Los Alamos National Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36

TITLE: RECENT RESULTS IN EXPLOSIVE AND S-PROCESS NUCLEOSYNTHESIS

FROM MEASUREMENTS ON RADIOACTIVE AND STABLE TARGETS

AUTHOR(S): Koehler, Paul E. (P-17); Kappeler, Franz, Schatz, Hendrik (KfK Karlsruhe);

Gledenov, Yuri. M., Popov, Yuri. P. (JINR Lab), Harvey, Jack A., Hill, Nathanial W.

(Oak Ridge National Lab); Wiescher, Michael (University of Notre Dame); Kavanagh, Ralph W. (Caltech, Pasadena); and Vogelaar, R. Bruce (Princeton

University).

SUBMITTED TO: Proceedings of the Capture Gamma-Ray Symposium, Fribourg, Switzerland

20-24 September, 1993

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government one may agency thereof, one may of their employees, makes any warranty, express of implied, or assumes any legal ladulity or responsibility for the accounty, completeness, in usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not inlinge providely owned rights. Reference herein to may specific commercial product, process, or service by trade name, fundaments, manufacturer, in inflictures these not necessarily constitute to imply its embasement, recommendation, or favoring by the Gordes State: Government or any agency thereof. The views and opinious of authors expressed become do not necessarily state in reflect those of the United States Government in any agency thereof.

By accuptance of the orticle, the publisher recognizes that the U.S. Government retains a concentrator, mysity from licenses to publisher recognizes the published form of this excitabilities, or to allow others to the sector U.S. Government pulposes.

The Line Aleman National (abundance requires that the synthetics closely the article as work perfective trader the amplifies of the LD Collegenterance of Lorentz

t os Alamos National Caboratory Los Alamos, New Mexico 87545 MASTER

FOIIM NO. 836 R4 81 NO 2629 6/81 DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

RECENT RESULTS IN EXPLOSIVE AND S-PROCESS NUCLEOSYNTHESIS FROM MEASUREMENTS ON RADIO ACTIVE AND STABLE TARGETS

P.E. KOEHLER

Los Alamos National Laboratory, Los Alamos, NM, USA

F. KÄPPELER, H. SCHATZ

Kernforschengszentrum Karlsruhe, Cermany

YU. M. GLEDENOV, YU.P. POPOV

Joint Institute for Nuclear Research, Dubna, Russia

J.A. HARVEY, N.W. HILL

Oak Ridge National Laboratory, Oak Ridge, TN, USA

M. WIESCHER
University of Notre Dame, IN, USA

R.W. KAV ANAGH Caltech, Pasažena, CA, USA

an.

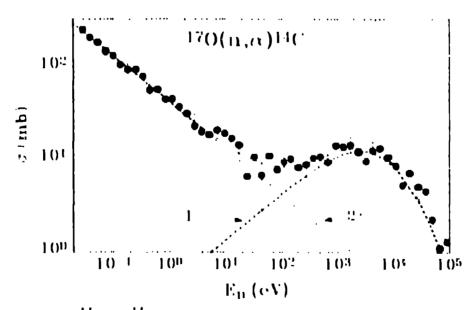
R.B. VOGELAAR

Princeton University Princeton, NJ, USA

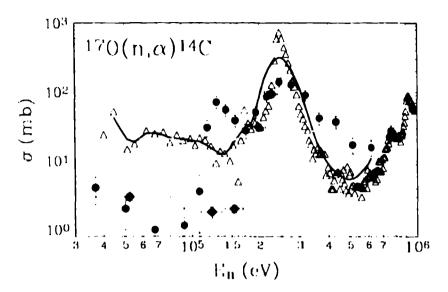
ABSTR ACT

Measurements of (n,p) and (n,c) cross sections are crucial for a better onderstanding of many scenarios of nucleosynthesis. Current problems in which such reactions play a roll incline the possible synthesis of heavy elements during the big bang, the production of several fare isotopes in explosive nucleosynthesis, and a better understanding of the tode of the suprocess in the synthesis of light and intermediate mass nuclei. We have recently competed measurements of several (n,p) and (n,c) cross sections of importance to nuclear astrophysics. The cross sections were measured in the range from thermal energy to approximately t MeV by using the white neutron source at the Manuel Lujan, Jr. Neutron Scattering Center (t ANSCE) in Los Alanks. We have also made complementary measurements at the Karlsinhe Van de Graatt and at the Oak Ridge Electron Union Accelerator (ORELA). We discuss the impact of the results on nuclear astrophysics as well as recent improvements and future plans.

1. Introduction


Measurements of (n,p) and (n,t) cross sections are crucial for a better understanding of many scenarios of nucleosynthesis. Problems of current interest in which such reactions play a roll include the possible synthesis of heavy elements during the big bang¹, the production of rare stable isotopes in explosive nucleosynthesis², and the role of the s process in the synthesis of light and intermediate mass nuclei³.

2. Examples


Recent examples of measurements of interest to nuclear astrophysics which were made at LANSCE and at Karlsruhe will be described below. The discussion will be divided into subsections dealing with different scenarios of nucleosynthesis.

2.1 Big Bang Nucleosynthesis

Recently there has been much interest in the possibility of synthesizing heavy elements in so-called nonstandard models of the big bang. Whereas nucleosynthesis in standard big-bang models effectively stops at A=7, it has been speculated that the large density inhomogeneities possible in nonstandard models may lead to the synthesis of elements with mass A>12. Network calculations indicate that most of the flow towards heavier elements proceeds mainly through a series of neutron captures $\frac{1}{17}$ intil $\frac{17}{17}$ is reached. Using previously known resonance parameters and thermal cross sections it was anticipated $\frac{1}{17}$ that the (n,α) reaction on $\frac{17}{17}$ O would dominate over (n,γ) . As a result, much

t/1G/1. The ${}^{17}O(n_0cr)^{14}C$ cross section from 0.0.5 eV to 100 keV. The solid circles are on t ANSCT data 1 . The solid curve is a two level fictorthe data. The clotest and dashed curves are the separate commission on this fretrom 11 and 1 resonances respectively.

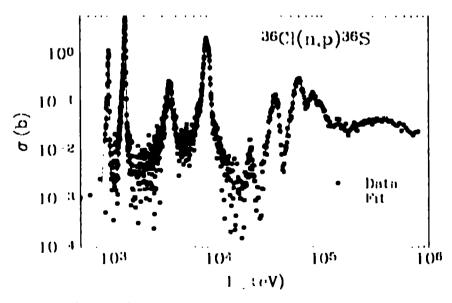
t/IG. 2. The $^{17}\text{O}(\text{n},\alpha)^{14}\text{C}$ cross section from 100 keV to 1 MeV. The solid circles are the data from our LANSCE measurements⁴. The solid diamonds are our data from the measurements at the Karlsruke Van de Graaff⁵. The open triangles are the inverse data of Sanders⁶ which we converted using detailed balance. The solid curve resulted from averaging the data of Sanders over the energy spread of our measurements.

of the nucleosynthesis flow would cycle back to $^{14}\mathrm{C}$. The severity of cycling was uncertain because no direct measurements of the cross section had been made and because the resonance parameters were not well known. In principal, the $^{17}\mathrm{O}(n,\alpha)^{14}\mathrm{C}$ cross section could be determined from published measurements⁶ of the inverse reaction. Below an energy of a few hundred keV, however, the rapid decrease of the $^{14}\mathrm{C}(\alpha,n)^{17}\mathrm{O}$ cross section, together with background from the $^{13}\mathrm{C}(\alpha,n)^{16}\mathrm{O}$ reaction makes these measurements very difficult; hence, a direct measurement of the $^{17}\mathrm{O}(n,\alpha)^{14}\mathrm{C}$ cross section in this region was desirable.

The results of our recent direct measurement of the ¹⁷O(n,a)¹⁴C cross section at 1.ANSCE⁴ are shown in Figs. 1 and 2. Because of the large resonances in this reaction we were able to extend these measurements to almost 1 MeV. Figs. 1 and 2 illustrate several interesting points which are discussed in more detail in Ref. 4. First, the bump in the cross section near 3 keV, which is due to a subtilitieshold p wave (1.) level, leads to about a factor of 10 increase in the astrophysical reaction rate below about 0.2 GK. Second, our results are in fair agreement with the inverse measurements of Sanders⁶ except below about 160 keV where the data of Sanders are significantly above ours (This is most likely due to background from the ^{1,3}C(\alpha,n)\frac{16}{9}O reaction in the inverse measurements of Sanders.), and near 130 keV where we observed a peak which does not correspond to any known resonance in ¹⁸O. Because the reaction rate estimated from the previous resonance parameters is in reasonably good agreement with the rate calcidated

from our data (except for the effect due to the sub-threshold 1° resonance as discussed above), and because the gamma widths are known⁷, the ratio of the (n,α) to (n,γ) rates calculated from the resonance parameters should be fairly reliable at big bang temperatures. The resua⁴ is that the (n,α) to (n,γ) ratio is approximately 10^4 at big bang temperatures. Hence, cycling between ^{17}O and ^{14}C is expected to be a serious restriction in the path to heavy element synthesis in nonstandard big bang models.

Our LANSCE measurements⁴ were made with a single solid state detector subtending a range of angles near 90 degrees. The data were converted from yields to cross sections assuming an isotropic angular distribution. Because the cross section above a few keV is dominated by non-s-wave resonances, this assumption is probably not valid and leads to an unknown systematic uncertainty in the results. Also, the peak we observed near 1.30 keV does not correspond to any known resonance in ¹⁸O. For these reasons we undertook a measurement of this cross section in the energy range from 10 to 250 keV at the Karlsruhe Van de Gras.f⁵. Because the Karlsruhe measurements employed an ionization chamber it was possible to cover close to the full 4π solid angle while at the same time measuring the forward-to-backward asymmetry in the emitted alpha particles. The results of these measurements are shown in Fig. 2. The Karlsruhe results are in general in agreement with the LANSCE data except that no peak was observed near 130 keV. The observation of this peak in the LANSCE experiment hence remains a mystery. The Karlsruhe results yield a reaction rate within a factor of two of the LANSCE results & spite the large differences in the data near 130 keV. Hence, the conclusion that the ${}^{17}\text{O}(\text{n},\alpha){}^{14}\text{C}$ reaction strongly dominates over ${}^{17}\text{O}(\text{n},y){}^{18}\text{O}$ at big bang temperature is unchanged.


2.2 Explosive Nuccessynthesis

It has been specialated that rare isotopes are valuable diagnostics that will lead to a better understanding of the properties of the astrophysical environment in which they were produced. Most of the rare isotopes are thought to originate in explosive environments². However, the parameters of explosive nucleosynthesis calculations remain fairly uncertain and new processes are invented occasionally as our knowledge evolves. So it remains important to measure cross sections affecting the production and destruction of these rare fincies.

One persistent problem with most explosive nucleosynthesis calculations is that the isotope ³⁶S is rountely overproduced relative to the other rare nuclei which are synthesized. The ^{35,36}Cl(n,p)^{35,36}S reactions form a part of the nucleosynthesis network describing the production of ³⁶S. Recently, we have made the first measurements of these cross sections at astrophysically relevant temperatures. Our data⁸ show that the ³⁵Cl(n,p)³⁵S reaction probably does not play a significant role in the nucleosynthesis of ³⁶S. A part of our data⁹ for the ³⁶Cl(n,p)³⁶S reaction is shown in Fig. 4. The reaction cate calculated from our data is approximately a factor of 2 smaller at astrophysically relevant temperatures than the theoretical cate¹⁰ in ad in previous nucleosynthesis calculations. The lower rate indicated by our measurements could help to reduce the overproduction of ³⁶S seep in the calculations.

Understanding the origin of 26 Al is important because it is one of the very few radioactive products of stellar nucleosynthesis to be observed directly by γ -ray telescopes 11 . 26 Al has also been observed indirectly as a 26 Mg anomaly in some meteorites 12 . Several scenarios have been proposed for the production of 26 Al and most fall into the explosive nucleosynthesis category. The 26 Al(n,p) 26 Mg and 26 Al(n,a) 23 Na reactions are thought to be the major means for the destruction of 26 Al in some astrophysical environments, so a knowledge of the cross sections for these reactions is important for a better understanding of the origin of 26 Al.

We have measured the 26 Al(n,p₁) 26 Mg and 26 Al(n,α₀) 23 Na cross sections from thermal energy to 50 keV and 6 keV respectively 13 . Most of this energy range has not been explored by previous measurements. We normalized our data to the thermal energy measurement of Trautvetter *et al.* 14 for the (n,p₁) reaction. With this normalization, our data for the (n,α₀) cross section are in good agree ment with the inverse measurements of Skelton *et al.* 15 . Our results for the (n,p₁) cross section are shown in Fig. 5. The astrophysical reaction rate calculated from our results is approximately a factor of two larger than the results of Trautvetter *et al.* at astrophysically relevant temperatures. The source of the difference between our results and those of Trautvetter *et al.* is unknown although a similar difference was seen for the $^{1.4}$ N(n,p) 14 C reaction 16 . Our results confirm the speculation of Skelton *et al.* that the (n,α₀) channel is as important as the (n,p₁) channel for the destruction of 26 Al in explosive environments. Our results also fill in the gap in the data for the (n,p₁) reaction rate at low temperatures characteristic of the red giant phase in stars.

tfG, 4. The ¹⁶Chi.pi ¹⁶S cross section for coergies betweep 500 eV and 800 keV from on 1 ANSCS measurements⁹. For coerty the error bars are not shown but can be surmised from the scatter in the data. The cigve is from a multilevel fit to the data as described in Ref. 9.

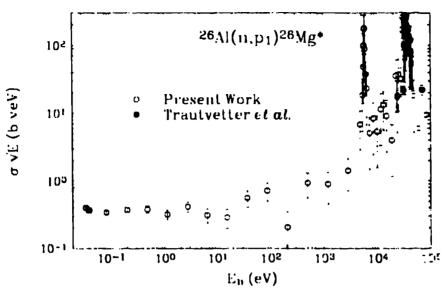


FIG. 5. The ²⁶Al(n,p₁)²⁶Mg* reduced cross section from thermal energy to 100 keV. Our new LANSCE data ¹³ are shown as open circles whereas the data of Trauts effect et al. ¹⁴ are depicted as solid circles.

2.3 S-process Nucleosynthesis of Light and Intermediate Mass Elements

Although the s process is mainly thought to produce most of the elements heavier than iron, Beer and Penzhorn³ studied the contribution of the s process to the abundance of lower mass nuclei near 40 Ar. One result of their calculation was that (mainly the weak component of) the s process can account for most of the observed 36 S abundance. However, their results for 36 S are fairly uncertain in part because cross sections for the reactions that lead directly to 36 S (i.e., 36 Cl(n,p) 36 S and 39 Ar(n,a) 36 S) had not been measured and so they had to rely on theoretical calculations for the reaction rates. The reduction in the 36 Cl(n,p) 36 S reaction rate indicated by our measurements⁹ may significantly reduce the amount of 36 S calculated to be synthesized by the s process.

The mass flow in the region affecting the abundance of ^{36}S is complicated by several branchings, so new nucleosynthesis calculations are needed to fully asses the impact of our new rate. Furthermore, the s-process calculations of Ref. 3 were made with an exponential distribution of exposures whereas it is now thought that the weak component of the s process results in a single exposure 17 . Of the remaining unmeasured cross sections of importance to the s process production of ^{36}S several appear to be amenable to direct measurements. These include the $^{39}Ar(n,\alpha)^{36}S$, $^{37}Artn,\alpha)^{34}S$, and $^{36}S(n,\gamma)^{3}/S$ reactions. The unmeasured $^{36}Cl(n,\gamma)^{37}Cl$ reaction is also very important because it competes directly with the $^{36}Cl(n,\gamma)^{36}S$ reaction. Statistical model calculations 10 of the ratio of cross sections for $^{36}Cl(n,\gamma)^{37}Cl$ measurements of Ref. 18 yield a ratio of $(n,\eta)/(n,\gamma)$ $^{5}Sx10^{-4}$, or about 40000 times smaller than the theoretical rate

at 30 keV. However, there appears to be some disagreement about the value of the thermal $^{36}\text{Cl}(n,\gamma)^{37}\text{Cl}$ cross section. In the measurements of Ref. 18 this cross section was found to be $\sigma_{th} = 90\pm25$ b. On the other hand, the cross section was measured to be $\sigma_{th} < 10$ b in Ref. 19. A direct measurement of this cross section at thermal energy seems feasible with current techniques and is highly desirable in light of the present large uncertainty. A direct measurement of this cross section at astrophysically relevant temperatures appears very difficult if it is as small as the statistical model calculations andicate.

3 Recent Improvements and Future Plans

We have been investigating techniques for extending the measurements to isotopes with smaller cross sections and/or which are only available in low enrichment by using detectors which allow larger sample sizes and larger solid angles. The general approach we are pursuing is to cover as close to 4π solid angle as possible and to accommodate samples larger than the 0.5 cm diameter size of our previous LANSCE measurements by placing the detector directly in the incident neutron beam. The main problem to be overcome with this approach is the potential large increase in beam-included background which arises when the detector is placed within the neutron beam.

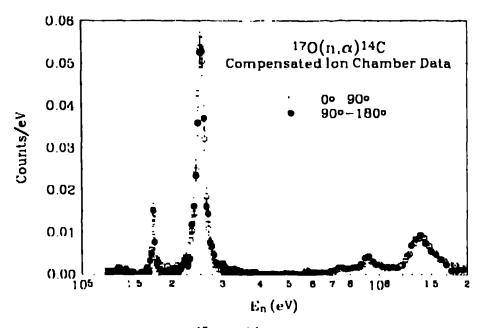
The first approach we have tried is to use a parallel-plate compensated ionization phamber. Ion chambers have been used by the Dubna group for (n,p) and (n, α) measurements at the α pulsed reactor for several years²⁰. The main problem with these bettectors is that the beam-induced backgrounds increase rapidly with increasing neutron energy with the result that measurement are typically limited to energies below a few &eV. Most of the background is due to the initial burst of high energy particles and γ -tays which pass through the detector at short times. This intense burst can cause the preamplifier and amplifier to saturate for several hundred microseconds making measurements impossible during these times.

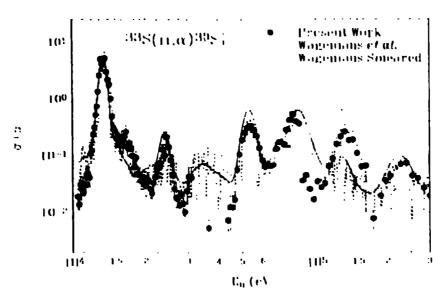
The idea of a compensated chamber is an old one²¹ although it apparently has not been used before at a white neutron source. In a compensated chamber, on each side of the signal plate there are equal volumes defined by plates at equal but opposite voltages. The sample is placed on, for example, the plate which is negative with respect to the signal plate. Hence when an (n,p) or (n,α) reaction occurs in the sample a negative polarity signal is induced in the signal plate. In contrast, particles which penetrate the errore chamber induce approximately equal but opposite polarity signals. Hence, the potentially large background from the initial beam hurst is greatly reduced. Earlier²² we reported on a successful measurement of the ³⁵Cl(n,p)³⁵S cross section with a compensated ion chamber at LANSCE.

Because further time for the development and use of this detector has not been available at LANSCI: we took it to ORELA where similar background problems are encountered. In Fig. 6 we show results of our first attempt at a measurement of the $^{17}O(n_e C)^{1/4}C$ cross section using this chamber. Instead of the typical limit of a few keV we were able to make measurements to as high as 2 MeV. Compared to our previous

LANSCE measurement using a solid state detector, these new results represent about a factor of 30 increase in the product of sample size times solid angle. Larger increases are possible by using larger beam diameters and/or multiple sample plates. We are still analyzing the data from this experiment. One interesting result so far is that the forward backward asymmetry appears to be fairly small.

A second approach we have tried is to use the scintillator ZnS mixed with other chemicals as both the target and the detector. This work was inspired by a report of the measurement of the ³⁵Cl(n,p)³⁵S cross section by Popov and Shapiro²³ at a lead-slowing-down spectrometer by using a detector made of ZnS mixed with CCl₄. In our experiment, a layer of ZnS 25 mg/cm² thick was deposited from a water solution onto a




FIG. 5. Yield verses energy for the ¹⁷O(n,α)^{1,4}C reaction measured with a compensated ion chamber at ORELA. The open circles represent data taken with the sample facing towards the forward her asphere relative to the beam whereas the solid circles represent data taken in the backward hemisphere.

thin plastic disk which was mounted on a photomultiplier tube. A second detector was made by depositing a equal amount of ZnS mixed with K_2SO_4 , which had been enriched in ^{33}S , on another disk. The detectors were placed in the LANSCE beam at a distance of 8 m from the neutron source.

In figure 6 we compare the resulting cross section for the ³³S(n_s(t)³⁰Si reaction obtained by subtracting the spectrum measured with the plain ZnS detector from that measured with the combined ZnS plus K₂SO_{.4} detector to the previous measurements of Wagemans *et al.*²⁴. The two results are in agreement to within the experimental errors except in three regions. The differences seen near 35 and 90 keV are due to the fact that we placed a 10 cm thick aluminum "filter" in the beam ahead of the detector to decrease

dead time problems encountered at the highest energies. As a result, there were very few counts in the spectra at these energies due to large resonances in the aluminum. The third area of difference is at about 130 keV where the LANSCE data are higher than Wagemans et al. Perhaps this difference is caused by a resonance in the unmeasured ³⁹K(n,a)³⁶Cl or ³³S(n,p)³³P reactions. The major problem encountered using ZnS is that this scintillator is apparently available only as a powder, so although the relative light output of ZnS is large, it is difficult to collect the light from the powder. As a result, the pulse height resolution is very poor. A second problem is that we have so far been unable to overcome the dead time problem associated with the initial large flux of high energy particles without using a fairly thick filter in the beam. However, the overall performance of the detector was encouraging and we hope to pursue this idea further by exploring the use of different chemical mixtures for the detector and other methods of decreasing the dead-time problems.

Our future plans are clouded by the uncertain future of LANSCE and ORELA. Also, as a result of new safety regulations the experimental room where this research is undertaken at LANSCE is inaccessible while the beam is being delivered. In addition the experimental room is open for at most two hours a day during the run cycle. These new rules have caused us to suspend work on developing a barium fluoride detector to measure (n,γ) cross sections for radioactive samples. If these difficulties can be overcome there is a rich field of new measurements of interest to nuclear astrophysics which could be accomplished at LANSCE and ORELA.

EIG. 6. Cross section for the ${}^{3,3}\mathrm{Sin}$,cti ${}^{3,0}\mathrm{Sin}$ cachor from 10 keV to 300 keV. The solid cricles are on data from LANSCE obtained with a ZnS detector. The doned critical represents the data of Wapermans $et~aL^{2,3}$. The solid critical results from smeating the data of Wapermans et~aL, over the resolution of the LANSCE measurement.

- 1. F.K. Thielemann, J.H. Appelgate, J.J. Cowan, and M. Wiescher, in *Nuclei in the Cosmos*, eds. H. Oberhunnner and C. Rolfs (Springer Verlag, Berlin, 1991).
- 2. W.M. Howard, W.D. Amett, D.D. Clayton, and S.E. Woosley, Astrophys. J. 175, 201 (1972).
- 3. II. Beer and R.-D. Penzhorn, Astron. Astrophys. 174, 323 (1987).
- 4. P.E. Koehler and S.M. Graff, Phys. Rev. C 44, 2788 (1991).
- 5. H. Schatz, F. Käppeler, P.E. Koehler, M. Wiescher, and H.-P. Trautvetter, submitted to Autrophys. J.
- 6. R.M. Sand s. Phys. Rev. 104, 1434 (1956).
- 7. F. Ajzenbu g-Selove, Nucl. Phys. A475, 1 (1987).
- 8. P.E. Kochler, Phys. Rev. C 44, 1675 (1991).
- 9. P.E. Koehler, S.M. Graff, H.A. O'Brien, Yu.M. Gledenov, and Yu.P. Popov, Phys. Rev. C 47, 2107 (1993).
- 10. S.E. Woosley, W.A. Fowler, J.A. Holmes, and B.A. Zimmerman, At. Data Nucl. Data Tables 22, 371 (1978).
- 11. W.A. Mahoney, J.C. Ling, A.S. Jacobson, and R.E. Lingenfelter, Astrophys. J. 26°, 742 (1982).
- 12. G.J. Wasserburg and D.A. Papanastassion, in *Essays in Nuclear Astrophysics*, eds. C.A. Barnes, D.D. Clayton, and D.N. Schramm (Cambridge Press, Cambridge, 1982), p. 77.
- 13. P.E. Koehler, R.W. Kavanagh, Yu.M. Gledenov, Yu.P. Popov, and R.B. Vogelaar, Bull. Am. Phys. Soc. 38, 983 (1993).
- 14. H.P. Trautvetter et al., Z. Phys. A 323, 1 (1986).
- 15. R.T. Skelton, R.W. Kavanagh, and D.G. Sargood, Phys. Rev. C 35, 45 (1987).
- 16. P.E. Koehler and H.A. O'Brien, Phys. Rev. 39, 1655 (1989).
- 17. H. Beer, Astrophys. J. 375, 823 (1991).
- 18. A.W. Boyd, F. Brown, and M. Lounsbury, Can. J. Phys. 33, 35 (1955).
- 19. J.H. Gillette, "Review of Radioisotopes Program," 1965 Oak Ridge National Laboratory Report 4013, 1966 (unpublished).
- N.P. Balabanov, V.A. Vtyurin, Yu.M. Gledenov, and Yu.P. Popov. Sov. J. Part. Nucl. 21, 131 (1990).
- 21. D.H. Wilkinson, *Ionization Chambers and Counters*. (University Press, Cambridge, 1950).
- 22. P.E. Koehler and H.A. O'Brien, in *Reports to the DOE Nuclear Data Committee*. Brookhaven National Laboratory Report BNL/NCS 44362, p. 79 (1990).
- 23. Yn.P. Popov and F.L. Shapiro, Sov. J. Nucl. Phys. 13, 1132 (1961).
- 24. C. Wagemans, H. Weigmann, and R. Barthelemy, Nucl. Phys. **A469**, 497 (1987).