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MODELING FABRICATION OF NUCLEAR COMPONENTS:

AN  INTEGRATIVE APPROACH

BY

KAREN WELLS HENCH

ABSTRACT

Reduction of the nuclear weapons stockpile and the general downsizing of the

nuclear weapons complex has presented challenges for Los Alamos.  One is to

design an optimized fabrication facility to manufacture nuclear weapon primary

components in an environment of intense regulation and shrinking budgets.

This dissertation presents an integrative two-stage approach to modeling the

casting operation for fabrication of nuclear weapon primary components.  The

first stage optimizes personnel radiation exposure for the casting operation

layout by modeling the operation as a facility layout problem formulated as a

quadratic assignment problem. The solution procedure uses an evolutionary

heuristic technique.  The best solutions to the layout problem are used as input

to the second stage - a simulation model that assesses the impact of competing

layouts on operational performance.  The focus of the simulation model is to

determine the layout that minimizes personnel radiation exposures and nuclear

material movement, and maximizes the utilization of capacity for finished units.
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Chapter 1

INTRODUCTION

1.1 Background

The end of the Cold War has dramatically changed the role of the nuclear-weapon

stockpile and the associated research, development, and testing of weapons by the national

laboratories.  Formerly, nuclear deterrence was achieved by large-scale production and a

commensurate large-scale budget.  The Strategic Arms Reduction Treaty (START) and

START II called for reducing the strategic-weapons arsenals of the United States and the

former Soviet Union.  The existing, reassembled, or retrofitted weapons in the enduring

stockpile will be stored indefinitely to ensure nuclear competency.  The streamlined

weapons complex of the future will focus on long-term storage of nuclear material,

weapons dismantlement, and a modest fabrication and rebuild capability of weapons

components as a hedge against aging or degraded weapons in the stockpile. The

Department of Energy (DOE) has been tasked with ensuring the continued safety and

reliability of the weapons stockpile through the auspices of the Stockpile Stewardship and

Management Program [47].  This program will administer the activities related to the

research, design, development, and testing of nuclear weapons and the production and

maintenance of the weapons stockpile.
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The Plutonium Facility (TA-55) at Los Alamos National Laboratory (LANL) is

currently the only operating facility in the nation with established R&D programs

 that can be implemented on a larger scale to provide production capability for the

fabrication and recovery of plutonium.  Ancillary activities such as waste recovery and

disposal, non-destructive assay, analytical chemistry, radiography, and transportation also

currently exist at LANL.  Assuming a fixed lifetime in years for the nuclear portion of a

weapon, a specific number of weapons will have to be requalified/reused or manufactured

annually to maintain the weapon stockpile.  The challenge for TA-55 is to design an

optimized manufacturing facility that is capable of producing the needed quantity of nuclear

weapon primary components (pits) subject to the constraints imposed by oversight

organizations and funding sources. Reconfiguring the existing pit fabrication area at TA-55

to accomodate the proposed level of production is estimated to cost $50M.  This figure

includes the decontamination and disposal of outdated equipment, installation of new

gloveboxes and equipment, and upgrade of existing gloveboxes.

Historically, the location of gloveboxes in a processing area has been determined

without benefit of industrial engineering studies to ascertain the optimal arrangement.  The

opportunity exists for substantial cost savings and increased process efficiency through

careful study and optimization of the proposed layout by constructing a computer model of

the fabrication process.  This dissertation presents an integrative approach to modeling a

nuclear primary component fabrication operation using a mathematical technique for the

formulation of the facility layout
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problem and a simulation model to evaluate the impact that alternative layouts have on

performance measures.

1.2 Problem Definition

The existing pit fabrication area is located in one wing of TA-55, and occupies an

area on the order of 20,000 square feet.  Operations located in the area are casting,

machining, non-destructive assay, assembly, inspection, and testing.  The operations are in

fixed locations within the wing; however, individual processes within the operations can be

relocated to minimize exposure to technicians and to increase operational efficiency.

The casting operation is performed in the foundry, and it is the operation considered

to present the highest radiation exposure hazard to radiation workers.  The processes

located within the foundry have the most flexibility for relocation (at a cost) with respect to

the rest of the pit fabrication operations.  All other factors being equal (complexity of

material flows, skill level of personnel, working hours, waste generation, and interim

storage), the casting operation represents the  worst case  of the pit fabrication operations.

The casting operation will be modeled, and the analysis techniques developed can then be

applied to the remainder of the operations.

The foundry consists of two glovebox lines connected by a single trolley system.

Each glovebox line is divided into two trunklines, each with its own material transport

device.  There are 17 possible locations on the glovebox lines to which 16
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casting operations can be assigned.  The conceptual arrangement of glovebox locations

within the foundry is shown in Figure 1.1.

1.3 Research Objectives

The goal of modeling the casting operation is to produce an optimal layout

configuration for the foundry.  A configuration can be defined as a matching of a fixed

number of processes to an equal number of locations within the foundry.  The estimation

of personnel radiation exposures at a given capacity is of primary importance.  An optimal

configuration will best utilize the resources available to maximize capacity and reduce

personnel exposures.  An additional objective is the determination of an optimal operating

strategy for the casting operation.  Factors influencing an operating policy include the

number of radiation workers that are required, the need for additional processing and

transportation equipment, and the need for additional storage.

Modeling the fabrication and recovery processes to determine the optimal layout and

operating strategy can best be accomplished in two stages.  The first stage is to model the

layout of the facility as a quadratic assignment problem and apply an optimization technique.

The optimization model is well suited to determining alternative layouts that optimize

personnel radiation exposure.  The second stage is to construct a simulation of the casting

operation using the best layout solutions from the optimization model in the first stage as

inputs.  The objective of the simulation
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model is to determine the layout that minimizes personnel radiation exposures and nuclear

material movement, and maximizes capacity.

1.4 Summary of Contributions

Simulation is the most commonly used method for studying the complex

interactions of operators, materials, and equipment in a stochastic environment. Simulation

allows an experimenter to estimate the performance of a system under competing

configurations in order to determine which combination of parameters results in an optimal

operating policy.  However, using a simulation model alone to simultaneously evaluate the

performance of a complex system and optimize the operating parameters is not practical

because of the number of parameters. Optimization of process parameters and analysis of a

system operating under those parameters are two very different problems, each with their

own formulations, data requirements, and constraints.  A better approach is to employ a

methodology that combines an optimization technique yielding [intelligent] solutions for

input to a simulation model that, subsequently, estimates the performance of the system

being studied.  By iteratively generating a set of parameters and then studying the effect on

system response, the optimal operating strategy can be determined.  The framework for the

modeling process is illustrated in Figure 1.2.

Our simulation results demonstrate the effectiveness (and feasibility) of applying an

integrative approach to modeling exposures and material flow through the foundry.  The

optimization model produces a set of good layout configurations
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Figure 1.2  Framework for the modeling process

with only five seconds of execution time.  Constructing a similar set of layout solutions by

hand would require an enormous amount of time.  Each solution is presented to the

simulation model which produces data on capacity, radiation exposures, utilization, and

bottlenecks.  Analysis of simulation model results reveals the best arrangement of

processes in the casting operation when all the factors are considered.  The methodology

can be extended to any operation where process location is integral to efficient use of

resources and communication between processes or facilities.

1.5 Organization of the Dissertation

Chapter 2 presents a tutorial on criticality and radiation safety which are significant

factors in handling nuclear material and integral components in the design
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of both models.  Chapter 3 is devoted to the discussion of the quadratic assignment

problem and its applicability to facility layout.  This chapter details previous research into

the assignment of facilities to locations and concludes with the specific formulation for the

casting operation.  Chapter 4 presents a literature survey of the fundamental components of

genetic algorithms (GAs) and their use as a solution methodology for the quadratic

assignment.  The specific approach used in this dissertation is also discussed in this

chapter.  Chapter 5 outlines the structure of the simulation and the statistical analyses that

are performed on the performance measures.  Chapter 6 presents the results of the two

models.  The efficacy of the genetic algorithm in producing feasible solutions is illustrated.

Finally, the results of the simulation model that incorporates the top 10 solutions are

presented.  Conclusions about the feasibility and effectiveness of the dual-model approach

are contained in Chapter 7 as well as a discussion of future research.
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Chapter 2

CRITICALITY AND RADIATION SAFETY

2.1 Structure of the Atom

The three primary particles of an atom are protons, neutrons, and electrons.  A

proton is located in the nucleus and is a positively charged particle.  The number of protons

in the nucleus determines the element.  An electron is a negatively charged element that

orbits the nucleus of an atom and determines an element s chemical properties.  Ions of an

element have either a positive or negative charge depending on the number of protons and

electrons in the atom.  The neutron, also located in the nucleus, has no electrical charge.

Atoms of the same element, which have a different number of neutrons, are called

isotopes.  Isotopes have the same chemical properties; however, the nuclear properties can

be very different.  For instance, some isotopes are inherently unstable due to the number of

neutrons in the nucleus.  In the process of trying to become stable, these atoms emit energy

(radiation) in the form of alpha particles, beta particles, neutrons, and gamma or x-rays (see

Figure 2.1).1  Ionization occurs when electrons are removed from a neutral atom by

radiation with sufficient energy to remove an electron from its orbit around the atom.

Plutonium and uranium, two of the elements that are commonly processed at TA-55, both

emit ionizing

                                                
1 Illustrations in Figures 2.1, 2.2, and 2.3 are provided courtesy of Jim Mahan and Tammy Tucker, Los
Alamos National Laboratory [33].
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Figure 2.1   Ionizing radiation

radiation and require special handling precautions and procedures to mitigate hazards to

radiation workers.

2.2 Biological Hazards of Radiation

Radiation causes damage to human tissue through ionization of the atoms in the

cells.  The extent of the cellular damage depends on whether the nucleus or cytoplasm is

struck; an insult to the nucleus of a cell may damage the DNA.  Ionizing radiation can also

cause chemical reactions at the cellular level that may adversely affect tissues or organs.

Actively dividing cells such as those found in the bone marrow, intestinal tract, hair

follicles, and reproductive organs are more sensitive to radiation damage than brain or

muscle cells.
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There are four consequences of exposure to ionizing radiation, depending on the

length and the amount of exposure: (1) no cellular damage occurs,

(2) chromosomal damage occurs and is repaired by the cell, (3) chromosomal damage

occurs and the cell ceases to function properly, or (4)  the cell dies.  An acute whole-body

radiation dose results from a large exposure in a short period of time.  Usually the dose is

overwhelming to the body, and it cannot repair itself.  Symptoms may include reduced

blood count, hair loss, nausea, or in extreme circumstances, death.  A chronic radiation

dose occurs in small quantities over a long period of time.  An example of this is naturally

occuring background radiation such as cosmic radiation, terrestrial radiation, and radon.

Biological effects from a chronic radiation dose include somatic effects such as cancer and

genetic effects.

To minimize the biological effects of chronic radiation to individuals working with

nuclear materials, administrative limits for occupational doses havc been established.  A dose

is defined as  the amount of energy per unit mass deposited in a volume of tissue  [6].  The

radiation dose unit is rad (radiation absorbed dose) which only accounts for the amount of

radiation that is absorbed and not the type of radiation.  A  quality factor  applied to the

measurement provides an equivalent measure that accounts for differences in types of

radiation and the energy level of the radiation.  The roentgen equivalent man or radiation

equivalent in man (rem) is the unit for measuring radiation exposure to personnel.  This

measure takes into account energy absorbed by the body and the potential biological effect

caused by different types of radiation.  For example, the absorbed dose for an equal
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amount of energy from gamma ray radiation and low-energy neutron radiation may each be

1 rad; however, the gamma ray dose equivalent is 1 rem, and the neutron dose equivalent is

10 rem.  The Department of Energy (DOE) occupational dose limit for a radiological worker

is 2 rem/year.  The TA-55 administrative control limit for the pit fabrication area is 1.5

rem/year.  Doses exceeding these levels do not necessarily result in biological damage to an

individual; these limits are strictly administrative goals.

2.3 Criticality

Isotopes such as 239Pu, 241Pu, 235U, and 233U are termed fissile materials.  These

isotopes have the capability of undergoing a fission process where the nucleus of the atom is

struck by a neutron and the neutron is absorbed.  The nucleus breaks into two smaller parts,

and a tremendous amount of gamma radiation is released.  The fission produces two or three

neutrons which strike other atoms.  If sufficient fissile material (critical mass) is present, the

fission process continues and results in a chain reaction. If the chain reaction eventually

dissipates, because not every fission results in another, it is termed subcritical.  If every

fission results in one other fission, the reaction is critical.  If every fission results in multiple

fissions, the reaction is supercritical.

A criticality event can release enough thermal energy to boil solutions, melt metals, or

cause explosions and fire.  More importantly, the short-duration (milliseconds) burst of

neutrons and gamma rays is lethal to personnel in the immediate vicinity.  Proper handling

and storage of nuclear material is essential to prevent the occurrence of a criticality incident.

The primary mechanism for preventing a criticality accident is to engineer containers, tanks,

transportation devices, and storage facilities to reduce the chances nuclear material interaction.

Operationally, administrative controls limit the amount of nuclear material that is permitted in

a container, glovebox, transport device, or storage location [32].
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Criticality safety limits are provided to radiological workers for any location where

fissile material could be present.  These limits are specific to the form of material and the

location.  The simulation model incorporates criticality limits by not allowing a quantity of

nuclear material that would exceed the limits to be present in any location.  For example,

material transport devices can convey only one container of nuclear material, and cannot

deliver material to a location where nuclear material is present.

2.4 Radiation Safety

The four basic types of ionizing radiation of concern at TA-55 are alpha particles,

beta particles, gamma or x-rays, and neutrons.  Each type has distinct physical

characteristics, range, biological hazards, and safety precautions (see Figures 2.2 and 2.3).

An alpha particle consists of 2 protons, 2 neutrons, and no electrons. The positive charge of

the particle causes it to ionize adjacent electrons and release a large amount of energy in a

distance of 1 to 2 inches.  Alpha particles are not an external radiation hazard, because they

can be stopped by the epidermis.  However,  if an alpha particle is inhaled or ingested, it

becomes an internal source of exposure and can cause extensive damage to body tissue.

Precautions taken to prevent exposure
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Figure 2.2  Characteristics of alpha and beta particles
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Figure 2.3   Characteristics of gamma rays and neutrons
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to alpha particles include protective clothing, respirators, and material handling in a

contained environment.

The beta particle is negatively charged and is emitted from the nucleus of an atom.

It is physically identical to an electron and results in ionization of adjacent atoms due to the

repulsive forces between the beta particle and the electron.  The beta particle has a limited

penetrating ability of about 10 feet in air.  This particle is an external hazard to the skin and

eyes, and becomes an internal hazard if ingested or inhaled.  An additional precaution to

prevent exposure to beta particles is wearing specialized safety glasses.

Gamma and x-rays are similar, in that both types of radiation are electromagnetic

waves with no electrical charge.  Ionization occurs as a direct result of interaction with

electrons in adjacent atoms.  Gamma/x-ray radiation can travel several hundred feet in air,

because it possesses no mass and the energy is transmitted to its target.  Proximity to a

gamma/x-ray source results in whole-body exposure to an individual.  Shielding the source

with dense materials like lead or steel is one effective mechanism for minimizing exposure.

Another is minimizing the time spent near the source and/or maximizing the distance from

the source.

Neutron radiation results when neutrons are ejected from the nucleus of an atom.  A

collision between a neutron and the nucleus of another atom is a direct interaction; indirect

interaction occurs when a charged particle or other ionizing radiation is released during direct

interaction.  This can cause ionization in human tissue.  Neutrons have a high penetrating

ability in air (several hundred feet), similar

to gamma rays.  Shielding against neutron radiation is best accomplished by using

moderating materials with a high hydrogen content such as water, polyethylene, concrete,

or neutron absorbing materials such as boron.
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The primary objective of the optimization and simulation models is to produce a

layout of the foundry area that minimizes exposure that radiation workers receive from

radioactive material contained in the gloveboxes and storage wells.  This is accomplished

by maximizing the distance between high-exposure processes or those processes with a

relatively large amount of radiation worker attention time and minimizing the time the

workers handle the material.  The simulation model tracks material movement and

handling time which aids in the comparison of layout configurations.  Material located in

storage wells significantly contributes to the background radiation in the processing area.

The simulation also attempts to minimize interim storage in these wells.  The objective of

minimizing exposures to radiological workers is in direct conflict with the objective of

maximizing throughput. Therefore, the throughput for a layout where exposures are

minimized indicates the capacity of the system and not the maximum throughput.
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Chapter 3

FACILITY LAYOUT AS A QUADRATIC ASSIGNMENT PROBLEM

3.1 Facility Layout Problem

The importance of the physical layout and design of a manufacturing process

cannot be underestimated.  The efficiency of an operation depends on the proper utilization

of personnel and equipment, and the efficient movement and storage of materials.

Traditionally, facility layout has been accomplished manually by employing a  cut-and-

paste  approach [49] where permutations of a layout are explored by rearranging work

stations and equipment.  This approach is effective when the number of locations is small.

However, the number of alternative arrangements is n!, where n = the number of available

sites to locate a facility, department, workstation, or piece of equipment, and if n = 17, the

number of potential layouts is in excess of 350 trillion.  Clearly, the trial and error approach

is not feasible for determining the best solution.

Buffa [7] introduced a graphical approach to the facility layout problem (FLP) that

considers work flow between departments and attempts to locate those departments in

proximity to where the flow is relatively large.  Muther [36] developed another graphical

approach called Systematic Layout Planning (SLP) that incorporates subjective inter-

departmental relationships through the use of a closeness rating system.  The limitations of

the graphical approaches as the problem size increases led to the development of a

multitude of computer applications for generating and evaluating alternative facility layouts.

Most of the computer-based facility-layout techniques can be categorized as either

quantitative, qualitative, or multi-criteria methods.
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3.1.1 Quantitative Methods

Koopmans and Beckman [26] were the first researchers to model the facility layout

problem as a Quadratic Assignment Problem (QAP), a well-known classical combinatorial

optimization problem.  The problem involves the assignment of n distinct facilities to n

fixed locations to minimize the total material handling cost or flow between the facilities.

Facilities, locations, and material flow are loosely defined to meet the context of the

particular problem application.  A formulation of the problem by Lawler [29] is

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)
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where,

aij = fixed cost of locating facility i at location j ,

ƒik   = flow of material (interaction) between facilities i and k, and

cjl = cost of transporting material between locations j and l.

Quadratic assignment formulations for the FLP vary according to the particular application.

These formulations may include distances between facilities, revenue (loss) from operating

a facility in a particular location, identical flows between facilities, and cyclic operations.

Bazaraa [2] and Hillier and Connors [20] represented the FLP using a quadratic set

covering problem (QSP) by dividing the area under study into contiguous blocks and

assigning facilities to the blocks.

In addition to the QAP and QSP, there are numerous formulations of the FLP

using linear integer and mixed-integer programming [4,8,24,27,34].  Lawler [29]

formulated his approach to QAP using an equivalent integer programming problem.

By defining yijkl  = xij xkl , (3.6)

where xij and xkl  are defined in Eqs. (3.3) - (3.5) the objective function becomes:

(3.7)

where,

(3.2)
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The above formulations assume that the number of facilities and locations are equal, and

that each facility will be assigned a location, or alternatively, each location will have an

assigned facility.  If the number of locations is greater than the number of facilities,

inequalities can be introduced into the equations or dummy facilities can be added.

Lawler s formulation of the QAP has n2 xij variables and 2n constraints. His

equivalent integer programming formulation has n2 xij variables, n4 yijkl variables, and n4 +

2n + 1 constraints, as documented in Kusiak and Heragu [27].  An integer programming

formulation of the QAP used by Love and Wong [34] where locations are specified by

rectangular coordinates has n2 xij variables and n2 + 3n constraints. Computational

experience with the Love and Wong formulation indicates that the approach is not

appropriate for problems with more than eight facilities [27].  A mixed-integer linear

programming reformulation for the QAP was proposed by Kettani and Oral [25].  Their

approach linearizes the quadratic objective function and
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reduces the number of 0-1 integer variables.  Results indicate that the reformulation can

accomodate a problem size of N=15 with two hours of CPU time required to produce a

solution.

Solution procedures for the FLP can be divided into two categories - optimal and

heuristic [39].  Two classes of the optimal algorithms are branch-and-bound and cutting-

plane.  Examples of branch-and-bound techniques are those developed by

Lawler [29] and Kaku and Thompson [23].  Cutting-planes algorithms were developed by

Bazaraa and Sherali [4] and Burkard and Bonniger [9].

The QAP is a difficult combinatorial optimization problem belonging to the class of

NP-complete problems [17] which means that no deterministic algorithm has been found

to yield an optimal solution in a reasonable amount of time.  Primary disadvantages of

optimal algorithms are their computational complexity and computer memory

requirements [8]; optimal algorithms have proven to be practical for only QAP problems

on the order of 15 to 20 [35] .  The intractability of many problems led to the investigation

of heuristic algorithms for the solution of the QAP.  Heuristic approaches vary widely

according to the application and author.  Many approaches are problem-specific; others are

robust and applicable to a wide variety of problems. Among the most significant

contributors in the field are Hillier and Connors [20], Heragu and Kusiak [19], Burkard

and Bonniger [9], Armour and Buffa [1], Bazarra and Kirca [3], and Vollman et al. [50].

Kusiak and Heragu [27] present a detailed review of both optimal and heuristic approaches

to the QAP.
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The most successful heuristics are those that yield near-optimal solutions and avoid getting

stuck in local optima.  Traditionally, heuristic procedures were divided into two main

classes: construction and improvement.  Construction algorithms involve a serial

assignment of each facility to a location until a solution is built.  This process is the basis

for construction algorithms developed by Hillier and Connors [20], Lee and Moore [30],

Seehof and Evans [43], and Scriabin and Vergin [42]. Improvement algorithms use an

initial solution to perform systematic pairwise or three-way exchanges between facilities

until the best solution is obtained.  This process generates a solution that depends on the

initial solution and the procedure may get caught in local optima.  An improvement

algorithm is the basis for the best known and most widely used facility layout program,

Coordinate Relative Allocation of Facilities Technique (CRAFT) developed by Armour

and Buffa [1] and Buffa [7].

A new class of algorithms experimentally proven to be effective at solving difficult

combinatorial problems is termed evolutionary heuristics [35].  This class includes

Boltzmann Machine, Evolution Strategy, Genetic Algorithms, MultiGreedy, Sampling and

Clustering, Simulated Annealing, Tabu Search, and Immune Networks. These algorithms

iterate to a sub-optimal solution given an initial, randomly chosen solution or population of

solutions.  These heuristics use a limited amount of computing time and memory relative

to other traditional techniques and have been used to solve larger problems.

3.1.2 Qualitative Methods

The primary difficulty with a quantitative approach to solving the FLP is the

assumption that the objective function is unidimensional which often requires that costs

must be assigned to intangible goals.  Decision analysis of alternative layouts is frequently

performed in the context of conflicting requirements and regulations, limited resources, and
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inadequate data.  Quantitative approaches do not consider qualitative interrelationships

between operations.  However, qualitative factors influencing a layout decision are

subjective and often conflicting. Without a systematic approach to the analysis, inaccuracy

and inconsistency in the decision process results [44].

Qualitative techniques are based on Muther s SLP system that assigns subjective

closeness ratings in the analysis of the problem.  Qualititative factors that commonly

influence the assignment of facilities (or departments, etc.) to locations are safety

considerations, operating environment (noise, temperature, humidity, etc.), flexibility, and

aesthetics [39,44].  The closeness ratings are expressed in the following manner when

values are assigned to the factors [36,49]:

A Absolutely necessary

E Especially important

I Important

O Ordinary

U Unimportant

X Undesirable

Once values are assigned to the ratings, qualitative routines attempt to produce

arrangements where facilities are located together when proximity is important, and apart
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when distance is desirable.  A commonly used program that establishes the

interrelationships between facilities and makes assignments based on the closeness ratings

in Computerized Relationship Layout Planning (CORELAP) [30].  This program selects

the facility (department, etc.) with the highest rating and places it in the center of the

layout.  Subsequent facilities are added to the layout based on the relationships with the

already assigned layouts.

3.1.3 Multi-Criteria Methods

In most facility layout problems, the analytical methodologies for generating an

optimal or near-optimal solution are well researched and documented.  However, in

practice, many nonquantifiable issues exist for which a quantitative technique is not

applicable.  Conversely, most decisions regarding competing layout alternatives cannot be

based solely on qualitative aspects of the problem without considering quantitative work-

flow volume.  An integrated approach combining the techniques for both quantitative and

qualitative analyses is appropriate.

Several authors have developed multi-criteria models [22, 38, 39, 40, 44, 45, 49]

for the generation and evaluation of alternative facility layouts.  Butler et al. [10] used a

quadratic integer goal programming model to determine configuration of services and bed

allocation in a hospital setting.  Their model incorporates Lee s preemptive goal

programming where a hierarchy of priority levels is established for multiple goals [31].
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Urban [49] demonstrated how to implement a multi-criteria model using existing software

(CRAFT) to solve the QAP by modifying the cost term.  In Lawler s formulation, the cost

term bijkl of Eq. (3.2) is redefined when a closeness rating and a rating factor are

incorporated into the work-flow volume:

(3.11)

where,

rik  = departmental interrelationship closeness rating, and

w = nonnegative weight reflecting importance of rating and work flow volume.

Work-flow volume is determined as usual.  Urban assigned the closeness values in the

following manner: A=4, E=3, I=2, O=1, U=0, and X=-1.  He suggested that assigning a

negative value to facilities with  X  closeness ratings provided better separation in the final

layout.  The weighting factor is extremely important when the qualitative costs are

incorporated into the work-flow volume.  If the weights of the closeness ratings are too

small, the quantitative aspects of the cost function dominate.  If the weights are too large,

the qualitative aspects of the problem overwhelm the quantitative ones.  Experimentation is

often required to determine the appropriate values for the weights.  Urban [48,49]

illustrated that a facility layout optimization model using multiple objectives is possible and

practical for a variety of applications.
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3.2 The Quadratic Assignment Formulation for the Foundry

The purpose of modeling the foundry as a QAP is to assign processes to glovebox

locations with the objective of minimizing exposures to radiation workers. By separating

high-radiation and/or high attention time processes, the background contribution to the

overall radiation exposure is reduced.  The quadratic assignment formulation for the

foundry in Eq. (3.12) is a compact form of Eq. (3.1).  The coefficient, bijkl, is modified to

reflect radiation dose as the flow of material or interaction between processes.  The  cost

associated with locating a process at a particular location in the foundry is computed as the

summation of radiation exposures from each process i and the contribution of background

exposure from each process k adjacent to process i.  Traditionally distance is an attenuating

factor in the cost calculation; here, it is a reducing factor in that the cost term is inversely

proportional to the square of the distance.  The omission of the integer variables, xij and

xkl, in the formulation are a result of location assignments provided by the GA solution.

The solution accounts for the cross products xijxkl that have a value of 1. The cross

products that equal 0 do not enter into the calculation.  In the objective function, the fixed

cost of assigning a process to a location is not considered.  A cost value based on the

process-to-location assignment is computed separately and reported.

(3.12)
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where,

nprocs = number of processes in the casting operation,

di = radiation dose rate from process i received by worker at process k (mRem/hr),

atk = worker attended service time for process k (hours),

c = constant capacity of foundry,

(ai, ak) = assigned location of processes i and k, and

dist2 (ai, ak) = the distance (squared) between locations (ft2).

The following assumptions are used in the foundry QAP: (1) all gloveboxes are fully

loaded with nuclear material at all times, (2) radiation dose rates and attention times are

specific to each process, and (3) distances between glovebox locations are fixed and are

process independent.
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Chapter 4

GENETIC ALGORITHMS AND THE OPTIMIZATION MODEL

4.1 Genetic Algorithms and Optimization

The term genetic algorithm suggests a family of parallel, randomized-search

optimization heuristics that employ the mechanics of natural selection and natural genetics to

evolve an optimal solution from a population of initial feasible solutions [21].  The QAP is a

difficult combinatorial problem that is known to be NP-complete [17].  Many heuristic and

enumerative schemes have been applied to the QAP with limited success.  Enumerative

algorithms investigate the search space by evaluating an objective function at every point in

space; however, these search techniques are unsuitable for large problems due to

dimensionality concerns.  Intuitively, random search procedures that search the solution

space and save the best solutions are an improvement over enumerative schemes, but in

practice, they too suffer from lack of efficiency.  Evolutionary techniques such as tabu search

and genetic algorithms have proven to be very effective in solving non-convex optimization

problems [11,13, 46] where determining the quality of solutions is possible, but iterative

generation of improved solutions is difficult using deterministic methods.  Of the two

methods, genetic algorithms produce more diverse solutions because multiple points in the
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solution space are simultaneously explored.  The purpose of the optimization model is to

produce a set of diverse solutions that can be examined by the simulation model.  

Genetic algorithms differ from traditional optimization procedures in the three ways

[18]:

1. GAs use a coding of the parameter set to randomly perform an exploitive search of a

solution space.

2. A search is conducted simultaneously on a population of points, not a 

single point.

3. The quality of a solution is determined directly by evaluating an objective function.

Clarification is needed on the goals of optimization before examining the

fundamentals of GAs and their implementation to the optimization of a facility layout

problem.  Traditional solution procedures seek optimization through convergence to an

optimal point.  Calculus-based procedures generate local optima in often noisy search

spaces.  Enumerative schemes seek optimal solutions, but are hampered by the complexity

of a problem.  Complex systems often require  satisficing  or compromising optimality for

improvement. The facility layout problem lends itself to performance improvement where

the solution obtained may be be competitive but sub-optimal.

4.2 Genetic Algorithm Terminology

The terminology used to describe GA structure and operators is borrowed
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from the biological paradigm of natural selection first specified by Holland [21].  GAs

share common features in generating solutions [46]:

1. A set of feasible solutions, or population.

2. A process where parents are chosen from a population to breed and

produce offspring (reproduction).

3. A method where new solutions are obtained by recombining features from

multiple previous solutions (crossover).

4. A method where new solutions are obtained by randomly permuting previous

solutions (mutation).

5. Selection of individuals from the population with the best objective function

values (fitness evaluation).

6. Removal of individuals from the population (culling).

The primary data structure for a GA is the chromosome or string representation of

a single solution.  Each decision variable within the chromosome, or decision vector, is

referred to as a gene; the value of a gene is called an allele.  The approaches to initializing

populations, reproduction, crossover and mutation, selection, and culling are as numerous

as the researchers in the field.  The encoding scheme used to represent solutions, to a large

extent, determines the approach used. Genetic operators such as crossover and mutation

operate on the encoding of the solutions and not the solutions themselves.  This distinction

profoundly affects the success of a GA application, because cleverly designed problem-

specific encoding schemes reduce the search space and aid in the efficiency in generating

new solutions.
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Fit chromosomes exhibit similarities between them.  If a causal relationship exists between

the similarities and the fitness, this information can be exploited to guide a directed search

for improvement [18].  These similarities, called schemata, refer to a subset of

chromosomes with common genes at certain positions.  A schema is a pattern of genes

that is matched between chromosomes.  A schema has properties of defining length and

order that differentiate schemata.  The defining length, denoted by δ(H) where H is the

schema, is the distance between the first and last specific gene in the chromosome.  The

order, denoted by ο(H), is the number of specific positions of genes in the chromosome.

For example (using a binary encoding scheme for a chromosome), one schema is 011*1*0

and a second schema is 1*1**** where “*”  is interpreted as  don t care about value.   The

first schema has a defining length, δ(H), of 6 and an order, o(H), of 5; the second schema

properties are 2 and 2 respectively. The Schema Theorem [18] or the Fundamental

Theorem of Genetic Algorithms [21] states that  above-average schemata receive

exponentially increasing trials in subsequent generations.   Shorter schema have a better

chance of surviving to the next generation, and are more desirable. The expected number of

a particular schema H in the next generation under reproduction, crossover, and mutation,

is given by

(4.1)



33

4.3  Random Keys

The application of a genetic algorithm to QAP begins with the development of a

chromosomal representation for the candidate solutions.  The genetic algorithm generates

offspring by applying recombination and mutation operators to the encoded solutions;

however, use of a traditional operator may result in an infeasible solution.

As an illustration, consider two permutations of a literal encoding of an assignment of

facilities to locations.  In Parent A, for example, facility 1 is assigned to location 1, facility

2 is assigned to location 4, facility 3 is assigned to location 3, etc.  A crossover site at

position 3 has been randomly chosen.

Parent A: 1 4 3 | 6 2 5

Parent B: 1 3 2 | 4 6 5

The resulting offspring is:

Offspring A: 1 4 3 4 6 5

Offspring B: 1 3 2 6 2 5

Neither offspring is a valid solution because of the omission of one facility and the

duplication of another in each.  Many authors have developed problem-specific

recombination operators which overcome the solution feasibility problem. Bean [5] and

Norman and Bean [37] proposed a method of chromosomal encoding
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that does not require a specialized representation for each problem variation.  Random keys

is an algorithm specifically developed to address sequencing and optimization problems

such as multiple machine scheduling, vehicle routing, resource allocation, and the quadratic

assignment problem.  Bean s approach has shown encouraging results for these classes of

problems.

The fundamental difference between the random keys approach and other

techniques is the encoding of solutions using random uniform (0,1) variates.  The values of

the keys are used to decode solutions.  All genetic operations are performed on the keys.

The genetic algorithm searches the random variate space and not the literal space.  Feasible

solutions are produced by mapping the random keys to points in the problem space.  The

QAP can be represented by generating a random uniform (0,1) variate for each facility to

be assigned.  To convert the random key representation to a literal solution, the index of the

smallest random variable becomes the location assigned to the first facility, the index of the

second smallest random variable becomes the location assigned to the second facility, etc.

This sorting process continues until the index of the largest random variable is the location

assigned to the nth facility.  For a five-facility problem, the chromosome (.78, .23, .58, .94,

.12) represents (5, 2, 3, 1, 4).  This sequence is interpreted as facility 1 assigned location 5,

facility 2 to location 2, etc.

Given two parents and site 3 randomly selected as the crossover site:

PA : .78  .23  .58  .94  .12 _ 5  2  3  1  4

PB : .46  .10  .07  .97  .51 _ 3  2  1  5  4.
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Crossover is performed and the following offspring are produced:

OA : .78  .23  .58  .97  .51 _ 2  5  3  1  4

OB : .46  .10  .07  .94  .12 _ 3  2  5  1  4.

Neither offspring is infeasible, because the crossover operation is performed on the

encoded solution and not the actual chromosome.

4.4 Implementation of the Genetic Algorithm

The solution procedure for the quadratic assignment formulation of Eq. (3.12),

which assigns processes to locations within the foundry, is based on Bean s random keys

approach.  P.A. Djang and P.R. Finch developed Operator Tournament [15], a random

keys software implementation which was used to construct the optimization model.

Empirical results on test QAP cases using Operator Tournament indicate that the results

produced by the software compare favorably to other evolutionary techniques such as

simulated annealing, tabu search, or  pure  genetic algorithms. Population initialization and

parent selection, genetic operators, and culling mechanisms are described in the following

sections as they are implemented in the software.

4.4.1 Parent Selection

The creation of an initial population of solutions is the first step in the parent

selection process.  The population is initialized by generating chromosomes consisting of

randomly assigned genes.  Often a heuristic is applied in this step to produce an intitial set

of good feasible solutions.  Presumably, faster convergence to a final solution will be

facilitated by an intelligent intialization process.  Initialization of the population in this

implementation was achieved by randomly generating a specified number of
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chromosomes.  A heuristic added to initialize the population with a proposed layout

produced negligible results, and was later deleted.

The purpose of parent selection from a population is to increase the overall

probability that the  most fit  parents reproduce.  Fitness is based on a measure of goodness

determined by the value of the objective function.  Parent selection based on fitness

increases the chance that chromosomes with better values will contribute offspring to the

next generation.  One commonly used technique employs a biased roulette wheel parent

selection.  Davis [12] outlines the algorithm for roulette wheel selection in Table 4.1.  The

analogy to a roulette wheel comes from the assignment of proportionally sized slots to

members of the population.  Although roulette wheel parent selection is random, each

parent s chance of being selected is proportional to its fitness.

4.4.2 Genetic Operators

Seven genetic operators are applied in the GA (in the order they are used): (1)

Bernoulli crossover, (2) Bernoulli mutation, (3) simple mutation, (4) two-point crossover,

(5) limited inversion, (6) inversion, and (7) four-point crossover.  The following sections

demonstrate the application of the seven operators using two parent solutions that represent

the assignment of eight operations to eight locations,
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Table 4.1  Roulette wheel parent selection

1. Sum the fitnesses of the population members; the
result is the total fitness.

2. Generate a random number r between 0 and the total
fitness.

3. Select the first population member whose fitness
summed with the fitnesses of the preceding
members, is greater or equal to r.

 for example operation 1 is assigned to location 7, operation 2 is assigned to location 5, and

so on.  All operators are applied to the random keys encoded solutions and not the literal

solutions.  Again, the index of the smallest random variable (key) corresponds to the

location assignment for facility 1.  The sorting of keys continues until the index of the

largest key becomes the location assignment for facility 8.  The two parent solutions and

their random key representations are shown in Table 4.2.

Table 4.2  Encoding Schemes for Two Parents

4.4.2.1 Recombination Operators

Crossover is the process where two parents exchange genetic material to

produce an offspring chromosome.  This is an extremely important operator in GA
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applications [12].  Many researchers claim that crossover differentiates GAs from other

optimization procedures and evolutionary techniques that exclusively employ mutation.

Crossover allows rapid recombination of desirable features in a manner that mutation

cannot.  The operator can produce offspring that are radically different from their

parents; it acts to combine building blocks of good solutions from a diverse population.

Uniform or Bernoulli crossover is an operator that produces offspring by randomly

determining which parent will contribute each gene of the child.  If pc= the probability of a

crossover, a random uniform (0,1) variate rg is generated and compared to the value of pc.

If rg ≤ pc, then Parent A contributes the gene to offspring A; otherwise, Parent B

contributes the gene.  Offspring B is composed of the unused bits.  An example is given in

Table 4.3. with pc = .54.  Offspring A is decoded to the solution (6 7 8 3 1 5 2 4).

Offspring B is decoded as (1 5 8 2 4 3 7 6).

Table 4.3  Bernoulli crossover with pc = .54
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In two-point crossover, two points on the parent chromosomes are randomly

selected as crossover sites.  The parents exchange genes between crossover sites to

produce two offspring.  If crossover sites 2 and 6 are randomly chosen (as indicated by the

heavy lines), the crossover produces the offspring shown in Table 4.4.

Table 4.4 Two-point crossover with crossover sites 2 and 6

In this example of two-point crossover, Offspring A decodes to the solution (8 2 4 3 7 6 1

5).  Offspring B decodes to (6 7 1 5 3 8 2 4).

Four-point crossover is very similar to two-point crossover, except that four

crossover sites are randomly chosen.  Suppose crossover sites 1, 3, 5, and 7 are randomly

selected.  The crossover operation results in the offspring shown in Table 4.5 (the

crossover sites are indicated by the heavy lines).

Offspring A represents the solution (7 8 5 3 6 1 2 4).  Offspring B is (6 1 3 8 4 2 7 5).

4.4.2.2  Reordering Operators

The inversion operator is used in GAs to obtain better ordering of genes, while

crossover operators recombine genes to produce better schemata.  Inversion can
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Table 4.5  Four-point crossover with crossover sites 1, 3, 5, and7

reduce the defining length, δ(H), of valuable schema.  Inversion is similar to 2-point

crossover in that two points along the chromosome are randomly chosen to split the

chromosome into three sections.  Inversion will reverse the order of the genes in the cut

section. Parents do not exchange genetic material in simple inversion.  Table 4.6 illustrates

the inversion operation on Parent A with points 3 and 7 indicated by the heavy lines.  In

this example offspring A decodes to a layout solution of

(5 8 6 3 2 4 1 7).

Table 4.6  Inversion with inversion sites 3 and 7

Limited inversion is an additional reordering operator used in Operator

Tournament.  Two points are randomly selected to split the chromosome into

three parts as in simple inversion.  However, the inverted part is limited to one-third of the

total genes to reduce the amount of  churn  that occurs.
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4.4.2.3 Mutation Operators

Reproduction and crossover efficiently perform chromosomal recombination to

produce new fit population members.  Sometimes important schemata are lost in the

process.  The function of mutation in artificial genetic systems is to protect against these

losses [18].  In GAs, mutation is the random alteration of a gene.  Mutation rates are small

in nature and similarly small in artificial systems, leading one to conclude that mutation

operators are secondary to crossover operators in genetic schemes. Mutation procedures

vary with problem-specific solution encoding schemes.

Table 4.7 demonstrates how a Bernoulli mutation is performed in this

implementation on a random keys chromosome.  Given a chromosome of length n, the

probability of mutation pm, and random uniform (0,1) variates rg, where g = 1 to

n, the gene is replaced by the value of the random variate if rg ≤ pm .

Table 4.7 Bernoulli mutation for pm = .008

The random keys representation of Parent A decodes to the solution (6 8 5 3 2 7 1 4). The

mutation of one gene on the chromosome results in new solution

(4 6 8 5 3 2 7 1).
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In simple mutation, one gene is randomly selected from a chromosome and

replaced with a random (0,1) value r.  The operation is shown in Table 4.8, assuming a

mutation of (randomly selected) gene 5 and r = .01.

Table 4.8 Simple mutation of gene 5 with r = .01

In this case, the mutation of one gene on the chromosome results in new solution

(5 6 8 3 2 7 1 4).

4.4.2.4 Population Improvement

Elitism is a culling mechanism that preserves the best chromosomes from one

generation to the next; the fittest members of a population are copied to the next generation.

The pitfall of this method is premature convergence to a non-optimal solution.  However,

introducing increased mutation rates maintains diversity for continued improvement and

reduces the chances of premature convergence.

Djang and Finch s Operator Tournament favors successful operators.  Each genetic

operator is given at least one chance to contribute an offspring to the next generation.  If an

operator performs well, it is given additonal chances to insert offspring into the succeeding

generation.  Some operators may dominate production

of offspring in the first generations, but as the population converges to a solution, this

effect is reduced.
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Each member of a population is ranked by its fitness, or objective function value

(Eq. (3.12)).  Often the best members of a population, or those with the best fitness

evaluations, fail to produce children in the succeeding generation.  The implementation

eliminates this loss by employing parental hypersampling which pools offspring

chromosomes after all the operators have produced their allocation of chromosomes.  The

parent population is compared to the population of children and the best chromosomes

from the two populations are retained [15].  In this manner, especially fit parents may

survive several generations and may continue to generate better offspring.
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Chapter 5

PRODUCTION CAPABILITY - A SIMULATION MODEL

5.1 The Casting Process

A detailed analysis of the complex interactions of material, personnel, material

handling, and equipment in the casting operation cannot be represented in the formulation

of a facility layout problem alone.  Without additional evaluation of the interrelationships

between a proposed layout under certain operating conditions such as production

commitments, time constraints, personnel and equipment availability, and ionizing

radiation, it is impossible to determine the production capability of the system.  Simulation

is a means of evaluating alternative layouts within the framework of an operating process.

The casting operation consists of 11 processes located in sixteen gloveboxes as

shown in Table 5.1.  There are a total of 17 gloveboxes in the foundry, including one

unused box that is not dedicated to a process.  An overhead trolley system connects the two

glovebox lines and the storage vault, and is used to convey material bi-directionally.  The

trolley system is connected to the glovebox lines through two dropboxes.  Dropboxes are

used exclusively for passing material from one material transport device to another; no

nuclear material processing or storage occurs in either dropbox.  Each of the four

trunklines contains its own material transport device that is capable of delivering material to

each of the gloveboxes as well as the three interim
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Table 5.1  Processes within the casting operation

storage wells located on each trunkline.  All material is contained within the glovebox line

and is never handled externally to the gloveboxes or trunklines.

Two primary concurrent material flows occur in the casting operation - feed casting

and part casting.  Auxiliary activities include interim and long-term storage of in-process

and completed parts, roasting of casting residues to oxides, non-destructive assay of

oxides, packaging of oxides, and preparation of samples for analytical chemistry.  The

flowsheet for the casting operation is shown in Figure 5.1.

5.2 Model Design Considerations

An important aspect of designing a model is determining the features of the

real-world system that need to be incorporated in the simulation.  It is costly, and often

unnecessary, to include every aspect of the system under investigation.  Law
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and Kelton [28] recommend some general guidelines for establishing the level of detail

required:

1. Define the issues of interest with the model users.  Specify the performance

indicators that must be provided to allow the users to make decisions.

Determine how the model will be used and how often.  A model is

constructed for a specific purpose and cannot accurately estimate measures

of performance for which it was not designed.

2. Consult  experts  of the system to determine the level of model detail.

Concentrate on the most important aspects of the system.  Model only to

the level of detail that is consistent with the data available.

3. Start with a simple model and enhance it as required.  Often, a simplified

model of a system can aid in the determination of what features are

important.  This process reduces the chances of a major rewrite.

The intent of modeling the foundry at TA-55 is to determine (1) if the capacity of

the existing process area is sufficient to satisfy the requirements of the Stockpile

Stewardship and Management Program, and (2) that the baseline radiation exposure at a

given production capacity is within DOE guidelines.  Additional issues to be addressed are

the utilization of the personnel assigned to the area, the utilization of the trolley system and

the trunkline material handling devices, the necessity for in-line interim storage areas, and

the utilization of key equipment.  These model objectives were determined after many
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discussions with users and process experts.  The model traces the movement of each entity

through each location or process in the foundry. This approach is necessary to calculate

personnel exposures from handling and storage of material and to ensure that criticality

limits are not violated during the simulated operations.  The simulation model tracks the

progress of the casting processes every minute, since the process times for some

operations and material transport times are on the order of minutes, not hours.

The casting operation is considered to be a terminating, non-steady-state system.  A

full shut-down of all processes occurs every six months when an inventory of all nuclear

material is conducted.  The inventory process lasts for one month after which operations

commence from an  empty-and-idle  state.  For this reason, there is no initial transient or

warmup period associated with the simulation of the foundry.

5.3 Simulation Model Structure

The simulation was developed using the PC-based version of SIMAN V , a

simulation language by Systems Modeling Corporation.  The model is constructed to

accept a solution from the output of the optimization model similar to the following:

Here, process 1 or Material Preparation (from Table 5.1) is assigned to location 8, process

2 or Feed Casting 1 to location 16, etc.  Solutions are presented to the model at run-time,
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and an input file is created that is specific for that solution.  Each of the top 10 solutions

from the optimization model was executed to obtain the output statistics necessary for the

analysis of the competing layouts.  The simulation model is divided into four functional

components: (1) casting processes, (2) transportation of material, (3) interim storage of in-

process materials and retrieval from storage locations, and (4) personnel exposure

calculations.

5.3.1 Casting Processes

Two of the 11 processes in the casting operation, Material Preparation and

Packaging, are completely manual and, although, processing can occur on overtime if

necessary, all processing is assumed to occur on a single shift.  The remainder of the

processes can proceed unattended overnight and on the weekends when the facility is

closed once a technician completes the initial attended portion of the process.  The

technicians assigned to the foundry are cross-trained to operate any glovebox equipment

and are not assigned to a specific process.  When a technician is not being utilized in the

foundry, he is assigned to duties away from the processing area; however these job

functions are not included in the simulation model.  Each of the 16 gloveboxes is

represented in SIMAN V  as a STATION where a variety of processing steps can occur.

Figure 5.2 shows a simplified version of the representation of a casting process station.
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Figure 5.2  Representation of a casting process station

Each process is represented by a station that is assigned to a particular location in

the foundry.  Material enters the station and waits in a queue until a technician is available,

after which a delay is introduced to represent the attended processing time. The technician

is then released while the process proceeds unattended.  Again, the technician is seized and

performs the task of unloading the material before it is sent to the next process.  The

material can follow several paths depending on whether it is scrapped, fails and needs

rework, is divided into separate components, or needs further processing.
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5.3.2 Transportation of Material

Five material transport devices are located in the foundry, the semi-automatic

trolley system and four manual trunkline systems.  Each device can only transport one

container of material at a time due to criticality concerns.  Thirty-two transporter delivery

points consisting of 17 glovebox locations, 2 dropboxes, 12 storage wells, and a storage

vault.  Connecting these delivery points are 118 bi-directional paths that material can

follow.  Before material can be moved from one location to the next, a series of system

status conditions must be true:

1. Is a radiation worker available?

2. Is every transporter device that will be required available?

3. Is the receiving location empty?

4. Does the pass-thru dropbox (Figure 1.1) have capacity for the item?

5. Is the receiving location equipment unallocated?

An item can be scheduled to move to a new location only if each condition is true. This

process results in long transportation delays between seemingly short distances. Figure 5.3

illustrates how (in general) the transportation of material from station to station is

implemented in SIMAN V  .

Once a process is completed, material is sent to a transporter queue where the

conditions for transportation are checked (SCAN block).  If all conditions are true, the

entity seizes a technician and allocates the destination glovebox equipment.  An entity may

require as many as three transporters to reach its final destination; each
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Figure 5.3  Representation of material transportation

transporter is requested individually and the material is incrementally moved to drop points

until the item arrives at the receiving station.

5.3.3 Interim Storage

Each trunkline contains three wells that are used as interim storage for in-process

material from the density glovebox and the three heat treat furnaces.  The three wells

adjacent to the material preparation glovebox are dedicated to that process, and cannot be

used as storage for other in-process material.  This processing strategy accommodates

criticality limits in the material preparation glovebox, but often  results in long

transportation times for material that must travel from a glovebox in one trunkline to a well
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location in another.  The structure in the simulation model for retrieving items from a well

location or for storing material in one is illustrated in Figure 5.4.

Figure 5.4  Representation of interim storage

Material is sent to interim storage from material preparation and heat treat. The

simulation locates the closest empty well and schedules the material for transport. Items are

retrieved for processing from the well locations by material preparation and density.  The

model finds a well that contains the material it needs, and removes the
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item from the particular well queue.  It then schedules the material for transport to the

station.

5.3.4 Personnel Radiation Exposures

There are two components of the dosage calculations, direct exposure from material

in the immediate working area and background radiation from material residing in adjacent

processing and storage locations.  All dose calculations are based on a weighted average of

gamma and neutron doses for a particular matrix of nuclear material (metal, cast parts,

oxides, residues, etc.).  Dose rates are taken from measurements of gamma and neutron

radiation made at the existing gloveboxes in the foundry.  All measurements were

conducted at an operating distance of 30 centimeters from each glovebox.  Differences in

the dose rates can be attributed to the shielding on the individual gloveboxes and storage

well locations and the amount (and matrix) of nuclear material present in the various

locations.  Background radiation exposure from nuclear material situated in adjacent

locations varies as the inverse square of the distance from the source.  For example, given a

dose rate measurement of 5 mRem/hr taken at a glovebox and a distance of 10 feet

between gloveboxes, the dose rate is 5 /102 or .05 mRem/hr.  The dose rates for the

individual glovebox processes used in the technician exposure calculations are listed in

Table 5.2.

  The exposure calculation in the simulation model takes a different form than that

of the optimization model objective function of Eq. (3.12).  Each entity that
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Table 5.2  Measured dose rates at various locations in the foundry

flows through a process in the simulation model contributes an amount of radiation dose as

expressed in Eq. (5.1)

(5.1)

where,

nentities = number of  entities generated during a simulation run,

nprocs = number of processes performed per entity,

aj = location assigned to process j,
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ek = entity in location k,

pk = process to which location k is assigned,

S(aj) = set of locations within 15 feet of process j where j ≠ k,

AT = worker attended service time (minutes),

SNM = amount of nuclear material (grams),

DR = radiation dose rate (mRem/gram-hr), and

dist2 = distance (squared) between locations (ft2).

The first term in the equation obtains the direct exposure from each process (i=k in

Eq. (3.12)).  The second term, summed over locations k, adds the background radiation

exposure from material located in adjacent gloveboxes and storage locations (i k in

Eq. (3.12)).

5.4 Input and Output Data for a Stochastic Process

5.4.1 Simulation Input

Stochastic systems possess input parameters and, subsequently outputs, that exhibit

random behavior.  Often the most difficult decision a modeler faces is determining the

appropriate method to represent input data.  The decision to represent each data input as

deterministic or probabilistic largely depends on availability and relevance to the purpose of

the model.

Input data for the casting operation was obtained from three sources: (1) processing

information at the Rocky Flats Plant, (2) subject matter experts at Los Alamos, and (3)

desired operating parameters defined by the DOE.  Inputs to the simulation model and

their representations are shown in Table 5.3.
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Table 5.3  Data inputs for simulation modelInput Parameter

5.4.2 Simulation Output

A simulation model mimics the complex dynamic behavior of a system over time

in order to estimate the true characteristics of the system.  Recording

time-persistent and observational variables is the mechanism for obtaining output data that

is used in the estimation of population parameters from sample data.  Time-persistent

variables are those for which values are defined over time.  For example, determining the

utilization of  technicians requires both the knowledge of the random variable  busy

technicians,  which may take on different values over time and the time periods for which

each value persisted.  Statistics based on observational variables are concerned only with
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the value of each observation, and not the time it occurred.  An example of an observational

variable is the time an item waits for a material transporter.

The capacity of the foundry is determined based on the assumption that two types

of weapon components will be fabricated during each 6-month time period.  For the

purposes of this dissertation, these types will be identified as Type A and Type B. The

summation of Type A and Type B castings produced indicates the capacity of the system

given the input parameters listed in Table 5.3.

SIMAN V  provides the user with the ability to obtain output statistics for any

performance measure of interest.  The drawback to this capability is that the analyst is faced

with a daunting amount of data, and must decide between what is pertinent and what is

superfluous.  The foundry model generated statistics on everything from queue sizes for

the trolley system to the utilization of the trunkline transporters.  In a practical sense, many

of the utilization statistics produced were used for determining processing bottlenecks.

Successive generations of the model incorporated this information to produce a simulation

that more accurately reflects the casting

operation.  The output statistics that were used to distinguish differences in processing

strategies are shown in Table 5.4.

5.5 Statistical Analysis for a Terminating System

Consider a ordered set of events X1, X2, ..., Xn  where n is a positive integer.  If the

outcome of each event is governed by random behavior, the series X1, X2, ..., Xn  is termed a

stochastic process [16].  The single sequence of numbers assumed by a
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Table 5.4  Measures of performance for the casting operation

stochastic process is called a realization; if n → ∞, then Xn assumes an infinite number of

values, resulting in an infinite number of realizations.  Due to time and cost contraints, an

analyst cannot observe every event, but observing a subset of events is feasible.  This

subset, called a time series, is a finite realization of a stochastic process.  Statistical

inferences about the underlying distribution concerning one event improve as the sample

size increases.  Similarly, statistical inferences improve for n events as the number of

observed time series or replications increase.  One replication represents one individual run

of a simulation experiment.

5.5.1 Point Estimates and Confidence Intervals

Performance measures for a simulation are dependent on the conditions under

which each replication of a simulation is executed [28].  Independence is achieved by using
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different random numbers for each replication, a common feature in most simulation

languages.  Another important consideration is the state of the system at the beginning of

each replication.  Every replication must start from same the set of initial conditions to

ensure that output variables will be comparable.  If Xi is a random variable defined on the

ith replication of n replications, and the Xi’s are comparable between replications, then the

Xi’s are considered independent, identically distributed (IID) random variables.

Given a set of IID random variables, one can obtain a point estimate and confidence

interval for the mean µ = E(X). The sample mean

(5.2)

is an unbiased point estimate of µ, given a large number of independent replications

of the simulation experiments has been performed, each generating an   X(n).  The sample

variance

(5.3)

is similarly an unbiased estimator of _ 2.  Given a sample mean X(n) and a sample

variance S 2(n) computed from a sample of a normal population, a 100(1 - _)% confidence

interval for µ is given by
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(5.4)

The 100(1 - α)% applies only to a confidence interval computed for a single measure of

performance.  More often, an experimenter is interested in simultaneously constructing

confidence intervals for multiple MOEs [28].  If there are k MOEs of interest, the

probability that all k of the confidence intervals will contain their true means is expressed

by the Bonferroni inequality:

(5.5)

The importance of the Bonferroni inequality in analyzing simulation output is the degree of

confidence one can place on the confidence intervals constructed for each MOE.  If there

are three MOEs of interest, each constructed using _=.05 or a 95% confidence interval, one

can only conclude the probability is at least 1 - ∑αi (for i=1 to 3) or 85% that all three

confidence intervals simultaneously contain the true means.  If there are 10 MOEs, the

probability decreases to (at least) 50%.  This illustrates the importance of determining

which performance measures produce the most significant information in the analysis of a

simulation model.

5.5.2 Analysis of Variance

Analysis of variance (ANOVA) refers to statistical procedures used for analyzing

experimental results when more than two treatments have been performed [14].  The

characteristic that is being studied for each treatment is referred to as the response.  In the
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foundry simulation, one response is total castings produced.  The treatments of the

experiment are the 10 layout configurations.  The purpose for performing an analysis of

variance is to determine whether the differences in the true average for each treatment or

level are statistically significant.  The null hypothesis H0 states that there are no differences

in the population means; the alternative hypothesis Ha is that at least two of the means

differ.  Given k treatments, the problem can be stated as:

H0:  µ1 =  µ2 =  µ3 =   • • •  =  µk    versus    Ha :   at least two µi’s differ.

Xij represents a random variable from the jth replication of the ith treatment, and all

Xij s are assumed independent.  Restricted to the case where the sample sizes for each

treatment are equal, let J = the total number of replications for each configuration and I =

the total number of configurations.  The data set contains a total of IJ observations.  The

mean of the replications for the ith treatment or configuration is

(5.7)

The average of all observations is called the grand mean and is defined as

(5.8)
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Two assumptions underlie the use of single-factor ANOVA: (1) the treatment

distributions are normal, and (2) the variances of the treatment distributions are equal. If H0

is true, each of the Xij’s should come from the same population distribution with mean µ

and variance σ2.  The means for the samples, the   Xi•’s, should be close to one another and

the grand mean,  X.. . The statistic mean square for treatments or MSTr is an estimate of

σ2  based on the differences between the sample means.  It is given by

(5.9)

When MSTr = 0, the   Xi•’s are equal.  As the difference between the   Xi•’s becomes

larger,  the value of MSTr becomes larger.  The statistic is an unbiased estimator of σ2

when H0 is true, but can overstate σ2 when H0 is false.  The mean square for error or MSE

statistic is an unbiased estimator of σ2 whether H0 is true or false.  Each sample is assumed

to come from a population having the variance σ2 ; this variance can be estimated by any of

the sample variances.  The MSE statistic is defined as

(5.10)

The ratio MSTr/MSE is the value of a random variable having a F distribution with

I-1 and I (J-1) degrees of freedom.  The null hypothesis will be rejected if the computed

value of F exceeds the tabular value of F _,I-1,I (J-1) with significance level _. If the null

hypothesis is rejected, supplementary methods can be used to determine which treatments

are significantly different [14].



64

5.5.3 Selecting the Best Systems

The ANOVA of Section 5.5.2 is sensitive to its equal variance assumption.  If the

equal variance condition fails, another method is available providing the Xij s are normally

distributed.  Law and Kelton [28] takes the analysis of alternative systems one step further

by ranking treatments according to a performance measure and selecting the m best out of

k alternatives.

The Law and Kelton method assumes independence of treatments and normality of

the Xij’s, but most importantly, the variances, σi 
2‘s, do not have to be known or equal.

This approach has three objectives.

1. The probability of selecting a subset m of k treatments that contains the

smallest mean response will be greater than or equal to the probability

specified by the analyst, P*, which must be greater than m!(k-m)!/k!

2. If two means are very close (and in a practical sense, not significantly

different), the method must be robust enough to avoid making a large

number of unnecessary replications to account for the difference between

the means.

3. The selected subset will contain, with probability P*, a system with an

expected response no greater than the expected response of the worst of the

m selected solutions + d*, where d* is a user-assigned  indifference

amount.

The method is a three-step procedure.  First, the procedure is initialized by taking a

sample of n0 initial replications and calculating the sample means,   Xi (n0), and variances,
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Si
2 (n0), for each of the k configurations. The variance estimates are used to determine the

total number of replications Ni needed to make a selection of the best m of k systems in the

second step.

(5.11)

Here, h is a tabular value based on the values of n0, P*, and k (the values of h can be found

in Appendices 10A and 10B in Law and Kelton [28]).

In the second step, Ni - n0 additional replications for each system are performed

and the k system means are calculated for the extra replications.  The final step involves

calculating the weighted means over all the replications, Ni.  The weighted means serve as

the basis for system selection.  The weights are calculated as follows:

(5.12)

(5.13)

The weighted sample means are defined as

(5.14)
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Chapter 6

RESULTS

6.1 The Optimization Model

 Djang and Finch s GA implementation for the solution of the foundry QAP was

executed on a PC with a Pentium™ processor.  A population size of 17 was used for 20

generations.  The GA converged to a solution after 16 generations after approximately five

seconds of execution time.  The implementation provides for dynamic assignment of

genetic operator contribution rate based on the success of each operator during the

evolutionary process.  This feature eliminates the need to a priori selection of crossover and

mutation rates [15].

The input parameters to the GA are (1) distance (in feet) between locations in the

foundry, (2) radiation dose rate from each of the 16 processes, (3) attended service time for

each process, and (4) the constant expected production capacity for the foundry.  The

fitness evaluation of Eq. (3.11) produces an exposure index for each configuration which is

used to rank the top solutions from the optimization model. This index represents an upper

bound on actual personnel exposures, because the value is calculated using a full material

loading in each glovebox in the foundry.  In addition to the exposure index calculation, a

cost is computed for each layout configuration.  Some gloveboxes in the current

configuration of the foundry are prohibitively expensive to relocate due to size or

contamination concerns.  Other gloveboxes are scheduled for decomissioning and

decontamination, and the cost to replace them is zero.  The solution procedure considers

these relocation costs and assigns a cost term for each solution.  No attempt is made to

minimize the costs; they are simply reported.  The input parameters for the calculation of
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relocation costs are original location assignment of each foundry process and the cost to

relocate (if any) each process.

The exposure indices and relocation costs associated with the top ten solutions

produced by the optimization model are listed in Table 6.1.  The assignment of locations to

processes for the top ten solutions is illustrated in Table 6.2.  For example,  the solution 1

layout assigns material preparation to location 7, feed casting 1 to location 11, etc.

Table 6.1 Exposure indices and relocation costs for the top ten solutions
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Table 6.2  Assignment of locations to processes within the foundry

6.2 The Simulation Model

Each of the ten top layout solutions generated by the optimization model was

presented to the simulation model.  The simulation model is constructed to accept any

configuration solution at run-time.  This feature eliminates the need to develop an

individual simulation for each configuration; however, solution-specific input files are

generated for each configuration.  Set-up time for running each solution is on the order of

one hour; execution time for each replication of the simulation model is 11 seconds on a

PC with a Pentium  processor.

The number of replications to be run for each configuration was determined by

iteration.  Initially, 10 replications of the model were run.  The confidence intervals were
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calculated and determined to be too large.  Twenty replications provided an acceptable

confidence interval.

The time frame for the simulated system is 6 months: 5_ months for production

and _ month for inventory.  The two primary measures of effectiveness are the number of

castings produced and the background radiation exposure per radiation worker.  The

number of castings produced is indicative of the capacity of the foundry for a 6 month time

period.  Background radiation exposure is a component of total radiation exposure, and is a

function of the assignment of gloveboxes to locations in the foundry.  Radiation worker

exposures increase if high-dose-rate gloveboxes are located adjacent to each other.

6.2.1 Primary Measures of Effectiveness

The two primary MOEs, castings produced and background exposure per radiation

worker (expressed in mRem), require testing for statistically significant differences between

the treatment means.  The preferred method is ANOVA (described in Section 5.5.2) which

requires that the treatments are normally distributed with equal variances.  Prior to

performing an ANOVA, tests were conducted to verify whether there was significant

evidence to deny either of these properties.  The simulation output data for the two primary

MOEs for each of the 10 solutions (20 replications) are included in Appendix A.

Goodness-of-fit tests are used to evaluate if a set of empirical data statistically

differs from a specified theoretical distribution.  The Kolmogorov-Smirnov (K-S) test is
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one goodness-of-fit test that measures the deviation of an observed sample distribution

from a theoretical distribution.  The K-S test was performed on the 20 replication means

for each of the 10 layout of the two MOEs, castings produced and background exposure,

to determine if the sample distributions are normally distributed.  For _=.05, all treatments

for the 2 MOEs passed the normality tests with one exception.  Treatment 7 failed the

normality test for background exposure. Treatment (or solution) 8 failed the normality test

for castings produced, at _=.10.

The equal variance property was investigated by using an F-test on the variance

ratio of pairs of treatments for both MOEs.  Two of the 45 pairs failed at _=.05 for

castings produced, a reasonable result given that the expected failures under H0 is greater

than two.  Background exposures had 20 failures out of 45 pairs.  The ANOVA test is not

an appropriate choice as an analysis tool for this MOE given unequal variances between the

treatments.

A single-factor analysis of variance was performed for the MOE, castings

produced, to test H0 that all layout configurations have the same mean casting

 production.  The ANOVA summary for castings produced is shown in Table 6.3.

Table 6.3  ANOVA for castings produced



72

Because the value of F calculated for castings produced, 0.553, did not exceed

F.05, 9, 190 = 1.88, H0 is not rejected at significance level .05.  The differences in means for

the number of castings produced for the 10 treatments do not differ significantly.

The analysis approach of Law and Kelton [28] described in Section 5.5.3 was used

for the MOE, background exposure.  This method assumes that the treatments are

normally distributed; however, the procedure does not assume equal variances among the

treatments.  Law and Kelton s approach is dependent on a computed sample size which is

sensitive to the total treatments considered.  The initial 10 layout configurations were

reduced to the best five, to reduce the number of additional replications to be performed for

each treatment.  Layouts 10, 5, 8, 9, and 1 were selected based on the lowest mean

background exposures for 20 replications. Solution 7 was omitted from consideration,

because it failed the K-S test for normality.  A sufficient number of good layouts were

available for analysis even with the omission.

Table 6.4 summarizes the computation of Ni and Xi(Ni) for each of the 5

configurations.  The data for Ni replications of each solution are in Appendix B. For the

analysis, P* = .95, h = 3.507, and d* = 1.  The ranking of the top three of the five solutions

did not change with additional replications.  The analysis determined that the top three

solutions are 10, 5, and 8.

6.2.2 Secondary Performance Measures

Although these data are not considered in determining the optimal layout,
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Table 6.4  Determining Xi(Ni) for top 5 solutions

secondary performance measures are useful in developing an operating strategy for the

foundry.  Total exposure per radiation worker (expressed in Rem) is one of the most

important statistics in analyzing the results of the simulation model.  If the exposure per

worker exceeds allowable limits, alternative strategies must be developed for processing.

High total material transportation times indicate inefficiences in the individual layouts.  The

amount of time that a component spends in the foundry (from the time the feed material is

delivered until the finished unit is stored) is useful in materials requirements planning and

determining product mix. Planning for the efficient use of the resources requires

knowledge of operating parameters such as utilization of personnel and equipment.

Table 6.5 summarizes the average values of the secondary performance

measures for the three top solutions (layout configurations).  The means were obtained

using all replications performed (Ni ) as a result of the analysis in

Section 6.2.1.  The performance measures summarized are (1) average exposure per

worker, (2) average material transport time, (3) average time in system for rods, type
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Table 6.5  Summary of secondary performance measures

A castings, and type B castings, (4) utilization of radiation workers,  and (5) utilization of

two processes that were considered to be bottlenecks in the casting operation, material

preparation (press) and density.  The data for the secondary performance measures are

included in Appendix C.

Radiation worker utilization was much higher than expected.  For planning

purposes, personnel are generally assumed to be 50% utilized on the operating floor. This

allows time for related activities such as paperwork, training, meetings, vacation, and

employee development.  The density utilization was much lower than anticipated; however,

all part castings are routed through density, and a pycnometer failure could cause extensive

delays.  The same is true of the press in material preparation.
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6.2.3 Selection of a layout configuration

The analysis of the performance measures for the simulation produced many

surprises.  There were no discernable differences between the layout configurations for

capacity,  total personnel exposure, process/equipment utilization, or radiation worker

utilization.  A statistic that varied between solutions was transportation time. Although the

utilization of the transporters was very low (less than 2%), the simulation model

demonstrated that transporter grid-lock was a common occurrence. Therefore, the layout

configuration that minimizes material movements is one that minimizes transporter grid-

lock.  Additionally, material flowing through the foundry is a small fraction of the material

that utilizes the trolley system.  Material also flows from machining and assembly to the

storage vault via the trolley.

The determination of the best layout configuration must take into account expert

knowledge of the system being studied in addition to the performance measures.  Layout 5

was the most feasible layout from an operational standpoint.  The primary casting furnaces

are located in close proximity to the material preparation glovebox.  The three highest

radiation processes are located in the back of the room. Lastly, seldom used backup

gloveboxes are located in high-traffic trunklines, which frees up more interim storage for

highly utilized processes.  The configuration of the foundry using solution 5 is illustrated in

Figure 6.1.

A point estimate and confidence interval for the two MOEs (for solution 5) were

calculated using the fixed-sample-size procedure given in Eqs. (5.2) - (5.4).  The 95%

confidence intervals were computed using n = 30 and _ = .05 as shown in
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Table 6.6.  The means for the castings produced and background exposure were obtained

from 30 replications of the simulation.

Table 6.6  Confidence intervals for primary MOEs for solution 5

The mean for the background exposure is not the same weighted mean calculated for the

solution comparison procedure in Table 6.4.  Note that simultaneous confidence intervals

were constructed for the primary MOEs.  The Bonferroni inequality (Eq. 5.5) states that if

confidence intervals are constructed for two measures of performance, then the probability

that each of the intervals contains its true measure is greater or equal to 100(1- 2α) or 90%.

An additional finding from the simulation model was the need for additional in-

process storage.  The first simulation models were constructed without in-line storage

wells, and the results were similar to the transporter grid-lock experienced. One of the

operating parameters for the model was the elimination of bagouts for

in-process material.  Bagouts are the process of removing nuclear material from a

glovebox line resulting in additional processing time, waste generation, and exposure.

In-line storage mitigates the need for bagouts by providing a location to place
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material (within criticality limits) until the next process is available.  The current simulation

model incorporates twelve storage wells; however, the simulation model proved more

interim storage locations are needed to accomodate the quantities of nuclear material

present in the system at a given time.
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Chapter 7

CONCLUSIONS AND FUTURE DIRECTIONS

This chapter concludes this work with a discussion of the effectiveness of the

methodologies developed to simulate the foundry, the major contributions of the research,

and future directions for research.  Section 7.1 provides an assessment of the results.

Section 7.2 summarizes the contributions.  The final section presents an area that warrants

future study and evaluation.

7.1 Assessment of Results

The function of the integrative modeling approach was to first produce a set of

good layout configurations subject to the constraints imposed by the problem formulation

and then to assess the merits of each configuration.  The GA produced 10 layouts with

excellent features where exposures are minimized.  Establishing a set of layout

configurations by relying solely on the experience of process experts is not the best

procedure to follow, because the operating parameters for the future casting operation do

not reflect operating scenarios of the past.  In Chapter 6, layout configuration number 5

was chosen to be a candidate for the proposed layout of the foundry based on the statistical

tests performed.  The final layout will be determined

by examining the features of each of the top configurations and combining the best of the

features.
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The exposure index generated for each layout configuration by the optimization model

represents the  worst case  exposure per radiation worker in the foundry.  The index was

did not reflect the value obtained in the simulation model for exposure per worker or the

final ranking of solutions.  This is due to the lack of variability in the computation of

exposures by the fitness evaluation as opposed to the dose calculation of the simulation

model.  Figure 7.1 depicts a glovebox with adjacent boxes and well locations (designated

by letters).

Figure 7.1  Section of trunkline showing adjacent locations

If the fitness evaluation computes the exposure to a technician operating at

glovebox A, the dose would be calculated as though locations B, C, D, E, F, and G were

each producing a maximum background exposure for the duration of the attended process

at A.  The simulation model calculates the exposures due to adjacent locations based on the

nuclear material that is actually present in the other locations during the operation at

glovebox A.  Thus, if nuclear material is only present in well locations B, C, and D, there is
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no dose contribution from locations E, F, and G.  A method for introducing variability into

the optimization model to more closely represent what occurs in the simulation model is to

define probabilities of material being present at a given location.  The output from the

simulation model provides insight into the appropriate values for the probabilities.

7.2 Research Contributions

In this dissertation we have investigated the effectiveness of a dual-model approach

to simulating a casting operation at a nuclear facility.  No attempt was made to evaluate if a

GA methodology is the best solution search paradigm for the QAP; however, the GA

produced a set of good, practical layout solutions in less than five seconds of execution

time.  The representation of the foundry involved developing two models: (1) an

optimization model that produces a set of optimal layout configurations, and (2) a

simulation model that determines the effect that the physical layout of the processing area

has on system response.  The complexity of the casting operation necessitates the use of an

integrative approach.  The two models have very different objectives, formulations, and

data requirements.

The attractiveness (and necessity) of using an optimization model to generate

solutions for presentation to the simulation model is three-fold.  First, producing feasible

solutions manually based on expert knowledge is a tedious process and subject to biased

judgement that may result in duplicating previous layout inefficiencies.  This was

demonstrated through multiple attempts at optimization of a foundry layout by process
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experts at TA-55.  Optimization of facility layout by computer simulation requires time-

consuming iterations as processing inefficiencies and violation of constraints are

discovered.  It is impractical to perform a search of the solution space using a simulation

model given the amount of time that is required to run even one configuration.  Second, as

explained in Section 7.1, an optimization model alone cannot adequately account for the

interactions that produce radiation exposure.

Third, simulation models are useful in performing  what-if  analyses where

operation and transportation times, resource allocations, and failure rates are modified to

study the effects on system response.  However, if the basic premise behind an optimal

layout of a facility is altered, a complete rewrite of a simulation model is often required.

For example, the layout of the foundry was optimized on personnel radiation exposures.  If

a subsequent decision was made to optimize the layout for process efficiency, the operating

assumptions would change, and the resulting layout could be very different.  An

optimization routine is easily modified by changing the objective function and/or the

contraints The simulation model remains intact.

Analysis of competing facility layout configurations based on different optimizing

assumptions is facilitated using an integrative approach to modeling  The methodology

investigated in this dissertation can be applied to any complex operation where

communication between processes or facilities is important.  Whether the degree of

interaction between operations directly affects costs or often non-quantifiable concerns such

as safety, an optimal facility layout results in the most efficient use of the resources

available.
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7.3 Future Research

Assessment of risks associated with individual processes performed at a nuclear

facility is an important aspect in designing the layout of an operation.  The objective

function of the QAP for the foundry seeks to minimize exposures by locating high

exposure processes apart from one another.  An alternative objective is to minimize the

probability of loss or injury by locating processes having an inherently high degree of risk

away from those processes that would compound the risk.  Consider an glovebox

containing a furnace where fire is an identifiable hazard and a second glovebox where

combustible materials are routinely processed or stored. Placing these gloveboxes adjacent

to one another might result in greater loss in the event of an accident than if they were

separated.

Sage [41] defines risk as  ...the statistical likelihood of being adversely affected by

some potentially hazardous event.  Thus, risk involves measures of probability and severity

of adverse impacts.   There are numerous hazards associated with glovebox operations in

the foundry, each having an assigned probability of occurrence and severity of impact.

Some of the more common accident scenarios are listed in Table 7.1.

Urban [49] incorporates Muther s SLP system [36] which uses subjective

closeness ratings to account for qualitative factors such as safety and environmental
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Table 7.1  Accident scenarios for the casting operation

considerations into the formulation of the QAP (see 3.1.2).  This multi-criteria approach

produces a facility arrangement that locates operations based on proximity desirability.

Closeness ratings are usually subjective measures, and in a practical sense, difficult to

establish.   Urban requires that Muther s linguistic closeness ratings, which range from

absolutely necessary  to  undesirable,  be assigned numerical values for incorporation into

the QAP formulation.  In a nuclear facility, where the implications of placing risky

operations adjacent to each other far exceed  undesirable,  development of closeness ratings

requires a more rigorous analysis.

7.3.1 Fuzzy Logic

The descriptors of the ranges of severity and probability of occurrence of the

scenarios listed in Table 7.1, illustrate the vague and imprecise nature of assigning risk.

Does the statement that  there is an high probability of a breach in containment  indicate a

75% chance or a 90% chance of occurrence?  Fuzzy logic is concerned with quantifying

and reasoning using natural language where descriptors are inexact.  The notion behind

fuzzy systems is the construction of membership sets onto which inputs and outputs are

mapped.  Degree of membership, µi, takes on a value on the real range [0.0, 1.0] where 0
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indicates null membership and 1 is full membership.  The premise behind fuzzy set theory

is that control variables can belong to more than one membership set.  The membership

sets comprise the fuzzifier which converts  crisp  values to fuzzy values.  The fuzzy values

are processed by a rule base consisting of a series of IF-THEN statements that model

reasoning by duplicating the decision process of  experts .  Boolean logic operators such as

AND, OR, and NOT are used to form the antecedent and consequent portions of the rules

which provides much flexibility in modeling the decision process.  Every activated rule in

the rule base generates a fuzzy output which is essentially a  recommendation  for action.

The defuzzifier weights the output values and assigns a crisp output usually by the centroid

method (for discrete elements) defined as:

(7.1)

7.3.2 Application of Fuzzy Logic for Risk Assessment

One method for incorporating fuzzy logic into hazards assessment is to construct

three membership functions - probability of occurrence and severity as inputs, and risk as

output.  Figures 7.2, 7.3, and 7.4 illustrate the input and output fuzzy sets for the system.
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In the fuzzy sets, triangular membership functions map the

inputs, probability and severity, and output, risk to the following overlapping fuzzy sets:

very low VL, low L, moderate M, high H, and very high VH.

Consider a case where the probability of an event occurring is .60 and the severity

of that event is assessed as .5, the problem becomes one of determining the level of risk

associated with the occurrence of the event.  Figure 7.2 illustrates the

degree of membership where a probability of .60 maps to µM= .25 and µH= .09.

Similarly, a severity of .5 (in Figure 7.3) maps to µM= .45 and µH= .05.  The

recommended action is the output value that corresponds to µ=1 in the linguistic set.

Figure 7.2  Fuzzy set for probability
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Figure 7.3  Fuzzy set for severity

Figure 7.4  Fuzzy set for risk
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For the output, risk, L = 0.0, M = 0.40, H = 0.68, and VH = 1.0.  Table 7.2 defines the

membership values of the the inputs as they are mapped to the linguistic sets.

Table 7.2  Membership values for input and output variables

A rule base consists of a series of rules depicting the causal relationships between

the inputs and output.  A sample rule base for this example is:

Rule 1:  IF probability = very high AND severity = low THEN risk = moderate.

Rule 2:  IF probability = moderate AND severity = moderate THEN risk = moderate.

Rule 3:  IF probability = low AND severity = high THEN risk = high.

Rule 4:  IF probability = very low AND severity = very high THEN risk = high.

The fuzzy input variables are presented to the rule base which produces a degree of

membership for each rule.  A crisp output is produced using the centroid method of Eq.

(7.1).  Table 7.3 summarizes the calculations.
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Table 7.3  Calculating a crisp output value

7.3.3 Fuzzy Logic and the QAP

Every glovebox operation has an associated number of hazards (each with its own

degree of risk).  The summation of the individual risks represents the total risk for the

process.  A formulation of a QAP where the objective is to maximize the distance between

hazardous operations or minimize overall risk is given by

(7.2)
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The resulting solution procedure for the QAP integrates a fuzzy logic paradigm for

risk assessment with a genetic algorithm containing a fitness function that minimizes risk.

The GA seeks to locate adjacent processes in a manner that reduces the hazards associated

with the casting operation.  The simulation model can then determine the impact that

alternative layouts have on performance measures for the foundry.
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APPENDIX A

RESULTS FOR PRIMARY PERFORMANCE MEASURES



Solution1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
?8
19
20

mean
varianca

Castings
Produced

53
55
53
54
52
53
49
50
60
57
52
51
54
57
50
55
54
49
52
56

53.30
6.22
2.87

Exposu& (mRem)
22.49
20.60
25.36
26.06
22.88
22.89
17.87
18.66
25.88
21.66
23.23
24.33
20.65
17.64
24.59
26.92
21.25
19.61
20.86
26.75
22.61
9.44
3.07
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Solution2

Replication
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
38
19
20

variance
std dev

59
49
55
53
54
53
53
52
55
56
56
54
56
55
55
52
52
53
51
52

53.75
4.93
2.22

Background
Exposure (mRem)

27.83
25.69
28.05
28.33
27,66
26.99
26.60
27.95
29.12
26.54
27.3’I
27.57
26.75
27.67
28.93
28.30
27.’I8
28.49
26.70
28.49
27.81
0.80
0.89
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Solution3

Replication
1
2
3
4
5
6
7
a
9
10
11
12
13
14
15
16
~7
18
:n

20
mean
variance
std dev

Caetings
Produced

51
52
54
50
56
53
54
54
52
53
55
56
57
56
52
56
60
57
53
56

54.35
5.92
2.43

Background
Expoeure (mRam)

28.76
26.54
30.88
27.64
26.01
26.02
31.63
29.74
27.83
24.98
29.69
23.16
31.85
32.85
27.35
30.46
33.40
28.28
27.47
26.57
28.57
7.39
2.72
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Replication
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

mean

stddev

Solution4

Castings
Produced

57
57
53
55
49
58
50
56
51
49
50
54
52
50
56
55
56
53
52
56

53.55
9.31
3.05

Background
Exposurs (mRam)

29.93
25.10
25.66
26.29
26.53
26.77
31.30
22.96
25.00
25.65
23.92
27.59
29.26
25.61
29.70
25.62
31.16
26.71
?7.75
32.43
27.35
6.72
2.59
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Solution5

Replication
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 -
20

mean

std dev

Castings
Produced

56
55
54
57
53
54
54
52
57
56
50
53
53
57
56
56
53
54
55
53

54.60
4.57
2.14

Background
Exposure (mRem)

1744
20.97
18.53
20.13
19.97
19.05
21,49
18,59
19.26
20.97
22.12
20.50
18.44
78.71
19,02
19.60
20.40
16.65
21.42
16.75
19.50
2.38
1s4
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Solution6

Replication
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
!7
18
19
20

mean
variance
stddev

Castings

52
54
53
54
54
55
50
51
55
54
50
52
55
55
56
55
53
58
56
53

53,75
4.20
2.05

Exposu;e (mRem)
25.66
27.07
27.25
25.86
26.52
27.54
28.64
26.28
26.92
26.52
25.71
24.33
25.36
28.65
27.32
24.14
24.45
27.01
24.82
26.39
26,32
1.68
1.30
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Solution7

Replication
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
77
18
19
20

mean
variance
stddev

Castings
Produced

55
49
55
52
57
57
54
51
52
52
53
56
55
58
56
56
49
55
54
52

53.90
6.62
2.57

Background
Exposure (mRem)

18.74
16,72
24.15
19.38
20.94
17.60
23.64
17.35
19.85
17,22
18.76
17.60
17.50
19.70
22.49
16.99
16.64
17.22
17.69
19.02
19.07
5.00
2.24
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Replication
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

mean
variance
std dev

Solution8

Castings
Produced

53
53
55
55
49
52..
54
52
55
58
55
56
57
55
54
53
64
.54
55
54

54.15
3.71
1.93

Background
Exposure (mRem)

21.34
15.59
24.93
16.86
16.85
i8.85
20.31
17.59
18.97
24.17
25.55
17.35
23.34
17.32
17.75
19.37
21.13
22.22
26.40
22.98
20.44
10.78
3.28
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Replication
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
f8
19
20

mean
variance
std dev

Castings
Produced

55
55
52
55
55
57
53
54
57
53
53
54
54
53
52
64
51
59
53
53

54.10
3.67
1.92

Background
Exposure(mRem)

24.59
22.66
22.72
21.90
22.63
19.96
18.69
26.90
21.32
19.73
22.01
22.45
23.09
22.39
23.61
23.14
19.00
23.22
26.27
21.66
22.41
4.40
2.10
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Solution10

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

mean
variance
etd dev

Castings
Produced

58
50
55
53
52
55
50
51
52
51
57
53
48
50
55
54
56
55
57
56

53.50
8.68
2.95

Background
Exposure (mRem)

18.36
17,31
17.25
16.76
16,46
48.83
16.64
16.82
16.00
17.81
18.25
19.78
19,30
18.46
17.96
16,98
20.12
19,06
16.96
16.40
17.89
1.33
1.15
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APPENDIX B

RESULTS FOR BACKGROUND EXPOSURES WITH
ADDITIONAL REPLICATIONS



Replication
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
77
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

10
18.36
17.31
17.25
16.76
16.46
18.63
16.84
16.82
16.00
i7.81
18.25
19.78
19.30
18.46
17.98
16.96
20.12
19.06
16.98
18.40

5
17.44
20.97
16.53
20.13
19.97
19.05
21.49
18.59
19.28
20.97
22.12
20.50
18.44
18,71
19.02
19.60
20.40
16.65
21.42
16.75
22.63
22.67
16.51
19.24
21.93
18,49
17.54
20.98
17.96
16.56

Solution
8

21.34
15.59
24.93
16.86
16.85
16.85
20.31
17.59
18.97
24.17
25.55
17.35
23.34
17.32
17,75
19.37
21.13
22.22
26.40
22.96
26.47
19.48
19.10
23.65
13,30
19.07
20.98
19.38
20.28
23.79
24.68
22.66
19.84
20.73
20.48
19.31
21.15
19.53
23.61
19.24

9
24,59
22.88
22.72
21.90
22.63
19.86
18.69
26.90
21.32
19.73
22.01
22.45
23.09
22.39
23.61
23.14
19.00
23.22
26.27
21.85
21,08
23.75
20.34
23.86
26.04
21.69
77.85
22.07
20.57
20.99
21.10
24.62
19.76
19.59
28.61
20.98
19.58
22.98
24.31
23.84

1
22.49
20.60
25.38
26.C6
22.88
17.87
16.86
25.88
21.8a
23.23
24.33
20.65
17.64
24.59
26.92
21.25
19.61
20.86.
28.75
22.89
23.76
26.34
18.38
16.34
23.12
22.83
27.76
16.52
27.60
22.42
20.39
18.72
19.67
22.18
23.34
25.40
77.67
19.56
20.5a
17.53
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Replication
41
42
43
44
45
46
47
46
49
50
51
52
53
54
55
56
57
58
59
80
61
62
63
84
65
66
67
68
69
,0. .

71
72
73
74
75
76
77
76
79
80

10 5 8 9 1
26.LW 22.59 19.10
21.40 19.a4 19.73
26.45 20.37 28.80
15.90 23.36 20.75
18.91 2~.73 21.61
20.89 26,62 21.32
19,48 21.44 18.79
21.79 22.07 21.89
19,03 22.27 19.17
19.27 22.83 24.94
20.35 .23.01 25.81
18.81 22.59 23.46
26.11 22.08 28.03
20.49 21.88 25.69
26.47 23.76 20.01
28.09 18.66
21.79 20.42
19.73 ?9.88
16.93 18,62
19.27 21:09
16.01 22.03
16.36 23.47
24.37 22.26
20.41 23.07
21.39 22.34
14,35 24.07
17.33 26.37
23.25 20.52
20.31 24.05
23.11 27,80
22.15 20.60
22.33 21.70
19.17 22.84
19,14 78.33
20:28 21.18
17.79 19.49
20,58 f 9.33
20.68 17.05
23.82 77.!8
17.95 20.48
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87
82
83
64
85
66
87
88
89
90
91
92
93
94
95
S8
97
98
99
100
101
102
103
104
105
108
107
108
109
110
111
112
113
114
115
116
117
118
119
120

solution
10 5 8

17,89
22.36
23.77
~8.18
19.80
21.39
21.37
22.36
21.11
25.66
16.69
23.89
17.89
17.19
14.59
21.79
20.25
16.20
23.33
23.25
18.58
20.82
16.21
23.41
18.02
19.93
23.41
21.23
20.94
23.09
18.82
22,18
19.03
24.42
16.26
~7.75
2250
15.73
23.14
17.74

9 1
23.90
24.74
22.02
17.80
22.41
26.53
19$%
22.31
22.68
25.48
.33.27
20.87

-23.68
23.79
21.51
~8.26
22.92
17.93
26.64
23.16
20.09
18.98
18.02
21.82
27.78
16.46
22.21
26.77
20.64
24.12
22.40
38,57
22.23
19.44
17.93
25.46
28.52
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Solution
Replication

121
122
123
124
125
126
127
J28
129
130
131
132
133

mean(n~ )

variance(nO)

stddev(n~ )

mean(Ni- no)

varianc@Ni- n~

stddev(N; -no ~

w,

w,

mean(fVl)

10

77.88

1.33

1.15

1

0

17.88

,! .a

19.50

2.38

1.54

19.85

3.98

1.99

1.33

-0.33

19.39

0

16.48
22.87
21.57
27.93
18.96
22.42
19.6JI
19.34
24.46
19.68
24.92
18.93
15.74

20.44

10.78

3.28

20.63

6.96

2.99

0.3

0.7

20.57

9

22.41

4,40

2.10

2222

4.04

2.01

0.72

0.28

22.35

22.61

9.44

3.07

22.04

10.49

3.24

0.34

0.66

22.23
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Solution10

Total Total Time In Svstem (minutes)
Exposure Transport

Replication (Rem/worker) Time (minutes) Rode
1,14 23081

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
’17
18
19
20

mean(20)
var(20)

stddev(20)

1.14
1,15
1>14
1,15
1,16
1,15
1.15
f,14
1>14
1.16
1;.15
1:”17
1:14
1.16
1.15
136
1.16
1.16
1.16

;,

1,15
8.7:IE-05
9.33E-03

2286
2305

2222
2344
2270
2268
2219
2249
2314
2291
2269
2266
2340
2299
2363
2324
2316
2295

2290
1616,60
40.21

3913
3225
3601
3406
3151
3612
3626
3275
3110
3225
3779
3517
3292
3475
3263
3241
3540
3118
3329
3413

3406

Type A
14703
15786
15436
14057
14051
14451
14184
14452
15319
14778
15357
15243
14418
14039
14993
15155
14733
14765
14636
13641

14720

Type B
26465

25227
22005
24645
29919
20802
23161
20546
21871
22652
25422
31124
22912
25579
23197
29165
30167
23544
24197

24923
49702,42 2.96E+05 9.71E+06
222,94 543,73 3116.72

% Utilization
Material

74.09
73.76
73.90
74,16
73,69
73.77
74.15
73;71
73.09
74,31
73.66
74.49
72,70
73,59
73.29
73.46
73,99
73,86
74.16

73.73
0.24
0.49

Worker Preparation Density
73.22 72.66
75.35
74.86
73.32
73,2

76.52
73.53
74.07
72.6

73.41
74.73
74.97
76.69
73.6

75.06
73.73
76,22
75,22
76,1
74S4

74.536
1,51
1.23

15.05
14.46
15.02
13.41
13.15
15,49
14.63
13.86
12.61
14.13
15.34
14.61
14,66
14.29
15.01
14.65
16.17
14.92
15.01
14.65

14,56
0.69
0.63
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Solution8

Total Total Time in System (minutes)
Exposure

Replication (Remfworketj
1 1,16
2 1.12
3 1.16
4 1;16
5 1;15
6 1,15
7 Ii?
8 1,15
9 1,16
10 1.15
11 1.17
12 1’14
13 1,16
14 1.15
15 1.’14
16 1,14
77 1.17
18 1.16
19 1,16
20 1,16

Transport
The (minutes}

1900
1866
1696
1663
1662
1891
1915
i677
1680
1896
1930
1684
1862
l&37
1667
1680
1903
1699
1903
1885

Rock
3337
3331
3433
3471
3770
3294
3508
3772
3435
3496
3093
3160
3223
3422
3505
3607
3600
3271
3251
3352

Type A
14909
13995
16300
14445
14565
T3492
14503
14093
14591
14504
14839
15027
15975
14106
15639
14241
14251
13621
15176
14644

Type B
25113
22197
21516
22167
19506
24335
24574
27535
22106
26591
31252
21147
24239
21260
24134
24068
25257
26047
26620
25583

% Utilization
Material

Worker Preparation Densitu
74.4

72.13
74.79
75.12
73.64
74,76
75,76
74.64
74,16
72,93
77.32
74,49
74.69
74,35
74.6

77.06
72.77
73.58
74.65
74.25

+3,74
72,66
73.36
73.67
73.74
73.86
74.64
73:92
73,98
72,39
73.79
73,03
73.37
73,55
72,86
73.44
74.46
73.67
74;12
74.41

15,11”
13.41
14.60
14.56
13,47
15,03
15,24
14.31
14.07
14.86
15.59
14.65
14.43
14!15
15.13
14,72
15.20
14.89
14.36
13.79



Solution8 (cont.)

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

1.17
1.16
1,15
1.16
1;13
1:14

1:15
1;14
1<15
1,16
1:18
1.16
1.”16
1.16
1.17
1,15
1,16
1.14
1.15
1,15
1,17
1,16
1.17

1842
1896
1664
1892
1623
1676
1652
1863
1680
1906
1929
1697
f687
1683
1925
1871
1907
1662
1696
1887
1916
1906
1906

3099:
3179
3283:
3399
3762
3208
3449
3601
3314
3778
3340
3564
3357
3424
3119
3169
3541
3711
3652
3483
3422
3354
3145

15357
14535
14720

14777
14735
15490
14226
14101
14536
13733
15%5
12627
15117
14581
14711
16333
14146
15484
13969
14096
15399
14677
15281

34093
25112
21265
26911
20197
23S65
22740
23526
26576
26672
26154
28894
23911
27757
25424
20029
26097
22028
24621
25215
26927
24526
29695

77,36
73.06
76.5
74.4

73,25
73,65
72,66
74.2

75.99
76.47
75.12
75.66
73.63
75,46
76,31
7447
76:56
74.31
74.2

73.43
75,32
74.6
75.3

73.49
74.04
73.55
73,23
73.55
73.07
73.61
73,39
73,75
73.54
73.65
73:67
74.04
74.24
74.31
73.62
73.35
73.59
73.51
73.31
74:17
73.91
73.84

16.46
15.20
14.99
‘14,87
12.44
13.64
13.16
13.95
14.66
15;61
15.91
15!34
14.21
14.29
15.95
13.65
15,20
13.97
15,22
14.56
15.29
15.12
15.52

I



S01ution8(cont.)

z

44
45
46
47
48
49
50
51
52
53
54
55
53
57
58
59
60
61
62
63
64
65
66
67

1,13
1.’I4
1..15
1.16
1.16
1,.16
1:15
1,15
1.15
1.17
1.14
1,16
1.17
1,16
1,14
1.15
1’15
1.15
1.14
1,15
1,16
1.15
‘1>13
1.14

1881
1664
1881
18%5
1885
1699
1884
1678
1692
1913
1898
1923
1935
1902
1857
1662
1672
1637
1684
1905
1919
1671
1632
1657

3412
3493
3438
3294
3561
3716
3256
2991
3769
3373
3735
3595
3733
3676
3663
3589
3448
3347
3561
2649
3450
3411
3766
3148

15294
14862
13571
14676
13535
12883
14150
15754
14515
14647
14503
14366
14619
14016
14678
14910
14512
13999
14472
15708
14455
14170
14466
14261

16176
25267
26947
22916
24732
24968
23332
22799
22797
31902
229$8
33795
32603
25053
21915
16639
22748
19333
21344
27912
25210
26165
18937
20565

72.17
74.66
73.61
74.06
74.69
74.66
74,62
75.05
75.76
74.45
74,76
76,36
76.62
75.17
75.6

73.63
73.7

74.01
74.29
78.26
76.15
72.72
77.76
72.11

73.09
72.99
73.96
74.25
74.36
72.64
74.19
73.52
73,42
74,08
73.33
73.61
73.59
73.48
73.51
74.11
73.37
74.43
73.19
73:30
74.,33
73:53
73;26
72.69

13.59
14.45
14.25
14.56
14!51
15.60
13.96
14.26
15.29
14.89
14.97
15.61
16.07
15.69
13.57
14.15
14:15
13:39
14,34
14,48
16.10
13.66
12.88
13.85



Solution8(wmt.)

w

88
69
70
7’I
72
73
74
75
76
77
76
79
60
81
62
83
84
65
66
87
68
69
90
91
92
93

1.15 1900
1.16 1867
1.15 1919
1,14 1694
1.15 1,896
1,13 1689
1.15 1669
1,15 1874
1,15 1895
1,15 1682
1.77 1691
1.17 1933
1..13 1647
1,16 1601
1.16 1907
1,14 1909
1,.15 1875
1,15 1669
1:16 1690
1,17 1916
1,’17 1875
1.15 4897
1.16 1640
1.14 1686
1.16 1678
1!15 1892

3302’
3436:
34?4
3341’
3529
3590
3147
3207
3629
3180
3290
3301
3307
3285
3013
3609
3551
3507
3582
3361
3665
3615
3474
3249
3894
3341

14041
13963
14781
14177
?4770
14991
14452
16245
15535
15578
15252
14666
13796
15453
15400
14616
15207
15166
14714
14407
15065
15673
14349
14362
14542
14700

30206
26127
26724
31250
25636
23208
25243
21477
23417
27385
23182
29611
19519
27563
25575
26392
21549
24334
29195
30849
23479
26480
32318
21681
24754
22040

74.65
75.3
75.8
76.2

74,16
74.52
74.99
76.07
76.4
73.6

74.02
75.03
74,19
75.64
74.41
74.92
74,17
73.16
75.62
76,19
74,13
74.09
75.83
74.92
73.93
74.94

72.89
73.07
73.45
72,79
72.99
72.47
73.92
73.47
73.75
73,67
74,13
74,47
72,99
74.10
74,04
72.71
73,56
73,65
73.88
74.59
74.96
73,73
74.03
73.44
73,69
74.22

15.13
14.97
15.27
14,96
14:66
14.87
14;70
14;06
14;57
14;11
14.80
16,22
12.62
14.07
14,95
15,41
14.47
14.15
14,58
15,66
14.40
14.97
16.68
14,48
14.17
14.90
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Solution8 (cont.)

94
95
96
97
9?3
99
100
101
102
103
104
105
1C6
107
108
109
110
111
112
113
114
115
116
147
118
119

1,14
1,15
1.16
1.16
{35

1,16
1,15
1,16
1,15
1.15
1,15
1.15
1,16
1,15
1,15
1.16
1.15
1,15
1,15
1.15
1.16
1.15
1.17
1,17
1,13
1.15

1891
1663
1911
‘f650
1867
1916
1698
1905
1875
1901
1882
1897
1661
1907
1913
1684
1890
1893
1905
1892
1922
1878
1919
1913
1859
1878

3621
3386
3355”
3855
3592
3352
3720
3590
3474
3071
3351
3411
3485
3295
3564
3094
3142
3679
32S6
2949
3531
3818
3490
3069
3660
3211

15379
14139
;14011
15190
14669
74556
15290
14576
14427
14443
14121
14400
14518
15103
14696
14655
14235
14366
14842
14753
14562
13942
14055
15819
14340
14711

24266
20999
24829
22978
20676
2G357
25855
23876
24525
23787
26589
25155
25528
32216
27160
24669
27977
25869
26372
26549
27163
18385
24442
28438
23114
25S36

74.31
76,65
73.05
74,93
75.39
75.23
74.03
75121
74;65
74,57
74,49
77,69
74.03
75,93
75.64
75.23
75.09
75,71
75)39
77.44
75,61
72;63
76.65
75.79
73.64
75.04

73.53
74.16
73.45
74.33
73.60
73.~4
73,11
74,00
73.38
73.07
731?4
73:79
73,97
73,25
73.73
74.05
73,61
73;71
73;19
73,09
73:50
73.72
74.27
74.19
73.05
73.48

14.69
13,58
15,21
13.35
14.20
15,59
15.07
15.09
14.69
14.87
t4.08
14!64
13.47
14.44
15.63
14.54
14.66
14;65
15.07
14.80
16,31
14.02
15.66
15,54
14:13
14.08

I
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