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ABSTRACT

Aulomaied analysis using patiern recognition and neural
neiwork software can help interpret dsta, call attention o
potential anomalies, and improve safeguards elfectiveness.
Auinmated sofiware analysis, based on pattem recogniton and
neural networks, was applicd tn data collected fromt a radiatuopn
core discharge moniwr system located adjacent ty an on-lnad
reactor core. Unattended radiation sensurs continuously col-
leet data 1o monitot an-line refueling operations in the reactor.
The huge volume of data enflecter! from a nuinber of radiation
channcls makes it difficult for a safeguards inspector o review
it all, check for consistency among the measurenent chanels,
and lim! anomalics. Pattent recngnition and neural netwnrk
sofiware cun analyzc large volumes af data front continunus,
mnatiended measurcnients, thereby improving and automating
the tletection of anomalics. We developed a prtotype patiern
recognition program that determues the reactor powet level
am! idennlies e times wltent Tued aardles are pushed thrugh
the core during o line refueling. Netral network models were
alvo developen 1o predict fued bunlle burnng 1o calenlate the
region o the o load reactor face Tiom which fue! bimldles
were disclmrged based on the radation siguals, u the prelunt
nary data s, which was Hinnted and consisted ol Jotn distinet
Duirntip e gions, the nenral netwarh mnlel carrectly predated
the barnmp regron with nn acettacy of 9245

INTRODUCTION

Nuclear power stutions in the United States contain rea
tor cores, which cen be accessed Iroan anly one end, nsnally
the wop; el can be sccessed only when g teavion is sl
down, Onie saleguards advantage to s type ol ractor s that
itis telatively casy for a miclem salegnanding agency o unan
1 the Tuchng process: s inspector e be sent 1o the sie (o
pveisee e fuchuy pnoredie. On load puclear teactons diller

Tl wank .-‘l.l-l-q:)ll-l:ll- I»_\'. the 10§ Depattiment o} Euergy,
Oflice o) Safegnatds mwd Secunty and Olfice o) Ajms Conaal
aud Nonproldrintimn

from those in the United Suates, in that operators may remotely
obtain access W the core from both ends, and the resclots can
be continuously fucled without shutting them down. Such an
operation offer a fuel management advantage, but a safeguards
challenge, because it provides a greater oppornunity Yor the
diversivn of nuclear material.

On load reacwors are well-suited for producing plinn
niunt frinn their standlard fuel bundles. Safeguarding an on
load reacwor requires keeping track af fuel as it is pushed
through the core. When a fresh fuel bundle is pushed in one
side, a spent fuel bundle is simultaneously discharged intn a
collection mechaiisimt on the other sule. Using tlus fucling
schenie, a typical ou lnad reactor will discharge §5 10 65 luel
bundies per week. Figure | shows a cuinceptual diagram of this
fucling cycle. Because this is an ougping process, it is labor
intensive fur a safeguandhing agency tn have an inspector on
site o contmtimusly matitor re foeling,.

g |

Conceptual diagrar af fueling vyele



To provide data that are uscful W inspeciors, a core
discharge monitor (CDM) sysiem! has been installed on the
on-load reacwor. The CDM collects data continuously and
auomatucally from radiation sensors that monitor the reactor
core and the fueling process of the on-load reactor. Currently,
the CDM daia are manually examined by a safcguards inspec-
1or using graphical review sofiware to determine when on-line
fueling acuvity occurred. Because this system has the potential
ic gencrale massive quantities of data, efficien: automatic
algorithms would help make interpretations. These algorithms
could extract information from the data, reduce analysis times,
and relieve inspectors from tme-consuming manual data
revicws. Automaled quantitative analysis programs could help
safcguarding agencies gain a beticr perspective on the coni-
plete picture of the fueling activity of an on-load nuclear reac-
tor. These programs could provide a cost-effective solution lor
autonated monitoring of on-load reactors, signilicantly reduc.
ing personncl time and cffort. In this paper we discuss proto-
1ype pattern recognition and neural neiwork sofiware devel-
oped W test automated data analysis and provide a ol for
inspectors. The pattern recognition progrant was develuped tn
test the feasihility of analyzing CDM data v identify when
fuel bumlic pushes vecired during on line refuehing and 1o
monitor the power level of the reactor. The neural network
model was developed 10 test the feasibility nf determining the
region ou the reactor face frows which eacht fuel bumlle set was
discharged am! 10 ry 10 predict the bumup o) fuel binwdies.
These programs were tested using prehiminary st up dita
collected Trow: a CDM systern mstalled v an on Joad reactor,

CORE DISCHARGE MONITOR (CDM) SYSTEM

The CDM system wsed in tis Ltdy consists of fom
pumna ray and pentron detectors (GRANDS) located near the
nuclear cone: two antench reacto Vace, The laces of the e tm

core arc on the cast and west sides of the building. Fucling takes
place froni east 1o west or west 1o cast and each GRAND derector
array is designated by its location in relationship to the vore, cither
the southeast (SE). northeast (NE), southwest (SW). or northwest
(NW) comner as shown in Fig. 2. The GRAND operates continu-
ously, collecung daia a1 discrete time intervals from the detector
arrays. These arrays monitor radiatian signals from the reactor that
show the discharge of spent fuel from the reacior core. The data are
ransmitted 10 an MS-DOS computer for permanent recording.
archiving, and analysis by inspectors.

Fach GRAND collects nuclear radiatinn data from the detec-
wr enclosure, fiters it time stamps it, and temporarily stores it The
dawa are tien fed w the cellection computer upon request for more
permanent storsge. At a later time, data can be off -loaded from the
collectinn enmiputer for off-line review. The detector data fed from
the GRAND cunsist of five channels of infirmation. The channels
are lahelel) as follows: fission chamber A, fission chhamber B, fissinbn
chanmiber ¢, inn chamber 1, and ion chamber 2. Fission chantber A
correspordls ty the first neutron detector in the detector enclosure.
Fission chan:ber B is another view of the first neutron etector,
which can be used for tamper :letectinn, The second neutron detev
tor in cach detector enclostre is laheled as fission chumber C. This
ncutron detectr iy not wired 1o its correspomling GRAND, hut
rather v the GRAND vn the nppasing lace. For example, the NI
lission chiaber C is wired i the NW GRAND, and ther NW lis
sibn chamber Cis wired i the NIEE GRAND. This provat - the
vverall systemn with a backup, 11 case the GRAND 1or one o) the
detectors fails. This cross wirng is shownin Fig, 2 as the splice Dox
hetween the two GRANDS onenclt sude of the reacton core.

I'maliy, the twp gamnmta 1ty detedtors corespond o e 1on
chapiber 1 and 2 chimmels, respectively. Figtire 3 shows the lnvout
of a detector enclosme. An i depth discassinn of the detectn
assetthhies utd the GRAND electiomes package v be lomd m
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Fig. 3. A rypical detector enclosure,

The GRAND tecords data every 1010 11 secomls requn
ing around (M) megabytes 1o store all the data points collected
from pne reactor for 90 days: normully stutistically insigmli
cant dnta are filterer] so the actnal data nmonm stored s closer
m 10 10 20 megabytes per Q0 days. Teis impracucal or inspec
tors o guantitatively amalyze this nneh data, Shown m Frg 4
are graphs of data Ironn twe detectons during one particuln
duy. Eachlarge spike on the graplicorresponds 1o 4 pair of Jaed
Iuulles being dischaged fimn the reactor. Smaller spikes or
decay cirves or both ont the graph ntay cotespod o othe
activities such as the rotanon ol e nehng nachme o ihe
tadiow tve decay ol the spent Juel hemg beld un the Inelng
ntachine dimmg atefueling opetatine Reac tor power level can
alee e detenmed from the datn becaase the Ja hprommd Jesel
the detectors e sensing carespotuds o the ctinent powet
lrvel ol the reactor. The hiackgrommd e thes context s consul
cred 1o be the nmonnt of vadhaten tie enchor conts w hen mo
el s presentt otisude obf the coe A sinlegnands mspecton
contnts the nnatbet ol sprhes v the gph o detemne the total
minther ol Jue! pushies the wene o nuade e a poteokae day
The conmted nimmber of Jued pushies s then compated G Jaod
ty dechinations Tor salegmands vente aton A aatcanated yaa
cess cant g aastberaly wedmee e analvas e sl hiedie o
stlegmneds mspecton weswew the arge cobpoe al CHM data
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CDM Analysis makes two passes over the CDM data
during its scarch for arcas of imnerest. In the first pass, 1t slides
an average along the signal looking for significant changes.
When the slope of the signal junips above or below the stiding
avcrage by more than 100%, the data points are flagged for later
cxamination. In the first pass, a large quaniity of data may be
flagged as interesting. To reduce the clutter, a second pass is
made over just the areas that were flagged. Arcas near cach
other in the time series arc clustered together wita the maxi-
mum data point being marked as the minldle of the event. From
the resulting list, a report can e generated o alert the safe-
guards investigator w specific arcas of the data. Radiation
spikes caused by refucling are foum! by setting the scarch
threshold very high (50%). This technique provides all the
fucling spikes for a given data set.

MONITORING REACTOR POWER LEVEL AND
POWER LEVFL CHANGES

Once the arcas of interest are identihied, power level
uitnring is straighiforward. When no events nre necurring,
the backgronnd radiation sensed correspatuds 0 the reactor
power level. The average ! the backgroum! catt be wsed 10
comptite the power level by establishing a baseline reading of
whiat is consideren! tn be full power. Tiis baseline is compnted
by examining tata (o o reactor that is pperating at a lixed
power withott Tue! ontside the core. The average vahwe
recorded by ench detector is used as the hasehne, This iscelie
s marked on the graph i Frg. S by a honzaotad e, 1 the
pverage valie of the backpromud moves from s baselme,
then the power level is climnging. The datn have shown tha
most pawer changes ocetied moa step wise Nialuon CHM
Amalysis evahittes the power changes m the lollewg - um
et 1 the 1ea lor power 1s tased ar lowered, the slope of the
average lwekpgromnd stnts o tecome very o steep s o
numhed ay the begumng of o pawer duege Whero thns shoge
Wattens omt gyzan the emd ol the power vlemge s mathed The
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new valuc at which the average background comes 1o rest is
considered the new power level of the reacior. The average
background as a percentage of the pre-defined bascline is the
percemage of full power at which the reactor is running,

Currently, CDM Analysis docs not examine more thar,
onc channel on ore detector when making its power level
computations. In & production-quality analysis package, this
perceitage should be an average of all the percentages com
puied from all channels .n all deweclors. By taking power level
measurements from all sides of the reactor core and averaging
themn, we could obtain a more accurale power level reading
Even though cxamining just once channel gives a fairly accu
rale reading, within S%, cexanining all channels is a nuch
better stralegy because it provides a redundancy check. Figure
6 is an cxample of the power level of a reactior being raisel
from startup w full power. Notice that the power chunges
ocetrr i mltiple steps. CDM Analysis is also capable of print
ing a repurt that details each siep vl the power level change
and the power level to which the reactor moved.

SE Flaslon Chamber A
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r
° —— e
0000 REACIOR 2 233

Fig. 6 The mubiple steps of a power level change.

STATINSTICAL PHENOMENA OF CDM DATA

We statistically anatyzed the ovadduble CDM data teotest
the conelatwn of e beght ol the raditien spakes iom
let dischmge events with the Juel gnop We alsa oross
canrelted pduatean sggonds lrome detectors e dllerent pose
tons ety o deenane e beatian ol the Juel daonel dorag
wiclucloy evemt

Deterpinnng lanneap s on dh e alt sanhievmte prot-lea
The CHAM Slata showed tha detectins on one lace o the
tenctor we wisgpitontdy wllectesd Iy oelaclog esents ocom
1 on o apposite Tnee A sigralicaat conelation does vt
hetween detectin apeys Joeated e the wanae Yace o e
wactor The cacoa e un the e chandss duta wos Joomd o e
poneuw ed - s ellect wies b ed e dadie sangthing, wath
nead e et mteptatma eae e presels acomate ot o]
vinrents e wentton «bamaeds were o dies ted and juos oled
stalde tedanps it were word Jor the aindyeas !



NEURAL NEFTWORKS FOR SOLVING THE
FUEL GEOMETRY PROBLEM

Neural networks are based on a mathematical mndel
that is derived from cell biology.? These networks are orga-
nized inw layers consisting of scveral neurons (nodes) con-
nected with adjustable weights. Each layer performs a particu
lar function. The input layer processes the data being pre-
senied 10 the network, one or more hidden lnyers encode “fea-
tures” in the dauws, and the putput layer holds the response of
the network o a given input.

Two phases af operation are required: the leaming phase
and the testing and recall phase. Learning consists of present-
ing a stimulus (an input vector) W the input layer ogether with
a desired r sponsce. The network then calculates a result using
the current weights am! given input values, This “answer™ is
next compared with the desired response. If a differerce of
suflicient magnitude exists, the weight values are adjusted.
Over time, as this leamiag pmcess is repeated with more
vectors, the weights will ronverge, and the network 1s said o
be raied. During the westing/recall phase, similar exanples
are presented to the network e test whether the training was
adeguate. The difference between the desired nnd acnal v
put is & meastie vf success, with differepces ol smaller magni
tule  representing  greater  stecess  than those ol larger
magnitikle.

Wihen nsing nenral networks, vue mnst obtam an
adequate set v travung data. loas ddhenlt w0 guantily the
anmnt »] wanng data wegaied Jor good results becavse the
quintity depends o the caanplexity ol the records ad the
mmnber of “Teatines” cibedded ne the data, The 0 days «)
available reacton data vielded ady 170 examples o) el
dischipe events, whuh we consder upmimal fin ndengnate
traunng aned testig. hnaddinen, these events came Nom only

1 2 3 4 5 6

90 of the 460 available luel channels in the reactor core and
represented a start-up activity rather than nommal reluelng.
Even with these lintitaunns, we were siill able 1o train a ucural
network i classify the data imo ilifferent regions on the face
of the reactor.

The first ncural network model divided the channcl map
into eight regions. This channe! map and the eight regions are
shown in Fig. 7. Almost all the regivns were chosen because of
the distribution of the poinis in the available data. Because
detectors on nne face do not reliably see events on the oppas
ing face, only 10) chaanels from the same face out of the 20
towal channels were used in the neural network mindel. The ion
chambers act as noise during the training precess w help
separate the input vectors into appropriaie categotics. Back
propagation was chosen as the modeling paradigm becatise ol
its ability to use real-valued inputs.® The neura) networks used
in this proof-of-principle were created using NeuralWorks
Professional 11/Plus.® a comniercial nenral network develop
nient ol manufactured by NeuralWare, Ine.

NEURALNETWORKS FOR FUEL BURNUP
PREDICTION

Because it may be intponiant to determme if a Yacility 18
discharging low burnup fue! from the reactor, we built a uenral
network wodel sinlar 1o the one deseribed above tn preduct
fue! burump, Tis dillicnht © compite an actnal vale lor the
bumup of cach indivilual Tue! bundle beranse the spike
recurded by the CDM 18 an addiive value of two dindles
beug dischurged snntiltaneously. Tn this data set, g lell
into one of Jom distnet regions Therelwe, we It i nenral
netwak o classify binmp e one ol the lom citegones
based o the CHOM dara, as showtm g 8.
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Fig. 8. Four categories of recorded burnups in sample duta.

RESULTS OF NEFURAL NETWORKS FOR SOLV-
ING GEOMFETRY AND BURNUP

The ncural nctworks used for solving the geomery
problem were trained and 1ested on data from the cast face of
the reactor, although the west face could have beeu nsed just
as well, The training set consisted of 63 patterns and the test
setof 72 patterns. Alter 50,000 ruining iteratinus, the network
commectly classilied the region of the fuel discharge in B2% of
the patterus i the test set. Fou the Tuel bunap proddew, the
neiwork perfonued bettes, with an aconoesy o 9% 1 predict
it 1uel undle burnup. fu spite of the very small dita set, the
networks petfortned remarkuy well The result wiss a nenral
network puxdel o} reactor geometry  that comelates power
level, bunptyy, and the number ol fuel bundles pusiied though
the remcton,

CONCEUSHONS

The CDM Andlyss ol has shown the potential Jor
nuaten) wmldysis o) CHDM datn tocdetenmine reluehng acny
iy and o memtan the ewctin power level, Nearnl netwiork
nuplementations for detenining the location ol Tue! dischinge
and the burmmp of Juel hinnlles appein sueeessii! cnongh o
wrrunt further tesearch It appears that nenral nerwoerk iedels
conld be developed 10 provide close o TR acemmcy e
ticting, position and bumup il 4 coanplete set ol fepresentative
tat o an opemting on lewd ceacton were acnilable. The
tatn newded w0 nehieve tdus capahilty should pcade Tued
pshes ltomn sl 160 el of the rescton Tace mnd A vom
prete cyde sl el duough @)V posions meevery chamel

Futime work shondd inchsle devismg soomooes aocarnte
teclwue Yon detetnuoog arcas of mterest m the CDM data,
tuther e u shding evenge Power leve! montounpg tsurg m
average over all 2 chanpels will nlse vield o mone socomnte
powet level ralenanon. Dehicrences m the collection ol glian
titative datn shondd e conrected. We need mere sl es o)

dita e e aad )oamma cimned pradig ome vegre

semative of the measurciient! period. In addition, different
types of neural network models shoutd be trie:t pnce a repre
scitative amount of data has been obtamned. The portability of
ncural netwolk models  other reactors of the samie 1y
should alsp be investigated. Neural netwnrk mindels hold great
prowtise for Niure work in the area ol core discharge nionitor-
ing and automateld examinaten of large volumes of continu
pusly collected data 10 improve  nuclear safcguards. We
firmly believe that a commercial-grade ol for monitoring
power and conmting fue! budles From CHDM data should he
developed.
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