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Response of a Water-Filled Spherical Vessel

 to an Internal Explosion

M. W. Lewis
and

T. L. Wilson

ABSTRACT

We model the response of a water-filled, thick-walled, spherical steel
vessel to an internal explosion of 30 grams of C-4 with FSI2D—a two-
dimensional coupled finite element and finite volume hydrodynamics
code.  The  gas phase detonation products were modeled with a Becker-
Kistiakowsky-Wilson high-explosive equation of state.  

Predictions from a fully coupled model were compared to experimental
results in the form of strain gauge traces.  Agreement was reasonably
good.  Additionally, the calculation was run in an uncoupled mode to
understand the importance of fluid-structure interaction in this
problem.  The uncoupled model results in an accumulation of
nonphysical energy in the vessel.

I.  INTRODUCTION

Many problems of interest to the defense community involve fluid-structure
interaction (FSI).  Such problems include underwater blast loading of structures,
bubble dynamics and jetting around structures, and hydrodynamic ram events.
These problems may involve gas, fluid, and solid dynamics, nonlinear material
behavior, cavitation, reaction kinetics, material failure, and nonlinearity that is due
to varying geometry and contact conditions within a structure or between structures.

We developed an approach for modeling such problems by coupling existing
analysis codes, each of which models one of the two domains, the fluid or the
structure.  We implemented this approach for modeling two-dimensional problems
by coupling MFICE2D and the CFDLIB family of codes [1, 2], a LANL finite volume
computation fluid dynamics (CFD) code, with PRONTO2D [3], a SANDIA finite
element solid dynamics code.  Details on this coupling approach and current
implementations are discussed in Section III.

This reports describes an application of this coupled code.  We used the code to
model an experiment conducted by Larry Hull and others in the Dynamic
Experimentation (DX) Division in support of a reactive munitions project.  The
problem involves the detonation of 30 grams of high explosive, C-4, in the center of
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a water-filled, thick-walled, nearly spherical steel vessel (hereafter called the
Jumbino vessel).  The vessel was instrumented with eighteen strain gauges.

Two new features of the code were used in modeling this problem.  We have a new
energy partition calculation that calculates how much work is done on the structure
and the current total energy in the fluid and solid domains.  This calculation may be
used to measure the effectiveness of a certain explosive configuration or some other
method of delivering energy through a fluid to a target structure.

Another new feature demonstrated for this problem is the capability of running a
problem both in a strongly coupled mode and in an uncoupled mode.  In the
strongly coupled mode, where the particle normal velocity is continuous across the
interface, an iterative approach is used to force the pressure field and the structural
accelerations to be compatible.  In this mode, the physical fluid-structure interface
moves; that is, the fluid domain changes as the structure deforms, translates, and
rotates.  Momentum and energy are conserved.  In the uncoupled mode, the fluid-
structure interface is treated as a rigid boundary when the fluid equations are solved.
Pressures so calculated are then used as boundary conditions to the structure, which
then deforms, translates, and rotates.  Momentum and energy are not conserved.

II.  PROBLEM DESCRIPTION

A drawing of the Jumbino vessel is shown in Fig. 2.1.  One end of the vessel (the
right end in the figure) was sealed with a one inch thick Plexiglas plug.  A steel plug
was bolted in the other end as shown in the figure.  The vessel is made of A537
structural steel, with an estimated yield strength of 40,000 psi.

The vessel was supported by a rectangular steel frame with clamps around each end
of the vessel.  The frame is shown in Fig. 2.2.  This support arrangement makes the
problem slightly asymmetric.

Thirty grams of C-4 were detonated at the center of the vessel.  The charge was a
cylindrical charge with a diameter of 1.00 in. and a length of 1.413 in.  A polyvinyl
chloride (PVC)  pipe with holes drilled through its walls at several locations was
used to hold the high explosive (HE) and detonator arrangement.

One-quarter inch strain gauges were placed on the outside of the vessel to record the
azimuthal and meridional components of the vessel motion.  These strains,
referred to here as the hoop and longitudinal components, respectively, are
principal strains in an ideally axisymmetric problem.  Gauges were affixed at seven
locations along the θ = 0 meridian at 15° φ intervals from -45° to +45° and at three
locations around the equator (z = 0) at 120° θ intervals as indicated in Fig. 2.3.
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Fig. 2.1  Engineering sketch of the Jumbino vessel.  The steel plug inserted into the
left (as shown) end is shown below the sketch.  All dimensions are in inches.

17.375
9.75

9.75

9.75

33.688

17.375

9.75

0.75 TYP.

3.0

3.0

R 6.5 6.0

0.5 TYP.

0.75 TYP.

Bolt Holes

Fig. 2.2  A sketch of the right half of the support structure used to hold the Jumbino
vessel.  Unless otherwise noted, all parts are welded.  The structure was supported at
the midpoint of the 33.7 in. long plate on the right.  The vessel was attached to the
structure by the bolted clamps shown.  All dimensions are in inches.
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Figure 2.3  An engineering sketch of the Jumbino vessel indicating strain gauge
locations.  Two strain gauges were at each location shown, one latitudinal (or hoop)
gauge and one longitudinal gauge.

III.  NUMERICAL FSI METHODOLOGY

A fully implicit numerical coupling of the fluid and solid solutions facilitates a
physically coupled solution.  In this section we describe the FSI portion of the
solution algorithm following the discussion given by Lewis et al. [4].  The full CFD
algorithm is discussed in Kashiwa et al. [1, 2] and details of the solid dynamics
algorithm are discussed in Taylor and Flanagan [3].

Nodes on the surface of the structural domain are required to be coincident with
vertices on the surface of the fluid domain.  Pressure and velocity data are
exchanged on the faces defined by these points and at these points.

Let u be the vector of velocities that defines the motion on the structural and fluid
domains.  Consider a subset of the equations of motion given by

    ̇u = − ∇p , (3.1a)

and

    ̇p = − ρc2∇ • u  , (3.1b)
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where ρ is the local density.  A typical discretization is given by

      ∆u = − G[pn + ∆p] , (3.2a)

and

      ∆p = − D[un + ∆u] , (3.2b)

where the standard superscript notation is used for time increment and where G
and D are discrete gradient and divergence operators, respectively.

The typical solution scheme comes from eliminating ∆u between these equations
and solving for ∆p.  That is,

      [I + DG]∆p = − D[un − G[pn ]] , (3.3)

where I  is the identity operator.  The operator [I + DG] is usually sparse, and the
solution can be obtained by any of a variety of linear system solvers.  Having found
∆p everywhere, back substitution into Eq. (3.2a) gives ∆u that is guaranteed to be
stable for any value of c∆t/∆x.  This is the essence of the cell-centered implicit
continuous Eulerian (ICE) CFD method.

In our case we have elected to connect the structural domain to the fluid domain by
way of boundary data transfer, so the elimination step and subsequent global
solution for ∆p is not possible.  Nevertheless, we must retain the discretization
given by Eqs. (3.2) to achieve a robust method.  This is done as follows.

Let subscripts s, f, and b denote values of the field variables in the structural domain,
the fluid domain, and points along the common boundary, respectively.  Now we
may write

      ∆pf = − D[uf
n − G[pf

n + ∆pf ]] − Db[us
n+1] , (3.4a)

and

      ∆us = − G[ps
n − D[us

n + ∆us ]] − Gb[pf
n+1], (3.4b)

where we extract from D and G those operators that act only on the boundary
values, Db and Gb.  A successive substitution method can be used to find

    us
n+1 = us

n + ∆us and   pf
n+1 = pf

n + ∆pf .  The successive substitution procedure follows.
Let

    us
0 = us

n  , (3.5a)
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and

  pf
0 = pf

n  , (3.5b)

and iterate in the following manner:

      [I + DG]∆pf
k +1 = − D[uf

n − G[pf
k ]] − Db[us

k ] (3.6a)

  pf
n+1 = pf

n + αk +1∆pf
k +1 (3.6b)

      [I + GD]∆us
k +1 = − G[ps

n − D[us
n ]] − Gb[pf

k+1] (3.7a)

    us
n+1 = us

n + βk +1∆us
k +1 (3.7b)

for k = 0, 1, 2, 3, ..., until ∆p and   ∆u  are small compared with norms     pb and ub .

Here αk and βk  are under-relaxation parameters [4].  Notice that Eq. (3.6a) is solved
in the fluid domain with an explicit source term coming from the previous iterate
boundary velocity.  The update Eq. (3.6b) uses fluid field pressure data from Eq.
(3.6a).  Then Eq. (3.7a) is solved in such a way that the current iterate pressure forms
an explicit source to the structural domain.  Finally, the boundary velocity is
updated and becomes the source for the next fluid domain pressure solution.

IV.  COMPUTATIONAL MODEL

A. Fluid Domain.  An axisymmetric cylindrical coordinate system is used to describe
the geometry of the Jumbino experiment where (r, θ, and z) are the radial,
azimuthal, and axial coordinates that form a right-handed coordinate system.  The
angle φ, measured counterclockwise from the r-axis in the meridional plane,
denotes the angle of latitude.

The interior of  the vessel, known hereafter as the fluid domain, contains an
undeformed volume of 1.41328 x 105 cm3 initially filled with water and fitted with a
30 g charge of C-4 high explosive at the spherical center.  The fluid domain, shown
in Fig. 4.1, is discretized with 4279 quadrilateral cells, ranging in size from 0.42 by
0.42 cm at the center to 0.85  by 0.85  cm at the vessel wall, in eight logically
rectangular blocks.

At the instant of detonation, the water is motionless and in hydrostatic equilibrium
with the ambient atmosphere.  A Us-Up equation of state is used to model the water
[5, p. 391].  For the high explosive, a Becker-Kistiakowsky-Wilson (BKW)-gas is
given the initial conditions ρ = ρo = 1.65 g/cm3, T = 2714.16 K, and p = 152.7 kbars,
simulating the mass and energy of the explosive.  Properties of C-4 are given in
Appendix A, and details of the BKW-gas equation of state are given in Appendix B.
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Fig. 4.1
Computational mesh for fluid and solid domains.

Boundary conditions are straightforward.  Along the z-axis the axisymmetric
condition is modeled as a reflective surface, the water-Plexiglas interface at the top of
the port is modeled as an outflow (zero normal gradient) surface and the water-
vessel interface is modeled with the FSI model described in Section III.

B. Jumbino Vessel.  The vessel, shown radially offset from the fluid in Fig. 4.1, is
discretized with 765 quadrilateral finite elements.  A typical element dimension is 1
cm.  The vessel steel properties are density = 7.833 g/cm3, Young's modulus of
elasticity = 2.07 x 106 bars, Poisson's ratio = 0.29, and uniaxial yield stress = 2760 bars.
This was modeled as an elastic-plastic material with isotropic hardening.  The
hardening modulus was 9410 bars.

Compliance of the support structure is modeled by including elements that provide
an additional mass of 1.997 kg and an axial stiffness of 30.873 x 104 N/cm.  The axial
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displacements of the lowermost and uppermost nodes of the support structure
model were constrained to be zero.  The clamps around each end of the vessel were
modeled as steel, 1.5875 cm (5/8-in.) thick and 7.62 cm (3.0 in.) long, with the same
material properties as those of the vessel.  The clamps were modeled as
axisymmetric and rigidly welded to the vessel and the support structure.

V.  ONE-DIMENSIONAL SHELL DYNAMICS

Because the Jumbino experiment is nearly spherically symmetric, its essential
features may be examined as a function of radius and time.  In this section we
develop two simplified models that predict the coupled and uncoupled vessel
dynamics that accompany a specified pressure loading, p(t), on the inner surface.
The form of p(t), discussed in the Section V.A, approximates the initial water shock
wave.

Vessel energy and hoop strains, given in Sections V.B and V.C, illustrate the
essential FSI features that are discussed more fully with the FSI2D calculations in
Section VI.

A. Underwater Shock Wave Parameters.  After the underwater detonation of a
high-explosive charge, the ensuing motion may be understood in terms of the
dynamics of the gas-phase explosive products (hereafter referred to as the bubble)
and the motion of the water.  If the explosive is compact, that is, does not differ in
shape significantly from a sphere or a cube, the physics may be adequately studied in
terms of spherical radius and time only.  In the absence of nearby solid boundaries
or free surfaces, the bubble expands until its pressure is substantially less than that of
the surrounding water; that is, it overshoots equilibrium.  The bubble then contracts
to a new minimum radius and maximum pressure before the process starts again.
The series of bubble oscillations drive an ever weakening series of shocks and
acoustic pulses into the water.

The dynamics of underwater explosions has been studied experimentally and
theoretically since World War II [6-8].  From dimensional considerations it may be
shown that properties of the first shock wave may be studied in terms of the charge
weight (W) and distance from the explosion (r).  Experimental evidence further
indicates that several parameters are well represented by equations of the form

Parameter 
  
= K

W1/3

r






α

 , (5.1)

where α  and K depend on the explosive.  Swisdak [8] gives the following
correlations for TNT:

 
  
pm = 134.9

W1/3

r






1.13

(5.2)
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θ / W1/3 = 4.946 x 10−3 W1/3

r






−0.23

(5.3)

 
  
I / W1/3 = 44.634

W1/3

r






0.89

(5.4)

 
  
ef / W1/3 = 925.43

W1/3

r






2.04

 , (5.5)

where pm is the maximum pressure, θ  is the time required for the pressure to fall to
1/e (37%) of pm, I is the impulse per unit area and ef is the energy flux density.
Constants on the right side of Eqs. (5.2)-(5.5) have been changed so that dimensional
units  are consistent with the present report.

The Jumbino experiment is complicated by multiple wave interactions because
waves reflect inward from the vessel and outward from the bubble; however,
because the first shock travels in unperturbed water, its properties should be
adequately described by Eqs. (5.2)-(5.5).  Solving these equations at the moment of
impact (r = Ri) yields pm = 576.8 bars, θ  = 0.0284 ms, I = 21.413 bar-ms, and ef = 34.66
bar-cm.  The value of W in Eqs. (5.2)-(5.5) is modified to account for the difference in
the energy of detonation between C-4 (1400 cal/g) and TNT (1020 cal/g);

W = (30 g)(1400/1020) = 41.176g . (5.6)

B. Acoustic Model.  To estimate the energy transmitted to the vessel,   Et , we model
the incident shock as an acoustic wave.  This approximation is justified because

  (pm − po )/(ρoco
2 ) = 0.026 << 1.  Then, when we consider the shock-vessel impact as

an acoustic wave transmission problem, the fraction of the incident shock energy
reflected back into the water is

Er = ℜ2 − ℜ1

ℜ2 + ℜ1







2

= ρscs − ρoco

ρscs + ρoc







2

= 0.863, (5.7)

and the fraction transmitted to the vessel is

  Et = 1 − Er = 0.137, (5.8)

where   ℜ1 = ρoco and ℜ2 = ρscs are the acoustic impedances for the water and vessel
respectively.

In the context of FSI, Eqs. (5.7) and (5.8) correspond to the coupled case where energy
and momentum are conserved.  In the uncoupled case, the reflected fluid wave is
identical to the incident wave being computed from a rigid boundary condition.
Thus, uncoupled FSI is not conservative because, by definition, momentum and
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energy gained (lost) by the vessel is not lost (gained) by the fluid.  The transmitted
energy for the uncoupled case is then

Et uncoupled
=

Er uncoupled

Ercoupled

Etcoupled
= 1.000

0.863
0.137 = 0.1587. (5.9)

For an incident shock with energy Ei, Fig. 5.1 shows the partition of energy for the
uncoupled and coupled approximations.

  Uncoupled Er = 1.000Ei

  Coupled Er = 0.863Ei

Water Vessel

  E t = 0.1587Ei

  Et = 0.1370E i

  Ei

Fig. 5.1
Incident, reflected, and transmitted energy when
the first shock is considered as an acoustic wave.

When we use the results of Eqs. (5.5) and (5.9), the total energy transmitted to the
vessel by the shock is

  
Etcoupled

= 0.137efAi = 6.003 x 104 bar − cm3, (5.10)

and

  
Et uncoupled

= 0.1587efAi = 6.954 x 104 bar − cm3 . (5.11)

The maximum hoop strain in the spherical shell is

  
εmax = Et 1 − ν( )

VsY











1/ 2

= 4.69 x 10−4 (coupled), 5.05 x 10−4 (uncoupled) . (5.12)

Thus, the vessel in the uncoupled case receives 15.8% more energy and has 7.7%
higher peak strains than does the coupled case.
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C. Shell Dynamics Model.  Consider the motion of the vessel caused by the initial
shock loading.  The equation of motion for a moderately thick-walled elastic
spherical shell is

  
˙̇s = Rr

2p(t)
ρsh

− 2σ
ρsR

 , (5.13)

where s is the radial shell displacement measured from the inner surface, σ is the
biaxial hoop stress,   R ≡ Ri + Ro( )/ 2 is the mean shell radius, ρs is the shell density,

and   Rr ≡ Ri / R.

The incident pressure p1(t) and the reflected pressure p2(t) are modeled as acoustic
plane waves; thus,

  p t( ) = p1 t( ) + p2 t( )  . (5.14)

The corresponding particle velocities are

  u1 = p1 /ρoco  , (5.15a)

and

  u2 = − p2 /ρoco  . (5.15b)

At the surface, the water and the vessel have the same velocity; hence, the shell
boundary conditions are

  u = 0  at (s = 0, t = 0) (5.16a)

and

  u = u1 + u2  at (s = 0, t). (5.16b)

It has been empirically established that the shock wave pressure decays nearly
exponentially.  If   p1 t( ) = pme− t/θ , Eq. (5.14) becomes

  p t( ) = 2pme− t/θ − ρocou  (coupled), (5.17a)

or

  p t( ) = 2pme− t/θ   (uncoupled). (5.17b)

Figure 5.2 shows these two pressure functions.
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Equation (5.13) may now be written as

  
˙̇s + 2β

θ
ṡ + ω2s = 2Rr

2pm

ρsh
e− t/θ

   (coupled),  (5.18a)

and

  
˙̇s + ω2s = 2Rr

2pm

ρsh
e− t/θ

   (uncoupled), (5.18b)

where

  
ω2 ≡ 2σ

ρsh
= 2Y

ρsR
2(1 − ν)  , (5.19a)

 and

  
β ≡ Rr

2ρocoθ
2ρsh

 . (5.19b)
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Fig. 5.2
Coupled and uncoupled pressure loading.

The general underdamped solution for Eqs. (5.18a) and (5.18b) yields the following
expressions for the coupled and uncoupled velocity and displacement.
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Coupled.

  
u = 2Rr

2θpm

ρsh ω2θ2 − 2β + 1( ) e−βt/θ (θφ + β β − 1( )/ θφ)sinφt + cosφt[ ] − e− t/θ{ }  . (5.20a)

  
s = 2Rr

2θ2pm

ρsh ω2θ2 − 2β + 1( ) e−βt/θ 1 − β( )
θφ

sinφt − cosφt








 + e− t/θ








  . (5.20b)

Uncoupled.

  
u = 2Rr

2θpm

ρsh ω2θ2 + 1( ) ωθsinωt + cosωt − e− t/θ{ }  . (5.20c)

  
s = 2Rr

2θ2pm

ρsh ω2θ2 + 1( )
1

ωθ
sinωt − cosωt + e− t/θ








 . (5.20d)

The new variable φ is defined as

  φ = ω2 − β / θ( )2  . (5.21)

In the coupled case, the dimensionless number β may be thought of an FSI
parameter indicating the degree to which the motion of the vessel affects the fluid
pressure [6].  The condition β = 0 corresponds to an infinitely thick vessel, and β = ∞
corresponds to a massless vessel, that is, a free surface.  Stated differently, β increases
linearly as a function of fluid density, fluid sound speed, and the characteristic time
of the shock wave and decreases linearly as a function of shell density and shell
thickness ( Rr

2 / h = 1 / h −1 / R + h / 4R2( ) ≈ 1 / h  for h<<R).  Similarly,   ω2θ2  is a
dimensionless number expressing the ratio of elastic to vessel inertial forces.  The
relative importance of fluid pressure and elastic forces may be readily gauged by

examining the magnitude of the terms in the   ω
2θ2 − 2β + 1( )−1

 factor in Eq. (5.20).  For

the Jumbino experiment,   ω
2θ2 = 0.484 and 2β = 0.073 .

Time-histories of hoop strain and vessel energy are shown in Figs. 5.3 and 5.4 for
both the coupled and uncoupled cases.  During the period of initial expansion
 (t ≤ 0.086 ms ≡ tm), the maximum strains are 5.09 x 10-4 and 5.52 x 10-4  (8.4%
difference) and the maximum vessel energies are 7.068 x 104 and 8.312 x 104 bar-cm3

(17.6% difference).  The percentage differences compare well with the 7.7% and
15.8% values given by the acoustic wave transmission model [Eqs. (5.10)-(5.12)].
These modest differences are what one expects given that β is small and that
puncoupled is modestly greater than pcoupled (Fig. 5.2) over this time interval.  But this
is only half the story.
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After tm, the vessel energy stays nearly constant in the uncoupled case but falls
steadily in the coupled case.  To understand this difference in behavior, consider the
two p(t) curves in Fig. 5.2.  In the coupled case—which captures FSI—the shell
returns energy to the water as evidenced by a rise in p(t) for  tm < t < 0.15 ms.  In
contrast, the uncoupled p(t), in falling exponentially, offers a decreasing resistance to
the inward motion of the shell; hence, little energy is lost from the vessel for t > tm .

In summary, we considered fluid-structure interaction in the above analysis from
an energy transmission perspective subject to the ability to model the fluid shock
wave as an acoustic wave.  Subjecting a thick-walled vessel to an idealized shock
wave and considering vessel dynamics in just one dimension, we observe
significant changes in vessel energy and strains when FSI is not adequately modeled.
Two dimensionless numbers,   β and ω2θ2 , indicate the relative magnitudes of fluid,
elastic, and inertial forces.  The parameter β, which captures the influence of five
problem variables, is seen to be useful for gauging the importance of FSI.  The
physical mechanisms discussed in this section for a simple p(t) are useful in Section
VI, where a two-dimensional motion is computed and p(t) is more complex.
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Hoop strain for coupled and uncoupled cases.
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VI. TWO-DIMENSIONAL FSI CALCULATIONS AND EXPERIMENTAL
RESULTS

In this section we describe the results of the Jumbino experiment and compare them
with a pair of two-dimensional numerical simulations.  In Sections VI.A and VI.B is
a description of the time and space dynamics of the coupled calculation.
Comparison and analysis follow in Sections VI.C and VI.D.  Unless noted otherwise,
reported quantities are for the coupled calculation.

A. Fluid Time Evolution.  The dynamics of the problem are driven by the high
explosive.  During the time period of interest the bubble expands, contracts, and
then expands again as a function of its own energy and the momentum of the
surrounding water (Fig. 6.1).  In turn, the motion of the water is then affected by
resistance and motion of the Jumbino vessel.  During the initial bubble expansion
the water motion is outward nearly everywhere; during the subsequent bubble
contraction the water motion is inward nearly everywhere.

In the first 0.310 ms, the high temperature and pressure HE cylinder rapidly expands
112-fold at an average rate of 20 cm/ms to its maximum size, a nearly spherical gas
bubble with a radius of 7.9 cm (V = 2042 cm3).  During this time the temperature and
pressure drop from 2714 K and 152.7 kbars to 300 K and 15 bars, driving a quasi-
spherical shock into the surrounding water.  The water shock reflects off the vessel
wall, generating peak pressures of about 680 bars (t = 0.190 ms).  The expanding
bubble generates a second pressure wave that reaches the wall at t = 0.420 ms,
producing peak pressures of about 450 bars.  The bubble expands until t = 0.310 ms,
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HE-gas bubble radius.

contracts briefly when hit with the now converging first shock, re-expands until t =
0.458 ms, and then collapses because the water is moving inward nearly everywhere.

Away from the port [the Plexiglas covered opening at the top of vessel (Fig. 2.3)] the
flow remains approximately spherical until the problem end time (t = 1.0 ms).
Figure 6.2 shows the pressure at the vessel wall at the time of the first and second
maxima on the equator.  Away from the port, p vs. φ for the first shock is spherically
symmetric; that is, the top curve in Fig. 6.2 should be horizontal.  For the fluid mesh
used here (Fig. 4.1), an expanding spherical wave first traverses a φ-dependent
thickness of square mesh cells before reaching the outer cylindrical mesh.  The dip
in p (-35° < φ < +35°) is thus an artifact of mesh geometry.  Although a smoother
mesh would produce a more nearly one-dimensional solution, the asymmetry of
the present calculation (6% at the equator) is not large enough to alter the principal
dynamics of interest here.

On the north axis (r ≈ 0, z > 0).  At midradius the water accelerates to a maximum
velocity of  6.1  cm/ms (t = 0.100 ms, r = 15 cm), and the shock front reaches the top
of the circular port at t = 0.200 ms.  Water is pushed through the port opening
during the next 0.8 ms at an average rate of 1.9 cm/ms, giving a net mass egress of
588 g at t = 1.0 ms.
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(at the time of maxima on the equator).

On the equator (r > 0, z ≈ 0).  At midradius the water accelerates to a maximum
velocity of  6.1 cm/ms (t = 0.100 ms, r = 15 cm), and the shock front reaches the wall
at t = 0.160 ms, compressing the water to a maximum pressure of 630 bars (t = 0.190
ms).  The second pressure pulse—the surge of water ahead of the bubble—
compresses the water adjacent to the wall to a maximum pressure of 484 bars (t =
0.418 ms).  The water flow then reverses, recompressing the gas, and then expands
again.  The wall pressure then falls to p < 1 bar (t = 0.690 ms), where it remains for
the rest of the calculation.  In the experiment, cavitation probably occurs but is not
modeled in FSI2D.  In response to the two fluid pressure waves, the primary vessel
vibration mode is radial.

Figure 6.3, which shows the pressure time-history of the fluid adjacent to the vessel
wall at φ = 0, is typical of other wall locations.

Away from the r and z axes.  The nearly spherical initial shock loads the walls of the
vessel nearly uniformly.  At later times the flow becomes less spherical because of
mesh geometry and outflow at the top.
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B. Vessel Time Evolution.   The primary dynamical response of the vessel is
radial—a sequence of expansions and contractions initiated by the nearly spherical
internal shock and maintained by a balance of fluid pressure and elastic forces.
Three maxima are observed in the outward motion of the vessel with outward
radial displacements at the equator of 0.0165 cm (t = 0.275 ms), 0.0133 cm (t = 0.518
ms), and 0.0053 cm (t = 0.774 ms).  The motion of the fluid and the vessel are clearly
coupled until t = 0.7 ms as evidenced by sustained wall pressures above 100 bars.  For
t > 0.7 ms sufficient relief, caused mostly by the bubble contraction and to a lesser
degree by water egress, allows the remaining water to move around without forced
contact with the vessel.

C.  Comparison of Measured and Computed Vessel Strains.  Typical strain time-
histories, at (φ = -45°, θ = 0°), are shown in Figures 6.4 and 6.5.  A complete set of ε vs.
t plots is given in Appendix C.  Each plot shows the measured values (M) and the
coupled (C) and uncoupled (U) computed values.

The time scale is keyed to the calculated values where the HE detonation occurs at t
= 0.  The measured values lag the computed values by 0.060 ms at the +φ locations
and by about 0.020 ms at -φ locations.  For purposes of comparison, all measured
values were shifted by -0.060 ms.  The shifted measured values are thereby time
aligned to the calculated values for +φ plots but precede the computed values by
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about 0.040 ms for -φ plots.  This variation suggests that the actual HE location may
have been a bit below the vessel center.

Generally, the calculated strains compare well with the measured values. Analysis
of the hoop strain data reveals the observations that follow.  Unless noted
otherwise, values are averages over all nine data locations.

1.  The computed peak-to-peak timing is very nearly the same as the measured
values on all plots, a fact which indicates that the FSI model adequately models the
timing of the hydrodynamics and the hoop forces in the vessel.

2.  All measured-uncoupled-coupled (MUC) traces show the initial expansion
caused by the first shock, contraction to near the original radius, re-expansion caused
by the bubble surge, and a third peak.  The time between the second and third peaks,
0.287 ms, compares well with the estimated natural period of the vessel, 0.253 ms
(see Appendix D).  Times corresponding to peak strains are listed in Table 6-1.

Table 6-1
Peak Strain Timing

t1 t2-t1 t2 t3-t2 t3

Measured 0.280 0.232 0.512 0.271 0.784
Uncoupled 0.281 0.233 0.514 0.287 0.801

Coupled 0.284 0.233 0.517 0.277 0.796

Note:  The values {t1, t2, t3} are the times (ms) of the three
prominent peak hoop strains observed in the ε-t data.
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3.  All MUC traces show that peak strains are smallest on the equator and get
progressively larger away from the axis.  The traces also correlate between plus and
minus φ locations.  The dip in p(φ) wall pressure loadings centered around φ = 0
(seetop two curves in Fig. 6.2) accounts for some of this behavior in the computed
results.

4.  During the first oscillation, the uncoupled strains compare better with the
measured values than do the coupled strains; however, the reverse is true at later
times.  An explanation for this turnaround is offered in Section VI.D.  For the time
up to the first peak and for a short time thereafter, the dynamics are almost purely
one-dimensional and unaffected by the complex interaction and reflection of shocks
that occur later and by the vessel vibration modes excited by asymmetric structural
boundary conditions.

5.  After t1, uncoupled strains are damped less than the coupled and measured
values; this is especially notable for t > 0.6 ms.  The reason for this difference in
damping becomes clearer if we consider the time-dependent energy balance in the
elastic vessel (Section VI.D).

Generally speaking, these trends are also evident in the longitudinal strain data
(Figures 6.5 and C-8 through C-14).  The longitudinal waveforms have more
structure because (a) there is additional mass at the poles and (b) the vessel is
clamped to the support frame at the poles.  The major dynamical effect is to lower
longitudinal strains (compare with hoop strains) and to introduce higher
frequencies into the longitudinal motion.  The latter is especially apparent for the
computed values.

D.  Vessel Energy.  For the coupled calculation, Fig. 6.6 shows the internal and
kinetic energies of the vessel as a function of time.  The vessel energies are due to
the mechanical work done by the fluid on the vessel wall (lower curve).  During the
loading period (t < 0.7 ms) the vessel oscillates twice as is readily apparent in the two
prominent cycles in the internal energy and pdV work curves.  After t = 0.7 ms, fluid
pressure at the surface is essentially zero and no further energy is exchanged
between the fluid and vessel; hence, the pdV curve is constant.
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The total vessel energies (internal + kinetic) are plotted in Fig. 6.7 for both cases.
The difference between the uncoupled and coupled calculations (δEt) is shown in
the bottom curve.  For t < tm, p(t) is the initial shock wave and δEt increases
steadily—in much the same manner as in the one-dimensional case considered in
Section V.C (see Fig. 5.3).  For later times, p(t) is a complicated function of wave
interactions and FSI; moreover, it is not at all apparent from looking at the two p(t)
curves (Fig. 6.3) what form of δEt to expect.  During the first vessel contraction, δEt
actually decreases, nearly compensating for all the previously accumulated error.
However, during the second oscillation, δEt increases on both expansion and
contraction so that by the time p(t) = 0, the steady-state vessel energy for the
uncoupled case is nearly 3 times the coupled energy.  Thus, we expect steady-state
stresses to differ by approximately a factor of   3 .
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For the Jumbino experiment, the large differences in late-time vessel energy are the
most dramatic illustration of the importance of modeling fluid-structure interaction
in a fully coupled manner, compared with a more traditional uncoupled treatment.
Even though the uncoupled strains are closer to the measured values (which are
assumed to be accurate) than are the coupled strains during the first oscillation, the
accumulation of nonphysical energy causes the uncoupled values to diverge
significantly from the measured values at later times (see the time-history plots in
Appendix C).  An uncoupled method is always nonconservative, and the vessel will
acquire nonphysical energy for any p(t) scenario of the general type considered here.

VII.  CONCLUSIONS

In this report we have examined the dynamical response of a water-filled spherical
steel vessel, having a nominal radius of 34.8 cm, a wall thickness of 6.1 cm, and a
fundamental period of 0.253 ms, subjected to a centrally detonated 30 g charge of C-4
high explosive.  The resultant pressure loading in the range of a few hundred bars
lasted 0.550 ms and pushed the vessel radially outward about 0.02 cm, generating
peak strains of about 6 x 10-4.  Vessel hoop strain time-histories computed by the
FSI2D hydrodynamics code compared well with experimental data.

Our computational analysis focused on the fluid-structure interaction aspects of the
problem, specifically, on two models.  The first model treats the motion of the fluid
and solid together in a physically based manner giving a fully coupled solution.  The
second model—the uncoupled case—computes the fluid field with a rigid wall
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boundary condition.  The resulting fluid pressure at the wall is then applied to the
vessel as a boundary condition.  The coupled model conserves momentum and
energy, continuously exchanging both quantities between the fluid and solid during
vessel expansion and contraction.  The uncoupled model, by contrast, does none of
these things.

The uncoupled loading resulted in a nonphysical accumulation of energy in the
vessel as evidenced by strain traces that were less damped than and diverged from
experimental traces.  After the pressure loading, the steady-state vessel energy in the
uncoupled model was three times greater than the coupled vessel energy.

Simple one-dimensional models gave results consistent with the two-dimensional
calculations.  A dimensionless number β that appears in an analytic solution for the
vessel motion is a useful parameter for gauging the importance of FSI, particularly
with respect to the effect of vessel motion on fluid pressure.

ACKNOWLEDGMENT

The authors would like to thank Wildon Fickett for assistance in
understanding detonation physics.  His help led to the improved formulation
of the BKW-gas equation of state.



2525

APPENDIX A

PROPERTIES OF C-4 HIGH EXPLOSIVE

1  Introduction

C-4 explosive was used in the Jumbino experiment and modeled in the FSI
calculations with a BKW-gas high-explosive equation of state (see Appendix B);

  p = ρRT(1 + xeβx )  . (A-1)

In this appendix several properties of C-4 are given, including those necessary for
modeling the explosive in the computer calculations.

2  Properties

Unexploded density: ρο = 1.65 g/cm3

Composition:  91% RDX, 5.3% TNT, 2.1% polyisobutylene, 1.6% motor oil [9]
Chemical formula:  C1.82H3.54N2.46O2.51 [9]

Formula weight:  100.0 g
Heat of formation: 

  
Hf( )298,1bar

 = 3.33 kcal/mole [5]

Enthalpy:  12.5548 kcal/formula weight = 0.125548 kcal/g at T = 300 K
Detonation velocity:  DCJ = 0.837 cm/µs [9] (0.811 cm/µs [5])
Detonation pressure: pCJ =  257 kbar [9] (276 kbar [5])

3  Calculated Enthalpy of Explosive at T = 300 K

The BKW code requires that the energy of the explosive, Eo, be based on an enthalpy
of formation from elements at T = 0 K, p = 0.  Dobratz [9] gives 

  
Hf( )298,1bar

= 3.33 kcal/mole; thus,

  
Eo = Hf( )298,1bar

+ ni H298
o − Ho

o( )i
i

∑ − povo  = 12.5548 kcal/formula wt. (A-2)

(eo = 0.125548 kcal/gm), where the evaluation of summation terms is shown in
Table (A-1).
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Table A-1
Calculated Enthalpy of C-4 Constituents

Element atoms per
form. wt.

n, moles
per form.
wt.

  H298
o − Ho

o

kcal/mole
  n H298

o − Ho
o( )

kcal/formula
wt.

Csolid 1.82 1.82 0.269 0.4896
H2 3.54 1.77 2.024 3.5825
N2 2.46 1.23 2.072 2.5486
O2 2.51 1.255 2.075 2.6041
Total 9.2248
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APPENDIX B
BKW-GAS HIGH-EXPLOSIVE EQUATION OF STATE

1  Introduction

The MFICE-2D code that computes the fluid dynamics portion of the FSI calculation
described in this report uses a Becker-Kistiakowsky-Wilson (BKW) equation of state
to simulate the thermodynamics of the gaseous detonation products that follow a
high-explosive burn.  Details of the high-explosive burn are not modeled.  The
BKW-gas model is adequate for transmitting momentum and energy to the
surrounding fluid (water) when detailed HE burn-water physics is not needed.  In
this appendix we describe the BKW-gas model (BKW for short), the procedure used
to set the initial gas temperature consistent with the energy of the explosive, the
parameters used to model C-4 explosive, and the constant-volume burn values
computed by the BKW code [10].

2  BKW-Gas Equation of State

The gaseous high-explosive detonation products are modeled with the BKW
equation,

  p = ρRT(1 + xeβx ) = ρRTF(x), (B-1)

where

    x = ρκVc /[M̂(T + θ)α ]  (B-2)

and

  F(x) ≡ 1 + xeβx( ) . (B-3)

The right side of Eq. (B-1) is composed of an ideal gas component,   ρRT , and a non-
ideal gas component,   ρRT(xeβx ) , called the imperfection term.  In the MFICE
algorithm Eq. (B-1) is used to compute the pressure in computational cells after the
cell values of ρ and T have been advanced.  All other variables in Eq. (B-1) are
constant for each problem.  Determining the initial (t = 0) values, ρi and Ti, is the
focus of the next section.

3  Adiabatic Constant-Volume Combustion

At t = 0, ρi and Ti are set on a portion of the computational domain, Vi,
corresponding to a volume as close to the unexploded volume as is practical, to
simulate fully reacted products.  For consistency we require that the initial mass and
energy in Vi be the same as that of the HE.  Density ρi  is computed directly from
geometry.  To find Ti we imagine the HE is burned (detonated) adiabatically in a
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closed volume.  To find the final gas product temperature and heat of combustion,
we make the following modeling assumptions:
1. The equation of state for the gases is given by Eq. (B-1).
2. The thermodynamic state of the solid HE is known.
3. The product constituents may be computed; hence, we are able to write the

chemical reaction          RR ⇒ PP.
4. The volume does not change during combustion (dv = 0).
5. The combustion process is adiabatic (q = 0); that is, no heat enters or leaves the

system during combustion.

3.1  First Law of Thermodynamics.  The fundamental relationship between work,
heat, and internal energy may be written on a mass basis as

  q = e − w (B-4)
or

  dq = de − dw (B-5)
or

  dq = de + pdv. (B-6)

For constant volume combustion, dv = 0; for an adiabatic combustion, dq = 0 and Eq.
(B-6) becomes

  de = 0 (B-7)
or

    eP − eR = 0. (B-8)

3.2  Internal Energy.  Equation (B-8) may be rewritten as

          ePP(T,v,λ = 1) − eRR(To ,vo ,λ = 0) = 0, (B-9)

signifying T and v as the independent variables and to note that the solid explosive
is unreacted (λ = 0) and that the products are completely reacted (λ = 1).  Eq. (B-9) is
the focus of this development, and in the following description, subscripts PPPP    and RRRR
will be omitted,           eRR(To ,vo ,λ = 0) will be written as eo, and functional dependency will
be included only where needed.

The dependence of internal energy on volume is given by the thermodynamic
relation

  

∂e
∂v





 T

= T
∂p
∂T





 v

− p  . (B-10)

Following the development by Mader [5], Eq. (B-10) is integrated to give an
expression for e(T,v),
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e(T,v) = e(T,v* ) + T
∂p
∂T





 v

− p








dv

v*

v

∫   . (B-11)

For purposes of clarification,           ePP  will be expressed in terms of gas and solid
components:

  e(T,v) = eg(T,v* )yg + es(T,v)ys  , (B-12)

which in turn are composed of ideal and imperfect (nonideal) parts.  Here, yg and ys

are gas and solid mass fractions.  In the limit v*→∞, Eq. (B-11) may be written for a
gas as

eg = 1

M̂

xi

x
HT

o − Ho
o( ) − ℜT + Ho

o[ ]
i
∑

i
+ ′eg  , (B-13)

where

  
′eg = αRT2 F(x) − 1

T + θ
 (B-14)

is the imperfection term.  Similarly, Eq. (B-11) for solid products becomes

  
es(T,v) = 1

ms

HT
o − Ho

o( )s
+ Ho

o( )s
− poVs

o + ′es{ }  , (B-15))

where

  

′es = T
∂p
∂T

− p




dv

Vs
o

Vs

∫  (B-16)

is the imperfection term.

Additional details about the derivation of Eqs. (B-13)-(B-16) and the solution of the
chemical equilibrium equations required to compute xi are given by Mader [5] in his
Appendix E.

4  Solution of BKW Equations

4.1  Input Parameters.  Because C-4 is mostly RDX, the empirical constants (α, β, κ,
and θ) for RDX will be used.  These constants and covolumes for the detonation
product species, ki, as suggested by Mader [5], are listed in Table B-1.
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Table B-1
Basic BKW Modeling Parameters for C-4

Symbol Description Numerical value

α BKW constant 0.5

β BKW constant 0.16

κ BKW constant 10.9097784436

θ BKW constant 400.0
k H2O covolume 250.0
k H2 covolume 180.0
k O2 covolume 350.0
k CO2 covolume 600.0
k CO covolume 390.0
k NH3 covolume 476.0
k H covolume 76.0
k NO covolume  386.0
k N2 covolume 380.0
k OH covolume 413.0
k CH4 covolume 528.0
k Csolid covolume 0.0

4.2  Numerical Solution.  The BKW code computes the detonation properties of an
explosive using the BKW equation of state.  Solving Eq. (B-9) yields a solution that
partitions the mass and energy of the explosive between the gas and solid
detonation products.  However, because the fluid dynamics in FSI2D models only
the gas phase, we instead solve

  egas(T,vgas = vo ) − eo = 0 (B-17)

subject to the constraint

  ρgas = ρo  , (B-18)

thus ensuring that the mass and energy of the explosive are conserved in the FSI
model.

We modified the BKW code to solve Eq. (B-9) for T when v is known, that is, for an
adiabatic constant-volume burn.  Eq. (B-9) and the equilibrium equations are solved
iteratively until successive approximations for T (Tk and Tk+1) differ by less than 10-3

degrees.  For v = vo and considering only gas phase products [Eqs. (B-17) and (B-18)],
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the solution is Ti = 2714.16 K, compared with Ti = 2558.09 K when the detonation
products are partitioned between gas and solid phases.  The differences in e and p in
the two solutions for 300 ≤ T ≤ 5000 K are shown in Figs. B-1 and B-2.

Thermodynamic properties of product species are computed as follows.

  Ho
o Joint Army-Navy-Air Force (JANAF) tables

  HT
o − Ho

o Polynomial curve fits to JANAF data

  ′es(T,v) Cowan solid equation of state [11]
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Values of p(T, vo) corresponding to those of e(T, v) computed from Eq. (B-9).

4.3  Output Parameters.  The detonation properties of C-4 as computed by the BKW
code solution of Eq. (B-17) and subject to the constraint of Eq. (B-18) are given in
Tables B-2 and B-3.

Table B-2
Properties of Detonation Products

Property Value
T 2714.16 K
p 0.1526948 Mbar
ρ 1.7757 g/cm3

ρgas 1.6500 g/cm3

ρsolid 2.8555 g/cm3

  ̂M 24.33826 g/mole
R 3.457277 bar-cm3/g-K
Vc 333.83
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Table B-3
Composition of Detonation Products

(100 g of C-4)

Species Moles
H2O 1.76552120010E+00
H2 2.07806756277E-03
O2 2.88426227019E-07
CO2 3.21927271803E-01
CO 1.00594084160E-01
NH3 1.29558918861E-03
H 2.50752373712E-06
NO 2.82346953878E-05
N2 1.22933808806E+00
OH 1.36058503752E-06
CH4 2.27707249266E-04
Csolid 1.39725093679E+00
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APPENDIX C

STRAIN TIME-HISTORY PLOTS

Azimuthal (hoop) and meridional (longitudinal) strains were measured at nine
locations on the exterior of the Jumbino vessel.  Figures C-1 through C-7 show the
measured hoop strains and the corresponding coupled and uncoupled computed
values.  Figures C-8 through C-14 show the longitudinal strains at these same
locations, with the exception of Figure C-8, for which the θ = 0° strain data were
unavailable.
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Hoop strain at φ = 0°, θ = 0°, 120°, and 240°.
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Hoop strain at φ = +15° and θ = 0°.
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Hoop strain at φ = -15° and θ = 0°.
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Fig.  C-4
Hoop strain at φ = +30° and θ = 0°.
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Fig.  C-5
Hoop strain at φ = -30° and θ = 0°.
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Fig. C-6
Hoop strain at φ = +45° and θ = 0°.
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Fig.  C-7
Hoop strain at φ = -45° and θ = 0°.
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Fig.  C-8
Longitudinal strain at φ = 0°, θ = 120° and 240°.
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Fig.  C-9
Longitudinal strain at φ = +15° and θ = 0°.
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Fig.  C-10
Longitudinal strain at φ = -15° and θ = 0°.
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Fig.  C-11
Longitudinal strain at φ = +30° and θ = 0°.
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Fig.  C-12
Longitudinal strain at φ = -30° and θ = 0°.
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Fig.  C-13
Longitudinal strain at φ = +45° and θ = 0°.
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Fig.  C-14
Longitudinal strain at φ = -45° and θ = 0°.
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APPENDIX D

FUNDAMENTAL MODE VIBRATION OF A THICK-WALLED SPHERE

The theoretical fundamental frequency for a thin-walled spherical vessel is

  

ω = 2Y

ρ R2 + h2

12






1 − ν( )
, (D-1)

where ω is the fundamental frequency in radians/second, Y is the Young's modulus
of elasticity, ρ is the mass density, R is the mean radius, h is the wall thickness, and
ν is the Poisson's ratio.  Using the material constants previously reported in this
report, an inner diameter of 24.975 inches and an outer diameter of 29.805 inches
(corresponding to an R of 13.695 inches and h of 2.415 inches), we calculated a
fundamental frequency of 3.951 kHz (a period of 253 microseconds).  One would not
expect this to be a good approximation to the thick-walled sphere fundamental
frequency, because the ratio, R/h, is 5.67.  This ratio is usually limited to greater than
10 for thin-walled theories to apply.

We addressed this issue by calculating the fundamental frequency of a thick-walled
spherical vessel.  To estimate this frequency, we assumed a displacement field
consistent with the response.  The displacement field chosen is one due to a static
pressure difference between the outside and inside of the sphere.  This is a
spherically symmetric field of the form

s r( ) = C 
a3

4r2G
+ r

3K





, (D-2)

where s is the radial displacement, r is the radius to a point, C is a constant (or a
time-varying value for the following analysis), a is the outer radius of the sphere, G
is the shear modulus of the material, and K is the bulk modulus of the material.

Let us assume a sinusoidal form for C:

  C = A sin ωt( ), (D-3)

where A is a constant, ω  is the frequency of vibration, and t is time.  To calculate the
maximum kinetic energy associated with this mode of vibration, we must integrate
the following:

  

KEmax = max
t<∞

1
2

ρṡ2dV =
R
∫ 2πρr2ω2A2 a3

4r2G
+ r

3K






2

dr
r= b

r=a

∫
= 2πρω2A2 a5

16G2

a
b

− 1



 +

a5 − b5( )
45K2 + a5

12KG
1 − b2

a2



















  

,

(D-4)
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where b is the inner radius of the sphere.

The maximum strain energy associated with this mode of vibration is obtained by
integrating

  
SEmax = 1

2
σ:e dV

R
∫ = 2πA2 a3

4G
a3

b3 − 1






+ a3 − b3

3K








, (D-5)

where σ and e are the stress and strain tensors compatible with the displacement
function chosen and elastic response.

Using the Rayleigh method, we equate the maximum kinetic energy with the
maximum strain energy and solve for ω, the natural frequency.  This gives us

  

ω2 = 1
ρ

a3

4G
a3

b3 − 1






+ a3 − b3

3K

a5

16G2

a
b

− 1



 +

a5 − b5( )
45K2 + a5

12KG
1 − b2

a2







 . (D-6)

Using Eq. (D-6) and the values already mentioned for inner and outer radii and
material constants, the fundamental frequency is calculated to be 4.013 kHz or a
fundamental period of 249 microseconds.  This is remarkably close to the frequency
estimate from thin-walled theory (within 2%).

The effect of added mass.  If water (density of 1 g/cm3) is added inside the sphere, it
is expected that the stiffness of the water will not have much influence on the
frequency of the sphere.  The mass of the fluid, however, will tend to lower natural
frequencies as is observed with submerged structures.  This is commonly referred to
as an "added mass" effect—the modal mass is increased, leading to a lower
frequency.

How much does the mass added to the structure by the water lower the
fundamental frequency of the sphere?  The sphere has a mass of 728.9 kg.  The mass
of water inside the sphere is 133.7 kg.  The lowest value we can expect the frequency
to attain is determined from the following equation:

ωadded mass = Original Modal Mass
Original Modal Mass +  Modal Mass of Water

≥ 728.9
728.9 + 133.7

ω ≅ 0.92ω .

(D-7)
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From this, we can see that the frequency of the coupled fluid-structure sphere will be
reduced by at most 8%.
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NOMENCLATURE
co ambient sound speed in water, 148.3 cm/ms
cv specific heat capacity at constant volume, ergs/g-K

e total specific internal energy
eg specific internal energy of gas
eo specific enthalpy of undetonated HE at T = 300 K
es specific internal energy of solid

  ′es imperfection specific internal energy of solid

  ′eg  imperfection specific internal energy of gas

  HT
o molar enthalpy at temperature T, ergs/mole

  Ho
o molar enthalpy of formation from elements at

 reference state (T = 0 K, p = 0), ergs/mole
F(x)   ≡ (1 + xeβx ), BKW equation-of-state multiplier

h sphere wall thickness, 6.134 cm
i gas species
K bulk modulus
M molecular weight, g/mole
M̂ molecular weight of BKW gas, g/mole
m mass, g
ms mass of solid, g

PPPP products
p pressure, bars
po ambient pressure, bars

q heat, ergs/g
r radius, cm
R gas constant,   R = ℜ / M
R mean radius of sphere, (Ri+ Ro)/2 = 34.875 cm
R i inner radius of sphere, 31.7185 cm
Ro outer radius of sphere, 37.852 cm

RRRR reactants
ℜ acoustic impedance; universal gas constant,

8.31441 x 107 ergs/(mole-K) = 8.31441 x 107 g-cm2/(s2-mole-K)
s vessel radial displacement, cm
T temperature, K
t time, ms
tm time of vessel's first maximum expansion, ms
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u vessel radial velocity, cm/ms
V volume, cm3

v specific volume, cm3/g
Vc covolume, cm3

  Vs volume of solid explosive products, cm3

  Vs
o initial volume of solid explosive products, cm3

vo 1/ρο, cm3/g
vt total specific volume, vt = vg + vs , cm3/g

W explosive charge weight, g
w specific work, ergs/g
xi number of moles of specie i
  x total number of moles of gas
Y Young's modulus, 2.07 x 106 bars
yg gas mass fraction
ys solid mass fraction
α BKW equation-of-state constant (0.5 for C-4)
β BKW equation-of-state constant (0.16 for C-4)
ε strain
φ latitudinal angle, diameter
κ BKW equation-of-state constant (10.9097784436 for C-4)
ν Poisson's ratio, 0.29
λ degree of chemical reaction; 0 for no reaction, 1 for complete reaction
θ characteristic time for shock wave; BKW equation-of-state constant (400 K).
ρ density, g/cm3

ρο ambient water density, 1.00 g/cm3; unexploded density, g/cm3

ρs vessel density, 7.833 g/cm3

ω fundamental frequency, rad/s
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