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1 General Variational Function

We are looking for the solution of the di�usion equation, �(~x), by �nding the
extrema of the following functional

�[�] =

Z �
1

2
D~r� � ~r�+

1

2
�a�

2 �Q�

�
d3x: (1)

At this point I will concentrate only on the �rst term in the integral, and so
take

�[�] =

Z
1

2
D~r� � ~r� d3x: (2)

Also surface integrals arising from the boundaries of the problem will be ignored.
These will be treated in a later section.

We will now discretize the above equation in terms of the values for �(~x) at
each of the corners of the cell, �i. The functional, �, is replaced by a function
of these corner values

�(�1; �2; : : :) =
1

2
D
X
k

wk




~rk�



2; (3)

where the sum is over the corners of the cell, and ~rk� is itself a function of the
�is, and wk are weights that sum to the volume of the cell. The form of the
expression for ~ri� is

~ri� =
X
k0

(�k0 � �i)~�ik0 : (4)

The sum extends only over the 3 nearest neighbors of the point, i. The ~�ik0 is
de�ned by

~�ij =
~rik � ~ril

~rij � (~rik � ~ril)
; (5)

where k and l are the two neighbor corners of i that are not j.
The extrema of � is found by solving the following set of simultaneous equa-

tions for the �is
@�

@�i
= 0: (6)

Since � has the form of Equation 3 with ~ri� in the form of Equation 4, the
above equation becomes X

j

@2�

@�i@�j
�j = 0: (7)

Substituting the above expressions for � and ~ri� we arrive at an expression
for the matrix element, Aij

Aij =
@2�

@�i@�j
= D

X
k

wk

@~rk�

@�i
�
@~rk�

@�j
: (8)

In the following sections we will investigate this matrix for the hexahedron,
wedge, tetrahedron, and pyramid cells.
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Figure 1: The corner numbering scheme for the hexahedron.

2 Hexahedron Matrix Elements

For the hexahedron we will be looking at the following matrix elements, A11,
A12, A16, and A17. By looking at these matrix elements we have covered those
matrix elements that are fundamentally di�erent. All other matrix elements may
be found by a suitable topology-preserving permutation of the corner indices.

For the hexahedron the expressions for the ~ri�s are

~r1� = (�2 � �1)~�12 + (�4 � �1)~�14 + (�5 � �1)~�15 (9)

~r2� = (�1 � �2)~�21 + (�3 � �2)~�23 + (�6 � �2)~�26 (10)

~r3� = (�2 � �3)~�32 + (�4 � �3)~�34 + (�7 � �3)~�37 (11)

~r4� = (�1 � �4)~�41 + (�3 � �4)~�43 + (�8 � �4)~�48 (12)

~r5� = (�1 � �5)~�51 + (�6 � �5)~�56 + (�8 � �5)~�58 (13)

~r6� = (�2 � �6)~�62 + (�5 � �6)~�65 + (�7 � �6)~�67 (14)

~r7� = (�3 � �7)~�73 + (�6 � �7)~�76 + (�8 � �7)~�78 (15)

~r8� = (�4 � �8)~�84 + (�5 � �8)~�85 + (�7 � �8)~�87: (16)

Only ~rk� for k 2 f1; 2; 4; 5g will contribute to the calculation of A1j , therefore,

A11 = D

2
4w1
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~r1�

@�1







2
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@
~r2�

@�1







2

+ w4






@
~r4�

@�1







2

+ w5






@
~r5�

@�1







2
3
5 (17)

= D
h
w1k~�12 + ~�14 + ~�15k

2 + w2k~�21k
2 + w4k~�41k

2

3



A
A
A
A
A
A
AA

A
A
A
A
A
A
AA

�
�
�
�

�
�
�
�

�
�
�
�

1

2

3

4

5

6

Figure 2: The corner numbering scheme for the wedge.

+ w5k~�51k
2
i

(18)

A12 = D

"
w1

@~r1�

@�1
�
@~r1�

@�2
+ w2

@~r2�

@�1
�
@~r2�

@�2

#
(19)

= �D [w1(~�12 + ~�14 + ~�15) � ~�12 + w2~�21 � (~�21 + ~�23 + ~�26)] (20)

A16 = D

"
w2

@~r2�

@�1
�
@~r2�

@�6
+ w5

@~r5�

@�1
�
@~r5�

@�6

#
(21)

= D [w2~�21 � ~�26 + w5~�51 � ~�56] (22)

A17 = 0: (23)

In general this leads to a 19 point di�usion operator. For a rectangular hex-
ahedral mesh it is easy to see that A16 vanishes, leaving one with the standard
7 point operator.

3 Wedge Matrix Elements

For the wedge we will be looking at the following matrix elements, A11, A12,
A14, and A15. By looking at these matrix elements we have covered those matrix
elements that are fundamentally di�erent. All other matrix elements may be
found by a suitable topology-preserving permutation of the corner indices.

For the wedge the expressions for the ~ri�s are

~r1� = (�2 � �1)~�12 + (�3 � �1)~�13 + (�4 � �1)~�14 (24)

~r2� = (�1 � �2)~�21 + (�3 � �2)~�23 + (�5 � �2)~�25 (25)

~r3� = (�1 � �3)~�31 + (�2 � �3)~�32 + (�6 � �3)~�36 (26)

~r4� = (�1 � �4)~�41 + (�5 � �4)~�45 + (�6 � �4)~�46 (27)
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~r5� = (�2 � �5)~�52 + (�4 � �5)~�54 + (�6 � �5)~�56 (28)

~r6� = (�3 � �6)~�63 + (�4 � �6)~�64 + (�5 � �6)~�65: (29)

Following the same procedures as for the hexahedron, we �nd the matrix
elements to be

A11 = D
h
w1k~�12 + ~�13 + ~�14k

2
+ w2k~�21k

2
+ w3k~�31k

2

+ w4k~�41k
2
i

(30)

A12 = �D [w1(~�12 + ~�13 + ~�14) � ~�12 + w2~�21 � (~�21 + ~�23 + ~�25)] (31)

A14 = �D [w1(~�12 + ~�13 + ~�14) � ~�14 + w4~�41 � (~�41 + ~�45 + ~�46)] (32)

A15 = D [w2~�21 � ~�25 + w4~�41 � ~�45] : (33)

One can see that all the corner points couple to all of the others. In a
general logically orthogonal grid connected as wedges this would yield a 15
point di�usion operator. If the wedge was created from an orthogonal grid then
it is easy to see that A15 vanishes, and that each point is coupled only with its
neighbors. This again yields the standard 7 point operator.

At one point we were considering treating the wedge as a degenerate hex-
ahedron, e.g. a hexahedron with points 2 and 6 approaching points 1 and 5,
respectively. This approach will not yield the same matrix elements that were
derived in this section. This can be seen by looking at the expression for A15

for the hexahedron, corresponding to A14 for the wedge, with Equations 9{16
modi�ed as follows,

�2 ! �1 (34)

�6 ! �5 (35)

~r2 ! ~r1 (36)

~r6 ! ~r5 (37)

w1 = 0 (38)

w2 = 0 (39)

w5 = 0 (40)

w6 = 0: (41)

The reason for setting the wk to zero for points 1, 2, 5, and 6 is that the wk

represent the volume weight of those points on the hexahedron. When wk goes

to zero as the parallelpiped volume of the corner then the wk




~rk�



2 terms go

to zero. By inspection of ~r3�, ~r4�, ~r7�, and ~r8�, modi�ed as above, one sees
that there is no coupling between �1 and �5; therefore, the A15 matrix element
is zero. For the wedge A14 is not, in general, zero. This shows that the wedge
cannot be treated as a degenerate hex to obtain the wedge results of this section.
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Figure 3: The corner numbering scheme for the tetrahedron.

4 Tetrahedron Matrix Elements

For the tetrahedron we will only have to look at the A11 and A12 matrix ele-
ments. They are

A11 = D
h
w1k~�12 + ~�13 + ~�14k

2
+ w2k~�21k

2
+ w3k~�31k

2

+ w4k~�41k
2
i

(42)

A12 = D [�w1(~�12 + ~�13 + ~�14) � ~�12 � w2~�21 � (~�21 + ~�23 + ~�24)

+ w3~�31 � ~�32 + w4~�41 � ~�42] : (43)

Up until this point the only speci�cation for wi was that its sum over corners
equals the volume of the cell. It has been shown that a very good choice of wi

for a cell type is

wi =
ViP
j Vj

V; (44)

where V is the volume of the cell, and Vi is the volume of the parallelepiped
formed by the three cell edges emanating from the corner i. For a tetrahedron
wi is independent of the corner,

wi =
1

4
V: (45)

With this choice of wi the matrix element expressions simplify to

A11 =
1

9

D

V




 ~A1




2 (46)

A12 =
1

9

D

V
~A1 � ~A2; (47)

where ~Ai is the area vector for the triangle face opposite corner i.
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Figure 4: The corner numbering scheme for the pyramid.

In anticipation of the pyramid results we will modify our notation for the
tetrahedron matrix elements to be explicit about which points wi and ~Ai refer.
We will de�ne Vijkl to be the volume of the tetrahedron with corners i, j, k, l,

and ~Aijk to be the area vector of triangle i j, k. The matrix elements for the
tetrahedron containing points 1, 2, 3, 4 become

A1234

11
=

1

9

D

V1234




 ~A234




2 (48)

A1234

12 =
1

9

D

V1234
~A234 � ~A143: (49)

5 Pyramid Matrix Elements

In this section we calculate the matrix elements of the pyramid as the average
of the matrix elements from the 4 tetrahedra, f1, 2, 4, 5g, f2, 3, 4, 5g, f1, 3, 4,
5g, and f1, 2, 3, 5g,

Aij =
1

4

�
A1245

ij +A2345

ij + A1345

ij +A1235

ij

�
: (50)

Due to the linearity of derivatives the same matrix elements would be recovered
by �rst averaging the four tetrahedron functionals, �ijkl , and then performing
the variational procedure.

The distinct matrix elements for the pyramid are A11, A12, A13, A15, and
A55,

A11 =
D

36

�
1

V1245




 ~A245




2 + 1

V1345




 ~A345




2 + 1

V1235




 ~A235




2� (51)

A12 =
D

36

�
1

V1245
~A245 � ~A154 +

1

V1235
~A235 � ~A153

�
(52)
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A13 =
D

36

�
1

V1345
~A345 � ~A154 +

1

V1235
~A235 � ~A125

�
(53)

A15 =
D

36

�
1

V1245
~A245 � ~A142 +

1

V1345
~A345 � ~A143 +

1

V1235
~A235 � ~A132

�
(54)

A55 =
D

36

�
1

V1245




 ~A142




2 + 1

V2345




 ~A243




2 + 1

V1345




 ~A143




2
+

1

V1235




 ~A132




2� (55)

In general all points couple to all other points for the pyramid. There are
conditions under which either A12 or A13 vanish. These matrix elements would
both be zero only under unusual conditions, and then only for a few isolated
pyramids.

6 Ignored and Surface Terms in the � Functional

In this section we will consider the terms that were dropped in going from
Equation 1 to Equation 2. In addition, we will consider the e�ects of boundaries
on the system. Up until this point we have been treating the system as in�nite
in extent. Treating the system as �nite will introduce a surface integral term
into Equation 1.

In order to discover the surface terms we must re-derive Equation 1 from
the original di�usion equation,

�~r �D~r�+ �a��Q = 0; (56)

using the weighted residual method.
In this method we construct a functional, W , and �nd a solution to the

di�erential equation, L(�) = 0 by solving

W =

Z
��L(�) d3x (57)

= 0 8 ��: (58)

For the di�usion equation this becomes

W =

Z
��
�
�~r �D~r�+ �a��Q

�
d3x (59)

=

Z �
D~r�� � ~r�+ ��(�a��Q)

�
d3x�

Z
S

��D~r� � n̂ d2x; (60)

where we have integrated by parts to obtain the surface integral. Using Marshak
boundary conditions,

D~r� � n̂ = 2J �
�

2
; (61)
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the expression for W becomes

W =

Z �
D~r�� � ~r�+ ��(�a��Q)

�
d3x�

Z
S

��

�
2J �

�

2

�
d2x: (62)

In order to produce a functional, �[�], that when minimized produces Equa-
tion 62 we equate the variation of �[�] to the terms in Equation 62. The
variation of a functional �[�] is

�� =
@�

@�
��+

3X
i=1

@�

@ @�
@xi

@��

@xi
: (63)

It is easily shown that the variation of the following functional,

�[�] =

Z �
1

2
D~r� � ~r�+

1

2
�a�

2 �Q�

�
d3x+

Z
S

�
1

4
�2 � 2J�

�
d2x; (64)

reproduces Equation 62.
With this functional Equation 3 becomes

�(�1; �2; : : :) =
X
k

wk

�
1

2
D



~rk�




2 + 1

2
�a�

2

k �Qk�k

�

+
X
l

al

�
1

4
�2l � 2J�l

�
; (65)

where the sum over l is over corners on the boundary of the system, and the
sum of al over the corners on the face of a cell equals the area of that face.

The variation of �[�] proceeds as before, by Equation 6. Using the above
equation for � the volume contribution becomes

@�

@�i
=
X
j

(Aij + wi�a�ij)�j � wiQi; (66)

where the Aij is the matrix element calculated for the appropriate cell type in
the previous sections. The surface contribution is

@�

@�i
=
X
j

�ai
2
�ij

�
�j � ai2J: (67)

There are two cases for the surface term, one when the surface face is a quadralat-
eral, the other when the surface face is a triangle. For the quadralateral case,
the equation for @�

@�i

becomes

@�

@�i
=
X
j

�
1

8




 ~Ai




2�ij
�
�j �

1

2




 ~Ai




2J; (68)
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�
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, Q = 1, and J0 = J1 = 0, wk constant weighted.

where ~Ai is the area vector created from the two edge vectors at corner i on the
face. For the triangal case, the equation for @�

@�i
becomes

@�

@�i
=
X
j

�
1

6




 ~Ai




2�ij
�
�j �

2

3




 ~Ai




2J; (69)

where ~Ai is the area vector for the triangle.
The volume contribution, Equation 66, is composed for each cell in the sys-

tem. The surface contribution, either Equation 68 or Equation 69, is composed
for each face on the boundary of the system. These equations can be seen to
take the form of a matrix equation,

Ax = b; (70)

with x containing the vector of �is, and the right hand side, b, containing the
Qi and J terms.
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7 Results

In this section we will present results for hexahedral meshes, and three weighting
methods. The analytic error, de�ned as

Analytic Error =

�P
i(�i � �(~xi))

2P
i �(~xi)

2

� 1

2

; (71)

is plotted in Figures 5, 6, and 7.
In Figure 5 the weights, wk, are constant. Results are shown for a ran-

dom mesh, and an orthogonal mesh. The orthogonal mesh shows second order
convergence. The convergence is less than second order for the random mesh.

In Figure 6 the weights, wk, are the median mesh volumes surrounding the
kth point. Results are shown for a random mesh. The convergence is again less
than second order for the random mesh.

In Figure 7 the weights, wk , are the parallelpiped volumes surrounding the
kth point, c.f. Equation 44. Results are shown for a random mesh. The con-
vergence, in this case, is second order for the random mesh. We have chosen
parallelpiped volume weights for this reason.

The linear solution is not recovered using these weights. Using a random
mesh, the 20x20x20 linear problem obtained an analytic error of 7:10�10�4. In
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order to demonstrate that this error was not due to roundo�, we ran the same
problem with

wi =
1

8
Vi: (72)

It can be shown that this choice of weighting will produce the exact linear
solution, though it will yield incorrect results for the general di�usion equa-
tion. With this weighting we obtained an analytic error of 1:44� 10�14. This
points out the inability to determine the exact linear equation with the preferred
weights from Equation 44 even though we obtain second order convergence.
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