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Green's Function Monte Carlo in Nuclear Physics

J. Carlson

T-5, MS B283, Los Alamos National Laboratory, Los Alamos, NM 87545

We review the status of Green's Function Mont2 Cazlo (GFMC) methods as applied
to problems in nuclear physics. New methods have been developed to handle the spin
and isospin degrees of freedom that are a vital part of any realistic nuclear physics
problem, whether at the level of quarks or nucleons. We discuss these methods and then
summarize results obtained recently for light nuclei, including ground state energies,
three-body forces, charge form factors and the coulomb sum. As an illustration of the
applicability of GFMC to quark models, we also consider the possible existence of bound
exotic multi-quark states within the framework of flux-tube quark models.

Introduction

Only within recent times has it becoine possible to solve realistic few-body problems accurately
in nuclear physics. Althongh there pr--blems have a long history (one of the first Green’s funclion
Monte Carlo applications was to s-shell nuclei!), the highly non-perturbative nature of the inter-
actions, along with their strong state-dependence, kept few-body problems largely out of reach.
Within the last ten years, these problems have been succesfully addressed by several computational
techniques. Faddeev methods, in particular, have been very valuable in solving three-body prob-
lems. In this lecture I will address the current status of Green’s function Monte Carlo (GFMC)
methods as applied in nuclear physics.

I will first discuss the application of GFMC methods to light nuclei, and then review a few
intriguing new results obtained in flux-tube quark models. To a large degree, the Monte Carlo
techniques involved are the same, although of course different motivations underly the two arcas,
In light nuclei, we are interested in studying problems such as three-nucleon fa=ces, two-body
correlations and exchange currents. These calculations are all undertaken within a framework of
nucleons interacting through a complicated, primarily meson-induced, interaction.

In the latter case, our goal is to obtain a qualitative understanding of the underlying field thecry
in the low energy and momentuin regime typical of problems in nuclear physics. To'vard this end,
we examine flux-tube \juark models which are based upon the strong-coupling limit QCL. We have
recently employed GFMC techniques to study the so-called ‘exotic’ states in the flux-tnbe model;
we find them to be unbound in the extreme strong-coupling limit. Many experimental scarches
for these particles arc currently nnderway; for example the H particle search at Brookhaven. T'he
presence or absence of these states experimentally may .ovide us with information concerning the

applicability of the strong-coupling limit.

Nuclear llannltonian & Monte Carlo Methorls

Firat, consider solving the non relativistic Schroedinger equation for a few-boily nuclous:
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In this equation, the Hamilton:an is deteymined by fitting two- (and possibly three-) body exper-
imental data. Clearly such a non-relativistic treatment is only a first approximation; neverthcless
a great deal of physics can be examined in this way.

Variational? (VMC) and Green's Function Monte Carlo'3* (GFMC) metliods have proven to
he very valuable in the study of light nuclei. These methods have for the most part originally heen
develcped in condensed matter physics, where they have been used to study quantum fluids and
solids.>® The Hamiltonian in nuclear physics is at least superficially similar to these condensed mat-
ter systems, ac ii consists of a very strong short-range repulsion coupled with long-range attractive
terms.

The nuclear Hamiltonian, though, is complicated by the strong state-dependence of the inter-

action. We will concentrate chiefly on the Argonne’ NN interaction, which may be written:

Vi; = Z V’!(r.'_,')O:'J- (2)
ko<
where the operators O are
O} = 1,0:-0;,8;,L - 8i;, L - 8§, L, (3)

multiplied by either an isospin-independent (1) or -dependent (7; - 7;) operator. In these expressions
o and 7 represent the spin and isospin of a nucleon, S;; is the tensor operator (S;; = 30; - 7,0, -
fij—0i-0j), and L;; is the relative angular nomentum of nucleons i and j. All modern interactions
{ Argonne,” Bonn® Nijmegen® ..) may be written in a similar manner, although the choice
of non-local operators varies. These interactions consist of a one-pion interaction (which has a
strong tensor component) at long distances, an intermediate range attraction, and a short-range
phenomenological repnlsion; they are fit to deuteron properties as well as two-body scattering data.

In a similar spirit, the three-nncleon-interaction (TNI) at leng distances is assumed to have the
structure of a two-pion-exchange interaction, but its precise strength is adjusted to fit the threc-
body binding energy.!® The full T'NI cousists of the two-pion exchange piece V3, and a short-range

repulsive term:

Vijk = UQZWzn(T-‘J)Wzn(T.‘h) + Aozvzr(ﬁ'pﬂ'b), (1)

cye cye
where the sums run over cyclic permutations of the particles, and the function W, has the range
of a two-pion interaction. The parameters {/y and Ag can be estimated from calculating the offects
of suppressing A degrees of freecdom, but their precise values are determined by fitting the binding
energy of A=3 nuclei. The three-body force is quite small compared to the two-nncleon interaction,
Lut nevertheless provides an important fraction of the total binding energy.
Variational Monte Carlo (VMC) studies of light nuclei often employ a generalized Jastrow form
for the wave function:
W) =S (] ] #ol®). (5)
1<)
la this equation, @ is an anti-symmetric Slater determsnant of one-particle states, and Lhe I, arce

pair correlation operators:

Foy = [7(ry) [I + uy (Zu"(r,,)(),",)l (6)



which include the most important spin-isospin operators in the Hamiltonian. The operators for
different pairs do not commute, so we introduce the symmetrization operator S to obtain an overall
anti-symmetric wave function. The pair correlations are obtained by solving two-body differential

equations of the general form:
h2
[-—V*+u(r) + M) F =0, (7)

where the function A contains several variational parameters. The uy correlation in equation 6 is
a three-body term which reduces the strength of the operator-dependent two-body correlations for
some configurations of the nucleons.? The complete wave function ¥ is constructed to have the
correct asymptotic properties as one rucleon is separated from the system.

The straightforward variational Monte Carlo algorithm is iimited to treating small systen:s,
optimistically up to A =~ 8. For the spin-independent interactions in condensed matter physics,
it is possible to simulate one to two hundred particles. For the interactions of interest in nuclear
physics, however, the problems are much more complex. The wave function of a nucleus consists of
2"”&1 spin-isospin components, the first factor represents the spin (up or down for each nucleon)
and the second the isospin. These states are explicitly summed in light nuclei.

This wave function (Eq. 5) is adequate for many purposes, yielding ground state energies within
a few per cent of the Faddeev values for A=3. It also gives similar results for the electromagnetic
form factors.!! Further improvements are possibie by including L - S correlations and three-body
terms.!? For other purposes, though, especially for the study of three nucleon interaction terms in
the Hamiltonian, it is necessary to develop exact metlods.

Since we are interested in projecting out the ground state of the system, GFMC methods ofler

an attractive method for determining the exact solution. The ground state is projected through:
[Wo) = lim exp (- Hr)|¥r), (8)
T —+00

where |¥r) is an initial trial state, for exainple the Jastrow wave function described above. In
gencral one cannot compute exp (= H ), but by dividing the propagation time 7 into many small

steps AT:
exp(-It) = Hexp(—HAr) = /G(Emﬁn-l)....c(ﬁlné{)) (9)
1

the full propagator can be evaluated by Monte Carlo. In practice, one 1nust use several time steps
Ar and extrapolate to Ar = 9 1. order to cliininate time itep errors associated with the non-
commuting nature of the kinetic and potentia! terms. Since the potential is not merely a nnmber
here, but takes cn different values in various spin-isospin channels, it is not clear how to implement
the exact sampling schemes nsed for state-indepencent potential probleins in atomic and condensed-
matter physics. A state-independent potential can be incorporated into an equation for the exact
Green's function as a probability for absorption, and hence nsed to terninate a random walk. T'he
fact that the potential is more complicated here means that various short-time approxim-tions to
the Green's function are valnable.™ In our GFMC calculations, we use time steps on the order of

F=5x 1074 MeV !, which yicld very sinall extrapolations to zero time step.



For short propagation times Ar and static potentials, the following approximation'! to the

provagator is quite useful:

L. _ . Py 7
G(R, ") =~ G°(R, ") D}l(—}l—.ll—) . (10)
<t LB
In this equation, the full G for 3A coordinates is approximately given by the free particle propa-
gator (a gaussian) times a product of all pair propagators divided by their respective free particle

propagators. The simplest approximation to the ratio in equation 10 is, of course,
9ij/9%; = exp[=(Ar/2)(Vij(r) + Vi(r))], (11)

where V, and consequently g;;, are operators in spin-isospin space. Exponentiating the momentum-
independent terms in the two-body potential is rather straightfoward; momentum-dependent and
three-body terms are generally small and a lincar approximation to the Green's function can be
used.

In fact, we employ a generalization of this expression, using antithetic sampling techniques to
sum over a variety of ‘'sub-paths’ in order to determine the full two-body Green's function. One
could also employ the methods used by Ceperley and co-workers!* to evaluate the pair Green's
function analytically. Here, thongh, this technique is not as valuable as in studies of bulk-helium.

There are two reasons for this diflerence between condensed matter and nuclear problems. First,
the core repulsion in nuclear systems is comparatively soft, so that simple approximations to the
two-body propagator are not as bad. In addition, the strong state-dependence of the interiaction
implies rather large three-body cffects, since the potential acting between various pairs does not
commute. Thus, equation 10 is not as eflective an approximation for the full Green's function. One
simple indication of the importance of three-body spin-dependent effects is the difference between
Jastrow variational calcnlations and exact results. For the 3-body problem with central interactions.
variational calrulations and exact methods give ground state energies that agree within 0.02 MeV;
for more reilistic interactions the difference ic 1.3-0.5 MeV.

Incorporating momentum-dependent interaction terme in GFMC calculations is more diflicult.
Realistic models of the NN interaction do contain such pieces, including L - §,L - 5%, L?, and
p?J operators. 'l'v date, we have only heen able to include the first of these operators, [ - S,
ruccessfully in the exact GEMC algorithin. ‘T'he difficulties in treating the second-order derivatives
term are discussed in reference 13, and are essentially due to the fact that the nucieons gain different
effective masses in the different spin-isospin chan:els. Of course, incorporating state-independent
but mnomnentnm-dependent terms is feasible. 't may be feasible to emnploy point symmetry group
methods to treat a’ lenst a few higher-order partial waves with GFMC, althongh the statistical
errors associated with this proceednre may be prohibitive.

The Argonne interaction, thongh, has been constructed to some degree with the idea that 1hese
terina should be small. In fact, the expectation valne of the snm of these terms in light nuclei
is only one to two MeV. onscquently, we solve exactly for a modified Argonne V8 (containing
only the cight operators throngh I - 5) interaction which best approximates the full Argonune Vi

model. This model reproduces the deuteron, the singlet S, and triplet I waves (with the exception

of rounline 1n K wavoal avactly Dartareliation oo to $)ian cemsn! do wmtlomn e o AHP Ll



the V14 and V8 models, this difference is small (0.9 MeV) in the alpha particle. Finaily, we ncte

that this Argonne V8 model is somewhat different than that used in previous calculations.!?

Ground State Results for Light Nuclei

I will first present a new set of results for the alpha particle with the Argonre V8 NN interaction
plus Urbana model 8 TNIL.!> The GFMC method converges very rapidly for the alpha particle. as
demonstrated in figure 1. This figure shows the ground state energy plotted as a function of the
total iteration time r. The variational energy is shown at 7 = 0; the energy then quickly drops to
the exact ground state energy. In fact, the plot covers only the initial part of the calculation, up to
a total iteration time of 0.012 MeV ~'. The actual calculation includes 5 times as many iterations to
generate additional statistics, the horizontal lines in the figure are statistical error bounds obtained
by averaging the results between 0.024 and 0.060 MeV~'. Other quantities, of course, may not
converge as rapidly as the energy. In this case, the energy converges very quickly because (1)
there are no bound excitations in the four-nucleon system, the lowest resonance is approximately
20 MeV above the ground state, and (2) the primary deficiencies in the wave function seem to be

short-range high-energy excitations.
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Fignre 1) Alpha Particle Ground State Energy vs. iteration time T.

We obtain a ground state energy of —=29.20 £ 0.15 MeV for the Argonne V8 plus TNI model 8
interaction, approximately one MeV overbound compared to the experimental —28.3 MeV. Using
first-order perturbation theory, we estimmate the ditference between the Argoune V14 NN interaction
and the V8 model is 0.9 MeV; yielding a total energy of -28.3 + 0.2 MeV, in remarkably good
agreeinent with the experimental result.

Hence, it appears tiiat the same three body force can be used !5 provide very accurate binding

energies for three and four-body unclei. The Urbana ‘I'NI model 8 was constructed to previde a

Vo



-8.48 MeV. The expectation value of the three nucleon interaction is a small {raction (< 3%) of
the total potential energy, so at this level there is no apparent reason to introduce four- or higher-
body interaction terms. Other models (Reid, Niimegen, ...) of the NN potential give a similar
underbinding for the three- and four-body nuclei, hence it should be possible to fit the binding
energies of these nuclei as well with an appropriate TNI model.

The variational wae function used in this calculation was optimized for the Argonne V14 plus
Urbana model 7 TNI.* Consequently, it does 10t provide a very gocd estimate for the ground state
energy with the model 8 TNI, which has a stronger repulsive component and a weaker two-pion-
exchange term. However, the rms radius of this trial wave function is very near the exact result,
hence it requires smaller extrapolations for the estimates of other properties. GFMC produces a
wave function only in a statistical sense, and hence ground state energy expectation values other

than the energy are extrapolated from ‘mixed’ and variational estimates via:
(Vo| H|Wo) ~ (¥ |H|¥o) — (¥T|O|¥T). (12)

The extrapolations required with the present variational wave function are generally quite small.
The most accurate variational calculations to date'? give a binding energy approximately one MeV
higher than this GFMC calculation.
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Figure 2) VMC arnd GFMC resnlts for the proton density in the alpha particle.

We have also computed the proton density for boih the variational ard GFMC wave functions
(Fig. 2). In the impuise approximation, the charge form factor of the nuclens can be obtained
as the fourier transform of Ll one-body charge distribntion. The GFMC one-hody density has a
slight Jip in the core which does not appear in the variational results. This dip is associated with
a very small region of plase space, and consequently doces not affect the rms radius or charge form
factor significantly at small momentum transfer. It does make a significant differ~nce, though, in

the region near and beyond the first diffraction mininmn.



The effects of two-body charge and current operators can be important even at relatively low
momentum transfer, and must be included when trying to make comparisons with experimental
results. Since the nuclear force arises from the exchange of charged mesons, there must be two-body
contributions to the charge and rurrent operators. In particular, the importance of pion exchange
currents has been know for a long time. Riska!” has developed a method for constructing nodels

of the exchange currents which satisfy the continuity equation:
V- Jer +i[Vijyp] = 0 (13)

with an arbitrary potential V;;. This equation is used to constrain the ‘model-independent’ exchange
currents. In addition, there are transverse pieces in the current ( e.g. NAvy,p7y, and wry) which
are not so constrained. Using this method, Schiavilla and Riska have computed the magnetic form
factors of 3He and 3H, as well as the backward cross-section for the electrodisintegration of the
deuteron. Their results a good agreement with experiment up to quite high values of momentum
transfer.

They have also computed the charge form factors of the three-body nuclei,'® and oktain good
agreement with experimental results. The charge operators are more speculative since they involve
relativistic corrections and are not constrained by the continuity equation. However, in the alpha
particle some of the uncertainties are decreased because of the isoscalar nature of the system. ‘We

have combined the following one-body charge operato::

2 -
p1(@) = 1 - sL5151GE (@) + G(on]

2P {1GH0) - 2GR (0] + [GH(@) - 26k (0l ) (1)

incorporating the Darwin-Foidy term and a small L - S correction, with a two-body charge operator

due to pions:

pr(q) = %{[Fr‘(q)ra 7y + B (01 905 - kj)oa(ky)+

[FS@ri 7+ Y ()7 (0 - g0 - kiJiw (ki) (15)

to calculate the charge form factor of the alpha particle. This form of charge op~rator was first
considered by Kloet and Tjon in examining pion photoproduction.!® We have also included the
remaining terms of &chiavilla and Riska, but their effect is an order of magnitude sinaller than the
terms above up to a momentum transfer of & 5.5 fm~!.

Figure 3 illustrates the contribution of one-body and pion-exchange werms to the -harge form
ractor. Asis apparentin the figure, the VMC and GFMC results give nearly identical results for the
exchange currents. llowever, the one.body terms do show a significant difference in the region of
the second maximum. This difference is a result of a sensitive cancellation in the fonrner transform
(it is down by two orders of magnitude fromn its value at k = 0) and hence small changes in density

can produce large effects.
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Figure 3) VMC and GFMC results for one-body and pion coniributions to the alpha particle

charge form factor.

The full calculations are conipared to experimenta’ results in figure 4. The GFMC calculatior.
is in excellent agreement with experimental results up to a momentum transfer of ~ 4.5 fm™'.
Beyond that point, the calculated form factor is significantly larger than experimental results.
Nevertheless, the overall agreement is excellenc, particularly at lower momentum transfers where

one would expect the theory to work best.
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Figure 4) Alpha particle charge form factor, experimental and calculated.



The two-body distributions can also be measured to some degree with electron scattering ex-
periments. The Coulomb sum depends upon the total inelastic cross section summed over all finai
states, and is defined as:

= 1 OO_R_L(&“’_)du' (16)

Z J.} [Ge(g®)]?
where Ry is the longitudinal response of the nucleus and G is the proton form factor. The integral
extends from energies just above elastic scatiering to infinity, which allows us to use closure to

calculate the Coulomb sum as a ground state expectation value.

[(Ol ZP_,(Q Zpk(q )|0) - [[ZF((gz))]]z J (17)
where
pi(g) = explig - rx)(~ +2"‘""] (18)

if we ignore small neutron contributions (which are included in the calculations) and two-body

terms. In this approximation, the Coulomb sum is simply:

2
5=1- 205800 4 o) (19)
where F_ is the charge form factor of the nucleus and ppp(q) is the fourier transform of the two-body
distribution function integ.ated over the pair's center-cf-mass.

Figure 5 compares the theoretical and expcrimental calculations. Since experiments extend
only to a finite energy, they have been extrapolated using energy- and energy-squared weighted
sum rules by Schiavilla et al.?®:?! ysing variational wave functions. The contributions of this tail
region are given by the difference between the points labeled ‘extr’ and ‘trunc’; the latter includes
only the response up to the experimental limit. As shown in the figure, the VMC and GFMC

curves are nearly identical, and both agree very well with the extrapolated results.
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Beck?? extracted p,p(q) from the experimental results in the three-nucleon system using a
slightly different extrapolation technique and the theoretical results for the neutron contrit-utions.
Although the qualitative features of the experimental and theoretical curves are similar, the cx-
perimental pp,(q) is much higher beyond the first minimum. This would indicate even a stronger
correlation in the protons than is present theoretically, but contributions of two-body operarcrs to
the Coulomb sum should be included before strong conclusions are drawn.

We seem to have in hand a theoretical picture of light nuclei that is consistent with a wide
range of nuclear prop~riies. This picture relies upon the importance of three-body forces and also
of exchange current contributions to the electromagnetic properties of light nuclei. Several avenues
for future research remain open, however. In particular, the effect of relativistic dynamics may be
important. This could in principle be studied with light cone methods, but little has been done to
date with realistic interaction models. In addition, of course, one would like to study heavier nuclej

to determine whether their properties can also be explained within a consistent scheme.

Low-Energy Scattering

The five-nucleon system is particularly interesting in this regard. Although there are no five-
nucleon bound states experimentally, the J™ = 1/2~ and 3/2~ states do exist as sharp low-energy
resonances. In the simplest picture, these states are one-body p-wave scattering off an alpha particle
core; with an L - S splitting describing the difference between the J=1/2 and 3/2 states. These
states have been studied variationally by enclosing the system within a spherical box,? ai1d then
matching the asymptotic wave function to the nodes at the boundaries of the box. Variational
calculations of the five-body system give fair agreement with experimental results for the 1/2 state,
which is somewhat higher in energy, but indicate that the Hamiltonian is not attractive 2nough in
the J=3/2 channel.

Other mechods are available for extremely low-energy calculations or calculations in non-
resonant channels. By specifying the logarithmic derivative at the boundary and then minimizing
the energy with respect to changes in the variational wave function, the scattering length (and
effective range) can be determined, something that is often important in the study of astrophysical
reactions. This method has recently been used to study the thermal capture of neutrons by 3lle, a
very interesting reaction in that it is dominated by two-body currents.?* The impulse approxima-
tion (one-body currents only) would give a zero cross section for this reaction in the absence of the
tensor force due to a pseudo-orthogonality condition. Even with the fairly strong tensor force: in
the Argonne V14 + T'NI1 7 model, we find that the impulse approximation gives only ~ 10% of the
measured cross section. These same methods are currently being used to study the weak-capture
reaction in the fonr-body system.?> This reaction produces the highest-energy end-point neutrinos
from the sun, and it might be feasible to distinguish their contribution to the total flux in futnre
solar neutrino observatories.

I have described these inethods in terms of a one-channel problem. In principle they can also
be applied to many-channel problems, in which case one specifies the boudary conditions in all

channels. The solutions thus obtained are called eigenphase solutions, and are characte.ized by the

T N ' . L. . [y



to experimental situations). By determining several independent solutions at each energy, the full
S-matrix can be ex.iacted. This method should be practical for simple interaction models where
the variational calculations themselves are rather straightforward, but whether it is practical for
realistic protlems remains to be seen.

* Each of these methods can be employed in GFMC calculations as well. A node in the scattering
wave function can be specified by using the well-known image method for the Green's function.
The same idea can be used when fixing the logarithmic derivative; one must simply incorporate the
flux entering the internal region from the scatteri «g wave function outside the box. By setting the
magnitude of the image as well as its distance from the box surface, it is possible to guarantee that
the wave function at the surface has a specific logarithmic derivative. GFMC scattering calculations
are currently being undertaken for >He in order to verify or disprove the results of the variational

calculations.

GFMC and Flux-Tube Quark Models

Another area in nucle.r physics where Monte Carlo methods are valuable is the study of con-
stituent quark models. These models are designed to study some of the basic features of full QCD
with a limited number of degrees of freedom. It is hoped that we will be able to understand some
of the behaviour of the underlying field theory with these models, in particular to study the rich
spectral properties of mesons and baryons and also the nature of confinement.

Of course, lattice QCD algorithms ure steadily progressing; they are described elsewhere in
this volume. It may be possible in the fairly near future to nnderstand some vital features of
QCD, for example the lowest-lying hadronic masses, from first-principlec calculations of the ficld
thenry. Nevertheless, simple phencmenological quark models may prove useful in understanding
the structure and excitation properties of hadrons.

In particular, we examine fux-tube quark models based upon the strong-coupling limit of QCD.
In the past, these models have been used to describe the meson and baryon spectra;?8?7 they
produce spectra which are generally in good agreement with experiment. Here, we review recent
work on the so-called 'exotic’ states in the flux-tube model; states composed primary of other than
qq pairs or qqq triplets. Predictions of bound exotic staies abound, the most famous being the
H-particle originally proposed by Jaffe,?8 a six-quark state composed of u, d, and s quarks. Tle
nature of confinement plays a vital role in these calculations.

Predictions of the H and other exotics must, to some extent, be influenced by the assuniptions
inherent in the various models. In particular, a mean-field type of approximation is inherent in

the confinement picture of many models.?3-3?

including bag models. Here, we study multi-quark
hadrons (MQH) having 2q - 24, 4q — ¢, and 6q states in a flux-tube model with quite a different
confinement inechanism. ‘These 'exotic’ multi-quark states have not previously been calculate:l
within this model.

In the flux-tube quark nodel it is assumed that the color electric flux is confined o narrow,
stringlike tubes joining the quarks. A flax tube starts from every quark i and ends on an antiquark
t. and three flux-tubes ij,k can end or start from an anti-symmetric ¢, junction called the Y.

junction. The resulting Hux-tnhe patterns for the familiar ¢¢ and 3¢ states, as well as the exotic



MQH having four to six particles are shown in figure 6. As is apparent in the figure, a state
with N+1 particles is generated by replaciag a quark or an antiquark in an N particle state by a

Y-junctior and two anti-quarks or quarks.

— L

O

Figure 6) Possible flux tube configurations states of 2 to 6 quarks.

28-31

The quarks are treated as semi-relativistic spin 1/2 Pauli particles. In contrast, bag
other mean-field*?-2® mcdels treat (uarks more accu-ately as relativistic Dirac spinors. We solve

for eigenstates of a llamiltonian Mg with three terms involving only quark degrees of freedom:
Hog =Moo+ Hp+ Hy, (20)

where Hg is the relativistic kinetic energy of the quarks:

Iy = Y (m?+p})'/2, (21)
=1l N

‘The confiuing interaction /{; represents the encrgy of the flux tubes. 1* is obtained by minmimizing

the lotal length of the tubes for any given position of the Y-junctions. If L is the miniinnm length

for a configuration {r;,i = |, N} of the quarks, the energy is:
My Jal(r) - NEM. (22)

The factor /& is the string tension of Lhe tubes and §A is a constant term. When fitting, mesous
and baryons, this coustant appears to be proportional o N, hence it is natnral to associate them
with the rree ends of the tubes.

Il represents the short range aue glion exchanpe interaction bhetwoen the quarks, [t consists
of a Coulomb, spin-spin, 1ensor, amd spin orbit terms. Our primary interest here is in low -energy
S-wave hadrons in which 1he 1ensor and spin-orbil interactions are not very important, Henee, finr
the ke of simpheity, we nse

- S s g { 2x .
Hy o, L L N {:}- - im,—)n(r,,)n, o, ). (24)

var I M




Here F is 1/2)\? for quarks and -1/2(A{)" for antiquarks, and a. is the QCD fine structure
constant. The usual § function in the spin-spin interaction is broadened by assuming exp(—%z\zqz)

vertex form factois, so that .
s(r) = (5 )" expl- 377 (21)
The interaction parameters used are obtained by fitting the masses of light mesons and baryons.*”
The interpretation of this model is trivial for ¢¢ and 3¢ states, however things are not as simple
for N > 4. Three different flux-tube arrangements are possible for the 2¢g — 24 state, as shown in
figure 7. Even when the quark positions are the same, in the extreme strong-coupling limit. the
states |I), |[II), and |III) are orthogonal to each other due to differences in the lirnk operators (flux

tubes). They have different flux topologies, and hence are not coupled by the ..amiltonian Ifg.

C, Q
2 2 -
2 2 2 >
1> 10> 1 >

Figure 7) The three flux tube configurations for 2q — 24 states.

Of course a more realistic QCD llamiltonian would have other terms in addition to Hg. One
such term is a string-breaking terin which couples states with different numbers of p:-rticles. Models
for this term have been used io study the decay of mescns into two mesons,** the meson-baryon
couplings,3®38 and the A — N 47 width.?7 It gives second-order corrections to the hadron energies’
which can partiy be absorbed into the values of the parameters /o and §M. g can conple the
four-quark states |I) and | /1) in Ath order. It cannot change the number of Y-junctions, and hence
does not couple |/[I) to either |I) or |I]).

There should also he a term which « reates or destroys closed plaquettes of flux tubes; this term
can create or annihiliate Y-junctions. The effect of this term on hadron spectroscopy has not been
studied. In the limit that the quark mass is large one car. take the point of view that these terins
can change the flux topology faster than the motion of the quarks. In this limit one may be able to
use the topology that gives the lowest I for a given configuration of quarks, aa has heen assnmed
in some models.®™ In the present work we assnme that for light quarks it is more reasonable to start
with g and treat eflects of I/ 5 and U p perturbatively.

There are also some novel anti-symmetry requirements imposed by this Hamiltonian. Obvionsly,
a specific configuration of Mx-tubes; for example quarks (1,2), (3,4), nnd (5,6) paired together
within Y-junctions in a Gq state: does not deseribe a fully symmetric Hlamiltoninn,  In fact, in
strong conpling QCD atates with different pairings are in general orthogonal to each other by the

same argnments given above. ‘I'hus, there is no special anti-synnmetry required bhetween guarks in



different pairs, or for that matter between diffe;ent baryons.’**? Howcver, we must anti-syinmetry
between quarks connected to the same Y-junction, and also must respect the symmetry when pairs

of quarks are exchanged.

Quark Model Calculations

We have studied the MQH states in the flux-tube model with both Variational Monte Carlo
(VMC)?*-?" and Green's Functicn Monte Carlo (GFMC)* methods. For the most part, the algo-
rithms are very similar to those used to study liglt nuclei, here I only briefly discuss the variational
wave functions and the few novel techrniques required.

Our choice of variational (trial) wave functions for the ‘exotic’' hadrons (states in which all
quarks are confined into one region by flux tubes) was guided by previous studies of the mesoas
and baryons. Init ally, we consider only the lowest-energy spatial wave function, determining the
lowest, state of the spin-independent Hamiltonian; the sum of kinetic, flux-tube and color coulomb
energies. The symmetry requirements can then be satisfied by an appropriate choice of spin-flavor

wave functions. For the 2¢ — 27 system, the spatial part of the wave function ¥t is:

U = f(r12)f(r34)F(Ria, Raq) (25)

where particles 1 and 2 are quarks and 3 and 4 are anti-quarks. The f;; are functions of the
distance between particles i and j, and have the same functional form used previously in the meson

and baryon studies:

J(r) = reexp[=w(r)(mr +72r?) - (1 - w(r)) 57" (26)

The factors y and the constant § are variational parameters, and w(r) is a Woods-Saxon function
whose strength and range are additional variation parameters. This form interpolates hetween a
Coulomb-like solution necar the origin to the behavie: appropriate to a linear potential at large
separations. The function r <.scribes correlations between the center-of-inass of the quarks (1&:2)

and the anti-quarks (3&4), and it is chosen as:
F(R) = cxp[—7cR"5]. (27)

‘The constant 7. is an additional variational parameter.
The epatial part of the trial functions for the other systems are similar; pair correlations hetween
quarks attached to the same Y-junction are mnltiplied by correlations between the central junctions

themselves. For example, the six-quark wave function is given by

Vo = f(ria)f(ra) f(rsa )b (g, Rag) F'(Ry2, Bne) F'(Rag, Raa)[1 = BVa(R12, R, 1iss)). (128)

The quarks 12, 34, and 56 are paired in this wavefunction, and we use the same form for the
two-hody correlations f and the pair center-of- mnss correlations F as in the 2¢ = 2¢ case. The last
terin ‘n this expreasion is a small three-body correlation between the centers-of-mass of the pairs,

its functional form is the spune as the three body correlatlons used previonsly in studies of the

| ORI SO T L] X BTXARS [



non-pairwise components of the six-body potential into the trial wave function. These variational
wave fnnctions give accurate energies for the ground states of the spin-indepdnent Hamiltonian,
typically within nearly one standard error (~ 20 MeV) of the exact GFMC resulc.

I will not describe the spin-flavor parts of the wave functions here, they are presented in dctail
in reference 43. I merely note that it is energetically favorable to couple quarks paired to the same
Y-junction to a total spin 0; these quarks are more strongly correlated by the confining interaction,
hence they are most aflected by the hyperfine interaction. For example, in the H-dibaryon all
the paired quaiks can be coupled to spin 0, giving a more aitractive hyperfine interaction than is
present in two isolated baryons.

Evaluating the tw-body potiential terms is straightforward using traditional Monte Carlo meth-
ods; the many-body confining interaction is only slightly more complicated. For example, given
a specific set of quark coordinates in the six-quark state; we guess the position of the central Y-
junction (figure 6). The position of the remaining Y-junctions then be determined algebraically
using the formulas given in reference 26. The remaining task is to minimize the total length by
varying the position of the central Y-junction. The simplex method works quite well here, and
typically requires of the order of 10 iterations to provide a very accurate potential energy.

We also need to evaluate the propagator for the semi-relativistic kinetic energy operator, as well
as devising a method for evaluating the kinetic energy in a variational calculation. This operator

involves all powers of the momentum; hence the free-particle propagator
(Ur|exp(-y/(p} + m})Ar)|¥7) (20)

is non-local in character. The free particle propagator is given in reference 44 :

_Ar__Ba’ 2172 :
G(R) - 2r3 ’Z"’(l + ﬂ])kﬂ{a(l +ﬂ ) ]l ("0)
with
hcAr
B o= -
a = mcR/h. (31)

The propagation distance is /f, and K3 is a Bessel function of order two. This propagator has
a long-distance tail that :lecays with the Compton wavelength of the particle. The rate of decay
i8 independent of time step, but the amplitnde of the tail is proportional to Ar. In the long-
time (low-momentum) limit, it coincides with the non-relativistic propagator, as expected. ‘T'he
semi-relativistic propagator is only slightly mcre difficult to sample than the ganssians nsed in
non-relativistic calculations. When calculating the expectation value of the kinetic encrgy, it is
possible to determine the propagator terins linear in At analytically, and hence rample the kinetic
enerpy without introducing any approximmations.

The spin-independent Humiltonian contributes the :lominant terms in the energy, therefore we
initially consider the resnlts for this simplified llamiltoniau. ‘The resnlts are sammarized in fignre
8, their mnoat striking featnre it that each additional particle added to the systen. ruises the energy
by a roughly constant amount. I'he additive conatant is large (~ 540 MeV), and hence the exotic

MQIIl atates are four to five hnndred MeV higher than states composed of two Isolated hadrons.



This iz not a trivial result since for some configurations of the particles the MQH confining potential
is leas repulsive than for two isolated baryons. Overall, however, in the flux tube model it costs
more kinetic and potential energy to form the multi-quark systems. It is amusing to note that

exactly the same additive effect would be predicted in simple the simple di-quark picture.
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# of quarka & anti=quorka

Figure 8) Lowest single-hadron energy vs. number of quarks and anti-quarks.

Of course, the hyperfine interaction must be included in any reasonable calculation. I'he
strength of the hyperfine interaction has been adjusted to roughly reproduce the experimental
N - A splitting of ~ 29C MeV; with these parameters we obtain a splitting of .27 GeV. Other
effects, including coupling to pions (string-breaking) inay also contribute ~ 0.1 GeV to this split-
ting.3” This model reproduces the experimental x - p splitting of 630 MeV, however the pion has
a rather small energy of 55 MeV.

Consider the six quark systems; both the S=0 1l dibaryon and a proposed S=.] exotic six-quark
state. In the latter, of course, the hyperfine interaction is repulsive. llowever, if the six-quark state
in larger in spatial extent than the spin 3/2 baryon, the hyperfine interaction may be less repulsive.

lleuce, this state is a possilie cuudidate for a bound exotic. The resnlts for these systems nre given
in Table |.

Table 1: Fnergies of Six-gnuk States

State Energy (GeV
2x N 2.00
Gy(S = 0) 2.10
2x A 2.54
Gg(S = 3) 299

Green's fanction Monte Carlo results for the two hadron and MQIl 6 quaik states with the full

interaction, assnming SU3 symmetry.



We have computed the H dibaryon in the SU3 limit in which all u, d, and s quarks have the
same mass. The hyperfine interaction does provide a relative attraction for the H dibaryor when
compared to two baryons. Two isolated spin 1/2 baryons gain approximately 350 MeV from the
.pin-dependent term, while the H dibaryon gains ~ 500 MeV. This shift is close to what one would
expect from first order perturbation theory. The 3¢ baryons have one S=0 pair each, thus their
total energy shift is roughly equal to the N — A splitting. The H-dibaryon has three such pairs,
and consequently gains an energy of nearly 1.5 times the N — A splitting. However, this additional
attraction is not nearly strong enough to overcome the much higher energy of the 6-quark state in
the confining potential; indeed the full calcnlaiion reveals that the energy difference between the H
and two baryon states is 300 MeV in the SU3 limit. Including the affects of a larger strange quark
mass only increases the mass of the H relative to the two isolated baryons.

Next, consider the proposed S=3 dibaryon. In this case the two isolated baryons (As) are
pushed up approximately 200 MeV by the hyperfine interaction. This shift is somewhat smaller

than that of two nucleons due to non-partwrbative effects in the nucleon channel.?”

The energy shift
in the six-quark state ( ~ 190 MeV ) is only slightly smaller. Consequently, the six-quark state
again remains higher in energy than two baryons, this time by approximately 450 MeV. Mean-field
models typically prodnce 2 six-quark state of significantly larger spatial extent than baryons; and
hence a smaller hyperfine repulsion ;n the spin 3 dibaryon. This effect is very small in the present
model; here the results are dominated by the spin-independent interaction.

Results in the 2¢ - 2§ and 1q — § systems are similar. The spin 0 four-quark state is very
high in energy compared to two pions; as expected, since the pions feel an extraordinarily strong
hyperfine interaction. We would also predict no strong spin-2 exotic resonance with the flux tnbe
model. We do not expect these MQH states to exist as sharp resonances at high energy. We have
explored an extreme limit of the theory in order to hetter understand the possible range of quark
models. li this liinit there is no coupling between the MQH and multi-hadron states. Physically
the llp (peglected in this work) provides this coupling, and thus all MQII states will have a width.
Unfortunately, since /p is largely nnknown, we cannot provide any reliable estimate of the widths.
This term in the llamiltonian is an important topic for future study.

In summary, we find that in the limit of weak conpling between different flux-tube configurations
there are no bound multi-quark states. Our resnlts stand in sharp contrast to mean-Held models
which explain traditional meson and baryon spectroscopy with a similar degree of accuracy. ‘1'hey
also differ considerably from two-body potentiel based quark imodelr. in which the hyperfiie inter-
actlon provides enough attraction to produce sharp low-energy resonances In certain spin-isospin
channels. Conse¢uently, the presence or absconce of these exotic states in the experimental spectrum

may be an important guide i1z orr understaading of QCD,

Ontlook

Monte Carlo methods provide w valuable tool for understandiug the propertles of fow-boily
systems In muclear physies. Due to the complexities of nnclear luteractions, these methods have
not been exploltel to the degree they hnve in other flelds of physics, Nevertheleas, Monte Carlo

methods have a wide ruge of applicability, inclnding the study of very light nnelel, auark zilels.



and also hypernuclear physics.

With the help of these methods, we have developed a coherent picture of the structure and
static electromagnetic properties of light nuclei. These rather traditional models depend upon
three-nucleon-interactions and the presence of exchange currents. They are also being employed to
study correlations within the nucleus, as well as low-energy reactions of astrophysical interest.

Many importaut challenges lie ahead, of course. Foremost among these are calculations of
larger nuclei and development of new techniques for treating the dvnamic properties of nuclei.
Heavier nuclei offer the opportunity for studying very neutron-rich nuclei, which are :mportant
astrophysically through their connection with neutron stars. A better understanding of current
and future electron scattering experiments requires reliable calculations of the dynamic response of
nuclei, perhaps the most challenging goal for Monte Carlo (or any other) methods.

This work was supported by the U. S. Department of Energy.
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