 :

with

hcAT
P=~

CY = mcR/h.

+ /32)’/2],

(:11)

(29)

(:)0)

The propagation distance ia it, and 1(2 is a I?WMWIfunction of order two. Thin propagator h,aa

a Irmg-clietance tail that decays with the Compton wavelength of the particle, ‘I’he rate of dccty

is independent of time step, hut thr iill)plitu(lc of the tail is proportional to Ar, In thv long.

time (Iow. momentum) limit, it roincidca with the non-rcl~tiviotic propagator, as cxpm-tml. ‘[’he

mcmi-relativistic propa~,ator is IJIIly slightly mere diff’cult to sample than the gausoiana UHCd in

non-rrlativifitic ccalculation~. When c:dculmtilig the expectation value of tlw kinetic onorgy, it iH

posoible to determine the propagator tormfl Iincar in Ar analytically, and hence mmplr the kitwtic

rncr~y without introducing :my apprr)ximationn.

w a;~in-ill(l{’prll{lollt l[nlllilttmiall rontributw tlm :Iominant tcrma in the rnorgy, thctrrforv wv

initially con~ider the rmlllts for thi N Nilllplifiw! llnmiltoniau, ‘1’110rl’nulta are utlmmarizvd in flgurv

H, thvir mont titrikitlg fratllrv i:, LIlilt wwli iifltliti[)lllal pnrticlp ruldvd to tho nynton, rluwe the vllqry

by R roughly r-ot:titmt ;IIIIt~IIIIt, ‘1’IIv wl~litivo conNtn.tlt is litrg~ (* &lo MeV), uId hortro tht, t’xt)tit

MQI{ ntatm nre four to Iivr lilltl~lru(l MvV hiqhvr tl~~n Btnton rompoml of two irdatcd hm[lrot)~,



This is not a trivial result since for some configurations of the particles the MQH confining potential

is leas repulsive thm for two isolated baryons. Overall, however, in the flux tube model it costs

more kinetic and potential energy to form the multi-quark systems. It is amusing to note that

exactly the sune additive effect would be predicted in simple the simple di-quark picture.

5.0

2.0

s
g
w

1.0

0.0

Figure 8) Lowest single-hadron energy vs. number of quarks and anti-quuks.

Of course, the hyperfine interaction must be included in any reasonable calculation. The

strength of the hyperfine interaction has been adjusted to roughly reproduce the experimental

N - A splitting of * 29C MeV; with these parameters we obtain a splitting of ,27 GeV, other

effects, including coupling to pions (string-breaking) may alno contribute - 0.1 GeV to this split.

ting, 37 This model reproduces the experimental m - p nplitting of 630 MeV, however the pion IIM

a rather omall energy of 55 MeV,

Consider the six quark systemn; both the S=0 11dibaryon and a proposed S=3 exotic Hix-quilrk

state. In the latter, of course, the hyperfirm interaction is repulsive, IIowevcr, if the six-qllmk stilt~

i~ luger in spati~ extent tl~an the ~pin 3/2 haryrm, the hypcrflnc interaction may bo IPM rcpul~iv{’.

llc~,ce, thitr state in a pomil,ie ci, udidatu for a hound exotic, The results for thww fi.vstcnl~ Iwo giv(’n

in Table 1.

‘1’xhlr I: Envrgicu of Six-Quark Staten

Stmt(? Energy ( (;eV)

2X N 2.()()

tjq( S’ = ()) 1,:10

2X A 2,54
fh~(,s = :1) ‘J,!)~



We have computed the H dibaryon in the SU3 limit in which all u, d, and s quarks have the

same ream. The hyperfine interaction does provide a relative attraction for the H dibaryo~ when

compared to two baryons, Two isolated spin 1/2 baryons gain approximately 350 MeV from the

-pin-dependent term, while the H dibaryon gains * 500 MeV. This shift is close to what one would

expect from first order perturbation theory. The 3q baryons have one S=0 pair each, thus their

total energy shift is roughly equal to the N - A splitting. The H-dibaryon has three such pairs,

and consequently gains an energy of nearly 1.5 times the h’ - A splitting. However, this additional

attraction is nGt nearly strong enough to overcome the much higher energy of the 6-qua Fk state in

the confining potential; indeed the full calc~dation reveals that the energy difference between the H

and two baryon states is 300 Me’/ in the SU3 limit. Including the afi’ects of a larger strange quark

mass only increaes the miw of the H relative to the two isolated baryons.

Next, consider the proposed S=3 dibaryon. In this case the two isolated baryons (As) are

pushed up approximately 200 hfeV by the hyperfine interaction. This shift is somewhat smaller

than that of two nucleons due to non-} wrtlirbative effects in the nucleon channel, 27 The energy shift

in the six-quark state ( - 190 hfeV ) is only slightly smaller. Consequently, the six-quark state

again remains higher in energy than two baryons, this time by approximately 450 MeV. Mean-field

models typically produce &six-quark state of significantly larger spatial extent than baryons; and

hence a smaller hyperfine repulsion ;n the spin 3 dibaryon. ‘1’his effect is very small in the present

model; here the results are dominated by the spin-independent interaction,

Results in the 2q - 2~ and Iq - ~ systems are similar. The opin O four-quark state is very

high in energy compared to two pions; as expected, since the pions feel an extraordinarily strong

hyperfine interaction. We would also predict no strong spin.2 exotic resonance with the flux tube

model. We do not expect these MQH states to eyist as sharp rmonances at high energy. WC hiLVC

explored an extrernc limit of tlw theory in order 10 Iwttcr understand the possible range of quwk

models. 1,1 this limit thrre is no coupling between the MQH and multi- hadron states, Physically

the llP (neglected in this work) providm this coupling, and thu~ all MQH states will have a width,

Unfort~nately, sincn }fp is Iarguly unknown, we cannot provide any reliable witimato of the wi[lth~,

Thi~ term in the Ilamiltonian in m) important topic for future utudy.

[n summary, we find that in the Iilnit of wwdt coupling between difiercnt flux-tuhc con figur:tti(lns

there are no bound multi-quark st~tcs, Our rcnulte ~tand in nharp contr~t to mean.llcld mcxlrl~

which explain tradition IIIPSOII Rnd Imryon fipcctromxq)y with a ~imilar degree of ~ccuracy. ‘1’hoy

a)no differ considerably from tww bt)dy potcntid l)Mctl quark modelm, in which lIM hypcrfiilv inter-

action provides tmou@l mttractioll to produw ~hmrp Iow. enmgy rcomrancm in certain til}in-iso~pill

rhannolo, (~onm(i~l~t~tly, tho I)rmvllrv (w WIJK1’IICCof thcm exotic ntatos in thp rxpwimontml Rpvutrum

Illny ho an imporlrmt guidv ‘1: {)I:F ul)(l(’mtlail(lill~ (If ~(;l)i



and also hypernuclear physics.

With the help of these methods, we have developed a coherent picture of the structure and

static electromagnetic properties of light nuclei. These rather traditional models depend upon

three-nucleon-interactions and the presence of exchange currents. They are also being employed to

study correlations within the nucleus, as well u low-energy reactions of aatraphysical interest.

Many important challcrlges lie ahead, of course. Foremost among these are calculations of

larger nuclei and development of new techniques for treating the dynamic properties of nuclei.

Heavier nuclei offer the opportunity for studying very neutron-rich nuclei, which are important

~trophysically through their connection with neutron stars. A better understanding of current

and future electron scattering experiments requires reliable calculations of the dynamic response of

nuclei, perhaps the most challenging goal for Monte Carlo (or any other) methods.

This work was supported by the U. S. Department of Energy.
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