

UNITED STATES ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION CONTRACT W-7405-ENG. 36 In the interest of prompt distribution, this report was not edited by the Technical Information staff.

This work was supported by the US Energy Research and Development Administration, Division of Reactor Development and Demonstration.

> Printed in the United States of America. Available from National Technical Information Service US Department of Commerce 5285 Port Royal Road Springfield, VA 22151 Price: Printed Copy \$4.00 Microfiche \$2.25

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Genergy Research and Development Administration, nor any of their employees, nor any of their contractors, ubcontractors, or their employees, makes eny warranty, express or implied, or essumes any legal liability or responsibility for the accuracy. completeness, or usefulness of any information, apparatus, product, or process disclosed, or reportent that its use would not infringe privately owned rights.

CONTENTS

I.	INTRODUCTION	1
II.	MATERIALS AND SPECIFICATIONS	1
III.	LIBRARY FORMAT	4
IV.	PROCESSING METHODS	5
۷.	CRITICAL ASSEMBLY CALCULATIONS	7
APPEN	DIX A: SAMPLE DATA ISOTXS BRKOXS DLAYXS	9 9 16 20
APPEN	DIX B: OPERATING INSTRUCTIONS FOR THE UTILITY CODES LINX, BINX, AND CINX	22
REFER	ENCES	23

LIB-IV

A LIBRARY OF GROUP CONSTANTS FOR NUCLEAR REACTOR CALCULATIONS

by

R. B. Kidman and R. E. MacFarlane

ABSTRACT

A 50-group, 101-isotope library of multigroup constants for nuclear reactor design is described. Nuclear cross sections, selfshielding factors, transfer matrices, and delayed neutron data were generated with MINX and NJOY using evaluated data from ENDF/B-IV. The output is in the CCCC-III interface format. Test results are presented for six CSEWG benchmark critical assemblies.

I. INTRODUCTION

The purpose of this report is to document LIB-IV, a rather complete and tested multigroup library based on the latest version of the Evaluated Nuclear Data Files¹ (ENDF/B-IV) and generated using the MINX² nuclear cross-section processing code. This library is being issued in the CCCC-III interface format^{3,4} and is intended for use by the nuclear community for fast-reactor design calculations.

The ENDF/B-IV data files are the latest result of a continuing major effort to compile, evaluate, test, and update a computerreadable repository of basic nuclear data. Because of the scope of this effort and the intensive testing of the data, these files are rapidly becoming the authoritative source of data for the preparation of multigroup constants. The MINX (Multigroup Interpretation of Nuclear Cross Sections) code is a new advanced computer program for processing ENDF/B data. It is a designeroriented code producing pseudo-compositionindependent libraries of group cross sections, self-shielding factors, and groupto-group transfer matrices in the CCCC interface format. The Committee for Computer Code Coordination (CCCC) interface system is part of an ambitious attempt by the Division of Reactor Research and Development (DRRD) of the United States Energy Research and Development Administration (ERDA) to facilitate the exchange of codes and data for reactor design among the laboratories and companies involved in the DRRD program. LIB-IV contains three CCCC-III files: ISOTXS (isotope constants, cross sections, and matrices), BRKOXS (self-shielding factors), and DLAYXS (delayed neutron yields and spectra by time group).

The detailed specifications for the library, the processing methods, and the testing performed will be discussed in the following sections.

II. MATERIALS AND SPECIFICATIONS

Table I shows the 101 materials comprising LIB-IV. Also shown are the ENDF/B-IV material source numbers, MINX CDC-7600 timing, and the σ_0 table values. All materials

^{*}Delayed neutron constants were generated from ENDF/B-IV using NJOY.5

TABLE I

LIB-IV MATERIALS

		ENDF/B	MINX	
		MAT	TIMING	SIGO VALUES
<u> I </u>	MATERIAL	<u>NO.</u>	(SEC)	(BARNS)
1	H-1	1269	133	1000,100,10,1,.1,.01
5	H-2	1120	95	1000,100,10,1,.1,.01
3	H-3	1169	165	1000,100,10,1,.1,.01
4	HE-3	1146	102	10000,1000,100,10,1,.1
5	HE-4	1270	118	10000, 1000, 100, 10, 1, . 1
6	LI - 6	1271	157	1000,100,10,1,.1,.01
7	LI - 7	1272	159	1600,100,10,1,.1,.01
8	BF-9	1289	516	1000,100,10,1,.1,.01
9	B-10	1273	428	1000,100,10,1
10	B-11	1160	182	100000,10000,1000,100,100,10,1
11	C-12	1274	156	1600,100,10,1,.1
15	N-14	1275	593	1000,100,10,1,.1,.01
13	0-16	1276	590	1000,100,10,1,.1
14	F	1277	384	10000,1000,100,10,1,.1
15	NA-23	1156	667	1000,100,10,1,.1
16	MG	1280	584	10000,1000,100,10,1,.1
17	AL-27	1193	631	190900, 10909, 1090, 199, 19, 1
18	SI	1194	546	10040,1000,100,10,1,.1
19	CL	1149	438	19092,1999,109,10,10,1,.1
50	К	1150	368	10000,1000,100,10,1,.1
21	CA	1195	542	10000,1000,100,10,10,1,.1
22	ΤI	1286	218	100000,10000,1000,100,100,10,1
23	V	1196	344	100000,10000,1000,100,10,10,1
24	CR	1191	1641	1000,100,10,1,.1
25	HN-55	1197	705	100000,10000,1000,100,100,10,1
26	FE	1192	1075	1000,100,10,1,.1
27	CN-59	1199	910	10000,1000,100,10,1,.1
28	NI	1190	1251	1000,100,10,1,.1
29	CU	1295	707	100000,10000,1000,100,100,10,1
30	CU-63	1085	451	100000,10000,1000,100,100,10,1
31	CU - 65	1086	365	190900,10000,1000,100,100,10,1
32	KR-78	1181	162	10000,1000,100,10,1,.1
33	KR-80	1182	178	10000,1000,100,10,1,.1
34	KR-82	1183	176	10000,1000,102,10,1,.1
35	KR-85	1184	192	19900,1900,100,101,1,.1
36	KR-84	1185	217	14040,1404,164,14,1,.1
37	KR-86	1186	163	10400,1040,140,14,1,.1
38	ZTRC-2	1284	1273	10000,1000,100,10,1,.1
39	NB-93	1189	2975	100000,10000,1000,100,100,10,1
40	MO	1287	532	100000,10000,1000,100,100,10,1
41	10-99	1137	325	100000,10000,1000,100,100,10,1
42	RH-103	1125	2463	104000,19000,1900,100,100,10,1
43	AG-147	1138	698	100000,10000,1000,100,100,1
44	AG-109	1139	793	100000,10000,1000,100,100,10,1
45	CD	1281	839	10006, 1000, 100, 10, 1, . 1
46	CD-113	1282	605	10000, 1000, 100, 10, 1, . 1
47	XE-124	1170	177	10000,1000,100,10,10,1,.1
48	XE=126	11/1	146	10000,1000,100,10,10,1,1,1
49	XE=127	1172	507	10000,1000,100,10,10,1,.1
50	XE-128	1175	1165	10000,1000,100,1,.1
21	XE = 150	1174	240	10000,1000,100,1,.1
52	XF=151	11/5	751	19000,1000,100,1,.1
22	XE-152	1176	215	10000,1000,100,1,.1
54	XE-134	1177	145	19494, 1949, 194, 1, .1
55	XE=135	1294	154	10000, 1000, 1000, 1000, 100, 10, 1
56	XE=136	1178	128	100000, 10000, 1000, 100, 100, 10, 1
57	CS-133	1141	1472	100000, 10000, 1000, 100, 100, 10, 1
58	SM-149	1927	464	102000, 10000, 1000, 100, 10, 10, 1
59	EU-151	1290	9119	100000, 10000, 1000, 100, 100, 10, 1
60	ËU - 152	1292	713	100000,10000,1000,100,100,10,1
61	EU-153	1291	785	100000,10009,1000,100,10,1
62	EU-154	1293	585	100000,10000,1000,100,100,10,1
63	ថ្លា	1930	378	100000,10000,1000,100,100,10,1
64	DY-164	1031	213	10000,10009,1000,100,100,10

TABLE	I	(cont)
-------	---	--------

		ENDF/8	MINX	STGU VALUES
1	MALCRIAL	<u>NO</u>	(SEC)	(BARNS)
65	LU-175	1032	354	100000,10000,1000,100,10,10,1
66	LU-176	1033	389	100000,10000,1000,100,10,1
67	TA-181	1285	1092	10000,1000,100,1,.1
68	TA-182	1127	252	10000,1000,100,1,.1
69	w- 182	1128	5453	100000,10900,1000,100,100,1
70	W-183	1129	1353	100000,10000,1000,100,100,10,1
71	w-184	1130	1352	100006,10066,1000,100,10,10,1
72	w-186	1131	1489	100009,10000,1000,100,100,10,1
73	RE-185	1083	4714	100000,10000,1000,100,100,10,1
74	RE-187	1084	418	100000,10000,1000,100,100,17,1
75	AU-197	1283	1685	194999, 19949, 1494, 199, 199, 19, 1
76	PB	1288	641	10000,1000,100,1,.1
77	1H-232	1296	3859	100000,10000,1000,100,10,1
78	PA-233	1297	462	120000,10000,1000,100,10,10,1
79	U-233	1260	531	10000,1000,100,1,.1
80	U-234	1043	672	100000, 10000, 1000, 100, 10, 10, 1
81	U-235	1261	2832	14640,1409,140,1,.1
82	U-236	1163	780	100000,10000,1000,100,100,10,1
83	U-238	1262	6454	10690,1000,100,1,.1
84	NP-237	1263	2085	100000,10000,1000,100,100,10,1
85	PU-238	1950	1043	103000,13000,1000,100,100,10,1
86	P11-239	1264	3505	10000,1000,100,10,10,1
87	PU-240	1265	6113	100000,10000,1000,100,100,10,1
88	PU-241	1266	544	100000,10000,1000,100,100,10,1
89	PU-242	1161	664	100000, 10000, 1000, 100, 100, 10, 1
90	AM-241	1956	540	100060,10000,1000,100,100,10,1
91	AM-243	1957	231	100009,10000,1000,100,10,10,1
92	CM-244	1162	1 357	190909,10999,1099,109,19,19,1
93	FP233N	1067	83	10000,1000,100,10,10,1,.1
94	FP233S	1066	98	10000,1000,100,10,1,1
95	FP233R	1042	93	10000,1000,100,10,10,1,.1
96	FP235N	1069	84	10000,1000,100,10,10,1,.1
97	FP2358	1068	93	19800,1000,108,10,1,.1
98	FP2358	1345	95	10000,1000,100,10,10,1,.1
99	FF239N	1071	85	10000,1000,100,10,1,1,1
100	FP2395	1070	94	10000,1000,100,10,1,.1
101	FP239R	1052	91	10000,1000,100,10,1,.1
		TUTAL	79455	

were run for 3 temperatures, 300, 900, and 2100.° K. ⁶³Cu, ⁶⁵Cu, and the 9 lumped fission-product isotopes were obtained from ENDF/B-III in order to provide a library complete enough to allow full Cross Section Evaluation Working Group (CSEWG) benchmark testing and reactor burnup calculations.

The names of the 9 lumped fission products can be interpreted in the following manner: FP233N refers to the lumped, nonsaturating, 233 U fission products; "S" would stand for slowly saturating; and "R" would stand for rapidly saturating.

Delayed neutron yields and spectra for 6 time groups are included for the following 7 isotopes: 232 Th, 233 U, 235 U, 238 U, 239 Pu, ²⁴⁰Pu, and ²⁴¹Pu. These are all of the ENDF/B-IV materials that have delayed neutron data.

Table II shows the 50-group energy structure used in LIB-IV. This structure is a subset of the 240-group structure,⁶ and the widely used 26-group half-lethargy structure is a subset of the LIB-IV structure.

The library was generated using a "thermal + 1/E + fission" weight function. The thermal portion is Maxwellian with a temperature of 0.025 eV which joins 1/E at 0.10 eV. The fission spectrum joins 1/E at 820.8 keV (lower boundary of group 6) and has a characteristic temperature of 1.40 MeV.

TABLE II

LIB-IV GROUP STRUCTURE

PROUP	ENERGY	RANGE (EV)	LETHARGY
01	1.5000E+07	I.0000E+0/	0.692
02	1.0000E+07	6.065JĒ+06	0.5
03	6.U653E+06	3.6788L+00	0.5
04	3.6788E+06	2.2313É+00	0.5
05	2.2313E+06	1.3534Ē+00	0.5
V 6	1.J534E+06	8•5082£+0⊃	0.5
07	8.2085E+05	4.97876+05	0.5
ΰB	4•Y787E+05	3.87746+05	0.25
υ9	3•8774E+05	3.01976+05	0.25
10	3.v197E+05	2.3518L+05	0.25
11	2.3518E+05	1.8316L+05	0.25
12	1.8316E+05	1.4264L+05	0.25
13	1.4264E+05	1.1109E+05	0.25
14	1.1109E+05	8.6517:+04	0.25
15	8.6517E+04	6.7379Ė+u4	0.25
16	6.1379E+04	5.24754+04	0.25
17	5+2475E+04	4.0868E+04	0.25
18	4.0368E+04	3.18285+04	0.25
19	3.1828E+04	2.4788£+04	Ú.25
20	2+4788E+04	1.93056+04	0.25
21	1.9305E+04	1.5034E+04	0.25
22	1.5034E+04	1.1709±+04	0.25
23	1.1709E+04	9.1188E+03	0.25
24	9.1188E+03	7.1017L+0.3	0.25
25	7.1017E+03	5.5308E+0.3	0.25
26	5.5308E+03	4.3074E+03	0.25
27	4.3074E+03	3.3546L+0.3	0.25
28	3.3546E+03	2.6126£+03	0.25
29	2.6126E+03	2.0347L+03	0.25
30	2.0347E+03	1.5846L+0J	0.25
31	1.5846E+03	1.2341E+03	0.25
35	1.2341E+03	9.6112E+02	0.25
33	9+6112E+02	7.4852Ē+0∠	0.25
34	7.4852E+02	5.8295E+02	0.25
35	5.0295E+02	4.5400L+0 <i>2</i>	0.25
36	4.5400E+02	3.5358£+0 <i>2</i>	0.25
37	3.5358E+02	2.7536L+02	0.25
38	2.7536E+02	1.6702±+02	0.5
39	1.6702E+02	1.0130£+02	0.5
40	1.0130E+02	6.1442Ė+01	0.5
41	6.1442E+01	3.7267E+01	0.5
42	3•7 <u>2</u> 67E+01	2.2603E+01	0.5
43	2•2603E+01	1.3710±+01	0.5
44	1.3710E+01	8.3153Ē÷0v	0.5
45	8.J153E+00	5.0435E+0v	0.5
46	5.0435E+00	3.0590E+0u	0.5
47	3+0590E+00	1.8554L+0u	0.5
48	1.0554E+00	1.1254E+00	0.5
49	1.1254E+00	6.8256L-01	0.5
50	6.d256E-01	1.0000Ē-05	11.31

The P_0 , P_1 , P_2 , and P_3 Legendre components of the matrices were generated whenever the ENDF/B data permitted. Tolerances used in running the MINX code were as follows: resonance reconstruction 0.5%, linearization 0.2%, thinning (resolved range only) 0.2%, and adaptive integration 0.1% (except that 238 U, 103 Rh, and 133 Cs used a reconstruction tolerance of 1.0%).

III. LIBRARY FORMAT

The user of LIB-IV should be familiar with the format for the ISOTXS, BRKOXS, and DLAYXS files as described in Ref. 4. The amount of data in LIB-IV is so large that it is impractical to try and list it in this document. Therefore, an abbreviated listing featuring group constants for ²³⁹Pu has been constructed to familiarize the reader with the kinds of data provided and the format of that data (see Appendix A). Note that scattering matrices have been sub-blocked. There is a record for each sink group containing elements from all source groups and all Legendre orders. Section IV describes the processing methods used to obtain the data in these files.

Certain manipulations may be required to update, transmit, or use CCCC data. Therefore, three utility codes are provided as described below.

<u>CINX</u> -- will exactly collapse finegroup data (ISOTXS, BRKOXS, AND DLAYXS) to a subset coarse-group structure, and will also change the format of the data to 1DX/PERT-V^{7,8} form, if desired.

LINX -- will combine two multi-isotope CCCC files (ISOTXS or BRKOXS only) into a new composite file in CCCC format.

<u>BINX</u> -- will convert CCCC data (ISOTXS, BRKOXS, or DLAYXS) from binary to BCD mode or <u>vice versa</u> and selectively print the contents of the files.

These codes are completely described elsewhere.^{9,10} For the convenience of the user, operating instructions for LINX, BINX, and CINX, have been included as Appendix B of this report.

LIB-IV is issued on two 7-track BCD tapes recorded at 800 bits per inch. Data are blocked into records containing 50 card images of 80 columns each. The last block (record) in each file may be short. The tapes contain six files as shown in Table III.

IV. PROCESSING METHODS

LIB-IV features cross sections for use in the Self-Shielding Factor Method, ¹¹,12 sometimes called the Bondarenko Method. In the region of a resonance, the neutron flux will be depressed, thereby causing a reduction in the contribution of that resonance to the reaction rate, i.e., self-shielding. The magnitude of the self-shielding depends on the temperature, composition, and geometry of the problem in a complex way, but for

TABLE III

STRUCTURE OF LIB-IV TRANSMITTAL TAPE

Tape	File	Contents	No. of Cards
1	1	LINX	460
	2	BINX	872
	3	CINX	857
	4	ISCTXS	192 273
2	5	BRKOXS	80 083
	6	DLAYXS	735
		Total	275 280

many problems of practical interest, accurate reaction rates can be computed using average cross sections defined by

$$\sigma_{\mathbf{x}\ell g}^{\mathbf{i}}(\mathbf{T},\sigma_{0}) = \frac{\int_{g} \sigma_{\mathbf{x}}^{\mathbf{i}}(\mathbf{E},\mathbf{T})\phi_{\ell}^{\mathbf{i}}(\mathbf{E},\mathbf{T},\sigma_{0})d\mathbf{E}}{\int_{g} \phi_{\ell}^{\mathbf{i}}(\mathbf{E},\mathbf{T},\sigma_{0})d\mathbf{E}} \quad (1)$$

where the weight functions for material i are given by

$$\phi_{\ell}^{i}(E,T,\sigma_{0}) = \frac{C(E)}{\left[\sigma_{0}+\sigma_{t}^{i}(E,T)\right]} \ell + 1 \qquad (2)$$

In these formulas, l = 0 refers to flux weighting, l = 1 refers to current weighting, E is the neutron energy, T is the temperature, g is the group index, C(E) is the slowly varying component of the weight function (as described in Sec. II), and $\sigma_t^i(E,T)$ is the microscopic total cross section for this material. The "background cross section per atom" σ_0 is regarded as a parameter by which composition and geometry effects can be introduced (see Ref. 12).

The flux of Eq. (2) is based on the narrow resonance approximation, the B_0 approximation for small B, and the assumption that the positions of resonances in different isotopes are not correlated. Therefore, the multigroup constants in LIB-IV are best suited for large critical systems containing some light isotopes. The data can be used in other applications with due regard to the approximations used.¹³

LIB-IV contains "infinite dilution" cross sections at 0° K $\sigma_{xlg}^i(o,\infty)$ evaluated by Eq. (1). Temperature and σ_0 dependent cross sections are to be obtained by interpolating in tables of "f-factors"

$$f_{xlg}^{i}(T,\sigma_{0}) = \frac{\sigma_{xlg}^{i}(T,\sigma_{0})}{\sigma_{xlg}^{i}(0,\infty)} \qquad (3)$$

The "total" f-factor in the BRKOXS file is $f_{tlg}^{i}(T,\sigma_{0})$.

The special quantities $\overline{\mu}$ (average scattering cosine), $\overline{\xi}$ (average log decrement), and D (average fission yield) are reactionrate averaged at T = 0 and $\sigma_0 = \infty$. For example,

$$\overline{\nu}_{g} = \frac{\int_{g} \overline{\nu}(E) \sigma_{f}(E) C(E) dE}{\int_{g} \sigma_{f}(E) C(E) dE} \qquad (4)$$

This formula preserves the fission neutron production rate. Similar formulas apply for $\overline{\mu}$ and $\overline{\xi}$ using $\sigma_e(E)$. The transport cross section and transport f-factors are computed using

$$\sigma_{\text{tr},g}^{i}(T,\sigma_{0}) = \sigma_{\text{tlg}}^{i}(T,\sigma_{0}) - \overline{\mu}_{g}^{i}\sigma_{e0g}^{i}(T,\sigma_{0}) ,$$
(5)

where σ_e is the elastic scattering cross section. The potential scattering cross section given is based on the actual *l*-dependent σ_p used by MINX during resonance reconstruction and may not be meaningful outside the resonance range.

Accurate, high-order, group-to-group, transfer cross sections are computed for all reactions (at infinite dilution only) using

 $\sigma_{\mathbf{x}_{\ell};g+g}^{i}, = \frac{\int_{g} dE \int_{g} dE' \sigma_{\mathbf{x}}^{i}(E) m_{\mathbf{x}}^{i} F_{\mathbf{x}_{\ell}}^{i}(E+E') C(E)}{\int_{g} C(E) dE},$ (6)

where g is the initial energy group, g' is the final energy group, m_x^i is the neutron multiplicity, and $F_{x\ell}^i$ (E+E') is a Legendre component of the probability of scattering from E to E'. The only reaction for which significant self-shielding is expected is elastic scattering; all elements are assumed to have the same f-factor as the elastic cross section.^{*} MINX produces matrices for all neutron scattering reactions given in ENDF/B, and all are added into the total matrix in the ISOTXS file. The "inelastic" matrix is the sum of all scattering reactions except elastic and (n,2n). The (n,2n) matrix in ISOTXS has been normalized for a neutron yield of one.

The elastic cross section was obtained by summing all final energy groups of the elastic matrix, and the elastic removal cross section was computed with

$$\sigma_{dg}^{i} = \sum_{g' \neq g} \sigma_{e0;g \neq g'}^{i} \qquad (7)$$

The inelastic cross section is the sum over all reactions and all final energy groups in the inelastic matrix with the (n,3n) contribution divided by three. Finally, the (n,2n) cross section was obtained by summing the (n,2n) matrix.

LIB-IV does not provide a fission chi matrix. The correct definition for the isotope chi vector is

$$\chi_{g}^{i}, = \frac{\int_{dE} \int_{g, dE' \nu^{i}(E) \sigma_{f}^{i}(E) g^{i}(E + E') C(E)}}{\int_{dE \nu^{i}(E) \sigma_{f}^{i}(E) C(E)}} .$$
(8)

However, if the distribution of fission neutron secondary energies $g_f^i(E \rightarrow E')$ is a slowly varying function of E over the range of interest.

^{*} This approximation is explicit in the original method¹¹ and codes using it,⁷ but may not be justified for some problems.¹⁴

$$\chi_{g}^{i}, \cong \int_{g} dE' g_{f}^{i}(E^{\star} \rightarrow E') , \qquad (9)$$

where E^* is some well-chosen energy; MINX uses $E^* = 1.0$ MeV and processes the distribution from MT18 only. These two approximations are appropriate for reactor problems, but they will be less adequate for a fusion problem.

Values quoted for the average energy released in fission (EFISS) were inferred from data for four of the isotopes.¹⁵ The energy released through neutron capture (ECAPT) was obtained by adding the reaction Q-values¹⁶ to the energy released by decay to a stable isotope computed from the <u>Table of Isotopes</u>.¹⁷

V. CRITICAL ASSEMBLY CALCULATIONS

This library has been used in the calculation of several CSEWG benchmark criticals to provide a comparison with results from other labs and codes and to give an indication of how the library may perform in reactor design calculations.

The calculational procedure is shown in Fig. 1. All benchmark specifications came from Ref. 18, all DTF^{19} runs used S_{16} , and the two fission source vectors used for Pu- and U-fueled assemblies are shown in Table IV. The k_{eff} results are shown in Table V and the central reaction rate ratios are shown in Table VI.

In general, only in a few cases do the current LIB-IV results increase the spread in integral results²⁰ already established by other codes and libraries. One is encouraged by such agreement, and the lack of any obvious anomalies further increases one's confidence in LIB-IV.

Since MINX is very similar to ETOX,²¹ one can easily extrapolate from past comparisons and validations^{12,22,23} of ETOX and the Shielding Factor Method, and state that LIB-IV offers a simple, reliable, accurate, fast, and directly interpretable scheme for processing nuclear data for reactor calculations.

Fig. 1. Calculational procedure.

TABLE IV

FISSION SOURCE VECTORS

	Chi for	Chi for
Group	Pu-Fueled	U-Fueled
1	2.6650000E-03	1.9820000E-03
2	3.2393000E-02	2.7500000E-02
3	1-2144500E-01	1.1217400E-01
4	2.1038100E-01	2.0520400E-01
5	2.2236700E-01	2.2451600E-01
6	1.7232300E-01	1.7777600E-01
7	1.1017300E-01	1.1517800E-01
8	3.6035000E-02	3.7930000E-02
9	2.65500008-02	2.8033000E-02
10	I•9263000E-02	2.0388000E-02
11	1.3810000E-02	1.4644000E-02
12	9.809000E-03	1.0416000E-02
13	6•9160000F-03	7.3530000E-03
14	4-8490000E-03	5.1600000E-03
15	3.3850000E-03	3.6050000E-03
16	2•3550000E-03	2.5090000E-03
17	1.6340000E-03	1.7410000E-03
18	1.13I0000E-03	1.2060000E-03
19	7•8200000E-04	8.3400000E-04
20	5-4000000E-04	5.7600000E-04
21	3.7200000E-04	3.9700000E-04
22	2•5700000E-04	2.7400000E-04
23	1.7700000E-04	1.8900000E-04
24	1-2200000E-04	1.3000000E-04
25	8.4000000E-05	8.900000E-05
26	5-8000000E-05	6.100000E-05

TABLE IV (cont)

Group	Chi for Pu-Fueled	Chi fo r U-Fueled
27	4-000000E-05	4.200000E=05
28	2.700000E-05	2.900000E-05
29	1-900000F-05	2.000000E-05
30	1.300000E-05	1.4000000E-05
31	9.000000F-06	9.0000000E-06
32	6.000000E-06	6.000000E-06
33	4.000000E-06	4.0000000E-06
34	3.000000F-06	3.0000000E-06
35	2.000000E-06	2.000000E-06
36	1.000000F-06	1.000000E-06
37	1.000000E-06	1.000000E-06
38	1.000000E-06	1.000000E-06
39	0•	1.000000E-06
40	0•	0.
41	0•	0.
42	0.	0.
43	0.	0.
44	0.	0.
45	0.	0.
46	0.	0.
47	0.	0.
48	0.	0.
49	0.	0.
50	0.	0.
	-	

TABLE V

CSEWG BENCHMARK EIGENVALUES

BENCHMARK	CODES USED	UNCORRECTED KEFF	HETEROGENEITY CORRECTION	P0→P00 CORRECTION	DIFF+S8 CORRECTION	S ₁₆ →S ₀₀ CORRECTION	CORRECTED KEFF
<u>Pu-Fueled</u> a							
JEZEBEL	1DX-DTF	1.00089		-0.0032		-0.0021	0.99559
VERA-11A	1DX-DTF	0.99235				-0.002	0.99035
ZPR-6-7	1DX-DTF	0.97085	0.0166		0.0018		0.98925
U-Fueled ^a							
GODIVA	1DX-DTF	1.01184		-0.003		-0.0017	1.00714
ZPR-3-11	1DX-DTF	1.01515					1.01515
ZPR-6-6A	1DX	0.98323	0.0073		0.0013		0.99183

^aArranged in order of spectrum hardness.

TABLE VI

	CENTRAL SP	ECTRAL INDIC	IES (CALCULAT	ED-TO-EXPERIM	ENTAL)	
	Pu-Fueled ^a			U-Fueled ^a		
U235(N,F)	JEZEBEL	VERA-11A	<u>ZPR-6-6</u>	GODIVA	ZPR-3-11	ZPR-6-6A
Pu240(N.F)		1.0850			1.0540	
Pu239(N.F)	0,9363	1,0836	0.9625	0.9728	0.9843	
U238(N.F)	0.9485	1.1531	0.9377	1.0861	1.0563	0.9452
U238(N.G)			1.0534	0.9925	0.9691	1.0309
NP237(N.F)	0.9448	1.1758			1.0506	
11236(N.F)					0.7851	
U234(N,F,)				0.9762	1.0405	
$U_{233}(N,F)$	0.9287	0.9993		0.9241	0.9989	
Th 232 (N.F)				1.0758		
$A_u(N,G)$				0.8491		

^AArranged in order of spectrum hardness.

APPENDIX A

SAMPLE DATA

This appendix contains abbreviated and DLAYXS CCCC-III files. The ²³⁹Pu mul-BINX listings of the LIB-IV ISOTXS, BRKOXS, tigroup constants are featured.

LIB-IV ISOTXS LISTING

BINX..., CONVERT MODE OF CCCC FILE

MODE=1 (1 MEANS BIN TO BCD, 2 MEANS BCD TO BIN) TYPE \mp 1 (1 MEANS ISOTXS, 2 MEANS BRKOXS, 3 MEANS DLAYXS) IRD= 1 1 -0 -0 -0 -0 -0 -0 -0 -0

*** FILEISOTXS -- VERSION 1 -- UNIT 3*** **USER IDENTIFICATION**T2LASL MINX

FILE CONTROL PARAMETERS

NGROUP	NUMBER OF ENERGY GROUPS IN SET	50
NISO	NUMBER OF ISOTOPES IN SET	101
MAXUP	MAXIMUM NUMBER OF UPSCATTER GROUPS	0
MAXDN	MAXIMUM NUMBER OF DOWNSCATTER GRDUPS	50
MAXORD	MAXIMUM SCATTERING ORDER	3
ICHIST	SET FISSION SPECTRUM FLAG	0
	ICHIST=1 SET VECTOR	
	=NGROUP, SET MATRIX	
NSCMAX	MAXIMUM NUMBER OF BLOCKS OF	4
	SCATTERING DATA	
NSBLOK	BLUCKING CONTROL FOR SCATTERING DATA	50

LIB-IV A 101-ISOTOPE 50-GROUP LIBRARY GENERATED WITH MINX FROM ENDF/B-IV

ISOTOPE	NAME
1	H1
2	H2
3	H3
4	HE3
5	HE4
6	LI6
7	LI7
8	BE9
9	B10
10	811
11	C12
12	N14
13	016
14	F
15	NA23
16	MG
17	AL27
18	SI
19	CL
20	ĸ
21	CA
22	TI
23	v
24	CR
25	MN55
20	FE
27	C059
28	NI
29	CŪ
30	CU63
31	CU65
32	KR78
33	KR8Ø
34	KR82

35	KR83
36	KR84
2 7	KPRA
78	71802
30	NRQ3
40	MD
41	001 001T
42	RHI03
43	AG107
44	AG109
45	CD
46	CD113
47	XE124
48	XE126
49	XE127
50	XE128
51	XE130
52	XÉ131
53	XE132
54	XE134
55	XE135
56	XE136
57	US133
58	SM149
59	EU151
60	EU152
01 40	
6Z	E0154 CD
63	DV164
65	10175
65	10176
67	TA181
68	TA182
69	W182
70	W183
71	W184
72	W186
73	RE185
74	RE187
75	AU197
76	P8
70	18232
70	FA233
/9	U233
97 81	11275
87	11236
83	11238
84	NP237
85	PU238
86	PU239
87	PU240
88	PJ241
89	PU242
90	AM241
91	AM243
92	CM244
93	FP233N
94	FP233S
95	FP233R
96	FP235N
97	FP2358
98	FP235R
99	FP239N
100	FP2395
101	FF539K

-

GROUP STRUCTURE

.

	NEUTRON VELOCITY	UPPER ENERGY
GROUP	(CM/SEC)	(EV)
1	5.27745E+09	1.99711E+07
2	3.89009E+09	1.000002+07
ž	3.02960F+09	6.06531E+06
4	2.35946E+09	3.67879E+06
5	1.83755E+09	2,231308+06
٠		
•		

NUMBER OF RECORDS TO BE SKIPPED

ISDTOPE	RECORDS
1	ð
2	102
5	254
4	400 508
6	610
7	762
8	964
9	\$116
10	1268
11	1469
12	1621
14	1974
15	2175
10	2376
17	2578
18	2779
19	2981
24	5182
22	3584
23	3737
24	3938
25	4140
26	4341
27	4542
20	4/16
30	5119
31	5319
32	5519
33	5720
34	5921
35	6122
36 7 7	6324
57 38	6726
39	6928
40	7103
41	7251
42	7453
43	7655
44	7857
45	8261
47	8463
48	8664
49	8865
50	9067
51	9269
52	9471
75 5/1	70/) 0274
55	10077
56	10229
57	10431

11

t	2	

HABSTD	ABSOLUTE ISOTOPE LABEL	PU 2	39
HIDENT	LIBRARY IDENTIFIER	FND	FR
HMAT	ISOTOPE IDENTIFICATION	12	64
AMASS	GRAM ATOMIC WEIGHT	.23905E+	193
EFISS	THERMAL ENERGY/FISSTON (W*SFC/FISS)	.33196E-	10
ECAPT	THERMAL ENERGY/CAPTURE (W*SEC/CAPT)	.18727E-	11
TEMP	ISOTOPE TEMPERATURE (DEG K)	0.	
SIGPOT	AVE. POTENTIAL SCATTERING (BARNS/ATOM)	.10000E+	11
ADENS	REFERENCE ATOM DENSITY (A/B*CM)	0.	
K8R	ISUTOPE CLASSIFICATION		1
ICHI	FISSION SPECTRUM FLAG (0/1/N=SET CHI/VECT	OR/MATRIX)	1
IFIS	(N,F) X-SEC FLAG (U/1=NO/YES)		1
IALF	(N,A) X-SEC FLAG (U/1=NO/YES)		Ø
INP	(N,P) X-SEC FLAG (U/1=NO/YES)		Ø
INZN	(N, 2N) X-SEC FLAG (0/1=NO/YFS)		1
IND	(N,D) X-SFC FLAG (0/1=N0/YES)		Ø

ISOTOPE 86

ISOTOPE CONTROL PARAMETERS

68			1	2637
69			1	2839
7 Ø			1	3041
71			1	3243
72			1	3445
73			1	3647
74			1	3849
75			1	4051
76			1	4253
77			1	4455
78			1	4657
79			1	4859
80			1	5061
81			1	5263
82			1	5465
83			1	5667
84			1	5869
85			1	6071
86			1	6273
87			1	6475
88			1	6677
89			1	6879
90			1	7081
91			1	7233
92			1	7385
93			1	7587
94			1	7589
95			1	7591
96			1	7593
9 7			1	7595
98			1	7597
99			1	7599
100			1	7601
101			1	7603
•				
	(Skip	to	Pu-239	constants)

61

INT LTOT LTRN ISTRPD	(NT) NUMBER NUMBER NUMBER	X-SEC OF T OF T OF T	FLAG OTAL RANSP(RANSP((Ø/1=N K-SEC N DRT X-S DRT X-S	IO/Y IOME EC EC	ES) NTS MOMENTS DIRECT	S Ions			0 1 1 0	
SCATTER	ING BLOC	K S									
8LOCK	NAME	т	YPE	ORDERS	6						
1	INELAS		200	4	ţ						
2	ELASTC		100	1	1						
3	NSN		300	1							
4	TOTAL		Ø	4	l.						
SCATTER	ING BANDI	WIDTH	I AND]	IN-GROL	IP S	CATTER	ING	POSITI	0 N		
GROUP/8	LOCK	1	2	3	4	1	2	3	4		
1		1	1	1	1	1	1	1	1		
S		5	2	Ž	ž	3	1	1	1		
3		3	2	3	3	i	1	1	1		
4		4	2	4	4	1	1	1	1		
5		5	2	5	5	1	1	1	1		
•				-	-	-	•	-	•		
•											
•											
46		46	2	46	46	1	1	1	1		
47		47	Ž	47	47	1	1	1	1		
48		48	2	48	48	1	1	1	1		
49		49	2	49	49	1	1	1	1		
50		50	2	59	50	1	1	1	1		
PRINCIP	AL CROSS	SECI	TIONS								
GROUP	STRPL		STOT	PL		SNGAM		SF	IS	SNUTOT	CHISU
1	3.17961E	+00	5.909	03E+00	2.	35022E	-03	2.340	36E+00	4.56771F+00	2.60560E-03
Ż	3.59940E	+00	6.674	84E+00	5.	12545E	- 94	2.124	28E+00	3.45828E+00	3.201735-02
3	4.28234E	+00	7.823	59E+00	1	69466E	-03	1.735	33E+10	3.54253E+00	1.20766E-01
4	4.73192E	+00	7.794	43E+00	5.	83780E	-93	1.879	65E+94	3.282888+40	2.100206-01
5	4.97238E	+00	7.158	70E+00	1	02738E	- Ø2	1.923	40E+00	3.12277F+00	2.225416-01
•		. –		-		-					
•											
•											
•											

46	1.86699E+01	1.86949E+01	6.86168E-01	9.12557E+00	2.87334E+00	2.69842E-49
47	2.57616E+01	2.57883E+01	2.16982F+00	1.41194++01	2.87334F+44	1.27445E-09
48	4.17560E+01	4.17841E+01	7.72434E+00	2.40920E+01	2.87330E+00	6.02010E-10
49	7.75153E+01	7.75453L+01	1.89318E+01	4.79841E+01	2.87336E+NN	2.84374E-10
50	1.19912E+03	1.19914E+03	3.95191E+02	7_95243E+02	2.87330E+HA	2.54565E-10

BLOCK	1 INFL	AS SCATTERING,	ORDER 4		
	GROUP	1			
	POSN	URDER 1	ORDER 2	ORDER 3	ORDER 4
	1	2.96105E-02	1.98279F-02	1.32301E-02	7.96745E-03
	GROUP	5			
	POSN	URDER 1	ORDER 2	ORDER 3	ORDER 4
	1	1.08118E-02	5.13291E-03	2.49375E-03	9.67350E-04
	2	8.77443E-02	5.38404E-42	3.413298-02	1.86799E-02
	GROUP	3			
	POSN	URDER 1	ORDER 2	ORDER 3	ORDER 4
	1	6.60272E-03	6.4J678E-14	1.30360E-04	1.487828-05
	2	5°05015E-05	9.20485E-03	3.14681E-03	6.96451E-04
	3	2.87350E-02	1.18844E-02	5.23447E-03	1.7448ИЕ-ИЗ

GROUP	4			
POSN	ORDER 1	ORDER 2	ORDER 3	ORDER 4
1	1.16116E-01	1.78123E-Ø3	1.43991E-05	-1,57147E-06
5	8.58675E-02	5.62052E-04	6.91510E-05	3,249 73E- 06
3	5.47031E-02	2.20773E-03	3.24540E-04	2.10338E-05
4	3.12489E-03	0.	0.	0.
GROUP	5			
POSN	ORDER 1	ORDER 2	ORDER 3	ORDER 4
1	2.64095E-01	3.79723E-03	1.84614E-05	-4.14327E-06
2	3.16531E-01	-9.91404E-04	-1.16044E-05	-2.57053E-06
3	2.70369E-01	3.26128E-05	4.64688E-06	-9,50340E-08
4	1.29825E-01	5.45655E-05	8.37585E-06	-4,21996E+07
5	9.59246E-03	0.	0.	Ø.
•				
	POSN I = in-	scatter		
•	POSN 2 = I-1	to I		
•	POSN 3 = I - 2	toI		
	L •	1		

GR	OUP	50								
P	OSN		ORDER	1	ORDER	2	ORDER	3	ORDER	4
1	TO	56	а.		0.		0.		Ø .	
	27		6.94075	E-09	-1.041280	E-09	-2.62626	E-10	-1.08308	E-10
82	ΤO	34	Ø.		0.		Й.		0.	
	35		7.85542	E -11	-2.730031	E-11	-7.79106	E-12	3.24110	E-12
	36		2.26264	E -11	-8.385941	E-12	-2,01697	E-12	1.24661	E-12
37	TO	38	Й.		0.		а.		ΰ.	
	39		3.42355	E -11	-1.433321	E-11	-2.08775	E-12	2.77496	E-12
	40		3.10699	E - 11	-1.29471	E - 1 1	-2.09208	E-12	2.70900	E-12
	41		1.22868	E=11	-5.290226	-12	-7.23542	E-13	1.18205	E-12
	42		4.35832	E -12	-1.94541	E-12	-1.80757	E-13	4.14271	E-13
	43		4.73237	E -11	-2.10974	E - 1 1	-2.22508	E-12	4.87287	E-12
	44		1.46775	E -11	-6.42997	-12	-6,46591	E-13	1.54443	E-12
	45		2.87846	E-12	-6.53183	E-13	-9.87508	E-15	1,34220	E-13
	46		5.41201	t-12	-2.092201	E-12	7.06614	E-13	4.60451	E-14
	47		2.13792	E-12	Ú.		а.		и.	
	48		4.11811	E-12	-1.53820	E-12	5.48818	E-13	1.49964	E-14
	49		5.76786	E-13	0.		Й.		0.	
	50		7.97602	E - 14	Ø.		И.		и.	

BLOCK 2 ELASTC SCATTERING, URDER 0 GROUP 1 POSN URDER 1 ORDER 2 URDER 3 ORDER 4 3.11469E+30 2.70648E+00 2.37089E+00 2.06125E+00 1 GROUP 2 POSN ORDER 1 ORDER 2 ORDER 3 ORDER 4 3.06739E+00 2.66260E+00 2.26742E+00 3.69097E+00 1 2 2.73034E-02 3.827198-45 3.49122E-03 -6.86457E-04 GROUP 3 POSN ORDER 1 ORDER 2 ORDER 3 ORDER 4 3.537678+00 2.95272E+00 2.47475E+04 1 4.41146E+00 2.72197E-03 2.40500E-03 1.67691E-03 З 2.50025E-02 GROUP 4 POSN URDER 1 ORDER 2 OPDFR 3 ORDER 4 3.06229E+00 2.36329E+00 1.94636E+00 1 4.25148E+00 2.875848-03 2.65169E-03 6.79577E-04 2.53016E-02 2 GROUP 5 POSN URDER 1 ORDER 3 ORDER 4 OKDER 2 3.75285E+00 2.18666E+00 1.47978E+00 1.22025E+00 2.56240E-02 1.74833E-04 -1.95819E-03 1.96885E-03 1 2 •

	CROUP	50					
	POSN		ORDER 1		ORDER 2	ORDER 3	ORDER 4
	1		8.70955±+6	10	2.449968-02	3.10122E-05	0.
	2		1.86705E-0	1 -	-6.18474E-02	-2.33999E-04	и.
							•
				_			
BLOCK	3	N2	N SCATTERI	NG,	ORDER 1		
	GROUP	1					
	POSN		ORDER 1				
	1		9.240846-	11			
	GROUP	2					
	POSN		URDER 1				
	1		И.				
	2		5.72538E-	66			
	GROUP	3					
	POSN	-	ORDER 1				
	1		0				
	د		1 323628-	45			
	z 2		1 1758///-	זג			
	C - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	"	1.17304L-				
	0000	4	00050 4				
	PUSN	-	URDER I				
	1 10	6	И.				
	5		1.28550E-	05			
	4		1.32346E-	02			
	GROUP	5					
	POSN		UPDER 1				
	1 TO	3	а.				
	4		9.61054E-	Ø3			
	5		4.16122E-	SQ			
	•						
	•						
	•						
	GROUP	59					
	POSN		ORDER 1				
	1 TO	47	0.				
	48		2.82463E-	14			
	49		2.79820E-	13			
	50		2.06193E-	13			
DI OCK			. SCATTEDT		600E0 //		
OLUUK			L SCATIERI	NG,	URDER 4		
	GROUP	1					
	PUSN		URDER 1		URDER 2	UPDER 3	ORDER 4
	1	_	3.14430E+	96	2.72630E+M	0 2.58412E+00	5.000556+00
	GROUP	2					
	POSN		ORDER 1		ORDER 2	ORDER 3	ORDER 4
	1		3.70178E+	49	3.072538+0	0 2.66509E+00	5°56838E+40
	2		1.15059L-	ð1	5.76281E-0	2 3.76241E-02	1.79935E-02
	GROUP	3					
	POSN		ORDER 1		ORDER 2	ORDER 3	ORDER 4
	1		4.41807E+	NN	3.53832E+0	0 2.95285E+00	2.47077E+08
	2		5.42962E-	51	1.19268E-0	2 5,55181E-03	2.37336E-03
	3		3.10867E-	<i>2</i> ۵	1.18844E-0	2 5.23447E-03	1.74480E-03
	GROUP	4				- • · -	
	POSN		URDER 1		ORDER 2	ORDER 3	ORDER 4
	1		4.36759F+	หต	3. 06407E+0	0 2.36330F+00	1.94636E+00
	2		1.11169E=	11	3.21374F-0	3 7 48728F-04	2 87909F-03
	7		5.727416-	42	2 207738-0	3 3 245401-04	2 107395-05
	ر ۱/		2 050/116-	120) J. 24 J. 4 ML - 04	
	4 900 00	F	6.0737416=	UC	U.	*'•	U ę
	DADOR	2			00010 3	00050 7	0000
	PUSN					URUER 5	URDER 4
	1		4.010442+	00	2.14040E+0	0 1.47980E+00	1.220252+00
	2		5.42155E-	10	-8.16571E-0	4 =1.96979E-03	1.96628E-03
	3		2.70369E-	01	3.26128F-0	5 4.64688E-06	-9.50340E-08
	4		1.49046E-	01	5.45655E-0	5 8.37585E-06	-4,21996E-07
	5		9.28169E-	42	Ø.	0.	v.
	•						
	ī						

- Gł	RUDA	50				
F	205 N		ORDER 1	080E8 2	OPDER 3	ORDER 4
	1		8.70955E+00	2.41996F-02	3.10122E-05	ý.
	5		1.86705E-01	-6.18474F-02	-2.339998-14	¥.
3	τu	59	ρ.	К.	۵.	vi.
	27		6.94075E-09	-1.04128E-09	-2.62626E-10	-1. 48308E-14
28	TO	34	а.	Ø.	A .	и.
	35		7.85542E-11	-2.73003E-11	-7.79106E-12	3.241108-12
	36		2.26264E-11	-8.38594F-12	-2.016978-12	1.246612-12
37	ΤU	38	<i>v</i> .	ø.	и.	к. "
	39		3.42355E-11	-1.43332E-11	-2.08775E-12	2.77496E-12
	40		3.1J699E-11	-1.29471E-11	-2.09208E-12	5.1090NE-15
	41		1.228688-11	-5.29022F-12	-7.23542E-13	1.18205E-12
	42		4.35832E-12	-1.94541E-12	-1.807576-13	4.142716-13
	43		4.73237E-11	-2.10974E-11	-2.22508E-12	4.87287E-12
	44		1_46775E-11	-6.42997E-12	-6.46591E-13	1.54443E-12
	45		2.87846E-12	-6.531A3E-13	-9.87508E-15	1.342208-13
	46		5.41201E-12	-5.09550E-15	7.06614E-13	4.60451E-14
	47		2.13792E-12	Ø.	() <u>.</u>	×.
	48		4.17460E-12	-1.538208-12	5.48818E-13	1.49964E-14
	49		1.13643E-12	۴.	л.	Ø.
	50		4.92147E-13	ð.	а_	V.

LIB-IV BRKOXS LISTING

BINX ... CONVERT MODE OF CCCC FILE

MODE=1 (1 MEANS BIN TO BCD, 2 MEANS BCD TO BIN) TYPE=2 (1 MEANS ISOTXS, 2 MEANS BRKOXS, 3 MEANS DLAYXS) IRD= 1 1 -0 -0 -0 -0 -0 -0 -0 -0

*** FILEBRKOXS -- VERSION 1 -- UNIT 3*** **USER IDENTIFICATION**[?LASL MINX

FILE CONTROL PARAMETERS

NGROUP	NUMBER OF ENERGY GROUPS IN SET	511
NISOSH	NUMBER OF ISOTOPES WITH SELF-	
	SHIELDING FACTORS	101
NSIGPT	TOTAL NUMBER OF VALUES OF VARIABLE X	
	WHICH ARE GIVEN. NSIGPT IS EQUAL FO	
	THE SUM FROM 1 TO NISOSH OF NIABP(1)	597
NTEMPT	TOTAL NUMBER OF VALUES OF VARIABLE TB	•
	WHICH ARE GIVEN. NTEMPT IS EQUAL FO	
	THE SUM FROM 1 TO NISOSH OF NTART(I)	303

ISOTOPE	NAME
1	H1
2	H5
3	H 3
4	HE 3
5	HE4

.

-

.

LN(SIGPO)/LN(10) VALUES FOR ALL ISOTOPES

ISOTOPE	1ST VALUE	2ND VALUE			
1	3.00000E+00	2.00000E+00	1.00000E+00	а.	-1.0000020+00
2	3.00000E+00	2. 90000E+00	1.00000E+00	Й.	-1.00000F+00
3	3.07070E+00	5.00000E+00	1.00000E+00	Ű.	-1.00000E+00
4	4. 10000E+00	3.00000E+00	2.00000F+00	1.00000000000	0.
5	4. 00000E+00	3.00000E+00	2.000000000	1. UNUNNE+NO	Ø.
ē			-		
•					

97	4.00000E+00	3.0000000+00	2.00000E+00	1.00000E+00	0.
98	4.00000E+00	3.00000E+00	2.00000E+00	1.00000E+00	0
99	4.00000E+00	3.00000E+00	2.0000000000	1.0000000000	0.
100	4.00000E+00	3.00000E+00	5.00000E+00	1.00000E+00	0.
101	4.09090E+90	3.00000E+00	2,00000E+00	1.00000E+00	0.
TEMPERATU	RES (DEG C) FOR	ALL ISOTOPES			
ISOTOPE	1ST VALUE	2ND VALUE			
1	2.68400E+01	6.26840E+02	1.82684E+03		
2	2,68400E+01	6.26840E+02	1.82684E+03		
3	2.68400E+01	6.2684ØE+02	1.82684E+03		
4	2.6840NE+01	6.268401+02	1.82684E+03		
5	2.68400E+01	6.26840E+02	1.82684E+03		
•			-		
•					
•					
97	2.68400E+01	6.26840E+02	1.82684E+03		
98	2,68400E+01	6,26840E+02	1.82684E+03		
99	2.68400E+01	6.26840E+02	1.82684E+03		
140	2.68400E+01	6.268406+02	1.82684E+03		
191	2,68400E+01	6.26840E+02	1,82684E+03		

GROUP STRUCTURE

GROUP	TOP ENERGY
1	1.997116+07
5	1.00000E+07
3	6.06531E+06
4	3,67879E+06
5	2.23130E+96
•	
:	

F-FACTOR START END GROUPS AND NUMBER OF SIGPO TEMP VALUES

ISOTOPE	JBEH	JBFL	NTABP	NTABT
1	1	50	6	3
2	1	50	6	3
3	1	50	6	3
4	1	50	6	3
5	1	50	6	3
•				
•				
•				
97	1	50	6	3
98	2	50	6	3
99	1	50	6	3
100	1	50	6	3
101	1	50	6	3
٠				

• (Skip to Pu-239)

•

TOTAL	SELF-SHIEL	DING FAC	TURS		IS01	'OPE 86	
	GRÜUP	1					
	SIGU	TEMP	1	TEMP	2	TEMP	3
	1	1.000008	+09	1.00000F	+00	1.00000	F+0M
	2	9.999996	- o 1	9.99999E	-01	9,99999	E = 101
	3	9.99987E	-01	9.999878	-1/1	9.99987	F. = 🔊 1
	4	9.99915	-01	9,999158	-01	9.99915	Е-и1
	5	9.998078	-21	9.99807E	-21	9.99847	E-01
	:						

GKOUP	38		
SIGO	TEMP 1	TEMP 2	TEMP 3
1	9. BU620E-01	9.89868E-01	9.97461E-@1
2	8.60546E-01	9.05490F=01	9.37927E-01
5	5.795525-01	6.499/0E=01	7.19002E=01
4	3 820//05-01	4.020035-01	7. 70/7//=01
0.80 10.80	20	₩ ● [+] +] ⊂ [] [4.10414L-01
SIGU	TEMP 1	TEMP 2	TEMP 3
1	9.65823E-01	9.83015E-01	9.93999E-01
5	7.737208-01	8.38828F-01	8.882988-01
3	4.87762E-01	5.41770E-01	6.03890E-01
4	3.54472E-01	3.75256E-01	4.08110E-01
5	3.23443E-01	3.37560Е-01	3.62546E-01
GRUUP SICO			
3100	9.240945-31	9 #6433F=01	9 622M9F=01
2	6.50109E-01	7.30588E-01	7.49208E-01
τ τ	3.99280F-01	4.13906F-01	4.36605F-01
4	2.957451-01	3.000346-01	3.08607E-01
5	2.73460E-01	2.76222E-01	2.82237E-01
•		-	
:			
CADTHUE SELE-			
GROUP	SHIELDING FACIU	K2	ISUTOPE 86
SIGU			
1	9.99997E-01	9,99995E=31	9,99992F=01
2	9.99999E-01	9.99997E-01	9.99993E-01
3	1.00001E+00	1.000010+00	1.00001E+00
4	1.00010E+00	1.00009E+00	1.000696+00
5	1.00023E+00	1.000556+00	1.00022E+00
•			
•			
•			
GRUUP	38 TEND 1	1500 3	
5160	9 868/185-61	0 07318F=01	0 973085-01
2	9.02799E=01	9.40493F=01	9.63247E=01
3	6.26682E-01	7.26080E-01	8.02844E-01
4	3.90496E-01	4.92944E-01	5.95464E-01
5	3.33294E-01	4.28300E-01	5.31542E-01
GROUP	39		
SIGO	TEMP 1	JEMP 2	TEMP 3
1	9.1/642E=01	9.90209E=01	9.9/23/E=01
<u>د</u>	4 70206F-01	5 62287F=01	6 46628F=01
4	2.723548-01	3.34868F=01	4.07859E=01
5	2.30520E-01	2.82211E-01	3.47296E-01
GROUP	40		-
S1G 0	TEMP 1	TEMP 2	TEMP 3
1	9.47423E-01	9.63917E-01	9.74441E-01
2	6.97018E-01	7,62031E-01	8,12995E-01
5	3.49202E=01 3.1403EE=01	4.01450E=01	4.08228E-01 0.845215-01
4	1.92476F=01	2.15973E=01	2.47138F=01
•	1.724/02-01		C • 41 I JUL - 01
•			
FISSIDN SELF-	SHIELDING FACTO	DRS	ISOTOPE 86
GROUP	1		TEMP. 7
SIGO		1 000000E100	1 000005100
1	1.00000E+00	1.000000F-00	9.99998F=M
د ۲	9.99984E=01	9,99984F=01	9,99984E=01
4	9.99895E-01	9.99895E-01	9,99895E-01
5	9.99761E-01	9.99761E=01	9.99761E-01
•			
-			

- -

GROUP	38		
SIGO	TEMP 1	TEMP 2	ТЕМР 3
1	9.90818E-01	9,95090E-01	9.98568E-01
3	7.00487E-01	7.57435E-01	9,05114E=01 8,09246F=01
4	4,98194E-01	5.58602E-01	6.25742E-01
5	4.43986E-01	5.02317E-01	5,71029E-01
SIGO	TEMP 1	TEMP 2	TEMP 3
1	9.92413E-01	1.00120E+00	1,00700E+00
5	8.99956E=01	9.35704E-01	9.61282E-01
5 4	6./0508E-01 // 83907E-01	7.28228F-01 5.2908WF-01	7.85334E-01
5	4.31637E-01	4.70627E-01	5.23424E-01
GROUP	40		
SIGO	TEMP 1	TEMP 2	TEMP 3
2	8.00222E-01	8.33163E-01	8.62668E=01
3	5.58877E-01	5.79430E-01	6.06608E-01
4	4.21033E-01	4.31785E-01	4.49489E-01
•	5.886032-01	5.9/551E-01	4.13043E-01
:			
TRANSPORT SELF	-SHIELDING FAC	rurs	ISOTOPE 86
GROUP	1		TEM0 7
SIGG		TEMP 2	1.00000F+00
	9,99998E-01	9,99998E-01	9.99998E-01
3	9.99978E-01	9.99978E-01	9.99978E-01
4	9.99853E-01	9,99853E=91	9.99855E-01 9.99664E-01
•	9.996642-01	4.44004L-01	
•			
•			
GROUP	38		
SIGO	TEMP 1	TEMP ?	TEMP 3
1	9.80609E-01	9.89860E-01	9.97456E-01
2	8.60473E-01 5.79140E-01	9.05438E-01	9.37892E-01 7.18854E-01
4	4.17180E-01	4.62411E-01	5.21243E-01
5	3-82638E-01	4.19303E-01	4.70202E-01
SIGO	39 TEMP 1		
1	9.65807E-01	9.83007E-01	9,93995E-01
2	7.736198-01	8.38754E-01	8.88245E-01
3	4.875528-01	5.41576E-01	6.03716E-01
5	3.23171E-01	3. 37285E=01	4.07954E=01 3.62272E=01
GROUP	40		
SIGU	TEMP 1	TEMP 2	TEMP 3
1	9.24071E-01	9.46317E-01	9.62197E-01
۲ ۲	5.99139F-01	4 13762F=01	4.36460F=01
4	2.95583E-01	2.99869E-01	3.08439E-01
5	2.73293E-01	2.76052E-01	2.82064E-01
			0.7075 01
ELASTIC SELF-S	HIELDING FACTO	KS I	SULUPE 80
SIGO	TEMP 1	TEMP 2	TEMP 3
1	1.00000E+00	1.00000E+00	1.000002+00
2	1.00000E+00	1.00000F+00	1.00000E+00
э 4	9.99988E=01	9.99988E=01	9.99988E=01
5	9.99973E-01	9.99973E-01	9.99973E-01
•			

GROUP	38		
\$160	TEMP 1	TEMP 2	TEMP 3
1	9.928806-01	9.98523E-01	1.002846+00
2	9.38063E-01	9.60688E-01	9.76121Е-01
3	8.06635E-01	8.43174F-01	8.75359E-01
4	7.25028E-01	7.53948E-01	7.84325E-01
5	7.06347E-J1	7.32668E-01	7.61276E-01
GROUP	39		
SIGU	TEMP 1	TEMP 2	ТЕМР З
1	9.85274E-01	9.93040E-01	9.98943E-01
2	8.97079E-01	9.29181E-01	9.52908E-01
3	7.44828E-01	7.79962E-01	8.16149E-01
4	6.72602E-01	6.93847E-01	7.20367E-01
5	6.56345E-01	6.74234E-01	6.97763E-01
GROUP	49		
SIGO	TEMP 1	TEMP 2	TEMP 3
1	9.71724E-@1	9.80711E-01	9.87112E-01
2	8.44862E-01	8.76224E-01	9.02487E-01
3	6.86481E-01	7.07400E-01	7.31925E-01
4	6.260716-01	6.36671E-01	6.510448-01
5	6.13621E-01	6.22534E-01	6.35005E-01
•			

٠

•

CROSS SECTIONS

GROUP	XSPU	XSIN	XSE	XSMU	XSFU
1	4.12950E-02	1.91050F-01	3.14199E+00	8.656438-01	2.73034E-02
2	2.56521E-01	7.097285-01	3.71598E+00	8.276516-01	2.500258-02
3	4.00817F-01	1.64881E+00	4.43677E+00	7.98105E-01	2.53016E-02
4	7.05782E-02	1.63394E+00	4.27710E+00	7.16033E-01	2.56240E-02
5	4.52797E-01	1.44338E+00	5.78170E+00	5.78139E-01	2.88507E-02
•					
•					
•					
46	1.02000E+01	a.	8.88286E+00	2.81338E=03	1.555968-01
47	1.02000E+01	a _	9.49873F+00	2.81338E-03	1.63643E=01
48	1.02000E+01	Ø.	9 . 96734E+00	2.81338E-03	1.72303E-01
49	1.02000F+01	0.	1.06288E+01	2.81338E-03	1.86705E-01
50	1,02090E+01	0 .	8.70955E+00	2.81338E-ИЗ	7.52226F-09

LIB-IV DLAYXS LISTING

BINX...CONVERT MODE OF CCCC FILE

MODE=1(1 MEANS BIN TO BCD, 2 MEANS BCD TO BIN)TYPE=3(1 MEANS ISUTXS, 2 MEANS BRKOXS, 3 MEANS DLAYXS)IRD=1111-0-0-0-0OFLAYED NEUTRON PRECURSOR DATA DLAYXSUSER IDENTIFICATION T2LASLNJOYFILE VERSIDN NUMBER1

FILE CONTROL PARAMETERS

7
42
42

FAMILY NUMBER OF K-TH YIELD VECTOR

1	TH232
2	U233
3	11235
4	11238
5	PU239
6	PU240
7	PU241

DELAYED NEUTRON	PRECURSOR DE	CAY CONSTANT I	FOR FAMILY N			
FAMILY	N 137705-01					
2	.12370E-01					
3	.12100E+00					
4	32100E+00					
5	12100E+01					
6	.32900E+01					
7	.12580E-01					
8	.33420E-01					
9	.13100E+00					
•						
39	.12400F+00					
40	.35200E+00					
41	.16100E+01					
42	.34700E+01					
FRACTION OF DEL	AVED NEUTRONS	EMITTED INTO	NEUTRON ENER	GY GROUP FROM	PRECURSOR FA	MILY
GROUP	FAMTLY 1	FAMTLY 2	FAMTLY 3	FAMTLY 4	FAMILY 5	FAMILY 6
1 10 5	Ø.	0.	Ø.	И.	0	Ø.
6	4.28756E-04	3.75347F-02	5.96411E-03	1.548098-02	5.970218-03	1 492558-03
7	1.01041E-03	4.92969E-02	1.82556E-02	5.19319E-02	2.00276E-02	5.00689E-03
8	1.39243E-03	3.45842E-02	1.52397E-02	3,726578-02	1.437156-02	3,59288E-03
9	1.67277E-03	1.88974E-02	1.56667E-02	4.73665E-02	1.82669E-02	4.56673F-03
10	3.84730E-03	2.59834E-03	1.25841E-02	5.38701E-02	2.07750E-02	5.193765-03
•						
•						
GROUP	FAMILY 37	FAMTLY 38	FAMILY 30	EAMTLY 210	FAMTLY //1	
1 TO 5	Й.	Ø.	0.	(A) 127 48	0	AMILY 42
6	3.99911E-04	6.26830E-02	6.69352F-03	1.22245E=02	5 704776-13	5 01510F-01
7	8.99575E-04	8.63286E-02	1.36861E-02	3.03586E-02	1.69673E-02	1.49163F=03
8	5.93667E-04	4.15176E-02	1.78613E-02	1.71662E-02	8.01090F-03	7.04255F-04
9	5.14483E-04	2.00511E-02	1.710858-02	5,01153E-02	2.338716-02	2.05601F-03
10	6.71926E-04	1.25352E-03	1.72034E-02	5.37707E-02	2.509308-02	2.20598E-05
MAXIMUM ENERGY GROUP 1 1.94 2 1.00 3 6.00 4 3.67	BOUND J 9711E+07 7000E+07 5531E+06 7879E+06					
•						
	THE TO HUTCH		NATORS CONTUIN	NITES DELAVED		10 5 0 0 5
NUMBER OF FAMIL	LIPS TO WHILE	FIASION IN IS	SUIDE CONNET	DUIES DELATED	NEUTRON PRELL	Mauro
ISOTOP/NUMBER	1					
1	6					
2	6					
3	6					
4	6					
5	ћ 4					
7	6					
,						
NUMBER OF RECOM	RDS TO BE SKIP	PED TO READ I	ATA FOR ISOT	340		
ISOTOP/NUMBER	1					
1	a					
2	1					
>	2					
4	4					
6	5					
7	6					

• (Skip to Pu-239)

NUMBER	UF DELAY	ED NEUTRON PR	FCURSURS PRUD	UCED IN FAMIL	Y PER FISSION	IN GROUP	
	GRUUP	FAMILY 1	FAMILY 2	FAMILY 3	FAMILY 4	FAMILY 5	FAMTLY 6
	1	1.63400E-04	1.20400E-03	9.28800E-04	1.410408-03	4.42900E-04	1.505000-04
	2	1.69504E-04	1.24898E-03	9.63496E-04	1.46309E-03	4.59446E-04	1.561228-04
	3	2.28205E-04	1.68151E-03	1.29717E-03	1.96978Е-ИЗ	6.18557E-04	2.10189E-04
	4	2.45100E-04	1.80600E-03	1.39320E-03	2.1150HE-H3	6.643511-04	2.25750E-04
	5	2.45100E-04	1.846048-03	1.393201-03	2.11500E-03	0.64351E-04	2.25750E-04
	•						
	•						
	•						
	46	2.45100E-34	1.8060 <i>4</i> E-03	1.39320E-03	2.11500E-03	6.64351E-04	2.25750E-04
	47	2.45100E-04	1.80600F-03	1.39320E-03	2.11500E-03	0.64351E-04	2.25754E-04
	48	2.45109E-04	1.82600E-93	1.39320F-03	2.11500E-03	6.64351E=0/	2 25754F-04
	49	2.45100E-04	1.80600E-05	1.39320F-03	2.11560E=03	6 643515-00	2 257505-11/1
	50	2.45100E-04	1.80600E-03	1.39320E-03	2.11560E-03	6.64351E=04	2.257508-04

FAMILY NUMBER OF K-TH YIELD VECTOR

FAMILY/VECTOR 1 2 3 5 6 25 26 27 28 29 30 1

APPENDIX B

OPERATING INSTRUCTIONS FOR THE UTILITY CODES LINX, BINX, AND CINX

The CCCC utility codes used to manipulate LIB-IV are described more completely elsewhere.^{9,10} However, for convenience, the operating instructions for these codes have been included in this report as Tables B-I, B-II, and B-III.

TABLE B-I

LINX OPERATION INFORMATION

Input/Output Units

- 3 -- primary binary input file.^a
- 4 -- secondary binary input file.
- 8 -- final binary output file.
- 6 -- listing of messages and diagnostics.

User's Input

None

^aISOTXS or BRKOXS only.

The versions of LINX, BINX, and CINX included on the LIB-IV transmittal tape are for the LASL CDC 7600. They can be easily converted to a short-word machine such as an IBM 360 by following the instructions found on the "C IBM comment" cards which will be found in the codes.

TABLE B-II

BINX OPERATING INFORMATION

Input/Output Units

3 -- input binary (BCD) unit.^a 8 -- output BCD (binary) unit.

- 5 -- system input for user's input.
- 6 -- system output for listing and diagnostics.

User's Input-

One card (1215):MODE,NTYPE,IRD(I≤10)

MODE = 1 means binary input and BCD output. MODE = 2 means BCD input and binary output. NTYPE = 1 means ISOTXS. NTYPE = 2 means BRKOXS. NTYPE = 3 means DLAYXS. IRD(I) = 1 means print the Ith record type.

^bUser identification, version, and library identifier are taken from the primary input file.

^aISOTXS, BRKOXS, or DLAYXS only.

TABLE B-III

CINX OPERATING INFORMATION

Input Files

3,4,12 -- Fine-group binary CCCC-III ISOTXS, BRKOXS, and DLAYXS files, respectively.

Output Files

8,9,13 -- Coarse-group binary CCCC-III ISOTXS, BRKOXS, and DLAYXS files, respectively.

10 -- Coarse-group 1DX binary format.

System Files

5 -- Data cards.
6 -- Computer printout.
PUN -- PERT-V output on cards.

Data Cards:

- 1. Run Options Input Card (Format 516).
 - MF Major functions (0/1/2 = collapse/1DX/both).
 - NCG Number of coarse groups (omit if MF = 1).
 - ICF Collapsing flux (0/1 thermal-Fermi-Watt/input)
 (omit if MF = 1).
 - NDT Number of downscattering terms (including ingroup) (omit if MF = 0).
 - NPF Neutron precursor file (0/1 = No/Yes) (- for PERT-V data).
- Number of Fine Groups per each Coarse Group (Format 1216) (omit if MF = 1).
- 3. Parameters for ICF = 0 Option (Format 4E12.5) (omit if MF = 1 or ICF \neq 0).
 - TE Nuclear temperature (eV) for thermal spectrum region (0.025 used for LIB-IV).
 - EB Upper limit (eV) for thermal region (0.1 used for LIB-IV).
 - TC Nuclear temperature (eV) for WATT spectrum region $(1.4 \times 10^6 \text{ used for LIB-IV}).$
 - EC Lower limit (eV) for WATT region (0.8208 \times 10⁶ used for LIB-IV).
- 4. Input Flux (Format 6E12.5) (omit if MF = 1 or ICF = 0).

REFERENCES

- D. Garber, Ed., "Data Formats and Procedures for the ENDF Neutron Cross Section Library," Brookhaven National Laboratory report BNL 50274 (1976).
- C. R. Weisbin, P. D. Soran, R. E. Mac-Farlane, D. R. Harris, R. J. LaBuare, J. S. Hendricks, J. E. White, and R. B. Kidman, "MINX: A Multigroup Interpretation of Nuclear X-Sections from ENDF/B," Los Alamos Scientific Laboratory report (in preparation).
- B. M. Carmichael, D. A. Meneley, and D. R. Vondy, "Report of the Subcommittee on Standard Interface Files," Los Alamos Scientific Laboratory report LA-5324-MS (1973).

- 4. B. M. Carmichael, "Standard Interface Files and Procedures for Reactor Physics Codes, Version III," Los Alamos Scientific Laboratory report LA-5486-MS (1974).
- R. E. MacFarlane and R. M. Boicourt, "NJOY: A Neutron and Photon Cross Sec- tion Processing System," Trans. Am. Nucl. Soc. <u>22</u>, 720 (1975).
- C. R. Weisbin and R. J. LaBauve, "Specifications of a Generally Useful Multigroup Structure for Neutron Transport," Los Alamos Scientific Laboratory report LA-5277-MS (1973).

- R. W. Hardie and W. W. Little, Jr., "1DX, A One-Dimensional Diffusion Code for Generating Effective Nuclear Cross Sections," Battelle Northwest Laboratory report BNWL-954 (March 1969).
- R. W. Hardie and W. W. Little, Jr., "PERT-V, A Two-Dimensional Perturbation Code for Fast Reactor Analysis," Battelle Northwest Laboratory report BNWL-1162 (September 1969).
- 9. R. E. MacFarlane and R. B. Kidman, "LINX and BINX: CCCC Utility Codes for the MINX Multigroup Processing Code," Los Alamos Scientific Laboratory report LA-6219-MS (1976).
- 10. R. B. Kidman and R. E. MacFarlane, "CINX, Collapsed Interpretation of Nuclear X-Sections," Los Alamos Scientific Laboratory report (in preparation).
- 11. I. I. Bondarenko, Ed., <u>Group Constants</u> for Nuclear Reactor Calculations (Consultants Bureau, New York, 1964).
- 12. R. B. Kidman, R. E. Schenter, R. W. Hardie, and W. W. Little, "The Shielding Factor Method of Generating Multigroup Cross Sections for Fast Reactor Analysis," Nucl. Sci. and Eng. <u>48</u>, 189-201 (1972).
- R. E. MacFarlane and M. Becker, "Self-Shielded Cross Sections for Neutron Transport in Iron," Trans. Am. Nucl. Soc. <u>22</u>, 668 (1975).
- 14. R. E. MacFarlane and M. Becker, "Self-Shielding of Elastic Transfer Matrices," Trans. Am. Nucl. Soc. <u>21</u>, 495 (1975).
- M. F. James, "Energy Released in Fission," J. Nucl. Energy <u>23</u>, 517 (1969).

- 16. N. B. Gove and A. H. Wapstra, <u>The 1971</u> <u>Atomic Mass Evaluation, The Nuclear-</u> <u>Reaction Q-Values</u> (Academic Press, Inc. <u>New York, 1972).</u>
- 17. C. M. Lederer, J. M. Hollander, and J. Perlman, <u>Table of Isotopes</u>, <u>Sixth Edi-</u> <u>tion</u> (John Wiley and Sons, Inc., New York, 1967).
- 18. H. Alter, R. B. Kidman, R. LaBauve, R. Protsik, B. A. Zolatar, "ENDF-202 Cross Section Evaluation Working Group Benchmark Specifications," Brookhaven National Laboratory report BNL-19302 (1974).
- 19. K. D. Lathrop, "DTF-IV, A Fortran-IV Program for Solving the Multigroup Transport Equation with Anisotropic Scattering," Los Alamos Scientific Laboratory report LA-3373 (1965).
- E. M. Bohn, Ed., "Benchmark Testing of ENDF/B-IV," Brookhaven National Laboratory report ENDF-203 (February 1976).
- 21. R. E. Schenter, J. F. Baker, and R. B. Kidman, "ETOX, A Code to Calculate Group Constants for Nuclear Reactor Calculations," Battelle Northwest Laboratory report BNWL-1002 (May 1969).
- 22. R. B. Kidman, "A Comparison of Two Fast Reactor Cross Section Processing Codes," Hanford Engineering Development Laboratory report HEDL-TME-72-57 (February 1972).
- 23. W. W. Little, R. W. Hardie, R. E. Schenter, E. M. Pennington, B. A. Hutchins, and L. N. Price, "Numerical Comparison of Data Processing Codes for Fast Reactors," Trans. Am. Nucl. Soc. <u>12</u>, 144 (1969).

* US GOVERNMENT PRINTING OFFICE: 1976-677-343/102