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EQUATION OF STATE FOR DETONATION PRODUCTS

William C. Davis
Los Alamos National Laboratory
Los Alamos, NM 87545

ABSTRACT

An equation of state for detonation products. with the usual form
p=p(v.E), is proposed It allows independent calibration of the
adiabatic gammma and the (irineisen gamma, and gives them
forms in agreement with rece..t theoretical studies. The equation

of state is given by
I.! £ |
p=blkr Fm[: (1 )}:

where Fyv) drops from a finite valne at small v to zero at large v,
h s a constant, and I'(v) 18 the specific internal energy on the
principal isentrope.  Its relationship to the polytmpie gas
eqration of state p = (F/v)(v 1) 1s camly seen. and a1t reduces

to this form at large volume

INI'RODUCTTON

Studies™? of the equation ol state of deremation prodicts asing statistical
mechames have provided new immghts imto the behavior of the prodnets, and stndies”*
uf the imteraction ol the equations of hedrodynimes with the equation of state have
provided new constramts for the equatim of state  Fxgerments™ have shown that dav
fur cahbration of an equation of state can be obtimned  Many empaneal fitting lorms
have Leen propesed carhier, Tt they do nat vepresent these new developments Hee we

angpest an empirecal littig form that gives the nmportiant leatnves their proper lorm

A bhasic premee ol thin work haa heen to aceept the Taet that designers will

madify amy equation of atate W compensate for the ervars i thear coomputer codes and



in their representation of the device being modeled. An equation of state form that has
the right physical properties, particularly the sound speed or adiabatic ganima, will
give reasonable results even when severely adjusted. The forms considered here have
the property that the physical properties are correctly represented. They are easy to
adjust, and detailed instructions for adjusting them are included. The underlying
physical constraints are discussed. to help users see where modification may lead to
nonphysical results. Computer codes for hydrodynainic problems need an equation of

state of the form p = p(E,v). The equations suggested here have that form.

The siinplest equation of state that has bheen used successfully for detonation
products is the polytropic gas form
p={E/v)k - L). ()
where p is the pressure, F is the specific internal energy. v 13 the specific volume, and
k = -(v/plop/ov)g is the adiabatic exponent. At low density k is 1.2 or 1.3 for
ordinary detonation product gases and is equal to the ratio of the specilic heats At
high density the same furm is often used, with k ~ 3, and it works fairlv well at
densities near the CJ density for many explosives. When the energy of the explasive
produets is transferred to the inert components in the pressare region where k falls from

its Ingh valne tails low value, the polytropie equation of state fials.

The palytropie equation of state can be inodified tao
p=(k/v)k 1+ Fv) ()
where Fevy lias the vitlne 0 at Large specific volume, so the equation of state assmme s
proper form at low density, and inereases monotonicallv an the speetfic volae
decreasen, approachmg a constant value at small voluwme.  Flas snnple madification
givea the proper bebavior on the priveipal asentroje, the isentrope through vhe ¢
perint, but as not safhiciently flexahle off that wsentrope to fit datie such as the veloaties

ufl averdriven Jdetonations

The vequired flexilubity s aclieved with the furm
o I i

B rorw .|.(| ) o
SRE vy Jf |

wheve boas o constant and Fovns the specihe saternal energy onc the primerpal ventiope
The pauenthens sonltiphed by Lo zern on the poneipal seatrape, and the foon eohon

ol () The bracket wahaphied iy Lodeceeases the valae of Fovr onasgeatropes alne

[}



the principal isentrope, describing products that behave more like an ideal gas at a
higher temperature, and increases the value for lower isentropes. The simple form for
this term is consistent with the assumption that the region of interest for an equation

of state for detonation products is always near the principal isentrope.

DEVELOPMENT

Now let us proceed to develop the expressions for the important physical
quantities. The Griineisen gamma

r= - (@ =8, = 0GB, - g

describes the variation of temperature along an isentrope, or the separation of

isentropes with different internal energy at a constant volume. ‘I'he adiabatic gamma
ok
= 5. =1 p..'_("‘f_)lf = ¢ )
Y= P .".’V)s =p (U!’:_) = pv (-

aply

is the non-dimensional sound speed. and describes the transport of energy by
vompression and rarefaction waves. ‘These two quantities are the only™* features of the
equation of state that enter directly inta the differential equations of hydrodvicumics

[t is importany Hhat their behavior s properly represented.

The equation of state 18

' |
_k - by -,
p = V.k P I(\)[l i I)(l k) J]I ()

O the principal 1sentrope, where B 195 we have

IR O A2 W I O ()
and by strughtforward differentiation, namg the fact that v an asentrope di v -
we find that

v . v
ookl ko1 )



where F' = dF/dv. Notice that F’ is negative. so the last term in the expression for 4

may make v* have a maximum. Now from the definition of + we see that

[5- frb= i [re [ty

From the integration we obtain p’(v). and by substitution into Eq(¢) we find E'(v) as
E'(v) = pv/(k - 1+F) . (1)

If we integrate Eq(9) from a chosen volume v. to an arbitrary volume v, and substitute
the result inte Eq(10). we find

vy v e VI(v)dv

FJI(—V.—) \V) |Kp(- Iv.' -'(:"") . (1H
The polytropiv gas has the exponential term cqual to zero, that is, F(v) = 0. and the
energy on the isentrope vanes as an inverse power of the volume. With F(v) « 0 1he

specific internal energy on the isentrope mcreases more rapidly as the volnme s

redneed.

I'he saume differentiation of the general equation of state gives the expression for

~v(I.v) everywhere as

o
Sv) = : ) ) 5 P :
W) =5+ bE() LK v Bk )
1 I
where p = pllv) and p' = p'(1y)
Sumilarly we find
M) ke E o 3 Y
andd
(1 v) -k LI h) (i

Natice here that choiace of the comatant bonakes it peszsabide toocboaose the value ol 1t

small speaihie volme mdependent of the valae of

For shock stabi v oond ooty of the Hagonnt eurve i the pon plane we
st have

v t | v



On the isentrope, this can be seen to be trve from Eqs. (8) and (14). since F'(v) < 0. as
longas b > 0.

The fundamental derivative of gas dynamics®*, which measures the convexity of

isentropes and must be positive evervwhere for ordinary detonation products. is given
by
G=3v+1 - (v/vNav/av)g] (16)

G can be easily found by differentiating ~.

The material velocity on an isentrope is found by integrating the [liemann
equation
du/dp = + (v/vp)'" (17)

‘I'his equation cannot be integrated in closed form for useful choices of Fivy. It inast be

integrated numerically.

‘The temperature and specific heats are not represented acenrately by o simple
equation of state of the kind proposed here. ‘I'he evaluation of thew valnes may he
nzefnl becanse n zero or a pole in I or Cy wonld indicate a serious flaw i the equation
of state. The temperatare on an isentrope s found® by integrating the dilferential

cquation
(V/TUPTfiv)g = ¥ (1%)

The specihe heat at constant voliene as fonnd in o snmlar wev from the differennial

|'||I|il.l||)|l"

(VRm[ovdg =1 41 A (IpfRNOV o) (n

where ¢ = pv/CGT The ratio of specific heats? CalCy = /0 14 /g) can be fonnd

anece g s known.

EXAMPLE A SIMUILE CHOICE FOR F(v)

A snnple form for Fewv) that has appeopriate progerties s

Fv) v/ e/ ) bav/ed v.h)



where a, n, and v, are constants to he determined in the calibration of the equation of
state. For large v. F = 0: for small v, F = La; and F(v.) = a. F(v)is a smeared ont
step function; the constant a deterinines the height of the step. v. the volume where
the rise is half the total rise, and the exponent n the steepness of the rise. For use in
the expressions developed above we need the derivative of F(v). It is easy to show that

vF = - —-—_1an

@ @

This value can be substituted into Fqs(18) and (1) for ~.

(=D

To integrate v to find an expression for the principal isentrope we need the valne
of the integral

Eﬁv._|"i ..... __;jj ]j‘” ()
/ ) V)

U'sing the expressions developed above, we can now write the expression for the

principal isentrope as

P EKJJ"K{) ﬁ'm kK 1 +F (R}
P (\‘,')i I a k 1 +a i

In this expression, p.is a constant to he deternimed in the calibration. The sadne for

p 18 to be substitunted mto the eqnation of state to deterinime 1.

Although the thermal properties of the eqnation of state play no part
hvdrodyniumes caleulatims, 1t s s stra-tive to take a brel look at seme of them

The temperature is abtiuned by mtegrating eq(18) to get

LTI

T k11 a1l h)

()

th “. the

Natiee that as v becomes very Lirge, the vight baud ade mednees to (vf/v )
expected vilue at low density - Notwee also, however, that of b 1ot has this valae fow
Al valnen of the density The value of b, wineh does not affeet the preasnre aleng the

O



isentrope, has a strong effect on the temperature.

It is also possible to use the expressions for p’ and T to see how pv/RT varies
along the isentrope. We find

ab'm
p' yY vyt
B Ve _ '*()+i(") ] k-1 +F 5)
' (L)'b "k-1+a =5
¢ vt‘
The values of this function are
P’ v (k- 1)/[2**™k - 1+a)] for v = x
P, V_ -
= forv =, (1)
(k- 1+22)/[2"*""(k - 14a))(v/v.) **® forv -0 .
Notice that if b = 0 the function reaches a finite value as v becomes small. anil

becomes large for nther values of b. It always reaches a constant value for large v. as
expected, vhere pv/RT =

CALIBRATION ON THE PRINCIPAL ISENTROPE

I'he constraints on an equation of state are (1) the principal isentrope must Juss
through the 1 point; (<) the principal 1sentrope mnst he tangent to the Ravlegh lhine
at the ¢1J point:  (3) the work done at a chosen truncation volume must be snoaply
carrelated with the Gurney energy: (1) the work done at complete expansion must Le
cqual ta the total chemical energy: (5) the adiabatic gannna at large expansion mast he
that of the prodnct gases when they hehave as wdeal gases.  These five comstrinnts

allow the calibration ol five constants in the equation of state

Comstraints (1) and () lead to the equations

V_./V“ v. (v 1+ 1) (vt
I, p"“'l/( v, v 1) .4
where the subsenpt |indicates valnes at the G4 pomt, so v, opoand - e vidaes ol

these qpamtities at the CJ opomnt, py s the imtial density o the explonce and vt



reciprocal, the initial specific volume. and D is the detonation velocity. The density p,
is known from measurement. D may be known from measurement, or may be
estimated using on¢ of several rules. If P, has been measured. v: may be calculated
from the equation above. More often p; is not known. In this case, v, may be
estimated from the empirical relationship

v; =16 +0.8 p, (29)

or another similar relationship. The usefulness of an equation of state for most
engineering calculations is not much affected by small errors in the CJ values. The
tangeucy requirement. however, must be satisfied.

The Gurney energy is a measure of the energy available from the explosive to
drive metal. In most applications, little energy is imparted to the metal after the
pressure has fallen to 0.1 GPa. so the desired calibration quantity is the available
energy between the (..l point and the volume at which the pressure on the isentrope is
0.1 (iPa. ‘The iteration to obtain this volume exactly is tedious. and it has heen found
satisfactory to assume the cutoff volume to be Tv, instead of calculating an exact
value. Figure | shows the Fickett.lacobs diagram® with the area that will correspond
to the Gurney energy shaded. ‘The Gurney energy is obtained from a cylinder test or a
dent plate test. T'he cylinder at {9-inm expansion has a volume expansion of about 7;
the encrgy is given as By, Standard practice 13 to measure the apparent wall velocity
e in min/ps, and  express the energy as Fig = luje, with umts of (mm/ps)? or kd/yg

‘The Cinrney energy, with units of kJ/em?, is
¢ - FaalMIVT 1 oo/ (MJV)] 0

where M 18 the mass per nmt length of the copper tube. usually 19501 g/em, Vs the
voalmme of the tube per unit length, nsnally 067 cm?fem, and pyoas the imtiad density
of the explosive.  Lower case ¢ i8 used heciause the npper case ¥ is nsed for specifie
CHETEY, OF energy per anit masss e means energy per nnit volume, and has douensioms
of presanre. 1t as abtained by mnltiplymg 15 by the imitial density, that 18, ¢, = p,17.
The Curney energy may also be obtained from the standard dent plare test, where,
nnity of k.l/t'lll".



e, = (dent/refdent (1 + po/p, N1 + 4p,,:/pg) (31)

with dent equal to the measured dent in inches. refdent a constant equal to 0.510. and
P.es @ constant equal to 1.250 g/cm’.

The shaded area of the Fickett-Jacobs diagram is

[E(p;.v;) - 3Pj(va - V)] - E(p7,Tv,) (32)

where p, is the pressure on the isentrope at volume 7v,. A useful calibration rule is to
make

1.115E; = [E(p;,v;) - 3p{vo - v;)] - E(pz.Tvo) (33)

where the emnpirical factor 1.115 has hecn determined® from experiment. This equation
assures that constraint (3) is approximately satisfied.

The chemical energy of the explosive is obtained by assuming the compesition
of the products at expansion to one atmosphere, and calculating the energy released as
the explosive molecule transforms to those products. For ordinary CHNO explosives
the products are usually assumed to be N,, H O, CO., aml ¢, The H.O 1s assumed to
be vapor at 100 C. The total area of the Fickett-Jacobs diagram 15 set equal to the
chemical energy. as

I = E(Pi«"j) " %P_,(Vo N (+h

where Fg is the chemical energy. satisfving the fourth constraint.  ‘This notation s
correct, and Eg i1s the energy at the initial state hefore detonation.  The usuad
convention is followed here, with the energy of the products set to zero at expansion
down the principal isentrope to one atmosphere.  For calibration. to get energy per uvint

volunie, we write ey pyliy.

‘I'he explosive product gases are Na. [LO, €O COand sae solud carbon We
assimme that a reasonable value for the ahabatie ganma s obtamed with k1.4 \Wiath
this assunption. there are live constraints to determine the five parameters, o kv g

and n of the assumed form for the equation of state



To summarize, the four equations to solve simultaneously are

77 (k-14F )G}

k-1+F. (G

Pi=P 172 “(vilv, e (3]
Pivi/voi -
PoEo=_-__—_kil-+F,_%p,(1 —V:/Vo) (3‘)

_ _ _Palvs/vo)
PoEo 1.115e, = k-1+F, (38)

wher»
2a(v/v.a™"

= 39
WV (Vv =9
G=(v/v.) F(v/v)™" B

k-1 +F, (G |
- = L e———am ot B L ‘ |~|'
p. pn k _ l +a (V7/ v )KH!

and the subscripts j and 7 on F and G indicate the voliume to he used in the expression

Some values chosen for calibration input. some derived quantities. and the
values for the calibrated parameters are given in Table [. The vilunes chosen for mput
are bei.eved to be in reasonable agreement with available experimental resalts. bhut this
paper 15 not the place for a ceview of the experiments  The value for k. althongh hsted

with the calibrated paraneters, was fixed at 1.3 as stated above.

CALIBRATION OFF FHE P RINCIPAL ISENTROPE

I'or ealibrate the equation of state off the principal 1sentrope, which really means

determiming a value for the comstant b, there must be data avinlable that sample the

1)



behavior of the explosive off the principal isentrope. For some explosives, detonation
velocities for overdriven detonations have been measured’. These measurements

sample the high pressure branch of the detonation Hugoniot curve.
The detonation Hugoniot curve is given by
E -Ey= %p(vo -v) . (-£3)
The equation of state is

i
=Ely- - !
p—v{k 1+F(v){l+b(l E?I‘V_))}J : 44

These two equation mu-t be solved simultaneously to obtain p{v) and E(v) un the
detonation Hugoniot + urve. A simple approach 1s to eliminate p from the equation of
state by using the Hugoniot relation. which then gives a quadratic equation for E. [he
solution is

[ E 1/2 ]
E = 3 [(a -3y +-1a—,59} : (a—J)} (15)

where a = 2v/(vy - v). 8=k -1+ F(1 4+ b).andr=E'/Fb . The result for I is
substitnted into the equation of state to get p. The detonation velocity 1) is obtiined

from the Rayleigh line eination
,
= . PYo .
1) = q ‘.'0--—"‘; . (-1tv)
The particle veloeity n s obtained from the jump condition
n= ,j[u(vo v) T

I'its to the data of reference 7. shown in Figs. 2 and 3. were olitained by eve rather
than with the use of o least squares code. The vadnes for b owre gaiven i Table 1 Plee
lowest paint on the carves in Figs. 2 and 3, where there as a horizontal tangent. is fixed
by the chowee of a valae for the detonaticn veloeity  Fhe tmgent point s fixed o the
horizontal direction by the chowee for the CJA presanre. which i turn fixes the 14
particle veloeity  Changing the comstant b maves the left end of the curve m the gl
velaeity qegion For these reasons, the enrves doonot fit the data as well as they nnght

if there were freedim tomake them fit only these data



VA l‘\ the assumption that the detonation is really exactly a Cl detonation. it
can be shown'® by differentiating the Hugoniot curve and the Rayleigh line with respect
to initial state values, that

u!<‘

Cis

. (48)
/

with T and v evaluated at the C(J state. For PBX-9404, measured values of detonation
velocity at different densities give a value of about 0.69 for this function. The
calibration of this equation of state gives, at the C.l state, 7 = 2.991 and ' = 1.853.
Substituting these values into the equation above gives 0.ti4 for the function. The
lisagreement is in keeping with the results discussed in ref. 10 and L1, where it was
shown that the derivativee at the C.| state obtained from the simple theorv did not
agree with expcriment. The fit to the velocities for overdriven detonations does not
depend on derivatives nor on the C.J assumption, and the value of I' found from them 1s

to be preferred over one found from the vanation of velocity with density.

DISCUSSION

I"lots of v and ' for PBX-1M00 and LX-17 are shown in Figs. 4 and 5 The 4
for 1I' is monatone, white the fit for v has a maximumn.  T'he value for n 1s hgher for
LX-17 han for PBX-0404, and as o resnlt the maximmm is more prononnced for 1LX.
17

The form of the function F(v), and the linear function (with parameter by for
states off the prmepal isentraps. were chosen to have the aght nnmber of constants ti
determume nsmg the calibraticn procednre desenbed for the asnal data avaalable.  If
more measureinents are aviilable, then more compheated functions can be nseld in
partienlar, if the equalion of state were to he nsed as a hitung form for 5 and 1
compnted  from a0 statistical  mechameal  treatment of mtermaolecnlar foreea, 1he

fanctions comld be made meoe compheated for a better fit

In engineering nse. 1t is often necessary to change the equation of state a hitle
to reproadiee expernments. Psnally adgustment of the constant nsed to mnltiply the

Gurney energy i Fas( 30 aml (36) and then recalibrating will be aafficient
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TABLE 1
Calibration Input
explosive D -m/s p;- GPa po- kg/m® E,o- MI/kg ey- Gl/in®

PBX-9404 8790 35.7 1844 1.620 10.78
LX-17 7630 260 1904 1.070 8.13

Derived Values

explosive  vo-m’fkg v,-wm'/kg vp-mi/kg o, e, - Glfm’
PRBX-9404 5423 .10°% 4064~10"% 3796 10°4 2.901 TTU8
LX-17 526210 Y 402010 Y 3676107 3.u63 5187

Calibrated Parameters

explosive  k i n v -mlfkg  po-Gla b
"RX-od04 13 0.8067 11470 R727T 10 Y 337 0a?
LX-17 3 0.8767 I.86-14 G 10 Y i 010
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Fig. 1. The Fickett-Jacobs diagram of the
quasistatic cycle for detonations. ‘The total
area of this diagram is approximately equal to
the total energy of the explosive. The shaded
area is the energy related to the Gurney
energy. It represents the useful work done by

the explosive driving an average metal system.
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Fig. 2. Diagram in D-u space showing the

data for overdriven detonation in PBX-9404
and the fit to the data used for calibration of
the equation of state, with b = 0.62.
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Fig. 3. Diagram in D-u space showing the
data for overdriven detonation in LX-17, and
the fit to the data used for calibration of the

equation of state with b = 0.65.
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Fig. 4. Plot of y and T va log v for PBX-9404.
The units of volume are cm?/g. ‘The CJ point
is marked on the curve for v.
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Fig. 5. Plot of vy and ' vs log v for LX-17.
The units of volame are cm?/g. The CJ paint
is marked on the curve for v.
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