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CHAPTER I

Introduction

If you have ever given up on a nuclear criticality calculation and terminated it

because it took so long to converge, you might �nd this thesis of interest. We develop

three methods for improving the �ssion source convergence in nuclear criticality

calculations for physical systems with high dominance ratios for which convergence

is slow. The Fission Matrix Acceleration Method and the Fission Di�usion Synthetic

Acceleration (FDSA) Method are acceleration methods that speed �ssion source

convergence for both Monte Carlo and deterministic methods. The third method is

a hybrid Monte Carlo method that also converges for di�cult problems where the

unaccelerated Monte Carlo method fails.

1.1 Criticality Calculations

The criticality of a system containing �ssionable material is described by its

multiplication factor. The multiplication factor is the ratio of the number of neutrons

in one generation to the number of neutrons in the previous generation. A generation

is essentially the lifetime of a neutron. For �nite systems, the multiplication factor

is denoted as keffective, or keff . When a system is critical, it sustains a steady-state

chain reaction of nuclear �ssioning, and keff=1. The average neutron population

1
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in a critical system stays constant in time. A subcritical system has keff<1 and

the neutron population dies o� in time. The neutron population in a supercritical

system, where keff>1, grows without bound in time [Dud76].

Knowledge of keff is necessary when designing nuclear reactors and handling

nuclear waste. With reactor design at a lull and waste production not, the latter

has become a dominant application for criticality calculations, or, more appropri-

ately, criticality safety calculations. Criticality has been a concern since the �rst

criticality experiments. Experiments are the best benchmarks for criticality safety,

but they are costly and speci�c only to the particular geometry of the experiment.

Hand calculations have been used for arrays of �ssionable material [Tho73]. How-

ever, numerical computer methods are used almost exclusively for criticality cal-

culations at this time. Deterministic and Monte Carlo methods are both used.

However, because of complicated geometries and increasing computer power, Monte

Carlo methods are emerging as the tool of choice for criticality safety engineers. In

the United States, three production Monte Carlo computer codes are widely used:

MCNPTM 1 [Bri93][For94] from Los Alamos National Laboratory, KENO [Bow95]

from Oak Ridge National Laboratory, and MONK from AEA Technology in the

United Kingdom [Smi95]. VIM [Blo95] is used extensively at Argonne National

Laboratory. We have implemented one of our new methods, the Fission Matrix

Acceleration Method, in MCNP.

1.2 Di�culties with Criticality Calculations

For some systems, criticality calculations take an enormous amount of time to

converge. Both deterministic and Monte Carlo criticality calculations are based

1MCNP is a trademark of the Regents of the University of California, Los Alamos National

Laboratory
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on the source (or power) iteration method. A deterministic calculation is �nished

upon source convergence, but a Monte Carlo calculation begins accumulating useful

random variable data only after the (�ssion) source is converged. The error in the

source iteration method decreases with each iteration, where the speed of the decrease

is dictated by the dominance ratio. The dominance ratio is the ratio of the second

eigenvalue to the �rst, or dominant, eigenvalue (keff ). If the dominance ratio is near

unity, the source iteration error will decrease slowly, and thus convergence to the

dominant eigenmode (the converged �ssion source) is slow. Two types of systems

that have high dominance ratios (near unity) are large thermal reactors and arrays

of nuclear waste components. A system's high dominance ratio is synonymous with

weak neutron communication between distant regions of the system.

Slow source convergence is less of a problem when the initial �ssion source guess

is very close to the converged �ssion source. However, sometimes knowledge of the

solution beforehand is evasive. Sometimes the typically available initial source shapes

(at, or uniform, over the �ssionable regions, or maybe a cosine shape) in a produc-

tion code are very di�erent from the converged source shape. So, in practice, slow

source convergence can be quite troublesome. In fact, for some di�cult problems,

Monte Carlo may never converge.

1.3 History of the Fission Matrix

The �ssion matrix is mainly associated with Monte Carlo criticality calculations,

but it also has applications in deterministic criticality calculations. The (i; j)th

element of the �ssion matrix is the probability that a �ssion source neutron born

in region j of the system causes the subsequent birth of a �ssion source neutron in

region i. The �ssion matrix may be somewhat tediously estimated from a set of
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deterministic calculations.

The �ssion matrix may also be estimated in a Monte Carlo calculation by keeping

track of what happens to the Monte Carlo{simulated neutrons. Each element (i; j)

of the �ssion matrix is the number of neutrons produced in region i due to neutrons

starting in region j divided by the number of neutrons starting in region j. Because

the �ssion matrix elements are ratios (and probabilities), they may be closer to truth

than the Monte Carlo �ssion source. For example, suppose the source in region j

is lower than its converged value. Both the numerators and denominators in the

�ssion matrix elements associated with region j will be lower than their converged

values. The errors tend to cancel out in the �ssion matrix elements, and are more

representative of the converged solution. Thus, the eigenvector of the �ssion matrix

tends to converge faster than the Monte Carlo �ssion source. Note that, because it is

spatially discretized, the �ssion matrix eigenvector does not converge exactly to the

spatially continuous Monte Carlo �ssion source. The eigenvector has a second{order

spatial truncation error [Kap58][Car75].

The idea of using the �ssion matrix as a separate and faster calculation was

developed by Morton [Mor56] and Kaplan [Kap58]. Morrison, Mihalczo, and Irving

of Oak Ridge National Laboratory implemented a �ssion matrix calculation into the

Monte Carlo code O5R [Mor66]. They used the number of iterations required to

converge the �ssion matrix eigenvector as a guide to know how many Monte Carlo

iterations it would take the regular Monte Carlo to converge. Both Mihalczo [Mih67]

and Mendelson [Men68] used the �ssion matrix calculations in calculations for real

systems. The Oak Ridge code, KENO, has the capability of performing �ssion matrix

calculations. Unfortunately, hardly anyone uses this option [Pet92]. We speculate

that the major reason this KENO option is largely unused is the user community's
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lack of familiarity with the �ssion matrix.

Both Kaplan [Kap58] and Kalos, et al. [Gre68] suggested using the �ssion matrix

eigenvector to adjust the regular Monte Carlo �ssion source distribution through vari-

ance reduction techniques (Splitting and Russian roulette). Carter and McCormick

[Car69] presented a method in which the regular Monte Carlo �ssion source dis-

tribution is adjusted by the ratio of successive �ssion matrix eigenvectors. They

demonstrated the potential acceleration by performing calculations that used dif-

fusion methods to simulate Monte Carlo. Kadontani, et al. [Kad91] attempted

accelerating the Monte Carlo �ssion source by setting it equal to the �ssion matrix

eigenvector at each iteration. These attempts met with limited success.

The big culprit behind these failures of Monte Carlo source acceleration methods

is the statistical noise inherent in the Monte Carlo algorithm. The acceleration

attempts may be carried over from successful deterministicmethods, or they may just

be inherently deterministic, but whatever the reason, they cannot handle statistical

noise. However, Swaja [Swa72] successfully accelerated Monte Carlo �ssion source

convergence with Source Extrapolation, a deterministic acceleration method. He

�ltered the statistical noise by a Kalman �lter. Embedded in the Kalman �ltering

process was the �ssion matrix to account for the dynamic state of the converging

source.

We consider a numerical acceleration method as a method that converges to a

solution equivalent to the unaccelerated solution, only faster. Since the �ssion ma-

trix is estimated in discrete space, it has a truncation error. Therefore, unless the

�ssion matrix has the same spatial discretization as the regular calculation, a direct

adjustment of the regular �ssion source to the �ssion matrix eigenvector is not an

acceleration method. (Depending on how the method of Kalos, et al. [Gre68] is
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implemented, it may or may not be an acceleration method.) Monte Carlo calcula-

tions are usually performed in continuous space and the �ssion matrix is estimated

in �nite discretized space.

The Fission Matrix Acceleration method derived in this thesis converges to the

regular, unaccelerated Monte Carlo �ssion source. It uses the �ssion matrix as a low-

order operator to determine an additive correction to the �ssion source. However, it

does require �ltering the statistical noise.

1.4 The New Methods and Testing Their Feasibility

We develop three new methods that have not been tried before. The Fission Ma-

trix Acceleration method and the Fission Di�usion Synthetic Acceleration method

are accelerated versions of the regular, unaccelerated Source Iteration method. Each

iteration contains an additional step in which a low-order approximation to an exact

additive correction is applied to the �ssion source. Although each accelerated iter-

ation entails more work, the method accelerates the source convergence such that

signi�cantly fewer iterations are required for convergence. The low-order approxi-

mations to the exact corrections are what di�erentiate the two methods: the �ssion

matrix and the di�usion approximation. The third method, the Hybrid Monte Carlo

method, is not an acceleration method, but rather a modi�ed Monte Carlo source

iteration method. The source at each iteration is sampled not from the Monte Carlo

tracking, but from the solution of an elliptic equation, some of whose coe�cients are

determined by the Monte Carlo simulation.

We determine the feasibility of the new methods by testing them on idealized

problems. The problems are far from reality, but nevertheless, they contain enough

\truth" to determine the merit and behavior of the methods.
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Veri�cation of the testbed's validity is found by implementing the Fission Matrix

Acceleration method in the production code MCNP. Its behavior for a real, three-

dimensional, continuous-energy problem is the same as its behavior in the idealized

problems.

In a valid testbed then, we demonstrate that these methods are successful and

warrant further adaptation to real problems. Projected speedups will reduce compu-

tational time investments, thus permitting better evaluation of criticality scenarios.

1.5 Thesis Synopsis

We present an overview of the thesis.

Chapter II: Criticality Calculations

In Chapter II we begin with the general neutron transport equation and derive

the analytic �xed-source and the analytic criticality equations for one energy group,

isotropic scattering, and one-dimensional slab geometry. We also derive the adjoint

transport equation. We derive and present the numerical method of solution for

deterministic and Monte Carlo methods and the di�culties they have with high

dominance ratio problems. Lastly, we describe the �ssion matrix and how it is

estimated.

Chapter III: Fourier Analysis and Damped Acceleration

The acceleration methods we derive produce an additive correction for the �s-

sion source. We will �nd that sometimes the correction needs to be scaled back,

or damped, because applying the entire correction results in instability or highly

oscillatory behavior. Usually the oscillatory behavior is found in Monte Carlo cal-

culations and is due to the statistical noise. Sometimes deterministic acceleration
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has to be scaled back if the system and solution are extremely heterogeneous or

contain severe transport e�ects. We do not have a direct theoretical justi�cation

for this damping. However, we gain some indirect theoretical insight by looking

at Di�usion Synthetic Acceleration (DSA), an acceleration method for �xed-source

calculations. We �nd, through a Fourier analysis, that when the acceleration equa-

tion is discretized inconsistently with the transport equation, damping is required

for certain mesh sizes in order to inhibit instability. We note that, in methods for

accelerating the Monte Carlo �ssion source convergence, the acceleration equations

are inherently inconsistently discretized with Monte Carlo. Fission source conver-

gence acceleration methods are not amenable to this type of Fourier analysis, so we

use the inconsistently-discretized �xed-source analysis as a foundation for damping

�ssion source convergence acceleration.

Chapter IV: Experimental Fourier Analysis Tool

This shortest chapter in this thesis explains the tool we use to measure the conver-

gence of a �ssion source. The experimental Fourier analysis tool is used throughout

the thesis to gauge the convergence of various modes of the �ssion source.

Chapter V: Di�usion-Simulated Monte Carlo Calculations

In Chapter V we present Carter and McCormick's acceleration method [Car69]

and propose an improvement to it. All neutron transport in this chapter is simulated

by di�usion calculations.

Chapter VI: Fission Matrix Acceleration Method

We develop the Fission Matrix Acceleration method in Chapter VI. We derive

it and explain the statistical �ltering necessary for accelerating Monte Carlo. We
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present the three one-dimensional slab geometry test problems that we use through-

out the thesis: a homogeneous slab, a uniform lattice, and a one-dimensional model

of the \keff of the world" problem. We present both deterministic and Monte Carlo

acceleration results.

We also extend the Fission Matrix Acceleration method to the production Monte

Carlo code MCNP and demonstrate the acceleration for the real, three-dimensional,

continuous energy- and space-dependent \keff of the world" problem.

Chapter VII: Fission Di�usion Synthetic Acceleration

Chapter VII contains the derivation of the Fission Di�usion Synthetic Accel-

eration (FDSA) method and the results for both deterministic and Monte Carlo

criticality calculations for the one-dimensional problems.

Chapter VIII: A Hybrid Monte Carlo Method for Improved Source Con-

vergence

Sometimes Monte Carlo does not converge to the correct �ssion source. An ex-

ample of a system where this is the case is the uniform lattice problem. Since a

true acceleration method converges to the unaccelerated solution, the method can-

not overcome inherent Monte Carlo de�ciencies. We present a hybrid Monte Carlo

method in Chapter VIII that converges when regular, or accelerated, Monte Carlo

cannot. This method also results in reduced statistical noise.

Chapter IX: Summary, Conclusions, and a Look Ahead

In Chapter IX we summarize, draw conclusions, and list some activities for future

work.



CHAPTER II

Criticality Calculations

This thesis investigates the acceleration of Monte Carlo (and, to a lesser extent,

deterministic) nuclear criticality calculations. Criticality calculations, due to the

presence of �ssioning, are an extension of �xed-source calculations. We �rst present

the �xed-source neutron transport equation and sketch the derivation of its monoen-

ergetic, isotropic scattering, one-dimensional slab geometry form. We then introduce

�ssioning to obtain the criticality form of the neutron transport equation that pro-

vides the groundwork for much of this thesis. We also present the di�usion equation,

an approximation to the transport equation. We use the di�usion equation and its

associated approximations to develop and study acceleration methods.

2.1 Analytic Equations

2.1.1 Analytic Fixed Source Neutron Transport Equation

A �xed-source calculation solves the neutron transport equation, which is a lin-

earized version of the Boltzmann equation [Cas67][Dud76]. The neutron transport

equation, for both �xed-source and criticality calculations, is a neutron balance equa-

tion. In general geometry, the time-independent �xed-source transport equation is

[Lew84],

10
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 � r (r; E;
) + �t(r; E) (r; E;
) =

Z Z
�s(r;


0

�
; E 0

! E) (r; E 0;
0) d
0 dE0 +
1

4�
Q(r; E) ; (2.1)

where


 = direction of particle ; (2.2)

r = position of particle ; (2.3)

E = energy of particle ; (2.4)

�t(r; E) = total cross section (2.5)

= probable number of interactions a

particle at r with energy E undergoes

per unit path length ; (2.6)

�s(r;

0

�
; E0

! E) d
 dE = probability per unit path length that a

particle at r with energy E0 traveling in

direction 
0 scatters into dE about E

and d
 about 
 ; (2.7)

1

4�
Q(r; E) = external (independent of  ) source

of particles ; (2.8)

 (r; E;
) = angular ux (2.9)

= vn(r; E;
) : (2.10)

Here

v = particle speed ; (2.11)

n(r; E;
) = particle density distribution ; (2.12)

and

n(r; E;
) dr dE d
 = expected number of particles in dr about r

with energy dE about E and traveling in

direction d
 about 
 : (2.13)
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In this thesis, we make three simpli�cations to the neutron transport equation.

First, we consider only monoenergetic (or, one-group) problems, thereby eliminating

the dependence on E. Second, we consider only isotropic scattering. All angles are

equiprobable in isotropic scattering, so the dependence of �s on angle is eliminated.

Third, our analysis is restricted to one-dimensional slab geometry. These are harsh

restrictions and deviate greatly from reality, but they provide an appropriate plat-

form for methods development. If a method is successful under these simpli�cations,

extensions of it may be successful for higher-dimensioned, more complicated prob-

lems. In fact, we have successfully implemented the Fission Matrix Acceleration

method in MCNP and applied it to a three-dimensional, continuous energy problem.

(See Section 6.6.) The characteristics of the simpli�ed, one-dimensional acceleration

method extend to the more complicated three-dimensional method.

Let us express the direction vector, 
, in spherical coordinates. We consider a

right-hand coordinate system with orthogonal unit directions (i; j;k) in the (x; y; z)

directions. Then the direction vector, 
, emanating from the origin is


 = 
x i+ 
y j+ 
z k (2.14)

= sin � cos� i+ sin � sin� j+ cos � k (2.15)

=
q
1� �2 cos � i+

q
1� �2 sin � j+ � k ; (2.16)

where

� = angle between 
 and k ; (2.17)

� = azimuthal angle (2.18)

= angle between i and the projection of 
 onto the xy plane ; (2.19)

� = cos � : (2.20)
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Then, for any function f(
)=f(�; �), we have that

Z
4�
f(
) d
 =

Z
2�

�=0

Z
1

�=�1
f(�; �) d� d� : (2.21)

An explicit expression for the monoenergetic scattering cross section is that of linearly

anisotropic scattering,

�s(r;

0

�
) =
1

4�
(�s0 + 3
 �
0�s1) ; (2.22)

where, for isotropic scattering, �s1 = 0.

In one-dimensional slab geometry, there is no dependence upon y or z or the

azimuthal angle �. Thus, by renormalizing  ,

 (x; �) 
Z
2�

�=0
 (x; �) d� = 2� (x; �) ; (2.23)

we obtain the monoenergetic, one-dimensional slab geometry transport equation for

isotropic scattering:

�
@

@x
 (x; �) + �t(x) (x; �) =

1

2

Z
1

�1

�s0(x) (x; �
0) d�0 +

Q(x)

2
; (2.24)

where

�s0(x) =
Z
1

�1

�s0(x; �
0) d�0 : (2.25)

For a slab of width L, 0� x� L, the boundary conditions specify  for incoming

directions,

 (0; �) =  +(�) ; � > 0 ; (2.26)

 (L; �) =  �(�) ; � < 0 : (2.27)

2.1.2 Analytic Criticality Neutron Transport Equation

We obtain the one-group analytic criticality neutron transport equation for

isotropic scattering and one-dimensional slab geometry by introducing a �ssion term



14

to Equation 2.24:

�
@

@x
 (x; �) + �t(x) (x; �) =

1

2
�s(x)

Z
1

�1

 (x; �0) d�0 +
1

2

��f (x)

k

Z
1

�1

 (x; �0) d�0 ; (2.28)

where

�f (x) = �ssion cross section (2.29)

= probability per unit path length that a particle at x

undergoes a �ssion ; (2.30)

� = average number of neutrons produced in a �ssion event ; (2.31)

k = keff = keffective (2.32)

= the multiplication factor ; (2.33)

For simplicity, we denote �s0 as �s. For our criticality calculations, we only consider

sources from �ssion, no external (either interior or incident) sources. Therefore, we

have vacuum boundary conditions:

 (0; �) = 0 ; � > 0 ; (2.34)

 (L; �) = 0 ; � < 0 : (2.35)

Since the source depends on  , Equation 2.28 de�nes an eigenvalue problem, where

k=keff is the dominant eigenvalue. k can be viewed as the number by which �

needs to be divided to make the system model critical, that is, where a nuclear

chain reaction is just sustainable. It follows that, for k > 1, the system model is

supercritical and the neutron population would grow in time. For k < 1, the system

model is subcritical and the neutron population would die out.

2.1.3 Analytic Di�usion Equation

Solving the transport equation is typically di�cult. Employing the di�usion ap-

proximation in the transport equation yields the di�usion equation, which is simpler
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to solve. The di�usion approximation rests on the assumption that the angular ux

is linear in angle:

 (x; �) �
1

2
(�0(x) + 3��1(x)) : (2.36)

Here we have de�ned

�n(x) �
Z
1

�1

�n (x; �)d� ; n = 0; 1 ; (2.37)

where �0(x) is the scalar ux, �(x). Immediately, we substitute the scalar ux into

Equation 2.28 and obtain

�
@

@x
 (x; �) + �t(x) (x; �) =

1

2
�s(x)�(x) +

1

2

��f (x)

k
�(x) : (2.38)

Now, we take the zeroth angular moment of Equation 2.38 by operating on it by

Z
1

�1

(�) d� (2.39)

and obtain

@

@x
�1(x) + �t(x)�0(x) = �s(x)�0(x) +

��f (x)

k
�0(x) : (2.40)

Operating on Equation 2.38 by

Z
1

�1

�(�) d� ; (2.41)

we obtain its �rst angular moment,

@

@x

Z
1

�1

�2 (x; �) d�+ �t(x)�1(x) = 0 : (2.42)

Substituting the linear approximation of  , Equation 2.36, into Equation 2.42, we

obtain

1

3

@

@x
�0(x) + �t(x)�1(x) = 0 ; (2.43)
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from which we obtain Fick's Law,

�1(x) = �
1

3�t(x)

@

@x
�0(x) : (2.44)

Substituting Equation 2.44 into Equation 2.40 and using the identity that the total

cross section is the sum of the scattering and absorption cross sections,

�t(x) = �s(x) + �a(x) ; (2.45)

we obtain the di�usion equation:

�
@

@x

1

3�t(x)

@

@x
�0(x) + �a(x)�0(x) =

��f (x)

k
�0(x) : (2.46)

The boundary conditions are obtained by utilizing the linear approximation,

Equation 2.36, and the �rst moment equation, Equation 2.42, and integrating over

incoming directions. At the left side,

0 =
Z
1

0

� (0; �) d� (2.47)

=
1

2
�0(0)

Z
1

0

�d� +
3

2
�1(0)

Z
1

0

�2 d� (2.48)

=
1

4
�0(0) +

1

2
�1(0) (2.49)

0 = �0(0) �
2

3�t(0)

@

@x
�0(0) : (2.50)

Similarly, on the right side,

0 =
Z
0

�1

� (L; �) d� (2.51)

=
1

2
�0(L)

Z
0

�1

�d� +
3

2
�1(L)

Z
0

�1

�2 d� (2.52)

= �
1

4
�0(L) +

1

2
�1(L) (2.53)

0 = �0(L) +
2

3�t(L)

@

@x
�0(L) : (2.54)

These boundary conditions are commonly called the Marshak boundary conditions

[Bel70].
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Equation 2.46 is the di�usion equation. The di�usion equation and its associated

boundary conditions are obtained from the neutron transport equation by assuming

that the angular ux is linear in angle. The transport equation is a hyperbolic

equation, but the di�usion equation is an elliptic equation. Hyperbolic equations

are associated with wave propagation, giving rise to distinctly di�erent domains of

dependence and zones of inuence for a point in phase phase. Elliptic equations

are associated with di�usion processes where, for a phase space point, the domain

of dependence is equal to the zone of inuence [Hir88]. For example, a localized

perturbation in a �nite system would be propagated to the rest of the system in

�nite time by the transport equation, while the di�usion equation would di�use the

e�ects across the entire system instantaneously.

2.1.4 Analytic Adjoint Transport Equation

The solution of the adjoint transport equation is a valuable tool. Suppose a

system of volume V consists of a volume source of neutrons in a nonmultiplying

(non�ssioning) medium and a detector located some distance away from the source,

as shown in Figure 2.1. In the world of Monte Carlo, where individual particles are

simulated, the adjoint calculation is referred to as \running the particles backward

from the detector." The adjoint solution is the system-wide importance at each point

in phase space for a particle to reach the detector [Bel70]. The three main uses for

the adjoint solution are perturbation calculations, Monte Carlo biasing [Lew84], and

variational calculations [Bel70]. We briey present the adjoint equation because we

�nd it is necessary in our acceleration methods.

Given an operator R and the functions  (x; �) and  �(x; �) that satisfy the

necessary boundary and continuity conditions, the adjoint operator R� is de�ned by
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detector

source

V

Figure 2.1: Three-dimensional �xed-source system.

the following equation [Lew84][Bel70],

( �;R ) = ( ;R� �) ; (2.55)

where (�; �) is the inner product,

(�; �) =
Z Z

(�)(�) d� dx : (2.56)

Suppose R is the criticality transport operator from Equation 2.28:

R =M�
1

k
N ; (2.57)

where

M (x; �) = �
@

@x
 (x; �) + �t(x) (x; �)�

1

2
�s(x)

Z
1

�1

 (x; �0) d�0 ; (2.58)

and

N (x; �) =
1

2
��f (x)

Z
1

�1

 (x; �0) d�0 : (2.59)

Then the criticality transport equation is

R (x; �) = 0 ; (2.60)
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which is called the forward problem in the adjoint context. Considering the �xed-

source part of R �rst, the adjoint of M is de�ned by

( �;M ) = ( ;M� �) : (2.61)

Multiplying M by the adjoint angular ux,  �, and taking the inner product, the

form of M� is found as [Lew84]

M� �(x; �) = ��
@

@x
 �(x; �) + �t(x) 

�(x; �)�
1

2
�s(x)

Z
1

�1

 �(x; �0) d�0 : (2.62)

The di�erence between the forward operator M and its adjoint, M�, is a negative

sign on the streaming term. Similarly, the adjoint of the �ssion operator N is de�ned

by

( �;N ) = ( ;N� �) ; (2.63)

where

N� �(x; �) =
1

2
��f (x)

Z
1

�1

 �(x; �0) d�0 : (2.64)

Since N=N�, N is self-adjoint. (When energy dependence is taken into account, the

�ssion operator is not self-adjoint.) The adjoint criticality transport operator is

R� =M�

�
1

k�
N� ; (2.65)

Utilizing Equations 2.61 and 2.63, we see that, for Equation 2.55 to hold, we must

have �
1

k
�

1

k�

�
( �;N ) = 0 : (2.66)

Since the inner product is not zero for positive  and  �, the forward and adjoint

eigenvalues must be equal,

k = k� : (2.67)
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We will discover that we need the solution of the adjoint di�usion equation for the

Fission Di�usion Synthetic Acceleration method. Without energy dependence, the

di�usion operator in Equation 2.46 is self-adjoint. For a system with a non-reentrant

vacuum boundary, the adjoint boundary condition is zero for outgoing uxes. This

boundary condition coincides with the physical interpretation of the adjoint ux as

the neutron importance. Neutrons escaping the system have zero chance of causing

a �ssion, therefore they have zero importance.

2.2 Numerical Methods for Solving the Neutron Transport

Equation

Analytically solving the transport and di�usion equations is possible only for

simple, idealized systems. Therefore, people resort to numerical, or computational,

methods to solve the equations on a computer. Computational methods are either

deterministic or stochastic.

Deterministic methods typically require discretizing the equations in every inde-

pendent variable and using �nite di�erencing methods to approximate derivatives

of functions. An alternative to �nite di�erencing is the �nite element method, but

we will not consider that in this thesis. In neutron transport, a popular way to

discretize the angular variable is the discrete-ordinates, or SN , method, where the

Gauss-Legendre quadrature set is used to approximate integrals over angle. The

main source of error in a deterministic method is the spatial discretization. For

�nite spatial cells, the discretized equation di�ers from the analytic equation by a

truncation error that should disappear as the spatial cells go to zero.

The Monte Carlo method is a stochastic method. Instead of solving a discretized

equation, the Monte Carlo method simulates actual particles. Using pseudo-random
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numbers, all events that a particle undergoes are sampled from known probability

density functions. The location, energy, and angle of a source particle are sampled

from a source distribution. The distance the particle travels to a collision, whether it

is absorbed or scatters, and its properties after a scatter are all sampled according to

probability density functions. Since Monte Carlo can handle the energy, spatial, and

angular variables continuously, it does not su�er from truncation errors. However,

since results are obtained by averaging the individual results from many particles,

all Monte Carlo solutions have statistical error.

The advantage of the Monte Carlo method is that it is able to model continuous

energy, space, and angle in irregular, complicated geometries. The advantage of

deterministic methods over Monte Carlo is that they have no statistical errors.

Figure 2.2 qualitatively shows howMonte Carlo and SN compare. The SN method

considers an in�nite number of particles in a �nitely resolved system. Monte Carlo

considers a �nite number of particles in an in�nitely resolved system. The \degree of

variable resolution" axis could also be, in some sense, \number of collisions." Monte

Carlo particles either explicitly or probabilistically experience all of their collisions

from birth to death. However, in a discrete-ordinates calculation, the nth iteration

on the scattering source produces the nth-collided ux.

2.2.1 Deterministic Methods

By discretizing the independent variables, the integro-di�erential transport equa-

tion is converted to a system of equations amenable to solving on a computer.

Angular Discretization

For discrete-ordinates, or SN , the angular variable, �, is divided into bins such

that particles only travel in discrete angles. The SN Gauss-Legendre quadrature set
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degree of variable
       resolution

number of
 particles

Monte
 Carlo

SN

Figure 2.2: A qualitative comparison of discrete-ordinates SN and Monte Carlo.

de�nes the discrete angle, �m, and weight, wm, in each bin. (An alternative to SN

quadrature sets is the spherical harmonics, or Legendre polynomial approximations

(PN ). The SN and PN�1 equations are equivalent in one-dimensional slab geometry

[Lew84].) Integrals over angle are approximated in SN by summations over the

quadrature set: Z 1

�1

�d� �
NX

m=1

�mwm : (2.68)

In one-dimensional geometries, even-order quadrature sets are almost exclusively

employed. The even order quadrature sets are symmetric about, but do not include

�=0. They exactly integrate polynomials up to order 2N{1 [Bel70]. We use the

convention that the weights sum to 2:

NX
m=1

wm = 2 : (2.69)
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Thus, the angular ux is converted from a continuous function to a discrete vector

whose N elements at a particular point in space (and energy, if considered) are the

angular ux in each discrete angle. So, for � � �m,

 (x; �) �  m(x) �  (x; �m) : (2.70)

The scalar ux, for instance, is approximated as

�(x) =

Z 1

�1

 (x; �) d� (2.71)

�

NX
m=1

 m(x)wm : (2.72)

Spatial Discretization

Spatially, the one-dimensional slab of width L is discretized by dividing it into

J cells, as shown in Figure 2.3. The interior cell edges are speci�ed by xj+1=2,

1/ 2
x 

1
x 2x 

J 
x j x 

j+1/2x j-1/2x 
J+1/2

x 

x = 0 x = L
j h 

Figure 2.3: Discretized one-dimensional slab geometry.

1 � j � J -1. The left boundary is denoted by x1=2 and the right boundary by

xJ+1=2. The cells have width hj,

hj = xj+1=2 � xj�1=2 ; (2.73)

with the cell center, xj, located at

xj =
1

2

�
xj+1=2 + xj�1=2

�
: (2.74)



24

Cross sections and any external �xed-sources in the interior of the system are to be

constant across a cell. The spatially discretized angular ux is assumed to reside on

the cell edges. The spatially analytic SN transport equation for a particular direction

m is

�m
@

@x
 m(x) + �t(x) m(x) =

1

2
�s(x)

NX
n=1

 n(x)wn +
1

2

��f (x)

k

NX
n=1

 n(x)wn : (2.75)

Integrating Equation 2.75 over the jth cell or, speci�cally, operating on it by

1

hj

Z xj+1=2

xj�1=2

(�) dx ; (2.76)

we obtain

�m

hj

�
 m;j+1=2 �  m;j�1=2

�
+ �t;j m;j

=
1

2
�s;j

NX
n=1

 n;j wn +
1

2

��f;j

k

NX
n=1

 n;j wn ; (2.77)

where 1� m � N , 1 � j � J , and the cell-averaged angular ux for direction m is

 m;j =
1

hj

Z xj+1=2

xj�1=2

 m(x) dx : (2.78)

Di�erencing Scheme

Equation 2.77, together with speci�ed incoming boundary conditions, consti-

tutes JN+N equations in 2JN+N unknowns ((J+1)N cell-edge uxes and JN

cell-average uxes). The required extra JN equations are auxiliary equations that

approximate Equation 2.78 and relate the cell-average ux to the cell-edge ux. A

common di�erencing scheme for the auxiliary equations, and one that we use in this

thesis, is the Diamond Di�erencing Scheme,

 m;j =
1

2

�
 m;j�1=2 +  m;j+1=2

�
: (2.79)
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The Diamond Di�erencing scheme is second order accurate, but it produces negative

uxes in some cases, and attempts to alleviate the negativity may cause inaccuracies.

There are several other di�erencing schemes. For example, one new di�erencing

scheme that is positive and very accurate is a nonlinear characteristic scheme [Wal95].

Order of Accuracy

In Equation 2.77, the derivative of the angular ux is represented as a �nite

di�erence. The �nite di�erence method is based on the de�nition of the derivative

of  at x:

d 

dx
= lim
4x!0

 (x+4x)�  (x)

4x
: (2.80)

Representing a derivative as a �nite di�erence is an approximation. The order of the

accuracy of the approximation is determined by the power n, when the truncation

error goes to zero as (4x)n [Hir88].

We use Taylor series expansions to show that both the Diamond Di�erencing

Scheme and the centrally di�erenced approximation to the �rst derivative of the ux

in Equation 2.77 are second order accurate. First, the Diamond Di�erence scheme,

for a particular angle m, is shown to be second order accurate as follows:

 j =
1

2

�
 j�1=2 +  j+1=2

�
(2.81)

=
1

2

 
 (xj)�

d (xj)

dx

h

2
+
d2 (xj)

dx2
h2

8
+O(h3)

+ (xj) +
d (xj)

dx

h

2
+
d2 (xj)

dx2
h2

8
+O(h3)

!
(2.82)

=  (xj) +O(h
2) ; (2.83)

where O(hn) represents terms of, at most, order hn. Second, the centrally di�erenced

�rst derivative of the angular ux is, expanded in Taylor series, also shown to be



26

second order accurate:

d j

dx
=

 j+1=2 �  j�1=2

h
(2.84)

=
1

h

 
 (xj) +

d (xj)

dx

h

2
+
d2 (xj)

dx2
h2

8
+O(h3)

� (xj) +
d (xj)

dx

h

2
�
d2 (xj)

dx2
h2

8
+O(h3)

!
(2.85)

=
d (xj)

dx
+O(h2) : (2.86)

Fixed-Source Method of Solution

The method of solution for �xed-source, one-dimensional slab geometries is sweep-

ing left to right, considering the left-going angular uxes separately from the right-

going angular uxes. Equation 2.77 becomes a �xed-source problem if the entire

�ssion source is instead a �xed-source, Qj, that is constant within each cell:

�m

hj

�
 m;j+1=2 �  m;j�1=2

�
+ �t;j m;j

=
1

2
�s;j

NX
n=1

 n;j wn +Qj : (2.87)

The procedure is to guess the scalar ux for the scattering source, then lump the

scattering source and �xed-source together on the right hand side. Beginning at the

left boundary, for instance, a transport sweep is made to the right, one cell at a

time, for particles owing to the right. Equations 2.87 and 2.79 are solved for the

exiting ux. Given the incoming ux, the exiting ux from the �rst cell provides the

incoming ux for the next cell. The procedure is repeated for each cell, marching

to the right boundary. Then a transport sweep is made from right to left, where

the equations are solved for the exiting left-going ux. Upon returning to the left

boundary, an updated scalar ux is available for each cell. Substituting the updated

scalar ux into the scattering source, the transport sweep is performed again. The
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whole sweep (back and forth) is repeated until the uxes converge to within some

speci�ed criterion.

Criticality Method of Solution

Solving the discretized criticality transport equation requires more work. Guesses

are made for the scattering source as well as for the �ssion source and the eigenvalue.

Just as in the �xed-source solution, the ux is converged for the scattering source.

This allows for updating the �ssion source. Then all the uxes are normalized to the

�ssion source. Again, the uxes are converged upon the scattering source, at which

time the �ssion source is updated. Thus, there is a hierarchy of iterations. The

iterations that converge the scattering source are called inner iterations and those

that converge the �ssion source are called outer iterations.

Solving the Discretized Di�usion Equation

For �xed-source problems, solving the discretized di�usion equation is similar to

solving the discretized transport equation. However, the resulting equations are not

explicitly dependent upon angle like the SN equations. They form a tridiagonal sys-

tem that can be explicitly solved by matrix methods, such as Gaussian Elimination,

instead of iterating with transport sweeps. For criticality problems, the tridiagonal

system must be solved repeatedly until the �ssion source converges. That is, there

are only \outer" iterations in a criticality di�usion calculation. The explicit solving

of the tridiagonal matrix replaces the criticality transport \inner" iterations.

2.2.2 Monte Carlo Method

The Monte Carlo Method is based upon an entirely di�erent model than deter-

ministic methods. Instead of solving equations that describe an in�nite number of
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particles, Monte Carlo simulates enough individual particles to statistically describe

the actual number of particles. Typically, thousands or millions of simulated particles

represent an actual number of particles on the order of 108 to 1016.

The relation between �xed-source and criticality calculations in Monte Carlo is

similar to the relation in deterministic calculations. Each \outer iteration" consists

of an entire �xed-source calculation.

Sampling from a Probability Density Function

Analog Monte Carlo is conceptually the simplest form of Monte Carlo. Analog

Monte Carlo is direct, explicit representation of particles. We consider analog Monte

Carlo for a �xed-source calculation. The foundation of Monte Carlo simulation

is sampling from probability density functions (pdf). Each event that a particle

undergoes is randomly sampled from the appropriate pdf. Therefore, the life of a

particle is a sequence of random events.

Suppose a probability density function (pdf) is p(y) de�ned on a�y�b. The pdf

must be positive or zero over the interval, so that

p(y) dy = the probability that y lies between y and dy, (2.88)

and the pdf is normalized over the range a�y�b,

Z b

a
p(y) dy = 1 : (2.89)

We see then that

Z y2

y1
p(y) dy = the probability that y lies between y1 and y2. (2.90)

We de�ne the cumulative distribution function (cdf), P (x), as

P (x) =
Z x

a
p(y) dy (2.91)

= the probability that y lies between a and x, (2.92)
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so that

P (a) = 0 ; (2.93)

P (b) = 1 : (2.94)

Given that we have available a pseudorandom number, �, between 0 and 1, we

can sample x from the cdf as follows:

� = P (x) =
Z x

a
p(y) dy : (2.95)

If x is not easily tractable from Equation 2.95, one may need to resort to rejection

techniques [Ham64][Car75][Kal86]. Rejection techniques may require many sampled

�'s before an x is found.

The Life of a Monte Carlo Particle

Let us traverse the lifeline of a Monte Carlo �xed-source particle. First, we must

sample the source. In one-dimensional slab geometry, suppose the source is isotropic

and uniform between x=3.5 and x=7.0 cm. The pdf for its location is

p(x) =
1

6:0� 3:5
; 3:5 � x � 6:0 ; (2.96)

and the cdf is

P (x) =

Z x

3:5

1

6:0� 3:5
dy (2.97)

=
x� 3:5

6:0 � 3:5
: (2.98)

Drawing a random number, �, setting it equal to P (x), and solving for x, we have

x = (6:0� 3:5)� + 3:5 : (2.99)

We sample its isotropic direction cosine, �, from a cdf obtained similarly as before

� = �1 + 2� : (2.100)
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Now that we know the particle's initial location and direction, we must determine

how far it will travel to its �rst (next) collision. In order to determine the pdf

for this event, we consider the transport equation without scattering for a particle

traveling along the determined direction. We may, with no loss of generality, consider

a coordinate system along the direction of travel, and set �=1. Therefore, we have

d (x)

dx
+ �t (x) = 0 ;  (0) = 1 : (2.101)

The solution is

 (x) = e��tx ; (2.102)

such that the collision rate, and the pdf, is

�t (x) = �te
��tx : (2.103)

The cdf for traveling a distance d is

P (d) =

Z d

0

�te
��tx dx : (2.104)

Drawing a random number, �, setting it equal to P (d), we solve for d, obtaining,

d = �
1

�t
ln(1� �) ; (2.105)

or, since 1-� is distributed equivalently to �,

d = �
1

�t

ln(�) : (2.106)

After transporting the simulated Monte Carlo particle to its collision site, we use

the cross sections to determine what happens to the particle. Assume, for simplicity,

that we have only absorption and isotropic scattering, so that the total cross section

is

�t = �s + �a : (2.107)
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With probability

ps =
�s

�t

; (2.108)

the particle scatters, and with probability 1-ps, it is absorbed. The particle continues

its random walk until its death, through absorption or leakage out the system.

Implicit capture is a non-analog variance reduction technique that does not allow

the particle to be absorbed. Instead, the particles are assigned a weight (initially

one) and, at every collision, the weight is reduced, such that only ps of the weight

continues. If the system is highly scattering, the weight may become too low to

justify the computer time spent on it. Low weight particles are terminated by an

unbiased technique called Russian Roulette [Car75][Spa69].

Obtaining Monte Carlo Results

Information is weaned from the Monte Carlo method by running thousands or

millions of particles and accumulating random variable data of interest. For instance,

one may be interested in the ux in a region of the system, or the current across a

surface, or leakage out a boundary, etc. One may accumulate random variable data,

say gn, for events n=1,: : :N , where N is large, and build an average:

�g =
1

N

NX
n=1

gn ; (2.109)

where the average is an estimate of the true value g. Suppose the probability density

function of g is f(g) and gi is sampled from f(g). Then �g is an unbiased estimator

of g if its expected value is g [Lew84]:

E[�g] = E[
1

N

NX
n=1

gn] (2.110)

=
1

N

NX
n=1

E[gn] (2.111)

= E[g] ; (2.112)
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where

E[g] =
Z
1

�1

gf(g) dg ; (2.113)

and

E[gi] = E[g] ; (2.114)

since gn is sampled from f(g).

According to the Central Limit Theorem [Kal86][Spa69][Car75][Lew84], �g ap-

proaches a Gaussian, or normal, distribution, such that we can build a con�dence

interval from �g. A con�dence interval is a range of values that contains, with prob-

ability p, the true value:

[�g � tp;N�1s�g ; �g + tp;N�1s�g] ; (2.115)

where

s�g = estimate of the true standard deviation, ��g,

of the mean, and (2.116)

tp = Student's t-percentile for con�dence level p

and N{1 degrees of freedom. (2.117)

The sample standard deviation of the mean is obtained from the sample standard

deviation of the population with the following relation:

s�g =
sgp
N

; (2.118)

where the sample standard deviation is [Lew84]

sg =

s
N

N � 1

 
1

N

NX
n=1

gn � �g

!1=2

: (2.119)

The Central Limit Theorem states that �g approaches a normal distribution as N!1.

However, for �nite N , the distribution is not exactly normal. To build con�dence
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intervals, the departure from a normal distribution is accounted for by the Student's

t-percentile [Stu08][Ait57]. The Student's t-percentile multiplies the estimated stan-

dard deviation and gives a con�dence interval, in Equation 2.115, at the p con�dence

level and for N{1 degrees of freedom.

The collision estimator for the scalar ux in a volume V is

�c =
1

V �t

1

N

NX
n=1

wn ; (2.120)

where wn is the total collided weight for the nth history. The collision ux estimator

is based on the expression for the average number of collisions per unit time in volume

V [Lew84]:

�c = V �t� : (2.121)

Monte Carlo Criticality Calculations

Just like in deterministic calculations, Monte Carlo criticality calculations have

\outer" iterations, each one consisting of a �xed-source calculation. In Monte Carlo,

the outer iterations are called cycles. The typical criticality procedure is to make an

initial �ssion source guess and run enough cycles to converge the source. These cycles

are called the inactive cycles, or settling cycles. The di�erence between determinis-

tic and Monte Carlo criticality calculations is that once the deterministic source is

converged the calculation is �nished, whereas, Monte Carlo data accumulation can

begin only after the Monte Carlo source is converged. The cycles after the source is

converged are called active cycles. Deciding that the source is converged and active

cycles may begin is not an easy, well-de�ned task. It requires experience, knowledge

of the system and quality of the initial source guess, and luck.

During a cycle, the particle tracks determine the initial location of the �ssion

source particles for the next cycle. If, at a collision, a �ssion event occurs, and a
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�ssion particle is deemed to be born, then its position is banked (stored) until the

next cycle. At a collision, the �ssion weight, based upon the collision ux estimator,

is

�ssion weight = wn

��f

�t

: (2.122)

Although there are other ways, the typical method involves dividing the �ssion weight

by the old (currently available) keff . Thus, at each collision,

 =
wn

keff

��f

�t

(2.123)

�ssion source particles are produced for the next cycle. For example, if =0.7, a

source particle is produced with probability 0.7; or if =1.2, one particle is produced

with probability 0.8, and two particles are produced with probability 0.2. The result

of scaling the �ssion weight by keff is that each cycle has roughly the same number

of histories. With cycles having the same number of histories, computational di�-

culties of an increasing (problems with storage) or decaying (no particles!) source

are eliminated. However, the estimate of the scaled �ssion weight is biased, because

both the numerator and denominator are random variables, and the ratio of random

number averages is not equal to the average of the ratios [Elp85]. The bias is usually

insigni�cant because it is inversely proportional to the number of histories per cycle

[Gas75][Bow83][Bri86][Gel90][Gel91][Gel94].

We use three keff estimators [Lew84]: collision, absorption, and track length.

Contributions to the collision estimator are made at every collision, so that the

collision keff estimate at each cycle is

kcollision =
NX
n=1

MnX
mn=1

wmn

��f

�t

; (2.124)

where there are N histories in the cycle and Mn collisions in the nth history. Con-

tributions to the absorption estimator are made at every absorption, so that, for N
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histories, the cycle absorption keff estimate is

kabsorption =
NX
n=1

wn

��f

�a

: (2.125)

The cycle track length keff estimator is accumulated over distances traveled, not at

particular points. It is

ktrack length =
NX
n=1

MnX
mn=1

`mn
wmn

��f

�t

; (2.126)

whereMn is the number of track length segments, `mn
, in the nth history. The cycle

keff estimators are averaged over the active cycles to give an average keff estimate

for each estimator type,

�k type =
1

N

NX
n=1

ktype ; (2.127)

where \type" is collision, absorption, or track length.

Assuming a limited amount of computer resources, there are optimal values of the

number of histories per cycle and number of active cycles. The number of histories

per cycle should be large enough to diminish the bias in the keff estimate, but not

so large that only a small number of cycles can be run. Small numbers of cycles

may result in large estimated variances in keff , and, hence, meaningless con�dence

intervals. Conversely, too many cycles may reduce the estimated variance enough

such that the bias is no longer negligible [Gel94].

Determining the number of cycles to skip (the number of inactive cycles) is not

a trivial task. It depends on the quality of the initial �ssion source guess, the domi-

nance ratio of the system, and the computational parameters (and model). Usually,

it is di�cult to know for sure if the source is converged. Section 2.3 discusses com-

putational di�culties and this thesis addresses accelerating source convergence and

decreasing the number of necessary inactive cycles.
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2.3 Calculational Di�culties

Monte Carlo criticality calculations sometimes have di�culties that manifest

themselves in inaccurate results or unacceptably large computer times to achieve

accurate results. These di�culties may originate from the actual physical system

being modeled, or from computational situations, or both. In this section, we dis-

cuss sampling and the dominance ratio of the system. Generally, if a problem is

inadequately sampled, or if the dominance ratio is close to unity, there will be com-

putational di�culties. The discussion regarding the dominance ratio applies equally

to deterministic criticality calculations.

2.3.1 Sampling Di�culties

When parts of phase space are not sampled adequately, the solution is likely to be

inaccurate. Such an inaccuracy is considered a bias due to an improper model. The

best example of this sampling di�culty is G. Elliott Whitesides' \keff of the world"

problem [Whi71]. Whitesides used a Monte Carlo code to obtain keff for a 9� 9� 9

array of plutonium spheres. All the spheres were identical with radii of about 4 cm

and separated by 60 cm. The entire array was surrounded by a water reector. This

array is a loosely-coupled, subcritical system with keff � 0:93. Whitesides found

keff as about 0.93 with 300 histories per cycle. He undoubtedly did not obtain the

correct �ssion source shape, because the spheres are very independent and there were

not even enough histories per cycle to have one particle in each sphere! However,

since this problem is similar to a homogeneous, in�nite medium, the value of keff

is not highly dependent upon where the particles are located. When there is little

communication between the spheres, the keff of the system is about the keff of an

individual sphere. Indeed, Whitesides obtained the correct keff .
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However, when Whitesides replaced the center sphere of the model with a larger,

critical sphere, he obtained what he called the \keff of the world" problem. The name

comes from the fact that the world is about critical since it has critical reactors, but

if you were not near a critical reactor, it would be di�cult to calculate the critical

keff . After 200 active cycles [Dic76], his Monte Carlo estimate of keff was about

the same as before. With so few particles, the hot center sphere was not detected.

In this problem, the �ssion source shape is very important. It is highly peaked at

the hot center sphere{very di�erent from a typical initial at source guess. Once

the particles can \see" the hot center sphere, the Monte Carlo keff estimate begins

drifting upward toward unity. In addition to the poor sampling in this problem, the

system has a high dominance ratio, resulting in slow convergence.

2.3.2 Dominance Ratio

The dominance ratio is the ratio of the second highest eigenvalue to the domi-

nant eigenvalue, keff . In a source (or power) iteration method, the dominance ratio

dictates the rate of the slowest error decay, that of the lowest order error mode.

When the dominance ratio is near one, the low order error decays very slowly, thus

requiring many iterations for convergence.

Rate of Convergence for High Dominance Ratios

To demonstrate the relevance of the dominance ratio in source iteration, we in-

vestigate its e�ect on the rate of convergence. We consider the transport equation,

T = S +
1

k
�F ; (2.128)
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where

T = 
 � 5 (r; E;
) + �t(r; E) (r; E;
) ; (2.129)

S =
Z Z

�s(r;

0 �
; E 0! E) (r; E 0;
0) d
0 dE0 ; (2.130)

F =
Z Z

��f(r; E
0) (r; E 0;
0) d
0 dE0 : (2.131)

We manipulate Equation 2.128 as follows,

(T� S) =
1

k
�F (2.132)

 =
1

k
(T� S)�1�F ; (2.133)

and we operate on both sides by F, obtaining an analytic integral transport equation,

F =
1

k
F(T� S)�1�F : (2.134)

Equivalently,

f =
1

k
Lf ; (2.135)

where

f = f(r) = F = �ssion source ; (2.136)

L = F(T� S)�1� = integral �ssion operator : (2.137)

The integral �ssion operator is represented in discrete space by the �ssion matrix L̂.

The Source Iteration method is represented by introducing iteration indices to

Equation 2.135,

f (i+1=2) =
1

k(i)
Lf (i) ; (2.138)

f (i+1) = f (i+1=2) ; (2.139)

k(i+1) =

R
Lf (i)drR
f (i)dr

= k(i)
R
f (i+1=2)drR
f (i)dr

: (2.140)
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This satis�es

f (n) =
n�1Y
i=0

1

k(i)
Lnf (0) : (2.141)

The integral �ssion operator L has distinct eigenvalue solutions,

fm =
1

km
Lfm ; k = k1 > k2 > k3 > � � � : (2.142)

Suppose the initial source guess for the source iteration, Equations 2.138 to 2.140,

is a linear combination of the distinct solution eigenvectors [Lew84],

f (0) =
X
`

�`f` : (2.143)

Then, from Equation 2.142,

Lnf (0) =
X
`

�`k
n
` f` = �1k

n
1f1 + �2k

n
2f2 +

X
`>2

�`k
n
` f` : (2.144)

We see see that as n!1, k(n) converges to the dominant eigenvalue,

k(n+1) =

R
(�1k

n+1
1 f1 +

P
`>1 �`k

n+1
` f`)drR

(�1kn1f1 +
P

`>1 �`k
n
` f`)dr

(2.145)

=
kn+11

R �
�1f1 +

P
`>1 �`

�
k`
k1

�n+1
f`

�
dr

kn1
R �
�1f1 +

P
`>1 �`

�
k`
k1

�n
f`
�
dr

(2.146)

! k1 as n!1 : (2.147)

Also, the �ssion source converges to the dominant eigenfunction,

�
1

k1
L

�n
f (0) = �1f1 + �2 (�)

n
f2 +

X
`>2

�`

 
k`

k1

!n
f` (2.148)

! �1f1 as n!1 ; (2.149)

where

� =
k2

k1
(2.150)
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is the dominance ratio. Reducing an error of order 1 in Equation 2.148 to order

�� 1 requires

N =
log �

log �
(2.151)

iterations. For example, reducing an error by three orders of magnitude in a system

with dominance ratio 0.99 requires 688 iterations.

False Convergence

With a dominance ratio near unity, the source iteration method converges so

slowly that it may appear to be converged, when in fact it really is not. A typ-

ical measure of convergence is the vector norm{say the `
1

norm, the maximum

value{of the di�erence between two successive �ssion source iterates. Then, from

Equations 2.148 and 2.149, the apparent error at iteration n, an, is

an = f (n) � f (n�1) (2.152)

= �n�1(�� 1)�2f2 +
X
`>2

2
4
 
k`

k1

!(n)

�
 
k`

k1

!(n�1)
3
5�`f` ; (2.153)

whereas the real error at iteration n, rn, is

rn = �1f1 � f (n) = ��n�2f2 �
X
`>2

 
k`

k1

!n

�`f` : (2.154)

Considering only the leading terms of rn and an and taking the vector norms, we

see that, for dominance ratios near unity, the real error may be signi�cantly greater

than the apparent error:

jjrnjj
jjanjj

=
�

1� �
� 1 for 1� �� 1 : (2.155)

Two types of systems that tend to have dominance ratios near unity are large

thermal nuclear reactors and isolated arrays of barrels of nuclear waste. We shall

demonstrate how the dominance ratio approaches unity as a reactor becomes larger,

and as elements of an array are increasingly separated.
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Large Thermal Reactors

The dominance ratio is an indicator of the neutron communication between dis-

tant regions of the systems: the higher the dominance ratio, the weaker the commu-

nication. In general geometry, the di�usion equation for a homogeneous multiplying

medium, V , with zero scalar ux at the extrapolated boundary �V is

�D5
2 �(r) + �a�(r) =

��f

k
�(r) ; r 2 V ; (2.156)

�(r) = 0 ; r 2 �V ; (2.157)

where

D =
1

3�tr

= di�usion coe�cient ; (2.158)

�tr = �t � ��0�s = macroscopic transport cross section ; (2.159)

��0 = average scattering angle cosine : (2.160)

Let us consider, as a solution of Equation 2.156, the solution  n(r) of the homo-

geneous di�erential equation [Dud76]

5
2 n(r) +B2

n n(r) = 0 ; r 2 V ; (2.161)

 n(r) = 0 ; r 2 �V ; (2.162)

where the eigenvalues are arranged as B1 < B2 < B3 < � � �, and the eigenvectors are

orthonormal:
Z
 n(r) m(r)d

3r = �nm : (2.163)

Comparing Equations 2.162 and 2.157, we observe that  n(r) satis�es the boundary

condition of the di�usion equation, Equation 2.156, and, upon substitution, becomes

�D5
2  n(r) + �a n(r) =

��f

kn
 n(r) : (2.164)
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From Equation 2.161, we see that

�D5
2  n(r) = DB2

n n(r) ; (2.165)

so Equation 2.164 becomes

DB2
n n(r) + �a n(r) =

��f

kn
 n(r) : (2.166)

From Equation 2.166 we have that the k-eigenvalues are

kn =
��f

DB2
n + �a

: (2.167)

The two largest kn's occur for the two smallest bucklings, B2
n (the eigenvalues of the

homogeneous di�erential equation). Therefore, the dominance ratio � is

� =
k2

k1
=

�a +DB2
1

�a +DB2
2

: (2.168)

For a one-dimensional homogeneous slab of extrapolated width L, the eigenfunc-

tions of the homogeneous di�erential equation are [Dud76]

 n(x) = cosBnx ; (2.169)

with corresponding eigenvalues

B2
n =

�
n�

L

�2

: (2.170)

Substituting these homogeneous equation eigenvalues (bucklings) into the general

geometry expression for the dominance ratio, Equation 2.168, we obtain

� =
�a +D

�
�
L

�2

�a +D
�
2�
L

�2 =
L2�a +D�2

L2�a +D4�2
: (2.171)

Suppose �t = 1:0, �a = 0:7 (including �ssion), �s = 0:3 (isotropic scattering),

and ��f = 0:8. Then Figure 2.4 shows, as the slab width increases, how keff increases

toward k
1

and how the dominance ratio asymptotically increases toward unity.
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Figure 2.4: Di�usion theory expressions of the dominance ratio and keff show how
keff approaches k

1
and how the dominance ratio approaches unity as

the homogeneous slab width increases.

Arrays of Isolated Fissionable Materials

Another type of system that typically has a dominance ratio near unity is an ar-

ray of components, such as separated cans of nuclear waste. Using a one-dimensional

discrete ordinates code, we consider the e�ects of increasingly separating array com-

ponents on the dominance ratio. Consider two identical 2 cm slabs of �ssionable

material, each with �t = 1:0, �s = 0:7 (isotropic scattering), and ��f = 0:8. Fig-

ure 2.5 shows that as the slabs are separated by an increasing width of scattering

material, communication weakens, the dominance ratio approaches unity, and (in

this case) keff decreases. The very high dominance ratio problems proved to be

di�cult for the code. When the dominance ratio is near one, the �rst and second

eigenvalues are nearly the same. In this case, the �rst two eigenstates become less

distinct, and the code may try to converge to some linear combination of the �rst

two eigenstates.
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Figure 2.5: Several deterministic discrete-ordinates calculations show that as two
slabs are separated by an increasing width of scattering material, keff
approaches that of a single slab and the dominance ratio approaches
unity.

2.4 The Fission Matrix

The �ssion matrix, L̂, may be estimated in di�erent ways, for instance, by a

Monte Carlo calculation, a set of di�usion calculations, or a set of discrete-ordinates

transport calculations.

A �ssion matrix obtained from a Monte Carlo calculation is merely a matter of

bookkeeping. When a �ssion source particle is born, its cell of origin is logged, say,

cell j. After transport, suppose this particle produces a subsequent �ssion source

particle in cell i. This production would be accumulated for element (i; j). After

all the particles in the cycle are completed, each element is divided by the source in

cell j, such that each element (i; j) is the probability that a particle born in cell j

produces a subsequent �ssion source particle in cell i,

L̂ij =
�ssion weight produced in i due to a source in j

source in j
: (2.172)
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The numerator of L̂ij does not directly contain source normalization. It is the �ssion

weight from which source neutrons are sampled, not the actual simulated particles.

Therefore, an element (i; j) of the �ssion matrix may have a nonzero contribution,

but because of sampling, no simulated �ssion neutrons are actually produced in cell

i. The �ssion weight is equivalent to the incremental contributions made to the keff

estimator. Succinctly, then, the numerators of the �ssion matrix elements are the

keff estimates in cell i due to a particle originating in cell j. Thus, we may have as

many di�erent types of �ssion matrices as we have keff estimator types. We may

have a collision �ssion matrix, an absorption �ssion matrix, and a track length �ssion

matrix.

Accumulating Monte Carlo data for a single cycle produces a cycle �ssion ma-

trix. From the cycle �ssion matrix comes the dominant cycle eigenvector and cycle

eigenvalue. One may obtain an average cycle eigenvalue over many cycles. The

problem with the cycle �ssion matrix is that it is based only upon the number of

histories per cycle. The number of histories per cycle may be enough for theM cells

in the modeled system, but not enough for good statistics in the M2 elements of

the �ssion matrix. Additionally, the bias in the �ssion matrix elements, and hence

the eigenvalue, is more prevalent when the number of histories is small. The bias is

a manifestation of each �ssion matrix element being the ratio of the average of the

numerator and the average of the denominator. Generally, the average of a ratio is

not equal to the ratio of the average numerator to the average denominator [Elp85].

Experience has shown that this bias is usually positive, that is, the cycle �ssion

matrix dominant eigenvalue is higher than the true eigenvalue.

The cumulative �ssion matrix diminishes the bias in its elements more so than

does the cycle �ssion matrix. Instead of accumulating numerator and denominator
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data over just a single cycle, the data are accumulated over all the cycles up to that

point. The better statistics in the numerator and denominator result in reduced

bias in the �ssion matrix elements. Even if the �ssion source is not converged, the

data accumulated for the �ssion matrix is expected to be accurate since the �ssion

matrix elements are probabilities. The validity of this statement is diminished when

the �ssion source is not adequately sampled. The disadvantage of the eigenvalue of

the cumulative �ssion matrix is that it is di�cult to estimate its error in a simple,

traditional manner. Eigenvalues from successive cycles are not independent. An

attempt to propagate the errors through the source iteration determination of the

dominant eigenstate seem cumbersome. However, some propagated error estimates

have been proposed [Kap58].

The �ssion matrix is also deterministically obtainable. Instead of bookkeeping,

though, this approach requires a separate �xed source calculation for each cell in

the system. For a single calculation, a unit source is placed in one cell. If the

calculation is a cell-edge di�usion calculation, it may require distributing the source

between two cell-edges. Upon completion, there is a system-wide response to that

unit source in the one cell. Scaled by the �ssion cross section, this response provides

one column of the �ssion matrix. Then the calculation is repeated for each cell in

the system. In this thesis, we use di�usion calculations instead of discrete-ordinates

transport calculations, because our ultimate intended use is acceleration and the

di�usion calculations are faster. Also, in practice, most criticality problems tend to

have fairly isotropic scattering.

Because the �ssion matrix resides on a spatially discretized system, it su�ers from

a discretization error. For example, with vacuum boundary conditions, the �ssion

matrix's at �ssion source in the boundary cell overestimates the leakage. Therefore,
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the eigenvalue of the �ssion matrix is not equal to the true eigenvalue.



CHAPTER III

Fourier Analysis and Damped Acceleration

3.1 Motivation

A Fourier Analysis is a way to determine the stability and speed of convergence

of an iteration method. If the error for any particular mode, or frequency, grows

with each iteration, the method is unstable. The rate at which the most dominant

error mode decays gives the speed of convergence. The analysis requires an in�nite,

homogeneous medium and is only applicable to a linear method.

We will �nd that our �ssion source acceleration methods are unstable, or highly

oscillatory, if the full additive correction is made at each cycle or iteration. Thus

we damp the additive correction, adding only a portion of it. Unfortunately, since

criticality calculations are nonlinear, we do not have the luxury of using a Fourier

analysis to see the stabilizing e�ects of damping. Instead, we turn to �xed source

acceleration methods, namely Di�usion Synthetic Acceleration (DSA). If the DSA

method is discretized in an \inconsistent" way, it may su�er instabilities [Ree71]. We

will show that damping the DSA additive correction can alleviate these instabilities.

The discretization that causes the DSA instabilities is similar to the discretization we

are forced to use in Monte Carlo �ssion source convergence acceleration. Therefore,

we use the DSA results as a theoretical foundation for damping the Monte Carlo

48
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�ssion source acceleration correction.

3.2 Transport Equation

The �xed-source, monoenergetic transport equation with isotropic scattering in

one-dimensional homogeneous slab geometry is

�
@ (x; �)

@x
+ �t (x; �) =

1

2
�s�(x) +

1

2
Q(x) ; (3.1)

where �(x) is the scalar ux. Since the Fourier Analysis requires an in�nite, homo-

geneous medium, we will not concern ourselves with boundary conditions.

3.3 Source Iteration

The Source Iteration method comes from introducing iteration indices to Equa-

tion 3.1. Its two steps are

�
@

@x
 (`+1=2)(x; �) + �t 

(`+1=2)(x; �) =
1

2
�s�

(`)(x) +
1

2
Q(x) ; (3.2)

�(`+1)(x) = �(`+1=2)(x) �
Z 1

�1
 (`+1=2)(x; �)d� ; (3.3)

We want to Fourier-analyze the errors in the Source Iteration method. Denoting the

error E(x; �) as the di�erence between the  of successive iterations,

E(`+1=2)(x; �) =  (`+1=2)(x; �)�  (`�1=2)(x; �) ; (3.4)

and subtracting Equation 3.2 at iteration `-1/2 from Equation 3.2 at iteration `+1/2,

we obtain

�
@

@x
E(`+1=2)(x; �) + �tE

(`+1=2)(x; �) =
1

2
�s

Z 1

�1
E(`�1=2)(x; �) ; (3.5)

where we have assumed constant cross sections. Equation 3.5 tells us that we may

interpret  and � in Equation 3.2 and 3.3 as the iteration errors so long as

Q(x) = 0 : (3.6)
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Recognizing that ei�x is the eigenfunction of the errors and ! the eigenvalue, we

introduce into Equations 3.2 and 3.3 the following Fourier separation of variables

ansatz

Q(x) = 0 ; (3.7)

�(`) = !`ei�x ; (3.8)

 (`+1=2) = !`a(�)ei�x ; (3.9)

and obtain

a(�) =
�s

2(�t + i��)
; (3.10)

! =
Z 1

�1
a(�) d� : (3.11)

Substituting Equation 3.10 into 3.11, multiplying and dividing by the complex con-

jugate, and dividing numerator and denominator by �2
t , we obtain an expression for

the eigenvalue ! of the method,

! =
Z 1

�1

�s

2(�t + i��)
d� =

Z 1

�1

�s(�t � i��)

2(�2
t + �2�2)

d� (3.12)

=
c

2

Z 1

�1

d�

1 + �2�2
; (3.13)

where � is in units of cm�1 in Equation 3.12 and, in Equation 3.13, � is in units of

mfp�1 and

c =
�s

�t

= scattering ratio : (3.14)

The maximum eigenvalue, called the spectral radius, of the method measures the

decay (or growth) of the dominant error mode. A spectral radius greater than unity

implies error growth, or instability, and a spectral radius less than unity dictates the

slowest error decay. For Source Iteration,

sup
�

j!j = c ; (3.15)

so it is stable since c � 1, but extremely slow for c near 1 and � � 0.
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3.4 Di�usion Synthetic Acceleration

The idea behind the Di�usion Synthetic Acceleration (DSA) Method is to calcu-

late an approximation to the exact correction to the angular ux at each iteration.

To that end, the exact correction at iteration ` is

g(`+1)(x; �) =  (x; �)�  (`+1=2)(x; �) ; (3.16)

where  (x; �) is the exact angular ux satisfying the transport equation in a homo-

geneous medium,

�
@

@x
 (x; �) + �t (x; �) =

1

2
�s�(x) +

1

2
Q(x) ; (3.17)

�(x) =
Z 1

�1
 (x; �)d� : (3.18)

Subtracting Equation 3.2 from Equation 3.17 yields an equation for the exact cor-

rection,

�
@

@x
g(`+1)(x; �) + �tg

(`+1)(x; �)�
1

2
�s

Z 1

�1
g(`+1)(x; �)d�

=
1

2
�s

�
�(`+1=2)(x)� �(`)(x)

�
; (3.19)

where

�(`+1=2)(x) =
Z 1

�1
 (`+1=2)(x; �)d� : (3.20)

Solving Equation 3.19 for g(`+1)(x; �) and adding it to the most recent angular ux

results in the exact angular ux:

 (x; �) =  (`+1=2)(x; �) + g(`+1)(x; �) ; (3.21)

and the calculation is �nished. Unfortunately, Equation 3.19 is just as di�cult to

solve as the original Source Iteration problem, Equation 3.2. Therefore, we take the
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di�usion approximation of Equation 3.19. First, we de�ne

f (`+1)n (x) �
Z 1

�1
�ng(`+1)(x; �)d� (3.22)

and assume that the exact correction is linear in angle,

g(`+1)(x; �) �
1

2

�
f
(`+1)
0 (x) + 3�f

(`+1)
1 (x))

�
: (3.23)

Operating on Equation 3.19 by Z 1

�1
(�)d� (3.24)

and Z 1

�1
�(�)d� ; (3.25)

we obtain

@

@x
f
(`+1)
1 (x) + �tf

(`+1)
0 (x)� �sf

(`+1)
0 (x)

= �s

�
�(`+1=2)(x)� �(`)(x)

�
; (3.26)

and

@

@x

Z 1

�1
�2g(`+1)(x; �)d�+ �tf

(`+1)
1 (x) = 0 : (3.27)

Using the linear approximation of g, Equation 3.23, in Equation 3.27 produces an

expression for f1,

f
(`+1)
1 (x) = �

1

3�t

@

@x
f
(`+1)
0 (x) ; (3.28)

which, when substituted into Equation 3.26, yields the di�usion approximation to

Equation 3.19, the acceleration equation,

�
@

@x

1

3�t

@

@x
f
(`+1)
0 (x) + �af

(`+1)
0 (x)

= �s

�
�(`+1=2)(x)� �(`)(x)

�
: (3.29)
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The DSA method, without considering boundary conditions, consists of a trans-

port source iteration, Equation 3.2; calculating the most recent scalar ux,

�(`+1=2)(x) =
Z 1

�1
 (`+1=2)(x; �)d� ; (3.30)

calculating the correction from Equation 3.29; then applying it to the most recent

scalar ux

�(`+1)(x) = �(`+1=2)(x) + f
(`+1)
0 ; (3.31)

and continuing this sequence until convergence.

As was performed for the Source Iteration method, we may Fourier analyze the

DSA method (assuming constant cross sections) and obtain [Lar84]

! =

"
c�2

�2 + 3(1� c)

# Z 1

�1

P2(�)

1 + �2�2
d� (3.32)

=

"
�s�

2

�t�2 + 3�a

# Z 1

�1

P2(�)

1 + �2�2
d� : (3.33)

Here P2(�) is the second Legendre polynomial,

P2(�) =
3�2 � 1

2
: (3.34)

The spectral radius of the DSA method is less than or equal to 0.2247c [Lar84], so

it is stable and converges for all c. The eigenvalues of both the Source Iteration and

DSA methods are shown in Figure 3.1. One can see that DSA entirely removes the

low order (� = 0) error modes. These are the modes with which Source Iteration has

the most di�culty. Additionally, the DSA eigenvalue is always less than the Source

Iteration eigenvalue for all !, so DSA will always converge faster.

3.5 Consistently Discretized DSA

The analytic equations for the Source Iteration and DSA methods are useful only

to a certain degree. Systems more complicated in the way of materials and geom-
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Figure 3.1: Eigenvalues of the Source Iteration and DSA methods for c=1.0.

etry require discretizing the analytic equations and solving them on a computer.

How does one go about discretizing the transport and di�usion equations in DSA?

It turns out that independently discretizing each equation, using one's favorite dis-

cretization schemes, may lead to instability when the mesh sizes are greater than

about 1 mfp. In 1977, Alcou�e [Alc77] showed that DSA is unconditionally stable

for the diamond-di�erenced SN if the di�usion equation is discretized consistently

with the transport equation. Instead of deriving the analytic DSA equations and

independently discretizing the transport and di�usion equations, the di�usion part

of the DSA equation is derived from the discretized transport equation. Larsen de-

vised a four-step method of consistently deriving the discretized DSA equations for

other transport di�erencing schemes [Lar82]. The spectral radius of the consistently

discretized DSA schemes are the same as the analytical DSA, namely 0:2247c, for all

mesh sizes.
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3.6 Inconsistently Discretized DSA

With the previous paragraph having little good to say about inconsistently dis-

cretized DSA, why on earth would anyone use it? There are at least two good

reasons:

� The system being modeled is complicated such that the consistently discretized

DSA equations are simply not practical, or

� A deterministic method is being used to accelerate a Monte Carlo transport

method and the equations are inherently inconsistent.

The last item suggests that instabilities may exist when trying to accelerate Monte

Carlo with a deterministic correction. We show here that this damning quality of

inconsistently discretized DSA is stemmed by damping the DSA correction.

Analytically, the damped DSA equations are

�
@

@x
 (`+1=2)(x; �) + �t 

(`+1=2)(x; �) =
1

2
�s�

(`)(x) +
1

2
Q(x) ; (3.35)

�(`+1=2)(x) =
Z 1

�1
 (`+1=2)(x; �)d� ; (3.36)

�
@

@x

1

3�t

@

@x
f
(`+1)
0 (x) + �af

(`+1)
0 (x) = �s

�
�(`+1=2)(x)� �(`)(x)

�
; (3.37)

�(`+1)(x) = �(`+1=2)(x) + �f
(`+1)
0 ; (3.38)

where � in Equation 3.38 is the damping factor that de�nes the method:

� = 0 Source Iteration ; (3.39)

0 < � < 1 Damped DSA ; (3.40)

� = 1 DSA : (3.41)
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Now we spatially discretize our system such that xj are the centers and xj+1=2 are

the edges of uniform cells of width h. The angular variable is discretized using the

SN (N even) Gauss-Legendre quadrature set such that

Z 1

�1
�d� �

NX
m=1

�mwm ; (3.42)

�n = ��N�n+1 ; (3.43)

wm = wN�n+1 ; (3.44)

2 =
NX

m=1

wm ; (3.45)

where wm is the weight (approximating d�) and �m approximates � in the mth an-

gular bin. Discretization of the transport equation requires auxiliary equations to

relate the cell edge angular uxes to the cell center angular uxes. These auxiliary

equations constitute a di�erencing scheme. Many di�erencing schemes exist, but

we will look solely at the Diamond Di�erencing scheme, where the cell center an-

gular uxes are the average of the two cell edge uxes. The di�usion equation is

centrally di�erenced. The inconsistently di�erenced, damped DSA equations for a

homogeneous medium are as follows:

�m

h

�
 
(`+1=2)
m;j+1=2 �  

(`+1=2)
m;j�1=2

�
+ �t 

(`+1=2)
m;j =

�s

2
�
(`)
j +

1

2
Qj ; (3.46)

 
(`+1=2)
m;j =

1

2

�
 
(`+1=2)
m;j+1=2 +  

(`+1=2)
m;j�1=2

�
; (3.47)

�
(`+1=2)
j =

NX
n=1

 
(`+1=2)
n;j wn ; (3.48)

�
1

3�th2

�
f
(`+1)
j+1 � 2f

(`+1)
j + f

(`+1)
j�1

�
+ �af

(`+1)
j = �s

�
�
(`+1=2)
j � �

(`)
j

�
; (3.49)

�
(`+1)
j = �

(`+1=2)
j + �f

(`+1)
j : (3.50)

Into Equations 3.46 through 3.50 we introduce the Fourier separation of variables

ansatz,
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Qj = 0 ; (3.51)

�
(`)
j = !`ei�xj ; (3.52)

 
(`+1=2)
m;j = !`ame

i�xj ; (3.53)

 
(`+1=2)
m;j+1=2 = !`bme

i�xj+1=2 ; (3.54)

�
(`+1=2)
j = !`uei�xj ; (3.55)

f
(`+1)
j = !`vei�xj ; (3.56)

(where the zero source appears because the uxes are interpreted as ux errors), and

dividing by

!`ei�xj ; (3.57)

we obtain

�m

h
bm

�
ei�h=2 � e�i�h=2

�
+ �tam =

�s

2
; (3.58)

am =
1

2
bm

�
ei�h=2 + e�i�h=2

�
; (3.59)

u =
NX
n=1

anwn ; (3.60)

�
1

3�th2
v
�
ei�h � 2 + e�i�h

�
+ �tv = �s(u� 1) ; (3.61)

! = u+ �v : (3.62)

Setting

� = �h=2 (3.63)

and making use of the identities

sin � =
ei� � e�i�

2i
; (3.64)

cos � =
ei� + e�i�

2
; (3.65)
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we �nd that

u =
�s

2�t

NX
m=1

cos2 �

cos2 � + 4
�2th

2�2m sin2 �
wm (3.66)

and

! =

�
�a + ��s +

4
3�th2

sin2 �
�
u� ��s

�a +
4

3�th2
sin2 �

: (3.67)

Unlike the analytic eigenvalue, the damped DSA eigenvalue is periodic with pe-

riod

T =
2�

h
; (3.68)

so we consider j�j � �
h
, or 0 � � � �

h
. At the lowest frequency, � = 0, the eigenvalue

!, from Equation 3.67, varies linearly with �,

!j�=0 = (1� �)
�s

�t

; (3.69)

from ! = 0 for DSA and ! = c = �s

�t
for Source Iteration. At the highest, most

oscillating frequency, we �nd

j!j�=�
h
=

��s

�a +
4

3�th2

: (3.70)

In order for the method to be stable, we must have the spectral radius less than or

equal to 1. This stipulation limits the mesh size according to the following equation:

h2�2
t

�
(� + 1)

�s

�t

� 1

�
<

4

3
: (3.71)

We delightfully see from Equation 3.71 that damping the DSA allows stability with

larger mesh sizes.

Figure 3.2 shows that, for a mesh size of 4/3 and c = �s

�t
=1.0, the Source Iteration

method (� = 0) converges slowly for the low frequencies and that DSA (� = 1:0)

becomes unstable at the high frequencies. Damping eliminates the instability at the

high frequencies for � =0.2, 0.4, and 0.6. Stability has the compromising price of
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Figure 3.2: The inconsistently discretized, damped DSA eigenvalues for various fre-
quencies � and damping factors �.

reduced acceleration. The optimal � accelerates the most without going unstable.

Figure 3.3 shows the DSA spectral radius from the Fourier analysis. The optimal

beta{the beta for which the spectral radius is minimized{is about 0.429.

Figure 3.4 shows how, at the highest frequency � = �
h
, increasing the mesh size

h for � = 1:0 will induce instability at a little over a mean free path thick. Damping

(decreasing �) allows larger mesh sizes. For comparison, Figure 3.5 shows that the

threshold mesh size is more advantageously sensitive to the scattering ratio (with

�=1.0) than to �. That is, assuming the scattering ratio is variable, the method

stabilizes faster for decreasing c than for decreasing �. This behavior is veri�ed by

Equation 3.71.

3.7 Numerical Results

To verify the results of the Fourier analysis, we demonstrate, as a function of

mesh size, the stability of the following methods using Diamond Di�erencing:
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Figure 3.3: The spectral radii for inconsistently discretized, damped DSA eigenvalues
for various values of �. The optimal beta is depicted at about 0.429.
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larger e�ect on the threshold (to instability) mesh size than does �.

� unaccelerated Source Iteration,

� accelerated with consistently di�erenced DSA, and

� accelerated with inconsistently di�erenced DSA,

� � = 1:0

� � = 0:6

� � = 0:4.

We analyze a 40 mfp homogeneous slab with a nearly normal incident beam on the

left edge. Using an S32 quadrature set, the incident angular ux,  0;m is

 0;m =
�m;32

�32w32

; (3.72)

such that the current is unity. The right edge of the slab is a vacuum. The scattering

ratio of the slab is 1.0. Using a convergence criterion of 10�6 for the relative error, we
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use mesh sizes of 0.0625 cm, 0.125 cm, and so on, doubled, up to 8.0 cm, for a total

of 8 cases. The unaccelerated source iteration took approximately 3080 iterations

to converge for all cases, except for the 8.0 cm mesh size, where it required 3400

iterations to converge. Figure 3.6 shows the experimental spectral radii for both the

consistently and inconsistently discretized DSA. The expression for estimating the

spectral radius is

� =
jj�(n) � �(n�1)jj2

jj�(n�1) � �(n�2)jj2
; (3.73)

where jj � jj2 denotes the `2 norm. For the full correction, � = 1:0, the inconsistently

discretized DSA is unstable for mesh sizes of 1.15 cm and larger. For larger mesh

sizes, damping instills stability, whereas it diminishes the gain for smaller mesh sizes.
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Figure 3.6: The experimental spectral radii for inconsistently discretized, damped

DSA for increasing mesh size and for various values of �.

For a speci�c mesh size, there is an optimal � that results in the minimumspectral

radius. Figure 3.7 indicates that the optimal � is about 0.4. This �gure generally

agrees with the plot of the optimal � from the analytic Fourier analysis, Figure 3.3.
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Figure 3.7: For a mesh size of 4/3 mfp, an optimal � exists such that the spectral
radius is a minimum for inconsistently discretized DSA.

We conclude by noting that if a cell-edge di�erencing scheme was used for the

di�usion equation in DSA instead of a cell-center di�erencing scheme, the method

would have a wider range of stability. To apply the DSA correction, the cell-edge

corrections are averaged before adding to the transport ux, which reside on the

cell centers for diamond-di�erencing. The result of averaging the corrections is the

reduction of the high order errors, those that cause the method's instability.



CHAPTER IV

Experimental Fourier Analysis Tool

We have demonstrated the analytic Fourier Analysis applied to Di�usion Syn-

thetic Acceleration. The analytic Fourier Analysis is not directly applicable to real

problems because it requires an in�nite, homogeneous medium. Moreover, it requires

a linear method. These reasons exclude it from application to criticality problems.

We present an experimental Fourier analysis that, in the vein of the analytic

analysis, indicates the stability and convergence of the various modes of the solution.

In one-dimensional slab geometry, the �ssion source f(x), 0 � x � 2L, may be

represented by the Fourier series [Spi68]

f(x) =
a0

2
+

1X
n=1

�
an cos

n�x

L
+ bn sin

n�x

L

�
; (4.1)

where the series converges to f(x) where f(x) is continuous, and to the average

of f(x) where f(x) is discontinuous; f(x) is periodic on the interval, such that

f(x+ 2L) = f(x); and the coe�cients are

an =
1

L

Z 2L

0
f(x) cos

n�x

L
dx ; (4.2)

bn =
1

L

Z 2L

0
f(x) sin

n�x

L
dx : (4.3)

In Equation 4.1, the n = 1 terms represent the fundamental mode, and n � 2

represent the higher modes. Note that, for each n, the sine and cosine may be
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written as [Kap84]

An sin

�
n�x

L
+ 

�
; (4.4)

where

An =
q
a2n + b2n ; (4.5)

an = An sin  ; (4.6)

bn = An cos  : (4.7)

Computationally, to gauge the convergence of the various modes of the �ssion

source, we extract the individual Fourier coe�cients of the �ssion source in a fashion

similar to that of Equations 4.2 and 4.3, utilizing Equation 4.5. Let us consider a

one-dimensional slab of width X withM cells, each of width 4x, and discrete values

f (`)m of the �ssion source in cell m at iteration, or cycle, `. The Fourier coe�cient for

the nth mode at iteration, or cycle, ` is

F (`)(n�) =
1

X

MX
m=1

f (`)m sin
n�(m� 1

2
)

M
4 x (4.8)

�
1

X

Z X

0
f (`)(x) sin

n�x

X
dx; (4.9)

where n = 1; 2; : : : ;M .

Plotting the Fourier coe�cient of a particular mode as a function of iteration, or

cycle, we observe the convergence of that mode when the plot levels o�. The slope

of the plot as it is converging gives an idea of the speed of convergence. However,

unlike the usual Fourier analysis for an in�nite medium, the boundary e�ects here

keep the modes from being entirely independent.

We will use the experimental Fourier analysis to gauge the convergence of both

deterministic and Monte Carlo criticality methods, and to show the e�ects of accel-

erating the �ssion source convergence.



CHAPTER V

Di�usion-Simulated Monte Carlo Calculations

It is no secret that the statistical noise is the main culprit plaguing a potential

Monte Carlo criticality acceleration method [Swa72]. Pedagogically then, let us

investigate potential Monte Carlo criticality acceleration methods using di�usion

theory to simulate the transport theory. This was the route taken by Carter and

McCormick [Car69] to examine their proposed Monte Carlo acceleration method.

Di�usion theory possesses no statistical noise, but the success of an acceleration

scheme in di�usion theory gives an indication of potential success in transport (Monte

Carlo) theory.

Realizing the success of Mihalczo [Mih67] with the �ssion matrix approach (that

is, simply using the eigenvalue of the �ssion matrix), Carter and McCormick incor-

porated this information into the actual criticality calculation. After each iteration,

they adjusted the newly acquired source in each cell by the ratio of that cell's �s-

sion matrix eigenvectors from successive iterations. We will explain their method,

propose a modi�cation to their method, and compare both to the unaccelerated case.

Carter and McCormick present the continuous, analytic, integral transport equa-

tion as

S(r) =
1

k̂

Z
K(r; r0)S(r0) d3r0 ; (5.1)
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where S(r) is the �ssion source, k̂ is the eigenvalue, and K(r; r0) is the number of

�ssion source particles produced per unit volume about r due to a particle born at

r
0 [Car69] Introducing iteration indices produces an analytic source iteration scheme

representing the Monte Carlo method,

S(n)(r) =
1

k̂(n)

Z
K(r; r0)S(n�1)(r0) d3r0 : (5.2)

The kernelK(r; r0) is approximated in discrete form by the �ssion matrix L(n) whose

(i; j)th element, at iteration n, is

L
(n)

ij =

R
i

R
jK(r; r0)S(n�1)(r0) d3r0 d3rR

j S
(n�1)(r0) d3r0

; (5.3)

where the indices on the integrals indicate the volume of cell i or j. The �ssion

matrix L(n) depends on the �ssion source at iterations n and n � 1, so it, too, is

iteration dependent. L(n) is analogous to the cycle �ssion matrix in Monte Carlo.

The eigenstate of L(n) satis�es

f (n) =
1

k(n)
L
(n)f (n) : (5.4)

Here f (n) is the dominant eigenvector and k(n) is the dominant eigenvalue of L(n) at

iteration n.

Carter and McCormick proposed, without derivation, the following acceleration

method:

S(n)(r) =
1

k̂(n)

X
j

0
@ f

(n)

j

f
(n�1)

j

1
A Z

j
K(r; r0)S(n�1)(r0) d3r0 : (5.5)

We propose a slight variation to Carter and McCormick's method by replacing

the correcting ratio in Equation 5.5 with

0
@ f

(n)

j

S
(n�1)

j

1
A ; (5.6)
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to obtain

S(n)(r) =
X
j

0
@ f

(n)
j

S
(n�1)

j

1
AZ

j
K(r; r0)S(n�1)(r0) d3r0 ; (5.7)

where

S
(n�1)

j =
Z
j
S(n�1)(r0) d3r0 (5.8)

is the cell-averaged source in cell j at iteration n. This modi�cation ties the acceler-

ation more closely to the source being accelerated. The correcting ratio modi�es the

magnitude of the �ssion source in each cell and the transport kernel K controls the

shape of the �ssion source within each cell.

The kernel K(r; r0) represents Monte Carlo or deterministic, say discrete ordi-

nates, neutron transport. Numerically, let us represent K(r; r0) by a �ne-grid �ssion

matrix, K, whose elements are Kij . We calculate K by a series of �xed-source dif-

fusion calculations. Each calculation has a unit source in one cell. The response to

that unit source is converted from a scalar ux to a �ssion source by multiplying

by ��f . One calculation with the source in cell j produces the jth column of K.

If there are N cells in the system, N calculations are required. The unaccelerated

source iteration method is represented by

S
(n)

i =
1

k̂(n)

X
j

KijS
(n�1)

j : (5.9)

We e�ectively normalize the source iteration by dividing the right hand side of Equa-

tion 5.9 by k̂(n), given recursively by

k̂(n) = k̂(n�1)
R
S(n)(r0) d3r0R
S(n�1)(r0) d3r0

: (5.10)

The coarse-grid �ssion matrix is obtained from Equation 5.3 as a �ssion source-

weighted collapse of the �ne-grid �ssion matrix,

L
(n)

kl =

P
j2l

hP
i2kKijS

(n�1)

j

i
P

j2l S
(n�1)

j

: (5.11)
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For instance, if there are 4 �ne cells and 2 coarse cells, with coarse cell 1 containing

�ne cells 1 and 2, and coarse cell 2 containing �ne cells 3 and 4, the �rst row of L is

L
(n)
11 =

(K11 +K21)S
(n�1)

1 + (K12 +K22)S
(n�1)

2

S
(n�1)
1 + S

(n�1)
2

; (5.12)

L
(n)

12 =
(K13 +K23)S

(n�1)

3 + (K14 +K24)S
(n�1)

4

S
(n�1)
3 + S

(n�1)
4

: (5.13)

We investigated these two acceleration methods on a one-group, one-dimensional

slab of thickness 60.0 cm with vacuum boundaries. The physical parameters, with

isotropic scattering, are

�t = 1:0 cm�1 ; (5.14)

�a = 0:3 cm�1 ; (5.15)

��f = 0:30713574 cm�1 : (5.16)

This constitutes a critical system when the slab is 20 mfp thick [Kap74]. The slab

was made larger so as to incur a larger dominance ratio of about 0.991. To make the

acceleration more visible, we began with a very poor initial �ssion source distribution:

at in the left half of the slab and zero in the right half. The convergence requirement

was 1:0 � 10�5 and false convergence was taken into account, by multiplying the

convergence requirement by (1 � �), where � is the spectral radius, estimated by

� �
jjS(n+1) � S(n)jj1

jjS(n) � S(n�1)jj1
: (5.17)

The �ne-grid �ssion matrix is calculated on 0.5 mfp cells, or 120 cells total.

Figure 5.1 shows the number of iterations required for convergence for varying

numbers of coarse-grid cells. For too few coarse-grid cells, there is not enough res-

olution to provide signi�cant acceleration. For too many coarse-grid cells, the poor

initial �ssion source guess makes more of a signi�cant impact on the coarse-grid
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�ssion matrix and inhibits acceleration. The modi�ed method has a much greater

range of e�ectiveness over the number of coarse-grid cells. With the number of com-

100
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Figure 5.1: Acceleration behavior (iterations to converge) for the Carter-McCormick
and Modi�ed Carter-McCormickmethods with varying number of coarse-
grid cells.

putational operations going up as N3 with the number of coarse-grid cells, N , fewer

iterations with a larger matrix may take more computer time. The computer times

on a Sun SPARC20 workstation are shown in Figure 5.2.

We shall also look at the experimental Fourier mode convergence for the unaccel-

erated case, the Carter-McCormick method with 4 coarse-grid cells, and the Modi�ed

Carter-McCormick method with 10 coarse-grid cells. Figures 5.3, 5.4, and 5.5 show

the convergence of the �rst three experimental Fourier modes. They show that the

Carter-McCormick method is wildly oscillatory before it converges. The Modi�ed

Carter-McCormick method is also oscillatory, but to a lesser degree.

In the next chapter, we discuss damping, or reducing an additive correction to

keep an acceleration method from becoming unstable. If it should become necessary
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Figure 5.2: Acceleration behavior (computer time) for the Carter-McCormick and
Modi�ed Carter-McCormick methods with varying number of coarse-grid
cells.

for stability reasons to damp a multiplicative correction , we note that it may be

damped, or made closer to unity, by the following operation:

  
r + 

r + 1
; (5.18)

where r > 0.
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CHAPTER VI

Fission Matrix Acceleration Method

Criticality calculations utilizing unaccelerated source iteration require many iter-

ations or cycles to converge the �ssion source for high dominance ratio problems. We

wish to remedy this downside of source iteration by devising a method to accelerate

the �ssion source convergence. The approach we take is to derive equations for the

exact corrections to the �ssion source at any iteration or cycle. After adding the ex-

act correction to the �ssion source, we arrive, in one iteration or cycle, at the exact

solution, and the calculation is �nished. However, realizing that solving for the exact

correction is just as di�cult as the original problem, the equations for the correction

are approximated in some fashion so that they are much simpler to solve. With an

approximate correction, the overall method will not converge in one iteration, but it

can accelerate convergence and overcome the extra time spent computing the cor-

rection. This procedure is common. Di�usion Synthetic Acceleration is an example

of this approach.

6.1 Derivation of the Fission Matrix Method

For clarity and continuity, we repeat the steps for obtaining the integral transport

equation. We begin with the monoenergetic, one-dimensional integro-di�erential
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transport equation with isotropic scattering. We consider a slab of width L with

vacuum boundaries,

�
@ (x; �)

@x
+ �t(x) (x; �) =

1

2

 
�s(x) +

��f (x)

k

! Z
 (x; �)d� ; (6.1)

 (0; �) = 0 ; � > 0 ; (6.2)

 (L; �) = 0 ; � < 0 : (6.3)

For simpli�cation, we de�ne the transport operator T as the leakage and collision

terms,

T (x; �) = �
@ (x; �)

@x
+ �t(x) (x; �) ; (6.4)

the scattering operator S as the inscattering term,

S (x; �) =
1

2
�s(x)

Z
 (x; �)d� ; (6.5)

and the �ssion operator F as the �ssion source,

F (x; �) =
1

2

��f (x)

k

Z
 (x; �)d� : (6.6)

We manipulate the transport equation, �rst by moving the inscattering term to the

left hand side,

(T� S) (x; �) =
1

k
F (x; �) ; (6.7)

then operating on both sides by (T� S)�1, to obtain

 (x; �) =
1

k
(T� S)�1F (x; �) : (6.8)

Operating on both sides of Equation 6.8 by the �ssion operator F, we obtain an

integral transport equation,

f(x) =
1

k
Lf(x) ; (6.9)
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where

f(x) = F (x; �) (6.10)

is the �ssion source, and

L = F(T � S)�1 (6.11)

is an integral operator acting only on the spatial variable. (We approximate L by

the �ssion matrix, as we shall see later.) The integral form of the transport equation

in Equation 6.9 best describes the Monte Carlo criticality method. It is also �tting

for a type of di�usion calculation where the operator L is approximated by a matrix

whose elements are estimated by di�usion theory.

The analytic form of the source iteration method is represented by introducing

iteration indices to Equation 6.9, the integral transport equation,

f (`+
1
2
) =

1

k(`)
Lf (`) ; (6.12)

f (`+1) = f (`+
1
2
) : (6.13)

We desire the exact additive correction, g(`+1), to the most recent source iteration

�ssion source, f (`+
1
2
), that results in the exact �ssion source. Using Equations 6.9

and 6.12, we formulate g(`+1) as follows:

g(`+1) � f � f (`+
1
2
) (6.14)

=
1

k
Lf � f (`+

1
2
) (6.15)

=
1

k
L(f � f (`+

1
2
)) +

1

k
Lf (`+

1
2
)
� f (`+

1
2
) : (6.16)

Collecting the g(`+1) terms on the left and rearranging the right hand side, we obtain
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(I�
1

k
L)g(`+1) =

1

k
Lf (`+

1
2
)
� f (`+

1
2
) (6.17)

= (
1

k
L� I)f (`+

1
2
) (6.18)

= (
1

k
L� I)

1

k(`)
Lf (`) (6.19)

=
1

k(`)
L

�
1

k
Lf (`) � f (`)

�
(6.20)

= L

�
1

k
f (`+

1
2
)
�

1

k(`)
f (`)

�
: (6.21)

This is an exact equation for g(`+1), the additive correction to the most recent �ssion

source estimate, f (`+
1
2
). This equation is as complicated and di�cult to solve as the

original problem in Equations 6.12 and 6.13. Therefore, we shall approximate it.

We must approximate the analytic quantities in Equation 6.21. The quantities

f (`)(x), f (`+
1
2
)(x), and g(`+1)(x) are all densities of �ssion source particles at x. (The

correction g is more appropriately a �ssion source correction density.) We convert

the �ssion source particle densities to vectors of cell-average quantities by discretizing

the system, operating on them by the projection operator P, and normalizing, such

that, in cell j,

f̂
(`)
j = Pjf

(`)(x) ; (6.22)

f̂
(`+1=2)
j = Pjf

(`+1=2)(x) : (6.23)

The projection operator P in a deterministic calculation amounts to integrating in

space over cell j,

f̂
(`)
j = P

Det
j f (`)(x) =

Z
x2j

f (`)(x)dx : (6.24)

In a Monte Carlo calculation, the quantities f (`)(x) and f (`+
1
2
)(x) are collections of

particles whose discrete locations are represented by x
(`)
i and x

(`+1=2)
i . The Monte
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Carlo projection operator amounts to summing up the �ssion source particles in cell

j,

f̂
(`)
j = P

MC
j f (`)(x) =

X
i


x
(`)

i;j

; (6.25)

where


x
(`)

i;j

=

8>><
>>:

1 ; x
(`)
i 2 cell j

0 ; otherwise :

(6.26)

The operator L is approximated by the �ssion matrix, L̂, whose (i; j)th element is

the probability that a neutron born in cell j produces a subsequent source neutron in

cell i. In a Monte Carlo calculation, L̂ may be estimated from the Monte Carlo data

by mere bookkeeping during the calculation. Another way to estimate the �ssion

matrix is through a series of di�usion calculations. Each di�usion calculation has a

source in the jth cell and the �ssion production over the entire system produces the

jth column of the �ssion matrix. Whatever way it is calculated, the �ssion matrix

has dominant eigenvalue k̂ and eigenvector f̂ , such that

f̂ =
1

k̂
L̂f̂ : (6.27)

We will also �nd the adjoint eigenvector useful. It is obtained from the adjoint �ssion

matrix, which is the transposed �ssion matrix, since the elements of the �ssion matrix

are all real. Therefore, we have

f̂� =
1

k̂
L̂
�f̂� : (6.28)

Substituting the aforementioned approximations for their analytic counterparts,

Equation 6.21 becomes

(I�
1

k̂
L̂)ĝ(`+1) = L̂

�
1

k(`+1)
f̂ (`+

1
2
)
�

1

k(`)
f̂ (`)

�
; (6.29)



79

where ĝ(`+1) = f̂ (`+1) � f̂ (`+
1
2
) is the cell-averaged correction. Since f̂ (`+

1
2
) is known,

solving for ĝ(`+1) is equivalent to solving for f̂ (`+1), the updated �ssion source.

Unfortunately, Equation 6.29 does not automatically have a solution. Utilizing

the Fredholm-Alternative Theorem [Kre78], we obtain a solvability condition by tak-

ing the inner product of both sides of Equation 6.29 with the adjoint eigenvector,

f̂�. The left hand side is, by Equation 6.28, identically zero,

�
f̂�; (I�

1

k̂
L̂)(f̂ (`+1) � f̂ (`+

1
2
))

�
=

�
(I�

1

k̂
L̂
�)f̂�; (f̂ (`+1) � f̂ (`+

1
2
))

�
(6.30)

= 0 ; (6.31)

giving us the solvability condition,

k(`+1) = k(`)

�
f̂�; L̂f̂ (`+

1
2
)

�
�
f̂�; L̂f̂ (`)

� (6.32)

= k(`)

�
L̂
�f̂�; f̂ (`+

1
2
)

�
�
L̂�f̂�; f̂ (`)

� (6.33)

= k(`)

�
f̂�; f̂ (`+

1
2
)

�
�
f̂�; f̂ (`)

� : (6.34)

For arbitrary discrete vectors a and b, we de�ne the inner product as

(a; b) =
JX
i=1

aibi : (6.35)

Using the value of k(`+1) from Equation 6.34 in Equation 6.29, we solve for ĝ(`+1),

the additive correction. The value of the additive correction is not unique, since any

multiple of the �ssion matrix eigenvector, f̂ , added to the correction is also a solution

of Equation 6.29. Therefore, we make ĝ(`+1) unique by requiring it to be orthogonal

to the adjoint �ssion matrix eigenvector. Operationally, this condition is satis�ed by

setting the additive correction to ĝ(`+1)o , where

ĝ(`+1)o = ĝ(`+1) �
(f̂�; ĝ(`+1))

(f̂�; f̂�)
f̂� ; (6.36)
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such that

(f̂�; ĝ(`+1)o ) = (f̂�; ĝ(`+1))� (f̂�; ĝ(`+1)) (6.37)

= 0 : (6.38)

The additive correction ĝ(`+1)o is used to update, or accelerate, the most recent

�ssion source. As explained in Chapter III, the correction is scaled by a \damping"

factor �, 0 � � � 1, to enhance stability. The resulting method is unaccelerated

source iteration with � = 0, and full acceleration with � = 1. The additive correction

is converted to a multiplicative correction by the following approximation,

f (`+1) = f (`+
1
2
) + �ĝ(`+1)o (6.39)

� f (`+
1
2
)

 
1 + �

ĝ(`+1)o

f̂ (`+
1
2
)

!
: (6.40)

In a deterministic calculation, the �ssion source is multiplied by the multiplicative

correction factor. In a Monte Carlo calculation, depending on the departure of the

multiplicative correction factor from unity, the individual �ssion source particles are

either killed, cloned, or left untouched.

The analytic �ssion matrix acceleration method is unbiased. It converges to

the unaccelerated result since the right hand side of Equation 6.29, and hence the

correction, go to zero as the source converges.

The steps for the �ssion matrix acceleration method are summarized as follows:

1. Perform a transport cycle, Equation 6.12,

f (`+
1
2
) =

1

k(`)
Lf (`) : (6.41)

2. Calculate the eigenstate of the �ssion matrix and adjoint �ssion matrix,

f̂ =
1

k̂
Lf̂ ; f̂� =

1

k̂
L̂
�f̂� : (6.42)
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3. Calculate k(`+1), the solvability condition from Equation 6.34,

k(`+1) = k(`)

�
f̂�; f̂ (`+

1

2
)
�

�
f̂�; f̂ (`)

� : (6.43)

4. Calculate the �ssion source correction using Equation 6.29,

(I�
1

k̂
L̂)ĝ(`+1) = L̂

�
1

k(`+1)
f̂ (`+

1

2
)
�

1

k(`)
f̂ (`)

�
: (6.44)

5. Apply the correction using Equation 6.40 ,

f (`+1) � f (`+
1

2
)

 
1 + �

ĝ(`+1)o

f̂ (`+
1

2
)

!
: (6.45)

and return to step 1 for another cycle.

6.2 Obtaining and Using the Fission Matrix

The �ssion matrix, L̂, may be computationally obtained in a number of di�erent

ways as described in Section 2.4. We will focus on the Monte Carlo and di�usion

�ssion matrices. Any type of �ssion matrix may be used to accelerate any type of

criticality calculation. A Monte Carlo-obtained �ssion matrix may be used to accel-

erate a Monte Carlo calculation. A di�usion-obtained �ssion matrix may be used to

accelerate a di�usion calculation or a Monte Carlo calculation. Other combinations,

though not necessarily practical, are possible.

Using a cumulativeMonte Carlo �ssion matrix results in a �ssion matrix, available

while the calculation is in process, that statistically improves in accuracy each cycle.

The Monte Carlo �ssion matrix is easily accumulated on the typically complicated

Monte Carlo cells; it does not require a regular spatial grid.

If a series of di�usion calculations is used to estimate the �ssion matrix, that set

of calculations need be performed only once at the beginning of the computation,

thereby eliminating step 2 of the �ssion matrix method at every cycle. The di�usion

�ssion matrix has the advantage of containing no statistical noise.
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6.3 Filtering the Monte Carlo Statistical Noise

Implementing �ssion matrix acceleration in a Monte Carlo calculation may also

require \�ltering" the statistical noise, whether the �ssion matrix is from Monte

Carlo or di�usion. The statistical noise occurs in the driving term{the residual of

successive �ssion sources{of the correction equation, Equation 6.40. The statistical

noise tends to have a high frequency which can a�ect lower frequencies through the

acceleration and induce instability. We discuss three ways to �lter the statistical

noise:

� di�usion �lter

� looping

� chopping

{ local

{ global .

The di�usion �lter (for Monte Carlo) selectively smooths the high frequency

uctuations in a function, say, �(x). The strength of the �lter depends on a user-

chosen parameter �2 and produces the smoothed function, say, (x). The �lter

equation is a second-order, di�usion-like equation:

��2 d2

dx2
(x) + (x) = �(x) ; (6.46)

(0) = (L) = 0 : (6.47)

The �lter behaves like the di�usion equation. It smooths out high-order uctuations

in a function while leaving the low-order components untouched. It preserves the
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zeroth moment of the function (or, conserves the neutrons). An assumed form of

�(x),

�(x) = ei�x ; (6.48)

demonstrates how the smoothed function (x), the solution of Equation 6.46, has

damped high frequencies:

(x) =
�(x)

1 + (��)2
: (6.49)

The �lter allows low frequencies (� � 0) of �(x) to pass by unscathed, whereas the

�lter suppresses high frequencies of �(x).

The smoothing operation de�ned by Equation 6.46 is applied to f̂ (`+
1

2
) and f̂ (`)

on the right side of Equation 6.29. Note that to apply the di�usion �lter, we must

impose a spatial grid and discretize Equation 6.46.

There are many, many other kinds of �lters similar in spirit to the di�usion �lter.

One �lter might simply consist of replacing a value at a point with the average of it

and all the surrounding values.

The other two �lters, looping and chopping, are more speci�c to our acceleration

methods. Looping is an attempt to �lter the driving term of the acceleration equation,

Equation 6.29, by multiplying it by the �ssion matrix n times. The acceleration

equation then becomes

(I�
1

k̂
L̂)ĝ(`+1) =

�
1

k̂
L̂

�n
L̂

�
1

k(`+1)
f̂ (`+

1

2
)
�

1

k(`)
f̂ (`)

�
: (6.50)

The e�ect of multiplying the right hand side by the �ssion matrix is to damp out

the high frequencies, just as the hyperbolic transport equation does. However, larger

values of n produce more �ltering, or damping, and, adversely, less gain in accelera-

tion. More than likely, there are problematic optimal values of n. We did not make
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a lot of use of this �lter, because, in one-dimensional slab geometries, the di�usion

�lter seemed more e�ective. Looping is attractive in problems with complicated

geometries because it does not require a regular spatial grid.

Local chopping is the simple task of limiting the multiplicative correction, ĝ(`+1),

to below a ceiling of a and above a oor of 1=a, where a is real and a > 1. Local

chopping may produce a bias because it does not preserve any qualities of the correc-

tion; portions of the correction may be limited according to a, while other portions

are not limited. Note that, even when local chopping is not employed, zero always

acts as a oor because we do not keep track of negative particles.

Global chopping is similar to local chopping, except that it determines the damp-

ing factor, �, that keeps the most o�ending multiplicative correction (the smallest or

largest) above the oor or below the ceiling. Then it recalculates the entire correc-

tion with this value of �. While global chopping does not instill the bias that local

chopping may, its acceleration gain may be seriously diminished.

Whatever type of �ltering is used, it is not independent of the damping factor �.

In Equation 6.40, � damps out the correction for all frequency modes. If �ltering is

absent, a lower value of � may damp the o�ending high frequencies, but it also cuts

back the low-order gain in acceleration. If �ltering does its job and smooths the high

frequency noise, � may be increased, resulting in stability and greater acceleration.

It is evident that there are, interdependently, optimal degrees of �ltering and values

of damping.

6.4 Test Problems

We consider three di�erent monoenergetic, one-dimensional slab geometry prob-

lems, each with isotropic scattering. All three have vacuum boundaries. The �rst
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is a 60 mfp homogeneous slab with �t=1.0, �s=0.7, and ��f = 0:30713574 cm�1,

as shown in Figure 6.1. These physical parameters are such that the slab is critical

Σ  = 1.0 ,  Σ  = 0.7 ,  υΣ  = 0.3071s t f Fuel:

Homogeneous Slab

60 cm

Figure 6.1: Homogeneous slab test problem: 60 mean free paths thick with a scat-
tering ratio of 0.7 and dominance ratio of about 0.991.

when it is 20 mfp thick [Kap74]. We consider a thicker slab so that the dominance

ratio is closer to unity. The dominance ratio is about 0.991. The keff of the system

is about 1.02082. Both these values were obtained from a �ne mesh, S32 calculation.

The second test problem is a uniform lattice. The �ssionable fuel regions are

made up of the same material as in the homogeneous slab. The fuel regions are

each 2 cm thick and are separated by 1 cm thick regions of absorbing material with

a scattering ratio of 0.001. The material at the boundaries is another 1 cm slab of

absorber material. There are 19 fuel elements as shown in Figure 6.2. The dominance

ratio of this problem is about 0.996, according to a �ne-mesh S32 calculation. keff

is about 0.59852.
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Uniform Lattice

Σ  = 1.0 ,  Σ  = 0.7 ,  υΣ  = 0.3071s t f Fuel:

Absorber: Σ  = 1.0 ,  Σ  = 0.001 ,  υΣ  = 0.0s t f 

Figure 6.2: Uniform lattice test problem: 58 cm thick system with alternating 2 cm
fuel regions and 1 cm absorber regions, for a total of 19 fuel elements.

The third test problem is a one-dimensional representation of the \keff of the

world" problem [Whi71]. The \keff of the world" problem is a 9x9x9 array of sub-

critical plutonium spheres, except for the middle critical sphere. The problem is

a di�cult one for Monte Carlo calculations since the sampling is inevitably poor

due to the small percentage of important �ssionable material, located in the center

sphere. Also, the usual initial at source is very far from the converged source, which

is peaked at the center critical sphere. Our one-dimensional slab representation of

the \keff of the world" consists of replacing the center element of the uniform lat-

tice in the previous test problem with hotter fuel. This representation is shown in

Figure 6.3. The keff of the system is 0.72400 and the dominance ratio is 0.82318.

For reference, a single regular fuel element surrounded by 1 cm slabs of absorbing

material has a keff of about 0.4436. A hot fuel element surrounded by absorber has
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a keff of about 0.5881.

Σ  = 1.0 ,  Σ  = 0.7 ,  υΣ  = 0.3071s t f Fuel:

Absorber: Σ  = 1.0 ,  Σ  = 0.001 ,  υΣ  = 0.0s t f 

"k     of the world"eff

Σ  = 1.0 ,  Σ  = 0.7 ,  υΣ  = 0.4071s t f Hot Fuel:

Figure 6.3: One-dimensional representation of the \keff of the world," consisting of
the uniform lattice with the center element replaced by material with
��f = 0:4071

6.5 Fission Matrix Acceleration Results

We present results using di�erent variations of the �ssion matrix acceleration

method. First we use a di�usion �ssion matrix on a coarse grid to accelerate a �ne-

grid di�usion �ssion matrix calculation in the homogeneous slab problem. This is a

setup similar to that used for the Carter-McCormick method. These results give us

an idea of what to expect for more sophisticated castings of the acceleration equation.

Second, we present the results of using a di�usion �ssion matrix to accelerate SN

transport calculations for all three test problems. Third is a demonstration of a

Monte Carlo calculation accelerated with a Monte Carlo �ssion matrix. In the next
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section, we show the results of implementing Monte Carlo �ssion matrix acceleration

into the production Monte Carlo code MCNPTM [Bri94] and performing a calculation

on a model of the actual 3-dimensional \keff of the world" problem.

6.5.1 Di�usion Fission Matrix-Accelerated Di�usion

We use a �ne-grid di�usion �ssion matrix to simulate transport source iteration.

Acceleration is delivered through a coarse-grid di�usion �ssion matrix. There are

(at least) two ways of obtaining the coarse-grid di�usion �ssion matrix. The �rst

is to simply estimate it through a series of di�usion calculations on the coarse grid.

Therefore the di�usion �ssion matrix is precalculated {calculated before the source

iteration begins. The adaptation of this type of di�usion acceleration to discrete-

ordinates and Monte Carlo is straightforward. The second way to obtain the coarse-

grid di�usion �ssion matrix is by a source-weighted collapse of the �ne-grid �ssion

matrix at each iteration. This was the method used in the chapter investigating

Carter and McCormick's method. The analogous �ssion matrix in a purely Monte

Carlo calculation is the cycle �ssion matrix. E�ectively, though, it behaves like the

cumulative �ssion matrix because it becomes more accurate each iteration (cycle).

Nevertheless, we will call this the \cycle" di�usion �ssion matrix.

Unlike the Carter-McCormick and Modi�ed Carter-McCormick methods, the dif-

fusion �ssion matrix-accelerated di�usion calculations are stable over all coarse-grid

cell sizes. The iterations and computing time required for convergence using the

di�usion �ssion matrix are shown in Figure 6.4 for the homogeneous system. As the

coarse grid becomes �ner, fewer iterations are necessary. However, more computing

time is required for the larger matrices in the acceleration equation. The optimal

number of coarse mesh cells for 120 �ne mesh cells is 20, resulting in a speedup of
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Meshing E�ects in Di�usion Fission Matrix-Accelerated Di�usion
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120 �ne-grid cells

Figure 6.4: The iterations and time required for convergence of a di�usion criticality
calculation when the coarse-grid di�usion �ssion matrix is precalculated.

28.

The iterations and computing time required for convergence when using the \cy-

cle" di�usion �ssion matrix are shown in Figure 6.5. Again, the necessary number

of iterations for convergence decreases for increasing number of coarse mesh cells.

The minimum time necessary for convergence occurs for 10 coarse mesh cells, for a

speedup of 10.5. Compared to the precalculated di�usion �ssion matrix, the \cycle"

di�usion �ssion matrix acceleration requires fewer iterations to converge, but each it-

eration requires calculating the �ssion matrix and its eigenstate, so computing times

are longer.

Figure 6.6 shows the convergence of the �rst and second Fourier modes for un-

accelerated di�usion, precalculated di�usion �ssion matrix acceleration, and \cycle"

di�usion �ssion matrix acceleration. The accelerated cases are for the optimal coarse

mesh cell size. The expected value of the second Fourier mode coe�cient is zero be-

cause the system is symmetric.
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Figure 6.5: The iterations and time required for convergence of a di�usion criticality

calculation when the coarse-grid di�usion �ssion matrix each cycle by

the source-weighted collapse of the �ne-grid �ssion matrix.
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Figure 6.6: The convergence of the �rst and second Fourier modes for unaccelerated

di�usion source iteration, precalculated di�usion �ssion matrix accelera-

tion, and \cycle" di�usion �ssion matrix acceleration.
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Figure 6.7: The converged ux for the homogeneous slab problem.

6.5.2 Di�usion Fission Matrix-AcceleratedDiscrete Ordinates Transport

The converged ux corresponding to the converged �ssion source for the homo-

geneous slab is shown in Figure 6.7. We use an S32 quadrature set for this problem

and break the system into 240 uniform �ne mesh cells. The convergence criterion

for the �ssion source (`
1

norm) is 10�4. We begin with an initial source containing

2/3 of the source in the left half and 1/3 in the right half with each half distributed

uniformly. This is a deliberately bad source guess, chosen to demonstrate the e�cacy

of the method. We calculate the di�usion �ssion matrix on a coarse grid with any-

where from two cells up to the number of �ne mesh cells. As the number of coarse

grid cells decreases, the amount of material smearing, or homogenization, increases,

which may or may not be bene�cial. Note that if the initial source was at for this

symmetric problem, two coarse cells would provide no acceleration. As we increase

the number of coarse cells (more resolution), the acceleration requires fewer itera-

tions to converge, as shown in Figure 6.8. However, acceleration work for N coarse
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Figure 6.8: E�ect of the number of coarse mesh cells in the Di�usion Fission Ma-

trix Acceleration of discrete ordinates transport. Although the number

of iterations required for convergence decreases with more coarse mesh

cells, more cells require more work and an optimal exist such that the

computing time is minimized.

cells increases as N3, so, as Figure 6.8 also shows, an optimal number of coarse mesh

cells exists, such that the computation time is minimized. We found for all three test

problems that the optimal coarse mesh cell contained eight (23) �ne mesh cells. Also,

damping was not required for these deterministic problems; reducing � decreased the

acceleration.

Figure 6.9 shows the convergence of the Fourier coe�cients for the �rst and

second modes. For 30 coarse mesh cells, the accelerated case requires 18 iterations to

converge, whereas the unaccelerated case requires 723 iterations. Since the problem

is symmetric, the expected value of the second Fourier mode coe�cient is zero upon

convergence. Comparing the running times on a Sun SPARC20 of 106 and 3.15

seconds, the acceleration realized a speedup of 33.7.

The second test problem is the uniform lattice. This is a very di�cult problem
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Figure 6.9: The �rst and second Fourier mode coe�cients for unaccelerated and dif-

fusion �ssion matrix accelerated discrete ordinates for the homogeneous

problem.

with dominance ratio 0.996. Beginning with a at initial source and 464 �ne mesh

cells, the unaccelerated discrete ordinates required 434 iterations (227 seconds) to

converge. The converged ux is shown in Figure 6.10. Using 58 coarse mesh cells,

the �ssion matrix acceleration method required only 18 iterations (12.6 seconds) to

converge, giving a speedup factor of 18. The Fourier mode coe�cient convergence is

shown in Figure 6.11 for the �rst and third modes.

The third problem is the one-dimensional \keff of the world" problem. The

converged ux for this problem is shown in Figure 6.12. For an initial at source,

Figure 6.13 shows the convergence of the �rst and third Fourier mode coe�cients.

The unaccelerated calculation took 66 iterations and 35.5 seconds to converge, and

the di�usion �ssion matrix accelerated S32 with 58 coarse mesh cells and � = 1 took

15 iterations and 9.3 seconds for a speedup of 3.8.
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Figure 6.10: The converged ux for the uniform lattice test problem.

6.5.3 Fission Matrix Accelerated Monte Carlo

If Monte Carlo contained no statistical noise, the results of accelerating Monte

Carlo criticality calculations would be similar to those of accelerating deterministic

criticality calculations. Unfortunately, the statistical noise, which is high-order, is

propagated by the acceleration into low-order errors. This undesirable phenomenon

is not overcome even when using a di�usion �ssion matrix instead of a Monte Carlo

�ssion matrix. The driving term of the acceleration equation is the primary source

of the noise. We use the di�usion �lter in the cases presented here. Increasing the

density of particles in important regions of a system reduces the statistical noise

and therefore reduces the need for �ltering. Validity of this statement is found by

comparing the Monte Carlo results for the homogeneous slab and the one-dimensional

\keff of the world" problem later in this subsection. The latter calculation appears

nearly deterministic in nature due to the small important �ssionable component.

We �rst apply the Monte Carlo �ssion matrix acceleration method to the 60 cm
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Figure 6.11: The �rst and third Fourier mode coe�cients for unaccelerated and di�u-

sion �ssion matrix accelerated discrete ordinates for the uniform lattice.

homogeneous slab. Figure 6.14 shows the convergence of the �rst and second Fourier

modes for both the unaccelerated and accelerated cases. For both cases, the initial

source had 2/3 of the particles in the left half and 1/3 of the particles in the right

half of the slab. There were 60 uniform 1 cm cells and 5000 histories per cycle.

For this symmetric system, the second Fourier mode has expected value zero. The

unaccelerated case takes approximately 110 cycles to converge. The di�usion �lter

parameter was held constant over the cycles, �2 = 5:0. Since the �ssion source is

smooth and slowly varying over space, a relatively higher value of �2 is possible.

For heterogeneous problems, the �lter could undesirably smooth out actual physical

uctuations in the �ssion source. The all-mode damping (�) of the correction is

held at a constant 0.2 for the �rst three cycles, then it drops o� exponentially.

Convergence of the accelerated case takes about 20 cycles. Comparing the computer

times at this cycle and the unaccelerated cycle 110 gives a speedup of 5.0.

The second problem is the one-dimensional simulation of Whitesides' \keff of
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Figure 6.12: The converged ux for the one-dimensional \keff of the world" test

problem.

the world" problem [Whi71]. For 5000 histories per cycle in 58 mesh cells, the ini-

tial source was at across the entire system. The driving terms of the acceleration

equation were �ltered by the di�usion �lter with �2 = 5n=(n + 10). Thus, the �l-

ter parameter starts out at about 1/2, then approaches 5. If the �lter parameter

is too large, the combined �ltering and acceleration will not su�ciently overcome

the arti�cial discontinuity at the center of the slab in the initial �ssion source. In

some underdamped cases, the �ssion source oscillates about the initial arti�cial dis-

continuity. Because eventually and e�ectively there was a high density of particles

in the important �ssionable regions, the calculations appeared nearly deterministic.

Therefore the full correction (� = 1:0) was possible. Figure 6.15 shows that unac-

celerated Monte Carlo converges on the hot component in about 35 cycles, whereas

the accelerated Monte Carlo takes about 6 cycles. The computational time speedup

is about 4.8.

Compared to the second problem, the acceleration in the �rst problem is more
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Figure 6.13: The �rst and third Fourier mode coe�cients for unaccelerated and di�u-

sion �ssion matrix accelerated discrete ordinates for the one-dimensional

\keff of the world" problem.

sensitive to the damping and �ltering parameters, � and �2. The di�erence occurs

due to the di�erent particle densities in the important �ssionable volumes. The

\keff of the world" simulation, upon convergence, has a very large particle density

in the hot component and a low particle density elsewhere, and appears almost

deterministic. (In a deterministic calculation, �ltering is not required and, unless it

is severely heterogeneous, neither is damping.) The large homogeneous system has

more statistical noise, so the �ltering becomes very important. The �lter may not

smooth the �ssion source optimally, and the noise that the �lter does not remove

must be damped out. Therefore, the parameters �2 and � are not independent.

Accelerating the Monte Carlo source convergence in the uniform lattice test prob-

lem is a very di�cult task. Acceleration with this geometry is de�nitely possible as

evidenced by the deterministic test problems. The acceleration method is unbiased,

meaning that it yields the same converged solution as the unaccelerated method,
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Figure 6.14: Convergence of the �rst and second Fourier modes for unaccelerated

Monte Carlo and �ltered and damped accelerated Monte Carlo in a

homogeneous slab.

only faster. However, unaccelerated Monte Carlo has inherent di�culties converg-

ing the source for high dominance ratio problems consisting of a lattice of identical

components. For example, if there were two identical critical reactors separated by a

large distance, all the particles in a Monte Carlo simulation would eventually end up

in one of the reactors. (This example is attributable to Tom Booth of Los Alamos

National Laboratory.) The basis for this comment lies in the fact that the two-reactor

example has a dominance ratio very near unity. Each reactor is expected to have

the same number of particles. However, because of statistical noise, one reactor will

almost always have more particles than the other. Furthermore, in a high dominance

ratio problem, regions that have a population of particles higher than expected will

tend to maintain that high population. The end result, after many cycles, is that

one reactor is depleted of Monte Carlo particles.

The uniform lattice problem possesses similarities to the two-reactor example.



99

-1

-0.5

0

0.5

1

0 10 20 30 40 50

F

cycle

Fourier Mode Convergence in 19-Component System with 1 Hot

58 mesh cells

5000 hist/cyc

Third Mode, F (3�)

First Mode, F (�)

�t = 1:0

�fuel
s = 0:7

��fuel

f
= 0:3071

Flat Initial Source

��hot
f = 0:4071

�absorber
s = 0:001

unaccelerated
� = 1:0 ; �2 = 5n

n+10 �

�
�

�
��
����������������������������������������������

�

�

�

�

�����������������������������������������������

Figure 6.15: Convergence of the �rst and third Fourier modes for unaccelerated

Monte Carlo and �ltered and accelerated Monte Carlo in a one-

dimensional \keff of the world" simulation.

The absorber regions in our uniform lattice are fairly thin, so all the particles will

not collect in a single fuel element. Still, we see collections of adjacent fuel elements

persistently maintaining their too large or too small populations. In an unaccelerated

case, we ran 5000 histories per cycle, began with a at source guess, skipped 30

(inactive) cycles, and ran 200 active cycles. The ux, which is still not converged

after 200 active cycles, is shown in Figure 6.16 at that cycle. The very small error

bars indicate that the population in each fuel element is not changing very much.

Over 10's or 100's of cycles, the �ssion source would appear converged, when, in fact,

it really is not.

Accelerating the Monte Carlo calculation for the uniform lattice meets with lit-

tle success. Filtering this system is di�erent than �ltering a homogeneous system.

Here, it is as if there are two frequencies that the �ltering should target: the high

frequencies due to the statistical noise within the fuel elements, and the low frequen-
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Figure 6.16: The Monte Carlo collision ux in the uniform lattice after 200 active

cycles.

cies describing the global shape. The accelerated method essentially arrives at the

state of incorrect populations faster, although it may not arrive at the same state

as the unaccelerated method because of statistical noise. So, for this system, the

acceleration appears unable to overcome the inherent shortcomings of Monte Carlo.

6.6 Fission Matrix Acceleration in MCNP

The �ssion matrix acceleration method is extendible to more complicated Monte

Carlo simulations. We demonstrate the acceleration method as implemented in

MCNP, a general-purpose production Monte Carlo code. MCNP is able to model

complicated three-dimensional geometries, and simulates transport with continuous

energy.

The modi�ed version of MCNP uses only the Monte Carlo �ssion matrix. The

Monte Carlo �ssion matrix is obtainable on the typically complicated cells that make

up an MCNP geometry and is fully self-contained in the code. Using a di�usion
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�ssion matrix would require a grid, as opposed (or in addition) to complicated Monte

Carlo cells, and linking to a production di�usion theory code. The grid would not

necessarily have to be involved in the particles tracking; it could simply overlay the

complicated Monte Carlo cells. So, a di�usion �ssion matrix in a production Monte

Carlo code is possible, but muchmore complicated than a self-contained Monte Carlo

�ssion matrix. These same arguments apply to not being able to practically use the

di�usion-like �lter. Instead, we employ the looping �lter, where the driving term of

the acceleration equation is multiplied by the �ssion matrix to reduce some of the

statistical noise. Although not employed, chopping is certainly possible, too.

The test problem we consider for the modi�ed version of MCNP is the \keff of the

world" problem, a 9x9x9 array of subcritical plutonium spheres with center sphere

critical and the whole array surrounded by a water reector. A three-dimensional ren-

dering of the system without the inner surface of the water reector is shown in Fig-

ure 6.17. Notice the larger, critical sphere in the center. This rendering was done by

Ken Van Riper of Los Alamos National Laboratory using SabrinaTM 2 [Van93][Lee94].

MCNP also does two-dimensional geometry plotting; a two-dimensional cross section

through the center of the geometry is shown in Figure 6.18.

The problem used 5000 histories per cycle with the initial source locations at

points in the center of each of the 729 spheres. Twenty cycles were allotted to

converge the source, followed by 100 active cycles. Twenty cycles is not nearly

enough to converge the source, but it is a typical number used by criticality safety

people running Monte Carlo codes. The onset of �ssion matrix acceleration was

deferred 20 cycles just to make sure that sampling would have no adverse e�ects on

the �ssion matrix elements. Each �ssion matrix element contained one sphere. The

2Sabrina is a trademark of the Regents of the University of California, Los Alamos National

Laboratory
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Figure 6.17: Three-dimensional rendering of the \keff of the world" problem without

the inner water reector surface by Sabrina. The larger critical sphere

is located in the center.

value of 20 was probably conservatively large. We employed no �ltering and set the

damping factor to

� = 0:9e�
1

2
(n�20) ; n > 20 ; (6.51)

so that, on the �rst cycle that was acceleration, cycle 21, the damping factor was

0:9e�1=2 and dropped o� exponentially. Since we do not have a regular grid, we do

not have the luxury of using the informative experimental Fourier analysis to gauge

convergence. Other measures exist, though. Figure 6.19 shows the cycle value of

the collision keff estimator at each cycle. After cycle 20, engaging the acceleration
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Figure 6.18: MCNP plot of a 2-D cross section of the water-reected array problem

with the larger, critical sphere in the center.

very quickly puts more particles into the important center sphere. The collision

keff jumps immediately to critical and oscillates around 1.0. By cycle 43, � was

small enough so that no additional particles would be killed or cloned, and the

acceleration automatically shut itself o�. It takes unaccelerated MCNP about 90

cycles to converge. Figure 6.20 shows the number of particles in the center critical

sphere as a function of cycle. The acceleration may have overshot the correction

a little at �rst, and, since � was decreasing, it could not as quickly correct the

overshoot.
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acceleration MCNP on the \keff of the world" problem.

The three-combined keff estimator is a linear least squares combination of the

average collision, absorption, and track length estimators [Urb95]. The average keff

estimators equally weight the cycle keff estimates from each active cycle. There-

fore, in the unaccelerated case, the poorly converged keff estimates in the early

active cycles contaminate the average, and hence, the three-combined, keff estima-

tors throughout the entire run. Figure 6.21, when compared to Figure 6.19, shows

the contamination on the three-combined keff estimator due to the unconverged

source.

MCNP contains statistical checks that help the user assess the quality of the

calculation [For94]. The unaccelerated case alerted the user that the �rst and sec-

ond half three-combined keff estimates did not agree at the 99% con�dence level,

indicating a drift due to an unconverged source. In the �ssion matrix accelerated

case, the cycle track length keff estimates did not pass the normality check. This

failed test is understandable since the the acceleration began at the beginning of the
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Figure 6.20: The number of source points in the center critical sphere of the \keff
of the world" problem for unaccelerated and �ssion matrix accelerated
MCNP.

active cycles. Ideally the acceleration should converge the source before the active

cycles. Fortunately, MCNP gives the results for any number of cycles skipped. For

the accelerated case, the minimum standard deviation occurred at 23 cycles skipped,

giving a 95% con�dence interval of [0.9972,1.0033], meaning that the precise value of

keff lies within this range with 95% con�dence. The minimum standard deviation

for the unaccelerated case occurred at 116 inactive cycles and 4 active cycles, giving

a 95% con�dence interval of [0.9854,1.0247]. However, four cycles is nowhere near

enough cycles to consider in the averaging. This statistical check is another indica-

tion to the user that the unaccelerated case has problems. The three-combined keff

estimate by cycles skipped is shown in Figure 6.22.

6.7 Summary and Discussion

The Fission Matrix Acceleration method is obtained by deriving an exact correc-

tion to the �ssion source from an integral form of the transport equation. Applying
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Figure 6.21: The three-combined keff estimator for unaccelerated and �ssion matrix
acceleration MCNP on the \keff of the world" problem.

the exact correction yields the exact solution and concludes the calculation in one

cycle or iteration. If not impossible, obtaining the the exact correction is impracti-

cal. The �ssion matrix, on the discretized system, provides an approximation to the

exact kernel and makes the method practical.

The Fission Matrix Acceleration method is designed to reduce the number of

deterministic iterations, or Monte Carlo inactive cycles{those required to converge

the �ssion source. It works best when the initial assumed �ssion source is far from

the true �ssion source. This method is also e�cient for systems with high dominance

ratios. These are systems for which unaccelerated Monte Carlo would require many

inactive cycles to converge the source.

We �rst posed the acceleration in the form where a coarse-grid di�usion �ssion

matrix was used in accelerating a �ne-grid di�usion �ssion matrix. Two di�erent

ways of obtaining the coarse-grid �ssion matrix resulted in speedups of 11 and 28 for

the homogeneous slab test problem.
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Next we used the di�usion �ssion matrix to accelerate discrete ordinates transport

calculations. Speedups ranged from 3.8 for the \keff of the world" problem to 34 for

the homogeneous slab.

Applying �ssion matrix acceleration to Monte Carlo calculations is yet another

example of trying to make a Monte Carlo calculation behave like a deterministic

calculation. The major deterrence to success is Monte Carlo's statistical noise. The

perfect example is the Monte Carlo criticality calculation itself, where Monte Carlo

is made to adhere to source iteration. One repercussion is a bias in the eigenvalue.

Luckily, the bias is inversely proportional to the number of histories per cycle, and

usually negligible [Gas75][Bow83][Bri86][Gel90][Gel91][Gel94]. Asaoka, et al. had

some success applying coarse-mesh rebalancing to Monte Carlo eigenvalue calcula-

tions [Asa74]. Accumulating data over coarser meshes implies more particles and

less statistical noise. Swaja accelerated Monte Carlo source convergence through
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Chebyshev extrapolation [Swa73]. However, Swaja found it necessary to �lter the

statistical noise with a Kalman �lter.

If it was possible to totally eliminate the statistical noise in a Monte Carlo criti-

cality calculation, Fission Matrix Acceleration applied to Monte Carlo would behave

similarly as in a deterministic calculation. Otherwise, the acceleration magni�es the

high-order noise. In practice, we eliminate as much of the statistical noise as possi-

ble, so as to approach the deterministic characteristics. Some type of �lter is used to

reduce the high-order uctuations in the driving term of the acceleration equation.

Additionally, a damping factor � damps all frequencies of the additive correction.

The selection of �ltering and damping parameters is not automated. Acceleration

success can be quite sensitive to these parameters for some problems. The param-

eters are not independent. If the �ltering does not adequately rid the calculation

of statistical noise, the damping will need increasing (lower �). Unfortunately, the

damping also reduces the low-order acceleration gain. Too much �ltering could intro-

duce arti�cial and incorrect trends in the calculation that would manifest themselves

in large oscillations.

For Monte Carlo, the resulting speedups for the homogeneous test problem and

the one-dimensional \keff of the world" problem were about 5. Monte Carlo criti-

cality code users traditionally perceive source convergence in terms of inactive cycles

instead of computer time. They are accustomed to performing, say, 10 to 30 inac-

tive cycles, so even a modest speedup of 5.0 is very bene�cial in obtaining accurate

solutions for these types of systems.

The Fission Matrix Acceleration method cannot, however, overcome some inher-

ent de�ciencies in Monte Carlo criticality calculations. The Fission Matrix Acceler-

ation method is essentially unbiased{it arrives at the same solution as the unacceler-
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ated calculation, only faster. Due to statistical noise, unaccelerated Monte Carlo has

di�culties with the uniform lattice problem in that it may not converge to the cor-

rect source. In this case, the acceleration simply �nds an incorrect source quicker. In

Chapter VIII, we present a hybrid method that, since it is not unbiased, overcomes

these di�culties.

6.8 Related Techniques for An Improved Initial Source

When the variations of the �ssion matrix acceleration are in place in a computer

code, there exist other easy ways to obtain an initial source. For instance, the source

can be started according to the di�usion solution. A drawback of this technique is

that the di�usion solution may not adequately describe a system with many transport

e�ects. In fact, for a system similar to the uniform lattice, except that it had much

thicker absorber regions, the di�usion calculation would break down if the cells were

not �ne enough.

Another technique for an improved initial source is to use the eigenvector of the

�ssion matrix. A di�usion �ssion matrix would provide an eigenvector immediately.

A Monte Carlo �ssion matrix would have a suitable eigenvector after a few initial

cycles. We implemented this type of source initialization by running a head start

cycle that consisted of a very large number of histories. The initial source for the

head start cycle would require at least a at distribution so that all �ssionable regions

are sampled. The �ssion matrix should only have second order errors because the

elements depend on the source shape over a cell instead of over the entire system

[Car75]. After the head start cycle, the acceleration coding was used to sample from

the very large number of source points according to the eigenvector of the �ssion

matrix. After the head start cycle, each cycle contained a smaller, practical number
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of histories. This type of source initialization fails if the eigenvector fails. An example

of where the eigenvector fails is a system like the \keff of the world" problem except

that, instead of one, two hot cells are present. Due to statistical noise and poor

communication between the fuel cells, the eigenvector would not adequately detect

both hot cells.



CHAPTER VII

Fission Di�usion Synthetic Acceleration Method

We now present a di�erent form of the source convergence acceleration method,

called Fission Di�usion Synthetic Acceleration (FDSA). FDSA involves a di�erent

form of the transport equation and a di�erent low-order approximation than the

�ssion matrix acceleration method. Instead of beginning the derivation with an

analytic integral equation, we consider the integro-di�erential transport equation for

the analytic and source iteration cases. We subtract these to obtain an equation

for the exact correction to the angular ux. This equation is just as di�cult as the

source iteration problem, so we solve its di�usion approximation. Instead of using

the �ssion matrix and its forward and adjoint eigenstates, this method requires a

forward and adjoint di�usion calculation prior to the deterministic or Monte Carlo

criticality calculation. Analytically, however, FDSA is equivalent to the di�usion

�ssion matrix acceleration method.

7.1 Derivation of Fission Di�usion Synthetic Acceleration

We begin with the analytic integro-di�erential transport equation for a slab of

width L, isotropic scattering, and vacuum boundary conditions. Using the operators

111
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de�ned in Equations 6.4, 6.5, and 6.6, we have

T (x; �) = S (x; �) +
1

k
F (x; �) ; (7.1)

 (0; �) = 0 ; � > 0 ; (7.2)

 (L; �) = 0 ; � < 0 : (7.3)

The source iteration equations are obtained by introducing iteration indices to Equa-

tions 7.1, 7.2, and 7.3,

T (`+1=2)(x; �) = S (`+1=2)(x; �) +
1

k(`)
F (`)(x; �) ; (7.4)

 (`+1=2)(0; �) = 0 ; � > 0 ; (7.5)

 (`+1=2)(L; �) = 0 ; � < 0 : (7.6)

We desire the exact angular ux correction,

g(`+1)(x; �) =  (x; �)�  (`+1=2)(x; �) : (7.7)

Subtracting Equation 7.4 from Equation 7.1 yields an equation for the correction g,

Tg(`+1)(x; �)�Sg(`+1)(x; �)�
1

k
Fg(`+1)(x; �) =

1

k
F (`+1=2)(x; �)�

1

k(`)
F (`)(x; �) ;

(7.8)

and likewise for the boundary conditions,

g(`+1)(0; �) = 0 ; � > 0 ; (7.9)

g(`+1)(L; �) = 0 ; � < 0 : (7.10)

Equation 7.8 is just as di�cult to solve as Equation 7.4 ; therefore, we approxi-

mate it. First, we de�ne

�(`+1)n (x) �
Z 1

�1
�n (`+1)(x; �)d� ; (7.11)
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where �(`+1)(x) = �
(`+1)
0 (x) is the scalar ux, and

f (`+1)n (x) �
Z 1

�1
�ng(`+1)(x; �)d� ; (7.12)

and assume that the exact correction is linear in angle,

g(`+1)(x; �) �
1

2

�
f
(`+1)
0 (x) + 3�f

(`+1)
1 (x)

�
: (7.13)

Operating on Equation 7.8 by Z 1

�1
(�)d� (7.14)

and Z 1

�1
�(�)d� ; (7.15)

we obtain

@

@x
f
(`+1)
1 (x) + �t(x)f

(`+1)
0 (x)� �s(x)f

(`+1)
0 (x)�

��f (x)

k
f
(`+1)
0

=
��f (x)

k
�(`+1=2)(x)�

��f (x)

k(`)
�(`)(x) ; (7.16)

and

@

@x

Z 1

�1
�2g(`+1)(x; �)d�+ �t(x)f

(`+1)
1 (x) = 0 : (7.17)

Substituting the linear approximation of g, Equation 7.13, into Equation 7.17, we

obtain an expression for f1,

f
(`+1)
1 (x) = �

1

3�t(x)

@

@x
f
(`+1)
0 (x) ; (7.18)

which, when substituted into Equation 7.16, yields the di�usion approximation to

the acceleration equation, Equation 7.8:

�
@

@x

1

3�t(x)

@

@x
f
(`+1)
0 (x) +

 
�a(x)�

��f (x)

kd

!
f
(`+1)
0 (x)

=
��f (x)

k(`+1)
�(`+1=2)(x)�

��f (x)

k(`)
�(`)(x) : (7.19)
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The boundary conditions, called Marshak boundary conditions [Bel70], are obtained

using the linear approximation, Equation 7.13, and Equation 7.18. On the left side,

0 =
Z 1

0
�g(`+1)(0; �)d� (7.20)

=
1

2
f
(`+1)
0 (0)

Z 1

0
�d� +

3

2
f
(`+1)
1 (0)

Z 1

0
�2d� (7.21)

=
1

4
f
(`+1)
0 (0) +

1

2
f
(`+1)
1 (0) (7.22)

0 = f
(`+1)
0 (0)�

2

3�t(0)

@

@x
f
(`+1)
0 (0) ; (7.23)

and on the right side,

0 =
Z 0

�1
�g(`+1)(L; �)d� (7.24)

=
1

2
f
(`+1)
0 (L)

Z 0

�1
�d� +

3

2
f
(`+1)
1 (L)

Z 0

�1
�2d� (7.25)

= �
1

4
f
(`+1)
0 (L) +

1

2
f
(`+1)
1 (L) (7.26)

0 = f
(`+1)
0 (L) +

2

3�t(L)

@

@x
f
(`+1)
0 (L) : (7.27)

In Equation 7.19, kd is the dominant eigenvalue from the adjoint di�usion equation

(with vacuum boundaries),

�
@

@x

1

3�t(x)

@

@x
��d(x) + �a(x)�

�

d(x) =
��f (x)

kd
��d(x) : (7.28)

Equation 7.19 does not automatically have a solution. We specify k(`+1) to satisfy

the solvability condition, which is obtained by multiplying the acceleration equation,

Equation 7.19, by the adjoint di�usion ux and integrating over space,

Z
��d(x)

"
�
@

@x

1

3�t(x)

@

@x
f
(`+1)
0 (x) +

 
�a(x)�

��f (x)

kd

!
f
(`+1)
0 (x)

#
dx

=
1

k(`+1)

Z
��d(x)

�
��f (x)�

(`+1=2)(x)
�
dx�

1

k(`)

Z
��d(x)

�
��f (x)�

(`)(x)
�
dx :(7.29)

The left side of Equation 7.29 is zero, giving us a value of k(`+1) for the solvability

condition,

k(`+1) = k(`)
R
��d(x)��f(x)�

(`+1=2)(x)dxR
��d(x)��f (x)�(`)(x)dx

: (7.30)
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After solving Equation 7.19, we see that f0(x) is not unique, since any multiple of

the forward di�usion solution may be added to it,

f
(`+1)
0 (x) = f

(`+1)
0;particular(x) +A�d(x) ; (7.31)

where �d is the solution of the forward di�usion equation,

�
@

@x

1

3�t(x)

@

@x
�d(x) + �a(x)�d(x) =

��f (x)

kd
�d(x) : (7.32)

Therefore, we make the correction unique by requiring that the additive correction

be normal to the adjoint di�usion ux,

Z
��d(x)f

(`+1)
0 (x)dx = 0 : (7.33)

As in the �ssion matrix acceleration method, we damp the additive correction, if

necessary, and convert it to a multiplicative correction factor,

��f (x)�
(`+1) = ��f (x)

�
�f

(`+1)
0 (x) + �(`+1=2)(x)

�
(7.34)

� ��f (x)�
(`+1=2)

0
@1 + �

��f(x)f
(`+1)
0 (x)

f̂ (`+1=2)

1
A ; (7.35)

where f̂ (`+1=2) is the �ssion source ��f (x)�
(`+1=2) projected onto a cell. The projec-

tion causes the approximation between Equation 7.34 and Equation 7.35.

Let us summarize the steps for Fission Di�usion Synthetic Acceleration. Steps

1 and 2 are performed only once before the calculation begins. The iterations, or

cycles, proceed over step 3 to 6:

1. Calculate the solution of the forward di�usion equation, Equation 7.32,

�
@

@x

1

3�t(x)

@

@x
�d(x) + �a(x)�d(x) =

��f (x)

kd
�d(x) : (7.36)

2. Calculate the solution of the adjoint di�usion equation, Equation 7.28,

�
@

@x

1

3�t(x)

@

@x
��d(x) + �a(x)�

�

d(x) =
��f (x)

kd
��d(x) : (7.37)
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3. Perform a transport iteration or cycle, Equation 7.4,

T (`+1=2)(x; �) = S (`+1=2)(x; �) +
1

k(`)
F (`)(x; �) ; (7.38)

4. Calculate k(`+1), the solvability condition from Equation 7.30,

k(`+1) = k(`)
R
��d(x)��f(x)�

(`+1=2)(x)dxR
��d(x)��f (x)�(`)(x)dx

: (7.39)

5. Calculate the �ssion source correction using Equation 7.19 and 7.33,

�
@

@x

1

3�t(x)

@

@x
f
(`+1)
0 (x) +

 
�a(x)�

��f (x)

kd

!
f
(`+1)
0 (x)

=
��f (x)

k(`+1)
�(`+1=2)(x)�

��f (x)

k(`)
�(`)(x) ; (7.40)

Z
��d(x)f

(`+1)
0 (x)dx = 0 : (7.41)

6. Apply the correction using Equation 7.35 ,

��f (x)�
(`+1)

� ��f (x)�
(`+1=2)

0
@1 + �

��f(x)f
(`+1)
0 (x)

f̂ (`+1=2)

1
A ; (7.42)

and return to step 3 for another iteration or cycle.

7.2 Implementing FDSA

The Fission Di�usion Synthetic Acceleration method requires less computer stor-

age since it does not require toting around �ssion matrices. FDSA has the advantage

that its di�usion equation may be performed in multigroup, regardless of whether

the transport is multigroup SN or continuous energy Monte Carlo. The actual ac-

celeration is collapsed to one energy group and is still dependent only on space, just

as in the �ssion matrix method. Greater accuracy may be achieved from using a

multigroup di�usion acceleration equation. The disadvantages are that it requires
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more pre-calculation and requires a spatial grid on which to perform the di�usion-like

acceleration calculation.

In the deterministic realm, we are faced with the same dilemma that occurs in

DSA (Chapter III): How should we discretize the equations? Inconsistent discretiza-

tion is the most straightforward procedure, where the transport equation and the

di�usion-like acceleration equation are discretized any desired way. As in DSA, in-

consistent discretization may induce instabilities for large mesh sizes. Consistent

discretization arises when FDSA is derived from the already-discretized transport

equation. While having more desirable features, consistent discretization is not al-

ways feasible in higher dimensioned, more complicated systems. Moreover, how

exactly does one consistently discretize Monte Carlo FDSA? The concept appears to

have no clear meaning.

7.2.1 Consistently Discretized FDSA

We consider a slab of width L divided into J cells that are not necessarily uni-

form. We use Diamond Di�erencing and SN angular quadrature and consider vacuum

boundaries. The discretized transport equation is

�m

hj

�
 
(`+1=2)
m;j+1=2 �  

(`+1=2)
m;j�1=2

�
+ �tj 

(`+1=2)
m;j �

1

2
�sj

NX
n=1

 
(`+1=2)
n;j wn =

��fj

2k(`)
�
(`)
j ; (7.43)

 
(`+1=2)
m;j =

1

2

�
 
(`+1=2)
m;j+1=2 +  

(`+1=2)
m;j�1=2

�
; (7.44)

 
(`+1=2)
m;1=2 = 0 ; �m > 0 ; (7.45)

 
(`+1=2)
m;J+1=2 = 0 ; �m < 0 ; (7.46)

�
(`+1=2)
j =

NX
m=1

 
(`+1=2)
m;j wm ; (7.47)

where, again, wm are the angular quadrature weights such that

NX
m=1

wm = 2 ; (7.48)



118

and the j� 1=2 subscripts indicate cell-edge quantities and the j subscripts indicate

cell-average quantities.

We begin the FDSA derivation by de�ning the transport corrections on the cell

centers and cell edges,

g
(`+1)
m;j =  m;j �  

(`+1=2)
m;j ; (7.49)

g
(`+1)
m;j+1=2 =  m;j+1=2 �  

(`+1=2)
m;j+1=2 ; (7.50)

such that adding g to the most recent angular uxes results in the exact angular

uxes. Let us subtract Equations 7.43 to 7.47 from the exact problem (that is,

Equations 7.43 to 7.47 without iteration indices). We obtain a problem for the exact

angular ux corrections,

�m

hj

�
g
(`+1)
m;j+1=2 � g

(`+1)
m;j�1=2

�
+ �tjg

(`+1)
m;j �

1

2
�sj

NX
n=1

 n;jwn +
1

2
�sj

NX
n=1

 
(`+1=2)
n;j wn

=
��fj

2k
�j �

��fj

2k(`)
�
(`)
j +

��fj

2k

NX
n=1

 
(`+1=2)
n;j wn �

��fj

2k

NX
n=1

 
(`+1=2)
n;j wn ; (7.51)

where the last term was added and subtracted to easily get the equation in the

following form:

�m

hj

�
g
(`+1)
m;j+1=2 � g

(`+1)
m;j�1=2

�
+ �tjg

(`+1)
m;j �

1

2
�sj

NX
n=1

g
(`+1)
n;j wn �

��fj

2k

NX
n=1

g
(`+1)
n;j wn

=
��fj

2k

NX
n=1

 
(`+1=2)
n;j wn �

��fj

2k(`)
�
(`)
j ; (7.52)

g
(`+1)
m;j =

1

2

�
g
(`+1)
m;j+1=2 + g

(`+1)
m;j�1=2

�
; (7.53)

g
(`+1)
m;1=2 = 0 ; �m > 0 ; (7.54)

g
(`+1)
m;J+1=2 = 0 ; �m < 0 ; (7.55)

�
(`+1=2)
j =

NX
m=1

 
(`+1=2)
m;j wm : (7.56)
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Adding the exact correction to the most recent angular ux yields the exact angular

ux

 m;j =  
(`+1=2)
m;j + g

(`+1)
m;j ; (7.57)

or, integrated over angle, it yields the exact scalar ux,

�j = �
(`+1=2)
j +

NX
m=1

g
(`+1)
m;j wm : (7.58)

Solving this problem gives the exact (discretized) result in one iteration. Not unex-

pectedly, we �nd that this problem is as di�cult to solve as the original problem.

Thus, at this point, we have gained nothing. The remedy is to take the di�usion

approximation of the acceleration. We de�ne

f
(`+1)
0;j =

NX
m=1

g
(`+1)
m;j wm ; (7.59)

f
(`+1)
1;j =

NX
m=1

�mg
(`+1)
m;j wm ; (7.60)

and assume the angular ux correction is linear in angle,

g
(`+1)
m;j �

1

2

�
f
(`+1)
0;j + 3�mf

(`+1)
1;j

�
: (7.61)

Next, we operate on Equation 7.52 by

NX
m=1

(�)wm (7.62)

and obtain

1

hj

�
f
(`+1)
1;j+1=2 � f

(`+1)
1;j�1=2

�
+ �tjf

(`+1)
0;j � �sjf

(`+1)
0;j �

��fj

k
f
(`+1)
0;j

=
��fj

k
�
(`+1=2)
j �

��fj

k(`)
�
(`)
j ; 1 � j � J : (7.63)

Operating on Equation 7.52 by

NX
m=1

�m(�)wm ; (7.64)



120

and using the linear approximation in Equation 7.61, we obtain

1

3hj

�
f
(`+1)
0;j+1=2 � f

(`+1)
0;j�1=2

�
+ �tjf

(`+1)
1;j = 0 ; 1 � j � J : (7.65)

Operating on Equation 7.53 by the same two operators yields

f
(`+1)
0;j =

1

2

�
f
(`+1)
0;j+1=2 + f

(`+1)
0;j�1=2

�
; (7.66)

f
(`+1)
1;j =

1

2

�
f
(`+1)
1;j+1=2 + f

(`+1)
1;j�1=2

�
: (7.67)

Now we look to approximate the boundary conditions. Multiplying Equation 7.54

by �mwm and integrating (summing) over positive �m, we �nd the partial incoming

current for the left boundary, where we utilize the linear approximation for g,

0 =
X
�m>0

g
(`+1)
m;1=2wm (7.68)

�
1

2

X
�m>0

�m
�
f
(`+1)
0;1=2 + 3�mf

(`+1)
1;1=2

�
wm (7.69)

=
1

2

0
@ X
�m>0

�mwm

1
A f (`+1)0;1=2 +

1

2
f
(`+1)
1;1=2 ; (7.70)

since

X
�m>0

�2mwm =
1

2

X
all �m

�2mwm =
1

3
: (7.71)

Setting

N � 2
X

�m>0

�mwm (7.72)

we have as the left boundary condition,

0 = Nf
(`+1)
0;1=2 + 2f

(`+1)
1;1=2 : (7.73)

Similarly, the right boundary condition is

0 = �Nf
(`+1)
0;J+1=2 + 2f

(`+1)
1;J+1=2 : (7.74)
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The scalar ux is accelerated by

�
(`+1)
j = �

(`+1=2)
j + f

(`+1)
0;j : (7.75)

Equations 7.63, 7.65, 7.66, 7.67, 7.73, 7.74, and 7.75 constitute 4J + 2 equations

in 4J+2 unknowns. Now we want to eliminate f
(`+1)
1 from these equations. First, we

substitute Equations 7.66 and 7.67 into Equations 7.63 and 7.65 so the corrections

all reside on the cell edges. This substitution yields the following two equations,

�
f
(`+1)
1;j+1=2 � f

(`+1)
1;j�1=2

�
=

�a;jhj

2

�
f
(`+1)
0;j+1=2 + f

(`+1)
0;j�1=2

�
+

��f;jhj

2k

�
f
(`+1)
0;j+1=2 + f

(`+1)
0;j�1=2

�

+
��f;jhj

k
�
(`+1=2)
j �

��fjhj

k(`)
�
(`)
j ; 1 � j � J ; (7.76)

�
f
(`+1)
1;j+1=2 + f

(`+1)
1;j�1=2

�
=

�2

3�t;jhj

�
f
(`+1)
0;j+1=2 � f

(`+1)
0;j�1=2

�
; 1 � j � J : (7.77)

Adding and subtracting Equations 7.76 and 7.77 produces two di�erent equations:

2f
(`+1)
1;j+1=2 =

 
��f;jhj

2k
�

�a;jhj

2

! �
f
(`+1)
0;j+1=2 + f

(`+1)
0;j�1=2

�
+

��f;jhj

k
�
(`+1=2)
j

�
��fjhj

k(`)
�
(`)
j �

2

3�t;jhj

�
f
(`+1)
0;j+1=2 � f

(`+1)
0;j�1=2

�
; 1 � j � J ;(7.78)

2f
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2
�

��f;jhj

2k

! �
f
(`+1)
0;j+1=2 + f

(`+1)
0;j�1=2

�
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��f;jhj

k
�
(`+1=2)
j

+
��fjhj

k(`)
�
(`)
j �

2

3�t;jhj

�
f
(`+1)
0;j+1=2 � f

(`+1)
0;j�1=2

�
; 1 � j � J :(7.79)

In order to eliminate f
(`+1)
1;j+1=2, we shift the indices in Equation 7.79 from j � 1=2 to

j +1=2 such that the range of applicable j is shifted to 0 � j � J � 1. Equating the

expressions and rearranging yields the acceleration equation,
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��
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Note that we introduced the di�usion eigenvalue, kd, on the left side of Equation 7.80

and k(`+1), the eigenvalue satisfying the solvability condition, on the right side. Sub-

stituting Equations 7.78 and 7.79 into Equations 7.73 and 7.74, we obtain the left

and right boundary conditions,

Nf
(`+1)
0;1=2 �

2

3�t;1h1
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f
(`+1)
0;3=2 � f

(`+1)
0;1=2
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1 ; (7.81)
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(`+1=2)
J �

��f;JhJ
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�
(`)
J : (7.82)

Equations 7.80, 7.81, and 7.82 constitute a tridiagonal system for the cell-edge

scalar ux corrections. Finally, substituting Equation 7.66 into Equation 7.75, we

have the correction as

�
(`+1)
j = �

(`+1=2)
j +

1

2

�
f
(`+1)
0;j+1=2 + f

(`+1)
0;j�1=2

�
: (7.83)

7.2.2 Inconsistently Discretized FDSA

We obtain \inconsistently discretized FDSA" when the transport and acceleration

equations are discretized independently. The discretized transport equation and
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boundary conditions are given in Equations 7.43 through 7.47. We discretize the

acceleration equation, Equation 7.19, in a usual way by integrating it from cell-center

to cell-center, with half-width cells at the left and right boundaries. For uniform cell

width h, we obtain in the interior of the slab,
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; 1 � j � J � 1 ; (7.84)

and for the left and right boundary conditions,
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; (7.85)
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: (7.86)

Solving Equations 7.84, 7.85, and 7.86 yields the correction on the cell edges. The

correction is applied to the scalar ux by Equation 7.83.

7.3 Fission Di�usion Synthetic Acceleration Results

We consider all three test problems for deterministic FDSA, and the homogeneous

problem and \keff of the world" problem for FDSA applied to Monte Carlo. We defer

our attack on the inherent di�culties Monte Carlo has with the uniform lattice to the
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Hybrid Method in the next chapter. We make no di�erentiation between consistently

and inconsistently discretized FDSA because, unexpectedly, they perform virtually

the same.

7.3.1 Deterministic FDSA Results

First, we consider the homogeneous slab as shown in Figure 6.1. Using 60 cells

and starting 2/3 of the source in the left half and 1/3 in the right half, the determin-

istic FDSA method (FDSA applied to discrete ordinates) converges in 6 iterations,

while the unaccelerated discrete ordinates method requires 722 iterations. The com-

putational speedup was 77. For comparison, the Di�usion Fission Matrix took 10

iterations and 5.7 times longer than FDSA. The convergence of the �rst and second

Fourier mode coe�cients are shown in Figures 7.1 and 7.2, respectively.

38
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48

50

0 50 100 150 200

F (�)

iteration

Deterministic Fourier Mode Convergence for Homogeneous Slab

Initial source: 2

3
in left half, 1

3
in right half

First Mode

60 mesh cells

unaccelerated (722 iters)

di�usion �ssion matrix (10 iters)

FDSA (6 iters)

Figure 7.1: The convergence of the �rst Fourier mode coe�cient in the homogeneous
slab problem for unaccelerated discrete ordinates, Fission Di�usion Syn-

thetic Acceleration, and, for comparison, Di�usion Fission Matrix accel-
eration.

Second, we investigate FDSA on the uniform lattice problem, which is shown in
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Figure 7.2: The convergence of the second Fourier mode coe�cient in the homoge-
neous slab problem for unaccelerated discrete ordinates, Fission Di�usion
Synthetic Acceleration, and, for comparison, Di�usion Fission Matrix ac-
celeration.

Figure 6.2. The discrete ordinates calculation was performed on 464 cells and the

acceleration was performed on 116 cells in the 58 mfp system. Again, the initial

source was 2/3 in the left half and 1/3 in the right half. The unaccelerated dis-

crete ordinates required 853 iterations to converge and FDSA required only 9, for a

computational time speedup of 87.5. The Di�usion Fission Matrix acceleration, for

comparison, took 12 iterations and took about 4 times longer than FDSA. The �rst

and second Fourier mode coe�cient convergence is shown in Figure 7.3.

Third, we look at the one-dimensional \keff of the world" problem, which is

shown in Figure 6.3. Both the transport and acceleration are on 464 uniform cells

in the 58 cm system. This problem was unique for deterministic FDSA because it

was the only deterministic problem that required damping. A possible reason that

damping was necessary is that the initial source is far from the converged source, the

latter of which tends to have no di�usion characteristics. In lieu of showing another
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Figure 7.3: The convergence of the second Fourier mode coe�cient in the uniform
lattice problem for unaccelerated discrete ordinates, Fission Di�usion
Synthetic Acceleration, and, for comparison, Di�usion Fission Matrix
acceleration.

Fourier plot, we show in Figure 7.4 the iterations and computer time necessary for

convergence as a function of damping. The optimal � was 0.6, for a paltry speedup

of 2.

7.3.2 Monte Carlo FDSA Results

We apply Monte Carlo FDSA to the homogeneous slab problem. We begin with

2/3 of the source in the left half of the slab and 1/3 in the right half and run 5000

histories per cycle. The di�usion �lter parameter is

�2 =
5n

n+ 10
: (7.87)

�2 starts out small so the �ltering does not accentuate the arti�cial (high frequency)

step in the initial source.

Figures 7.5 and 7.6 show the �rst and second Fourier mode coe�cient convergence

for unaccelerated Monte Carlo and for FDSA with � held constant at 0.06. These
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Figure 7.4: The damping e�ects on the iterations and computer time to converge for
deterministic FDSA applied to the \keff of the world" problem.

problems required severe damping, as one would have expected from inconsistently

discretized FDSA. Holding � constant shows how the acceleration converges the

source in about 10 or 15 cycles. After that, one can see how the high order statistical

noise is translated into lower order uctuations by the acceleration. Ideally the

acceleration should have been shut o� after about 13 or 14 cycles.

Setting the damping factor so that the acceleration is tailored to shut o� after the

source is converged eliminates the adverse e�ects of trying to accelerate an already-

converged source. Therefore, for the next case, we set � as

� = 0:1 exp(�5:0max(0; n� 11)) ; (7.88)

so that � = 0:1 for 11 cycles then goes to zero almost immediately. Convergence

of both the �rst and second Fourier mode coe�cients for this case are shown in

Figure 7.7. The speedup obtained from the times at the unaccelerated 100th cycle

and the FDSA 10th cycle was about 9.3.
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Figure 7.5: The �rst Fourier mode coe�cient convergence for the homogeneous slab
with unaccelerated Monte Carlo and FDSA with �=0.06.

Lastly, we apply Monte Carlo FDSA to the one-dimensional \keff of the world"

problem. Damping appeared unnecessary as there was little di�erence between

� = 1:0 and � = 0:6. The Fourier mode coe�cient convergence is shown in Fig-

ure 7.8. Just as with the Fission Matrix Acceleration, the Fourier coe�cients seemed

almost deterministic because of the high ratio of particles to important �ssionable

material volume. Comparing the computer times at the unaccelerated 36th cycle

and the FDSA 6th cycle, the speedup was about 6.1.

7.4 Summary and Discussion

The Fission Di�usion Synthetic Acceleration (FDSA) method accelerates source

convergence by utilizing the di�usion approximation of the exact correction to the

angular ux. It is similar to the Fission Matrix Acceleration method in that an

exact acceleration equation is approximated. Whereas the Fission Matrix Accelera-

tion method uses the �ssion matrix as an approximation, FDSA uses the di�usion
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Figure 7.6: The second Fourier mode coe�cient convergence for the homogeneous
slab with unaccelerated Monte Carlo and FDSA with �=0.06.

approximation{an assumption that scattering is linear in angle. The di�erences were

mostly subtle for the types of problems we considered. However, in the deterministic

realm, FDSA required damping for the \keff of the world" problem. For all other de-

terministic problems, the optimal acceleration occurred for � = 1. When applied to

the \keff of the world" problem, FDSA required damping regardless of whether the

initial source was at or had 2/3 in the left half of the slab and 1/3 in the right half.

The reason FDSA required damping for that problem is probably because the con-

verged source is very \undi�usion-like," and the initial source contained unphysical

high-order components at the center of the slab.

We surprisingly found that inconsistently and consistently discretized determin-

istic FDSA performed essentially the same. This �nding is inconsistent (no pun

intended) with the discretization behavior observed in �xed-source DSA. One reason

may be that the linear �xed-source Fourier analysis results do not apply to the non-

linear eigenvalue calculation. On the other hand, FDSA applied to Monte Carlo met
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11 cycles and essentially zero thereafter.

expectations and behaved like inconsistently discretized FDSA, in that it required

(often severe) damping.

For the deterministic FDSA calculations, speedups were about 2 for the \keff

of the world" problem, 77 for the homogeneous problem, and 88 for the uniform

lattice. For FDSA applied to Monte Carlo, speedups were 6 for the \keff of the

world" problem, and 9 for the homogeneous problem. We did not attempt the

uniform lattice problem. The Monte Carlo calculation speedups may be somewhat

misrepresented because all Monte Carlo calculations, as a default, estimate the �ssion

matrix eigenstate at each cycle.

Compared to the Monte Carlo Fission Matrix method, FDSA has the disadvan-

tage of requiring a grid and more precalculation. However, it has the advantage of

requiring less calculation at each iteration or cycle.
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CHAPTER VIII

A Hybrid Monte Carlo Method for Improved

Source Convergence

Unlike the hybrid method in this chapter, the Fission Matrix and Fission Di�u-

sion Synthetic Acceleration Methods are essentially unbiased. That is, they converge

to the unaccelerated solution. Converging to the unaccelerated solution is a desir-

able feature of an acceleration method, unless the unaccelerated method itself has

di�culties converging to the correct solution. Such is the case with Monte Carlo

criticality calculations for arrays of identical, isolated, and weakly-coupled �ssion-

able components. This type of system has a high dominance ratio. Because of

statistics, components in the high dominance ratio system having more particles

than expected, will tend to continue having more particles. In fact, for a lattice

with no communication between its components, as the number of cycles approaches

in�nity, all the particles could end up in one component.

We propose a hybrid Monte Carlo method that overcomes this inherent de�ciency

in Monte Carlo criticality calculations. The hybrid method follows the same format

as unaccelerated Monte Carlo by simulating particles on a cycle-by-cycle basis. How-

ever, the source for each cycle comes not from the �ssion sites sampled in the previous

cycle, but from the solution of a modi�ed di�usion equation whose parameters are
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estimated by Monte Carlo. The modi�ed di�usion equation tends to have smaller

statistical errors than regular Monte Carlo. The hybrid method produces two sets

of solutions: the modi�ed Monte Carlo solution and the modi�ed di�usion equation

solution. Since the hybrid method's Monte Carlo solution is not exactly the same

as the regular Monte Carlo solution, the hybrid method is not really an acceleration

method. In other words, it is not unbiased. The cause of the bias from the regular

Monte Carlo method is that the hybrid method has a spatial truncation error. We

will �nd, however, that the biased nature of the hybrid method is quite bene�cial for

a lattice of weakly coupled components.

This hybrid method is based upon the Quasi-Di�usion method, which was �rst

proposed in the deterministic arena by Gol'din [Gol64] and successfully applied with

newly derived boundary conditions by Miften and Larsen [Mif93].

8.1 Derivation of the Hybrid Monte Carlo Method

Once again, we begin with the monoenergetic, one-dimensional integro-di�erential

transport equation with isotropic scattering. We consider a slab of width L with vac-

uum boundaries,

�
@ (x; �)

@x
+ �t(x) (x; �) =

1

2

 
�s(x) +

��f (x)

k

! Z
 (x; �)d� ; (8.1)

 (0; �) = 0 ; � > 0 ; (8.2)

 (L; �) = 0 ; � < 0 : (8.3)

De�ning �n, the angular moments of the angular ux  , as

�n(x) =
Z 1

�1
�n (x; �)d� ; (8.4)
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where �0 is the scalar ux, we integrate the transport equation, Equation 8.1, over

angle and obtain

d�1(x)

dx
+ �t(x)�0(x) =

 
�s(x) +

��f (x)

k

!
�0(x) : (8.5)

Multiplying Equation 8.1 by � and integrating over angle, we obtain

d�2(x)

dx
+ �t(x)�1(x) = 0 ; (8.6)

from which we set

�1(x) = �
1

�t(x)

d�2(x)

dx
: (8.7)

Substituting Equation 8.7 into Equation 8.5, we obtain, without approximation to

the transport equation,

�
d

dx

1

�t(x)

d

dx
�2(x) + �a(x)�0(x) =

��f (x)

k
�0(x) : (8.8)

Next, we de�ne an \Eddington factor," �2,

�2(x) �
�2(x)

�0(x)
=

R 1
�1 �

2 (x; �)d�R 1
�1  (x; �)d�

: (8.9)

Multiplying and dividing the �rst term in Equation 8.8 by �0(x), and multiplying

and dividing the other two terms in Equation 8.8 by �2, we obtain an elliptic equation

for �2(x)�0(x):

�
d

dx

1

�t(x)

d

dx
�2(x)�0(x) +

�a(x)

�2(x)
�2(x)�0(x) =

��f (x)

k�2(x)
�2(x)�0(x) : (8.10)

The boundary condition at x = 0, as derived by Miften and Larsen [Mif93], is

found by integrating Equation 8.2 over � > 0 and manipulating as follows:
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0 =
Z 1

0
� (0; �)d� �

Z 0

�1
� (0; �)d�

+
Z 1

0
� (0; �)d� +

Z 0

�1
� (0; �)d� (8.11)

=
Z 1

0
j�j (0; �)d� +

Z 0

�1
j�j (0; �)d�

+
Z 1

0
� (0; �)d� +

Z 0

�1
� (0; �)d� (8.12)

=
Z 1

�1
j�j (0; �)d�+

Z 1

�1
� (0; �)d� : (8.13)

Now, we de�ne an Eddington factor for the boundary,

�1(0) =

 R 1
�1 j�j (0; �)d�R 1
�1  (0; �)d�

!
: (8.14)

We also rewrite Equation 8.7 at x = 0 by multiplying and dividing the right hand

side by �0(0), and substituting Equation 8.9 to obtain

�1(0) = �
1

�t(x)

d

dx
�2(0)�0(0) : (8.15)

Noting that the last term in Equation 8.13 is �1(0), we substitute Equations 8.14

and 8.15 into Equation 8.13, obtaining the left boundary condition,

0 = �1(0)�0(0)�
1

�t(0)

d

dx
�2(0)�0(0) ; (8.16)

or, multiplying both sides by �2(0)=�1(0),

0 = �2(0)�0(0) �
�2(0)

�1(0)�t(0)

d

dx
(�2(0)�0(0)) : (8.17)

The right boundary condition, found in a similar fashion, is

0 = �2(L)�0(L) +
�2(L)

�1(L)�t(L)

d

dx
(�2(L)�0(L)) : (8.18)

Equations 8.10, 8.17, and 8.18 constitute a modi�ed di�usion problem, derived,

without approximation, from the transport problem, Equations 8.1, 8.2, and 8.3. The
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hybrid method involves estimating the Eddington factors �2 and �1 with accumulated

data from the Monte Carlo simulation. The solution of Equation 8.10 provides the

distribution from which the subsequent cycle's �ssion source is sampled.

8.2 Implementing the Hybrid Method

During the Monte Carlo simulation, data are accumulated for estimating the

Eddington factors. For example, on the left boundary, �2 is the ratio of an angle-

weighted surface current estimate and a surface ux estimate [Lew84],

�2(0) =

PN
i=1 j�i(0)jwi(0)PN

i=1(wi(0)=j�i(0)j)
; (8.19)

and �1 is the ratio of a particle current estimate and a ux estimate at the surface,

�1(0) =

PN
i=1wi(0)PN

i=1(wi(0)=j�i(0)j)
; (8.20)

where N is the total number of particles and wi is the weight of particle i. Required

for every cell m in the system, �2 is obtained as an average of the angle squared,

weighted by the track length ux estimate,

�2m =

PN
i=1

PK(i)

k(i)=1(�
2
i `iwi)k(i)mPN

i=1

PK(i)

k(i)=1(`iwi)k(i)m
; (8.21)

where `i is the track length in cell m for track k(i) of particle i.

For two reasons, the variance in the estimates of �1 and �2 is expected to be

less than the variances associated with the regular Monte Carlo estimates of ux.

First, the �'s are constrained between zero and one, while ux values throughout the

system may di�er by many orders of magnitude. Second, the statistical errors would

tend, in some sense, to cancel out, since the �'s are ratios of similar quantities.

The method entails running enough cycles of regular, unaccelerated Monte Carlo

to get good cumulative estimates of �1 and �2. Then these estimates are used in
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the modi�ed di�usion equation, Equation 8.10, whose solution requires a simple

di�usion solver with modi�ed cross sections. The solution is obtained on the cell-

edges, allowing the Monte Carlo �ssion source for the next cycle to be sampled

according to a linear �t in each cell.

This hybrid method gives two sets of solutions (ux, �ssion source, eigenvalue,

etc.) of the system, one from the Monte Carlo simulation as usual, and one from the

modi�ed di�usion equation. In addition to truncation error [Mif93], the latter has a

statistical error associated with it, but this error is less than the error of the Monte

Carlo solution.

8.3 Results of the Hybrid Monte Carlo Method

We apply the hybrid method to the uniform lattice test problem, whose domi-

nance ratio is approximately 0.996. The initial source contains 2/3 of the particles

in the left half, and 1/3 in the right. The Eddington factors are accumulated over 30

inactive cycles, with 5,000 histories per cycle before the hybrid method is engaged.

The Monte Carlo is performed using 58 meshs cells, with survival biasing (weight cut-

o� of 10�4), and the hybrid di�usion calculation is made on 464 cells. In Figure 8.1,

the experimental Fourier analysis shows the �rst and second Fourier modes, includ-

ing the converged values from an S32 discrete-ordinates calculation. Once engaged,

the hybrid method converges faster, and, upon convergence, has smaller statistical

uctuations.

Figure 8.2 shows the Monte Carlo collision uxes from the unaccelerated and hy-

brid cases. It is evident that the Monte Carlo ux of the hybrid method is converged

with its global cosine shape, while the unaccelerated Monte Carlo ux still retains

initial source e�ects. The one-standard deviation error bars on the unaccelerated
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Figure 8.1: Convergence of the �rst and second Fourier modes for unaccelerated
Monte Carlo and hybrid Monte Carlo in the uniform lattice test problem.

Monte Carlo ux show how the variance is grossly underestimated due to the lack

of convergence and the high dominance ratio. Even so, the standard deviations of

the hybrid Monte Carlo ux were nearly a factor of two smaller. Given that the

unaccelerated ux error is underestimated, the actual factor of reduction is much

larger than the apparent factor of two. We cannot easily quantify this actual factor

because the unaccelerated �ssion source is not even converged.

For this problem, where the fuel cells are identical and the system is large, the

eigenvalue, an integral quantity, is not overly sensitive to the �ssion source shape.

Thus, the method shows no apparent improvement in estimating the eigenvalue.
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CHAPTER IX

Summary, Conclusions, and Future Work

9.1 Summary and Conclusions

We have presented three new methods possessing improved source convergence

properties in criticality calculations for systems with high dominance ratios. The

three methods are the Fission Matrix Acceleration method, the Fission Di�usion

Synthetic Acceleration (FDSA) method, and a Hybrid Monte Carlo method. Cur-

rently, practical Monte Carlo and deterministic criticality calculations are based on

the source iteration method, which converges very slowly for systems with high dom-

inance ratios. In fact, for some di�cult problems, the Monte Carlo method will not

converge to the correct solution. Systems that have high dominance ratios are those

that have weak neutron communication between their distant regions. Typical high

dominance ratio systems are large thermal nuclear reactors and arrays of barrels of

nuclear waste.

The Fission Matrix Acceleration and FDSA methods are unbiased acceleration

methods. They converge to the same solution as the unaccelerated calculation. Both

methods approximate an exact acceleration equation for the �ssion source. Solving

the approximate equation yields an additive correction for the �ssion source. The

acceleration requires extra work at each iteration or cycle, but the source convergence
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is accelerated by requiring fewer iterations or cycles.

The Fission Matrix Acceleration equation uses the �ssion matrix as a low-order

operator in approximating an exact acceleration equation. The �ssion matrix may be

estimated deterministically or by Monte Carlo. Fission Matrix Acceleration may be

implemented in di�erent ways. For instance, a di�usion �ssion matrix may be used

to accelerate di�usion, discrete-ordinates, or Monte Carlo calculations. A Monte

Carlo �ssion matrix can be used to accelerate a Monte Carlo calculation. The latter

implementation is important because the absence of a deterministic acceleration

equation deems a regular spatial grid unnecessary. Unfortunately, the statistical

noise is ampli�ed by the acceleration method and, therefore, needs to be �ltered out.

To do this we use a di�usion-like �lter that requires a regular spatial grid, but �lters

exist that do not require a regular grid.

We test the feasibility of all three methods in a testbed consisting of idealized

problems. Although these problems are far from reality, they contain enough realistic

properties to serve as a valid testbed.

We have applied the Fission Matrix acceleration to three one-dimensional test

problems. These were a homogeneous slab, a uniform lattice array, and a one-

dimensional model of the \keff of the world" problem. Their dominance ratios are

0.991, 0.996, and 0.823, respectively. For deterministic calculations, we observed

computational time speedups of about 20-34 for the homogeneous slab and uniform

lattice problems. The deterministic speedup for the 1-D \keff of the world" problem

was only 3.8 because the dominance ratio is not very high and, hence, there is little

gain to be had. The speedups for Monte Carlo �ssion matrix acceleration were about

5 for the homogeneous slab and the 1-D \keff of the world" problem. The uniform

lattice problem proved too di�cult for unaccelerated{and therefore, accelerated{
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Monte Carlo to converge to the correct �ssion source.

We have implemented the new Fission Matrix Acceleration method in the pro-

duction Monte Carlo code MCNP. Applied to the three-dimensional \keff of the

world" problem, results for the \real" problem were impressive. Fission matrix data

were accumulated for 20 cycles after which the acceleration was turned on. The

accelerated Monte Carlo solution converged in about 3 to 4 cycles, while the un-

accelerated Monte Carlo required another 70 cycles. The dominance ratio of the

three-dimensional \keff of the world" problem is about 0.92, which is higher than

its one-dimensional representative test problem. The similarity of the method's be-

havior in this real problem to that in the simpli�ed problems veri�ed the validity of

the testbed of idealized problems.

The Fission Di�usion Synthetic Acceleration (FDSA) method is similar to the

Fission Matrix Acceleration method except that the acceleration equation is ap-

proximated by using the di�usion approximation. This acceleration method can be

applied to discrete-ordinates or Monte Carlo transport and it requires a grid for

solving the di�usion-like acceleration equation. FDSA requires less storage than the

Fission Matrix Acceleration method. Applied to Monte Carlo, we saw speedups of

6 to 9. For deterministic calculations, we saw speedups of 77 and 88 for the homo-

geneous slab and uniform lattice, and a speedup of only 2 for the 1-D \keff of the

world" problem.

The strength of the di�usion-like �lter is controlled by a parameter �. The �lter

is intended to remove the high-frequency statistical noise from accelerated Monte

Carlo calculations. We often found it necessary to damp the additive correction with

a parameter � that varied between 0 and 1. Damping scales back all frequencies

of the correction. The parameters � and � are not independent. If the �ltering
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does not remove enough noise, then the entire correction may have to be damped.

Using � to do the work of �ltering and keep the acceleration stable results in a loss

of acceleration, because the low frequencies of the acceleration are scaled back also.

Unfortunately, the selection of � and � is not automated.

Unaccelerated Monte Carlo was unable to converge for the uniform lattice test

problem. In this case, attempts to accelerate convergence with an unbiased accel-

eration method also failed. We presented a Hybrid Monte Carlo method that is

not an unbiased acceleration method because it does not converge to the unacceler-

ated Monte Carlo �ssion source due to its second order truncation error. Therefore,

quantifying speedup is di�cult, except to say that the Hybrid Method converges

while, practically, the unaccelerated Monte Carlo does not. The Hybrid Monte Carlo

method has a truncation error, but in the uniform lattice problem, it proved supe-

rior in converging the source and greatly reducing the statistical error. The method,

for this problem, realized nearly a factor of two reduction in the apparent standard

deviation of the collision ux estimate, but a much larger reduction in the actual

standard deviation.

In conclusion, we have successfully accelerated �ssion source convergence in both

deterministic and Monte Carlo criticality calculations. By �ltering statistical noise,

we have incorporated deterministic attributes into the Monte Carlo calculations in

order to speed their source convergence. We have used both the �ssion matrix and

a di�usion approximation to perform unbiased accelerations. The Fission Matrix

Acceleration method has been implemented in the production code MCNP and suc-

cessfully applied to a real problem. When the unaccelerated calculations are unable

to converge to the correct solution, they cannot be accelerated in an unbiased fashion.

A Hybrid Monte Carlo method weds Monte Carlo and a modi�ed di�usion calcu-
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lation to overcome these de�ciencies. The Hybrid method additionally possesses

reduced statistical errors.

9.2 Future Work

We now discuss a few items from the potentially endless list of \things to do."

1. Automate the selection of � and �. We know that as the number of Monte

Carlo histories per cycle increases, the calculation appears more deterministic

and �ltering requirements diminish. So, � should be inversely proportional to

the number of histories per cycle. The damping factor � may be dependent on

the dominance ratio, �. If the dominance is near unity, very little information

is gained each iteration or cycle. So, it may be that � � (1� �).

2. Implement a Kalman �lter. The di�usion-like �lter we use spatially smooths

the �ssion source. For a severely heterogeneous system, spatial smoothing may

introduce unphysical and unwanted errors. A Kalman �lter would determine

the optimal �ssion source in a region based on all previous cycles.

3. Use powers of the �ssion matrix. For high dominance ratio problems where

little information is gained each cycle, it may be that one cycle or iteration is

too small of a \snapshot" to get a view of the big picture. If instead of collecting

the �ssion matrix over one cycle, suppose its n-th power was collected over n

cycles. Then the acceleration could be applied every n cycles and be more

e�ective. See Appendix A for a brief discussion.

4. Implement FDSA in a marriage between a deterministic production code and

a Monte Carlo production code.
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5. Combine FDSA and the Hybrid method.

6. Accelerate the �ssion matrix. Currently, the �ssion matrix is estimated af-

ter the unaccelerated cycle or iteration. Thus, the acceleration e�ects do not

show up in the �ssion matrix until the next cycle or iteration, and, then, only

implicitly. Accelerating the rows of the �ssion matrix may prove bene�cial.

7. Further investigate using the adjoint �ssion source as an importance function,

as suggested by Goad and Johnston [Goa59]. We considered using an impor-

tance function inversely proportional to the adjoint �ssion source during the

inactive cycles to speed convergence, and proportional to the �ssion source

during the active cycles to reduce the system-wide variance. However, initial

results were not encouraging.

8. Study the adaptation of Halton's sequential Monte Carlo methods [Hal94] to

criticality calculations.
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APPENDIX A

Using Powers of the Fission Matrix

If the �ssion matrix is accumulated from Monte Carlo results, the possibility

exists to use multiple powers of the �ssion matrix in source convergence acceleration.

The advantage of using the �ssion matrix to the, say, n-th power to accelerate source

convergence is that it has a smaller dominance ratio. If, for instance, the dominance

ratio of the �ssion matrix is �, the dominance ratio of the �ssion matrix to the

n-th power is �n. For systems with high dominance ratios, this modi�cation in the

�ssion matrix acceleration may prove useful and maybe even bene�t the cases where

unaccelerated Monte Carlo has di�culty converging to the correct solution.

After three cycles of source iteration (accelerated or otherwise) we would have

f1=2 =
1

k0
Lf0 ; (A.1)

f3=2 =
1

k1=2
Lf1=2 ; (A.2)

f5=2 =
1

k3=2
Lf3=2 (A.3)

=
1

k3=2k1=2k0
L3f0 : (A.4)

The last equation may be written

f5=2 =
1

`
Kf0 ; (A.5)
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where

1

`
K =

1

k3=2k1=2k0
L3 : (A.6)

The elements of the matrixK would be constructed from the cumulative produc-

tion in cell i at cycle m due to a source in cell j at cycle (m� n) and the source at

cycle (m� n). This method would require extra storage because the normally-used

single power �ssion matrix would still be required. The construction of K would

require at least a uniform source in its initiating cycle.

The derivation of a �ssion matrix acceleration equation follows:

f � f5=2 =
1

k
Lf � f5=2 (A.7)

=
1

k
L(f � f5=2) +

1

k
Lf5=2 � f5=2 : (A.8)

So,

(I �
1

k
L)(f � f5=2) =

1

k
Lf5=2 � f5=2 (A.9)

=
1

k
Lf5=2 �

1

`
Kf0 (A.10)

=
1

k
L(

1

`
Kf0)�

1

`
Kf0 (A.11)

= (
1

k
L� I)(

1

`
Kf0) (A.12)

=
1

`
K(

1

k
L� I)f0 (A.13)

=
1

`
K(

1

k
Lf0 � f0) (A.14)

=
1

`
K(

k0

k
f1=2 � f0) : (A.15)

Then, as before, the appropriate spatial projections are made and the particular

solution for the correction is obtained by setting k equal to

k = k0
(f�; 1

`
Kf1=2)

(f�; 1
`
Kf0)

= k0
(f�; 1

`
Kf1=2)

(f�; f5=2)
: (A.16)
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Here, f� is the eigenvector of the adjoint L. The determination of k would require

an extra matrix multiply, since Kf1=2 is not explicitly known.

The idea is that the �ssion source for the i-th cycle can be accelerated by using

a �ssion matrix to the n-th power and the �ssion sources from the (i � n)-th and

(i� n+ 1)-th cycles. Extra storage would be required, as well as bookkeeping over

n cycles, not just one.

This approach could enhance stability and possibly reduce some of the cycle-to-

cycle correlation e�ects. It would only be applicable to the case where the Monte

Carlo �ssion matrix is used.
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APPENDIX B

Poetic Summary

I needed to know k
had computer time to burn
needed Monte Carlo
nowhere else to turn

sampling and pdf's
those are its wares
I like Monte Carlo
even though it has errors

I made up the input
so nice and clear
\I'll get me that number,"
I said without fear

material and densities
cross sections to discern
I guessed at a source
and hit carriage return

I waited and waited
for that thing to converge
killing the job
was my greatest urge

Along came Ed Larsen
luckily sooner than later
he said all I need
is a low-order operator
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\I've been talking to Art
we've got the �x
just get yourself
a good �ssion matrix!"

so, hold the Mt. Dew
no shootin' the breeze
that run is completed
it converged with ease

what once took hours
now takes minutes
who can believe it?
it's gotta be nuts!

but proof of spare time
before you sits
I tried to write poetry
yep. it's the pits
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