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GROTU > INVARIANT SOLUTIONS OF HYDRODYNAMICS
AND RADIATION HYDRODYNAMICS

Stephen V. Coggeshall
Los Alamos National Laboratory, Los Alamos, NM 87545 USA

Using the property of invariance under Lie groups of transformations, the equations of hydrodynam-
ica are transformed fiom partial differential equations to ordinary diflerential equations, for which special
analytic solutions can be found. These particular solutions can be used for (1) numerical benchmarks, (2)
the basis for analytic models, and (3) insight into more general solutions. Additionally, group transfor-
mations can be used to construct new solutions from existing ones. A space-time projective group is used
to generate complicated solutions from simpler solutions. Discussion of these procedures is presented
along with examples of analytic solutions of 1, 2 and 3-D hydrodynamics.

1. Introdnetion

The construction and use of large-scale hy-
drodynamics codes is an integral part of the ef.
forts at many organizations internationally. A
fundaniental requirenient for snch codes is to ad-
eqnately caleutate simple test problems for which
the exact solntion is known  Such benchimark
prohlems are therefore a basie need for any gronps
developing nontrivial nmenieal codes.

Smee many pracesses i which organizations
are interested require al least the solution of hy-.

drodynaies equations, nemtrivial henelunark prob

lems to such equations are nnpartant.  In the
past, many 1-1 test prohlems have heen nsed,
hut there has heen a lnek of nmltidimensicnal (2
aml 3 D) nentrvial analytic salutions. Ofien, a
1D prahilem i heen rnnoam w221 made, which
does it test a winlle variety of phvsical /innnerienl
processes  'resented here are s mnnher of 2 and
3 D amaly e sulntians tao the hydrenlynanne equa
tioms that may nmediately he nsed us lonreh
ninrks The salnnons were fomnl using, Lae group
merlds for the reduction of parnial differential
equations; aletils of thas wmetlonl ean he fmd in
the texts hatesl i Referenee |

The nse of Lie groups tosupphfy /solvwe hfer
eotinl euations hins enoves] renewed populunity
m the Inst few decales Ny adentfymg the con
tin, os trnnsfonatiom grogw ampler whirly the
cua‘s as reaim imvmiat, new sels ol eonreda
untes enn e identifie] nnler which the evuntions
bevome sunpler - Cinhimary ddflerential equatnms

(ODE's) undergo a reduction of order and partial
differential equations (PDE's) experience a reduc-
tion in the nninber of independent variables until
they beconie ODE's.

2. Mode¢l

In this work the equations for one-temperature
inviscous hydrodynamics arc considered. A re-
striction to a perfect gas equalion of state is made,
so the material pressure and energy are written

g | -
I'=1p7T, FE=——-T,
4-1
where 1 is the gas constant, 4 is the adialatic ex-
ponent and 77 is the matenial tempreratnne, (Use
of a mare general equiaiion of state, including a
power law form, for the 1D ease can be fonnd m
Reference 2) lleat canduction is inclnded in the
diffusiom upproxanuation, where the heat flnx F
in repiresented throngh a nonlinear Fourier's Law,
F = x(p. N7 A general energy soniree tern
S(x.opon, ) ik als inchuded

With thene assnmptions, the equations of nucs,

nomentinn, nond energy conservatnm hecome
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The 3-dimensional velocity is written asu = (u, v, w).

We look for continuous transformations which
leave these equations invariant by introducing tae
differential operator

8 8 8 [¢] i}
U=E’F’?+£v8_y +£'_6_-+£‘:9_t+r”8_p

a 8 8
Rt Tt T o
where each of the functions £* and ' depend
only on the independent variables r, y, 2z, t, and
the dependent variables o, u, 1, w, and T. This
operator is extended to action on the derivatives
in (1) throngh prolongation formulas described
in all the texts listed in Reference 1. Invariance
of these equations is invoked by demanding that
U operating on these equations gives back some
arbitrary function times the original eqnations,
which savs that the equations are invariant on
the solntion manifold. ‘These invariance condi-
tions provide relations to determine the nmknown
functions £* and the yt.

The Lie gronps of point transformations un-
der which Figuntions (1) reranin invnrinnt are gen-
eriated hy the operntors

= :(:_.r = i,
Uy = 0y,
U, .
Uy - 0y,
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witl 1l follonong coaehoaes o the ol tvaty

x and energy source S:

pr,o(a,, — qa,, — qtay) + 2T'x1(a,, — a, — tay)
=a,, - a, +(2 - q)a,, — qa,!,
US - S(2a,, — 3a,; — 4tay)
T + 2
- qap (7-‘—'——) =0.
7-1 q

(2)
The complete invariance operator is a linear coni-
bination of the scparate operators,

U=a,lU;+a,Uy+ ..+a,U,,+al,,

where the a;'s are arbitrary constants,

These groups represent space translations ({/,,
U,. U,). time translation (17;). Galilean boosts
(Uge. Yay. Ugs), rotations (I 'y, Uy, U, ), space
scaling ({',,), time scaling (1/,,), density scaling
(U',,), and a space-time proj-ctive gronp ({/,).

Fur the remainder of this work both heat con-
du~tion and the energy sonrcr S are neglected.
The conditions for the inclusion of these terins are
given hy (2), and several 1-D) analytic solutions
including heat conduction ar~ given in Reference
4. 'There is no problem finding similarity soln-
tions (o multidimensional hydrodynnmics with ei-
ther condnction or the sanrce term retained. It
iv, however, nmch more diflicult to solve analyt-
ically the redneed ardinary differential equations
with these terms included. Nunmerieal solutions
of these ODE's are siraightforwnrd.

3. Reduction to ODE'a

Constder an example 'DE 1 (r,, 0, ...) = 0
with windependent varinhbles x and i dependent
vanables y which is invanant under o difleren
tial aperntar {7 = Y60, 4 Yy, That ix,
Ui = 0 whenever 11 - (1 Siner 1) s a linear
differentinl aperator, we knaw (hy the method of
characteristics) we can rewnite [/ () 1 terins
of the y
charavienishie equntums

1 + 10 mtegiation constants ¢ of the

d.r._ ) _ l‘J‘.,_ _ _(!11 _ ) di
(l EH ] T l'lll
Thus I 0 hecomes GOy, Jen ) 0 O amld

the wnmler of noleprendent varmbles has heen pe
IIIII'C'II ||\ o



The use of the integration constants from the
invariance characteristic equations as new vari-
ables is seen as the identification and introduction
of a new "preferred" coordinate system indicated
by the symmetries of the differential equations.
For PDE's with two independent variables a sin-
gle such transformation reduces the equations to
ODE's. To reduce PDE's with n independent
variables to ODE's, n—1 such reductions must be
made. These multiple reductions are facilitated
by examining the structure of the associated Lie
algebra Specifically, after we perform the first
of several reductions, we wish the resulting equa-
tions to retain the symmectries of the groups used
in the first step so that the process can be con-
tinued. This is gnaranteed throngh the fcllowing
theorem: If a differentinl equation A is invari-
ant under a Lie gronp (¢ with a normal subgroup
S C G, then the rednced eqnation A/S obtained
using the gronp S will be invariant under the guo-
trent group (i/S. Complete description as well as
examples of this procednre can br found i Ref-
erence 1.

To illustrate this procednre we consider the
two-dunensional axisymimetrie simplification of
Fguations (1). We work in sphericad coonlinates
with independint vapables v, 8, and £, and et u
and v he the - al @ comuponents of the velocity,
respectively. We choose two snhgronps allowed in
this geometry for a dvmbile reduction, nsing first
Y = Uy ol and then ' = 1, 4+ 80,
where o nand 4 onre urlatrary constants, for the
twa reductions. We adentafy 17 = et 4 170, 1
g = 0G4 (e =ty - et = 2T and 1 -
re 4 op(d D)4 b 4 2T0r We dn
nat neal b ealealare the ddlerential equations
abitimmed waith the fiest rediction, we van proceel
to b e wvanands of hoth 8 and 192 and b
the dvmble peductnm v one step

The chatnctenst o equations for ' are

dr do dt dp

EIR I e T
dn dr dl
P Y B

The ntegration constants of these eynatums are
the new vanhles

ooy ey I":"‘"/'. g oulor,

s vl ) t

Since U' is a normal subgroup of U?, we are
assured that the equations obtained by reducing
with U! will inherit tlie property of invariance
under U2, and a further rediuction is then possi-
ble. We can therefore write {/2 in terms of these
new variables as U? = f,0,, + ... + feO.,, where
the functions f; can be calcnlated from f; = U?e;.
We find U? = ¢10,, +¢3(A--3)0c, + a0, +e56,+
2¢60,,, with the characteristic equations

dey _deg g des  dos _ des
€ - 0 —Ca(ﬂ—s)_ €4 - Cs _21‘5.

The integration constants of this set of eqnations
beconie the new similarity variables:

3-8,8 o/t u?
A=0.1H(A) =prPfitle ,U(A):T_{I

) e? \ 4
V() = —r—.(.-(a\) =TI7 e

The final step is to transform the original
PDE's into ODE's in these new variables. Using
the chain rule, we calenlate the derivatives re-
quired m (1) in terins of the new varinhles E.g.,

0 B--3,-N_~uft
ne o [n(,\)r 1~Pe ]
Y B Y LY 2 /_’ ‘
= ¢ demely [l.’”—ll’ + 1 ,\.].

For this case A, = 0 sinee A = 8. When these
expressioms are substiinted into (1), the equatinns
become ODE's far H(A), U{A), V(X)) and ({(X).
Any salution of these ODE's provides a particnlar
solntion ta (1)

4. Analytic Solutions

In tlus wection are hsterdl a number of ana
Iytic sohitnms ta the onlimary differentinl equn
tiemis ] by using varions simnlacity reshietinms
That wenk histed n
mninml aml complete met of simmlaniy redietions
for 2D axwyimmmetne gemmnetry, takag the par
til Wfterentinl espnations it ordimaey shifleren

deserilied i Reference

tial eqnatnms CLhie present Salotems 1 7 are
apecilin solntions elated b ths prevoms wark,
and there relntoms)up mnd tnethonl of salntnm ol



tine reduced ordinary diflerential equations are
listed here.

Each analytic solntion gives the material urop-

erties (density, velocities, temperature) as a func-
tion of space and time. Unless otherwise noted.
the velocities are always (u,1,u) = (u", u’,u%),
being radial, theta and phi velocities in standard
spherical coordinates. The variable r is the spher-
ical radins and R is the cylindrical radius.

2-D axisymmetrie flow, (r,8) or (R, z):

Solutions 1 - 4 come from M- with the ansatz
U = Up(a+ bcos?8), V' = Visinficosd.

1. B# -2 blg+Vy=0, allp = 0:

pr,0.1) = put 2P+ DI040 (0 00)f

r

u(r, 1) = o nTrns’ﬂ

1r0,1) = —(_) : I)"-‘Sill()('nsﬂ

. 2(7 - 1) ry* Y
= - as‘f

0.0 (7 + 1) + 2) (r) o

2.1 # SEDURN (1 I A | NPT AP
N I B (YO
r 2] y )
o) -] 3 ronfl
u(a ) p ( T .

.
v 01) 3 D
Tt

By  INE ) sy
————— e — - S U
I'(y 4 DTy (!) o

T'(r.80.1) -

i Joal’y D
pe ) gt e ) eyt
ulv. 0.1) :---._-.'-'0

"
v(r, 0. 1) . ihlll"lll.\"

’(' ".') lll (:) (-“'III“)I ! (III'J’)'I !

4. f=-2,alp = 1.
p(r.0,1) = pot?1-7)p-2 (siuﬂ)h—‘ (cosﬂ)z—'”
u(r.6,t) = §(1 — cos?0)
v(r.6.1) = §si||0co¢40

T(r.6.1) = Tp ('5)2 (sin0)*"?" (cos8)?*~?

5. M,y with the ansatz 4 = ():
p(R, z,t) = poexp (al + Pz - a/?!"')
ui(R,: =0,
u' (I, :t) = —% + 2al

Y
'r(lf..-,r):--r'j—"

6. M4 with the ansatz {7 = 0:

pr,0.0) = pur?1=20 1 Wat =) (G, 0) = 2004 1)
ulr@.1)=10

n(r.0.6) = 2" (,,i"(;)(l—w)/u 1

'l'( r. ”. ’) - ||-: —Izl-_’.)- 1.'-'0 (g'"'n)('l— T/t )

~1

Mg wath the ansptz U = Ugeos®?, Vo= Vysinf?
P00 par TV D eyt 70T
W, 0,1) = uyeost

|
r(r. 0 t) - u..~—---lmu0
7

Tr. 0.0y w) (l——l—)wl—-l—) s’

Next are preseuted analytic solotums m ge
oletries otler thae avsymmetne Faest s 2 D
exlmnhinnl geometes v a plane with no : dejoen
denre Follbwng, that e 3 1) sobitum

2-D cevlinndeien] solutions (I )
Heve the pooge (0, Eegd e tesd'yy teyd,,
oy Vol el wene nsand Lo penenid e the



similarity variables

3-D solution, spherical coordinates (r,6, ¢):
d
A= Rt p= H()) (tﬁ) t°, uf = U(,\)?,

For the 3-D reduction to ordinary differen-
tial equations, the groups (U, + c,U,, + c2Uzy +
3l Ui+ U, +esl,, Ui+ c6U, ) were used,

u® = V(/\)?. T = G(\) (?)2 which generated the similarity variables
A=6, p= HQ)tre®, u" = UM,
8 79=2,e=0: P (A)tre u ()!
2
R\? vl W=l T= r
p(R.¢.t)=po(7) u'=VA)7, u® =W(E)2, T=G6)y-
uR(R.&.1) = Q—R' 12. V = 0, H = Ho + Hi(sinf)®, c = 0, y = 5/3:
u*(R.¢.1) = ,_.DE p(r.0,¢.t) = (~+0/2:8 (50 4 5 6in%0)
t r
T(R 40341 (R\? u(r.6.¢.1) = o
)z ——— | —
(R.#.0) 16T (’) v(r,0,¢,t)=0
9.9=2e=0: b2
, [ R\* v(r.0,¢.0)= iildrTo(b+2)(.S|:|0)
p(lR,@.1) = poR™* (T) 4 po + prsin®d
R _ ano 4 a ]I/2
uR(R.6.0) = n (po + pr8in®0)b+2—a) * (b-+2-a)
. b42
(RN . _( 2 [4T Ty (sind)
wito.0) = vt (1) T(r.0.6.0 = (5 [-———pu % pond
2 IRk apu + 1 ]
o Y R T i 1 - — ; . o
F(R.0.0 = pr— I (') (4 pysine0)(b+2)(b+2—a) ' (b+2 - a)
i Fignre | shows the material trajectories for Soln-
TAa tion 12 with the choices a = | and b = 2.
MU o )= g (_) Jilratbi -co
.o t)= —li
el
ud\(lf.t,-..!) = cd (24 d ] ”f)/l_l;
¢ ”

(2- )1 - )i
Fa*[ - D(af 4 0) 4 faq - d]t
with " TL-’f(" fa/a4 (v 2)/y) - d]
[}

TN @ 1)

»1 - Daf v 2) 4 [y d]
v

’ ,. a .
I""l.l.".') LT (") { 'l'”’

I
e e ) ?

wfilan t) -

- R [ W ! e ° °! o
Pttt "'( ( ) ot Fipure 1 Material tragectonies for Solutna 12

withpyw O, 1,a: 16 2




Another combination of groups (U/;, Uy +¢,U,,
+eaUsy+e3l,, Uy +cqUy 4+ €51, ) produces the
similarity variables

A=6,p= HQA)r%®, u" = U(a)rbed?,
u = V(A)rted?, u® = W(\)rted® T = G())r2be?de.

The use of time translation alone in one generator
creates a steady-state solution.

5. Extension of Solutions

Since the considered Lie gronps of point trans-
formations are invariance transformetions, they
transform solutions into other solutions. Given
any solution of (1), we can nse the global group
transformations(3] to construct a further s=t of so-
lutions to (1) with various choices of the group pa-
ranieters. For the axisynimetric casc, the glohal
transformations for the allowed transformations
are

_ car
r= .
1 - st
6=0,
- eql
t= -+ T,
i st

(1)

- FT";T"/'(I _ .’«")“.

= r;,--;'[u(l — &f) + =1,

i = eae]e{l = at),

T = ejer 711 = st)?,
with arlutrary canstants ¢, s, andd 7. 'Therefure,
if W(r.0.1) is a solntion te (1), then so alsa s
V(r.0.().

All these additional free paraimeters nre triv
inl except for & whieh is the projective gronp
parnmeter. Fhe inchision of & st he consis
tent witin the condinions given in (2) (where s wns
T (2 D axisym
mietric, no eondnctnm or semeee)as y = 543 Tl

called o), wlhiel four Sulntions |

progective transfonnation ean generale nnontny
il extension ¢ 7 an existing solution, 1tas nsefnl
to exaunne the effict of this progective transfor
nmfion on simple 1 D sadntions

We consiler o 1 D how wliere the vebonity s
W upr /o wheh gives 1 - Falt]“" for the trager
tnes of ateral fhoe Many analyte 111 salu
tus of tlos b ean Le Tound, for example, i

Reference 4. Under the action of this projective
group these relations are transformed into

- ()

The value ug = 0 (u = 0) is a trivial solution to
(1), and under the action of this projective group
becomies a nontrivial solution. Figure 2 shows the
effect of the projective group on this solntion. For
ug = 1 this projective transformation is an iden-
tity transformation, so solutions with trajectories
shown in Figure 2b arc unchanged. An interesting
1-D solution, Solution 2 from Reference 4, has the
value ug = 1, 3/4, ¢r 1/2 for planar, cylindrical,
or spherical geometries, respectively, for a ¥ =5/3
mater;al. For ug = 1/2, the material trajectories
are shown in Figure 3a and the trajectories for
the corresponding projected solution are shown
in Fignre 3b. As in Fignures 2a and 2b, we see

up + st

O r=rolt]¥e|) + st]' e,
1+at' r=rolt]*|) + |

r="ro

- T T T

Fignre 2a. Material trajectory wnh uy, = 0.

r=rylat + 1|

R T
Iignre 2h
tronslorialion

Te
Materinl trajectury alier projehive



r=roft]"/ ot + 1]'/?

=1 -0.5 v L) R

Figure 3a. Material trajectory for ug = 1/2.

that the projective group has introduced another
zero on the time axis. In Figure 3b we find a
bounded solution between times t = ~1/s and
t = 0. This solution begins with a point explosion
(like a "Big Bang™), expands, turus around, and
collapses back into a point.

The transformations (3) can also be used in 2
and 3 dimensions to generate new solutions from
old ones. For example, Solution 2 beconies, under
the extension (3),

13. (2-D axisymmetric)

p(r.B.1) = py(reosf)? (1 — r)= =342+ 1= 11/1741)

x [(5 + S(’ _ T)]—3lﬂ+l)(1—|)/(‘b+ll
enr

7+ e/l - /)

ML " sr
1 -3 /) —_—
( YR )+fs+-¢(f—f)

Jen(q = Drsinficost

u(r,0.1) =

v(r.0.t) = -

s+ Dl =T s/ - )

2 6 = (2=
T(r+ A+ 2)

T(r,0.t)=-r as?0

2
; {:T[r -1+ /() - rs/(d-v'-‘)}] |

with a(7 - 5/3) = 0 (Nate, ey is ot necessary
here, We conbil et s = &feq, and ey is replaced
by 1.)

The 3 D solution enn also he extendel in the
e manner asing, time translatiom (7) and the
projective grang (s) This salntom hecomes

-2 -1.3 -89 T 0.5 1

B
- |/s
Figure 3b. Trajectory after projective transfor-
mation. Note the region bounded in space.

14. (3D, 7 = 5/3)

p(r.8,¢.t) = [(t - 7)1+ s(t - T))]—(b+3)/2

x r8(po + p15in®6)
r

2s{[t—r+1/(25))* — 1/(45?)}

+—
1+s(t—71)

u(r.f,¢.t) =

n(r.0,6,0)=0

i
u(r.6,6.0)= [“ Tul 4 2) (einf)

14 po + pysin?é
1/2
- apao + a
(po+ prsin®@)b+2-a) b42- a]
r

X T =7 F1/20F = 1/(4s9)])
. _ 1 [ATTy (sin0)**
Fir.8.6.0) = ZI-[ pn+ pysin®o
_ . ar + | ]
(py + msin®0) b+ 2)(b+2-a)  (b+2-ua)

" 2
' lﬁ{lf- T+ 1/(20)) - |/("~"’)l] '

The projective gronp hus introduced anather zera
on the plot of material trajectaries, just as Figure
dJa went inta Figure 3l This salution therefore
hins a hounded portion which involves a point ex-
plosion that spms owtward, staps expanding aned
then collapses hinek onta itself as it contimes to
Ajn



6. Boundary conditions

The analytic solutions as given above contain
no boundary conditions, which must be taken
into account for numerical solutions. There are
two approaches to this concern. The first and
simplest is to consider a finite region initialized
with the properties of any of the analvtie solu-
tions with no consideration of special boundary
conditions. In this approach the evolution at the
boundary immediately deviates from the analytic
solution, and a rarefaction wave propagates into
the material of interest. The solution is valid only
in the region which has not felt this rarefaction
wave. This approach, while simplest to imple-
ment, causes the region of validity to shrink as
the problem evolves.

The second approach is to apply the correct
boundary conditions at the edge of the problem.
This is immediate if the calculation is Eulerian.
For a Lagrangian calculation one must calculate
the location of the boundary at all tirnes and the
appror-riate materizl properties for thal location
must ¢ imposed. One concern with this ap-
proac is that sinall errors made in these bound-
ary conditions can propagate into the problem
and confuse the investigation of internally gener-
ated errors. For this reason we g nerally use the
first and simplest approach. More general discus-
sions of the treatment of lronndary conditions can
be found in Reference. 2 and 4.

7. Smnmary

In this work we investigated the Lie gronp
invarian~c properties of the 3-D hydrodymamics
equations, inclnding nonlinear condoetion and an
arlitrary energy sonrce. Using these properties
we constrncted preferred coardinate systems m
which the 'DE's are transforinet intn QDI

‘This procedure is therefore a deterministic
method for constructing similarity solutions, and
includes dimensional analysis as a subset. The
reduced ODE's have been solved for a few cases
to provide analytic solutions to multidimensional
hydrodynamics. These solutions can be used as
numerical benchmarks for hydro codes.

We also demonstrated the property of trans-
formation of solutions into new solutions using
the global transformations of the allowed Lie groups.
In particular, the use of the projective transfor-
mation generates nontrivial solutions from triv-
ial ones, and can also provide quite complicated
time-dependent solutions such as the given 3-D
spinning/expansion/collapse solution, Solution 14.
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