

UNITED STATES ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION CONTRACT W-7405-ENG. 36

Printed in the United States of America. Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161 Price: Printed Copy \$5.50 Microfiche \$2.25

This repost was prepared on on occount of work sponsored by the United Nieters Government. Neither the United Nisters nor the United Nieters energy: Research and Development Admittabilita Nieters energy: Research and Development Admittabilitation, no any of their employees, no energy of their comtractors, underentsectors, or their employees, makes any vectors, underentsectors, or their employees, makes any responsibility for the accuracy, completeness, or usefulness of expansibility for the accuracy, completeness, or usefulness of representations and the accuracy of the sector of the sector representation of the sector of the sector of the sector representation of the sector of the sector of the sector representation of the sector of the sector of the sector representation of the sector of the sector of the sector of the representation of the sector of the sector of the sector of the sector representation of the sector o

TWO-DIMENSIONAL HOMOGENEOUS AND HETEROGENEOUS

DETONATION WAVE PROPAGATION

by

Charles L. Mader and Charles A. Forest

ABSTRACT

The process of detonation propagation of homogeneous explosives along surfaces may be described using resolved reaction zones, Arrhenius rate laws, and two-dimensional reactive hydrodynamic calculations. The wave curvature increases with increasing reaction zone thickness.

The process of detonation propagation and failure of heterogeneous explosives along surfaces and around corners may be described if the decomposition that occurs by shock interactions with density discontinuities is described by a burn rate determined from the experimentally measured distance of run to detonation as a function of shock pressure, the reactive and nonreactive Hugoniot, and the assumption that the reaction rate derived near the front can be applied throughout the flow.

I. INTRODUCTION

The time-dependent behavior of detonations with resolved reaction zones in condensed homogeneous explosives has been described^{1,2} using an Arrhenius rate law. In Ref. 1, a nitromethane detonation failure, resulting from a side rare-faction cooling the explosive inside its reaction zone, was calculated and the experimentally observed rarefaction velocity was numerically reproduced. Here we extend the study to nitromethane detonations proceeding perpendicular to various metal surfaces and examine wave curvature and failure as a function of reaction zone thickness.

Experimental observations³ of detonation waves in heterogeneous explosives proceeding perpendicular to metal plates showed very little wave curvature after a large plane-wave-initiated cylindrical explosive charge had run several charge diameters. An empirical model with an unresolved explosive reaction zone and programmed to maintain a constant velocity, plane detonation front reproduced the experimental observations. Because the basic mechanism of heterogeneous shock initiation is shock interaction at density discontinuities producing local hot spots that decompose and add their energy to the flow, models such as the heterogeneous sharp shock partial reaction burn model⁴ have been developed to model the flow. These models, however, could not be used to solve two-dimensional reactive flows because they did not respond realistically to local state variables. For this study we used a new model, Forest Fire, to describe the hot spot reaction rate in the bulk of the heterogeneous explosive to detonations proceeding perpendicular to metal plates, to detonations turning corners, and to detonations proceeding along free surfaces for shock sensitive and insensitive explosives.

II. HOMOGENEOUS DETONATIONS

Reference 1 shows that the nitromethane reaction zone is ~2500 Å long and that it is probably pulsating about the steady-state values if the usual activation energies (E) and frequency factors (Z) are appropriate. It is impossible to make calculations with such small reaction zones being resolved for systems that are the size usually studied experimentally. We can study the effect the size of the reaction zone has on the flow by increasing the frequency factor to scale up the size of the reaction zone. We can also eliminate the pulsating nature of the reaction zone by using an activation energy that results in a steady, nonpulsating flow. As shown in Ref. 1, 30-kcal/mole activation energy results in steady flow, and by varying the frequency factor, we can have reaction zones of various thicknesses. However, because such scaling results in unrealistically large reaction zones, care is required when extrapolating the calculated results to real experiments.

Experimental measurements³ of the detonation wave arrival of nitromethane across the surface of a charge have shown that there is remarkably little curvature even after the wave has run many charge diameters in a large plane-waveinitiated cylindrical charge. In our first study we investigated how a resolved reaction zone in nitromethane proceeds perpendicular to a copper surface. Figure 1 shows that the larger reaction zone resulted in an increased wave curvature. We performed the calculations using the 2DL reactive hydrodynamic code⁵ with a 0.01-cm-square mesh. The equation-of-state parameters used for nitromethane are described in Ref. 6, and those used for copper aluminum and Plexiglas are described in Ref. 7. The detonation wave was started using the same steady-state piston described in Ref. 5. The absolute pressure value is plotted in each figure. The slight discontinuity at the nitromethane-copper interface is from the different amounts of artificial viscosity in the two materials.

Because the detonation wave curvature decreases with decreasing reaction zone thickness, it is not surprising that nitromethane, with its very thin reaction zone, shows very little wave curvature. The reason for this result appears to be that although the head of the rarefaction goes into the reaction zone at the same speed regardless of the reaction zone thickness, the wave curvature depends on how much the confining surface or wall moves out during passage of the reaction zone. Because lower density walls permit more outward motion than higher density walls, the lower density walls result in more curved fronts. Shortening the reaction zone keeps the wall from moving outward as much during transit, which results in less shock curvature. The problem's two critical parameters are the rarefaction speed and the reaction zone length.

Figure 2 shows that the increased divergence resulting from cylindrical geometry permits the outward moving surface to be more effective in increasing the wave curvature. The effect of changing the density of the confining wall is shown in Fig. 3, where the detonation wave proceeds along a copper and then an aluminum wall. Compared with the copper wall in Fig. 1, the curvature increases and the reaction zone becomes thicker as the reaction proceeds along the aluminum wall. These results qualitatively agree with the experimental observations.

Campbell, Malin, and Holland⁸ observed that thin metal foils were as effective as thick cylinders of the same metal at confining the nitromethane detonation wave. In Fig. 4 the thickness of the confining copper wall is decreased, but the shock front and reaction zone profile is the same as in Fig. 1. Other calculations showed that the reaction zone must be thick enough for the rarefaction from the outer copper surface to return to the nitromethane-copper interface before passage of the reaction zone for the reaction zone and wave curvature to be affected by the thickness of the confining metal.

The effect of small grooves in confining brass plates upon the nitromethane detonation wave was studied by P. A. Persson and coworkers.⁹ Two of their smear camera traces are shown in Fig. 5. They observed that the depth of the hole determines whether the failure wave arrives at the center of the explosive and that the width of the hole determines the width of the failure wave. Although the actual scale of the experiment and of the reaction zone are too different to be described in one numerical experiment with resolved reaction zones, we can study the main features of the flow. Figure 6 shows that the arrival of the reaction zone at the hole results in a thickening and cooling of the reaction zone until the shock reflects off the top surface of the groove, which results in additional reaction. The reaction zone then proceeds slowly to catch up with the shock front. A greater groove width results in reflected pressures and temperatures being lower, whereas greater groove height results in a thicker reaction zone. As described in Ref. 10, the experimental light is the thermal radiation from the hot explosive. Only near the end of the reaction zone is the material hot enough to produce enough recordable light. The emitted light is absorbed in the partially reacted explosive ahead of it. When the reaction zone is thick enough, no light is recorded. The discontinuity in the light intensity corresponds to a sharp change in the distance from the shock front to the region hot enough to produce recordable light. This complicated behavior makes it difficult to compare the smear camera traces with the calculated results; however, the qualitative features of the flow are apparently well described by the numerical model.

In another interesting experiment, Davis¹¹ studied the propagation of a nitromethane detonation into an expanding geometry. His smear camera traces (Fig. 7) show a nitromethane detonation proceeding between copper walls initially 1.27 cm apart and funneling out at 15 to 10°. It is surprising that the small angles can result in failure of the detonation wave to propagate. Calculated profiles for the 10° copper funnel are shown in Fig. 8, where the reaction zone thickens and a failure wave, observed experimentally, forms in the calculation. The Arrhenius kinetic model gives a qualitative description of the process of a homogeneous detonation propagating along surfaces. However, it is not possible to give a quantitative description of failure diameter and wave curvature because the reaction zone and experimental scale are not realistically modeled in the numerical calculation.

The detonation wave curvature increases with increasing reaction zone thickness. A thin metal cylinder may prevent detonation failure if the reaction zone is thin enough for the rarefaction from the outside metal surface to arrive in the detonation products after passage of the reaction zone. The observed failure and reignition of nitromethane detonation by holes in confining surfaces can be reproduced qualitatively by the Arrhenius kinetic model.

III. HETEROGENEOUS DETONATIONS

Heterogeneous explosives, such as PBX 9404 or Composition B, show a different behavior than homogeneous explosives when propagating along confining surfaces. A heterogeneous explosive can turn sharp corners and propagate outward, and depending upon its sensitivity, it may show either very little or much curvature when propagating along a metal surface. The mechanism of initiation for heterogeneous explosives is different than the Arrhenius kinetic model found adequate for homogeneous explosives. Heterogeneous explosives are initiated and may propagate by the process of shock interaction with density discontinuities such as voids. These interactions result in hot regions that decompose and give increasing pressures that cause more and hotter decomposing regions. Some heterogeneous explosives may require hot spots even for the propagation of the detonation wave.

Because previous modeling of heterogeneous shock initiation of explosives has proved useful only for certain applications,⁴ we developed Forest Fire to model the bulk decomposition of a heterogeneous explosive. Forest Fire, described in Appendix A, may be used to reproduce the explosive behavior in many one- and two-dimensional situations where data are available. Forest Fire gives the rate of explosive decomposition as a function of local pressure, or any other state variable, in the explosive. In this section we describe the results of applying the Forest Fire description of heterogeneous explosive detonation propagation to detonation propagation along surfaces and around corners.

We used the Los Alamos Scientific Laboratory (LASL) radiographic facility, PHERMEX,¹² to study detonation wave profiles in heterogeneous explosives as they proceed up metal surfaces.^{3,12} PHERMEX was also used to study the profiles when a detonation wave in Composition B or X-0219 turns a corner.^{13,14}

As described in Ref. 3, a radiographic study was made of a 10.16-cm cube of Composition B, with and without tantalum foils, initiated by a plane wave lens confined by 2.54-cm-thick aluminum plates. The radiographs show a remarkably flat detonation front followed by a large decrease in density originating near the front of the wave as it intersects the metal plate.

A numerical calculation using Arrhenius kinetics results in considerable curvature of the detonating wave if realistic kinetic parameters are used. The Forest Fire model of heterogeneous shock initiation results in a calculated flow that resembles that observed experimentally (Fig. 9). This result suggests that the observed detonation behavior is a consequence of the heterogeneous shock initiation processes. Therefore, the more insensitive explosives should give greater wave curvature and have larger failure diameters. Explosives initiated and burned with a heterogeneous shock initiation model, such as Forest Fire, do not show scaling behavior; therefore, failure depends upon the pressure magnitude and how long it can be maintained. The Forest Fire model results agree with experimental observations for many explosives.

Venable¹³ performed a radiographic study of a Baratol plane-wave-initiated Composition B slab detonation proceeding perpendicular to an aluminum block and up a 45° wedge (Fig. 10) and around a 90° block (Fig. 11). Calculations using the Forest Fire model reproduced the radiographic features shown in Figs. 12 and 13. However, this was not a very significant test of the Forest Fire model because the Chapman-Jouguet (C-J) volume burn technique¹⁵ or programmed burn technique of burning explosives¹⁶ can give similar profiles to those observed experimentally. An Arrhenius burn with a resolved reaction zone will not give detonation wave behavior such as observed experimentally.

Dick¹⁴ performed a radiographic study of a detonation wave proceeding up a block of a very insensitive TATB-based explosive, X-0219, and its failure to propagate completely around a corner. Dick's experimental profiles and the calculated profiles using the Forest Fire model are shown in Fig. 14. The agreement shown is encouraging. However, the amount of explosive that remains undecomposed after passage of the shock wave depends primarily upon the curvature of the detonation wave before it turns the corner. If the wave is sufficiently curved, the detonation proceeds like a diverging detonation wave and little or no explosive remains undecomposed. If the wave is flat, or nearly so, when it arrives at the corner, then much more partially decomposed explosive will remain after shock passage. Because the actual experiment was performed with air in the corner, the Lagrangian calculation that required some low-density material in the corner (we used Plexiglas) underestimates the amount of explosive that remains undecomposed. An aluminum corner results in very little undecomposed explosive, and a lower density material slightly increases the amount of undecomposed explosive.

To study this system in a more realistic geometry, we used the Eulerian code 2DE¹⁷ because it can handle large distortion problems such as an explosiveair interface. The calculated results using the Forest Fire burn are shown in Fig. 15. Again, the results depend upon the detonation wave profile before it reaches the corner. An interesting aspect of the calculational study was that if the wave was started out flat, the explosive region near the explosive-air interface remained partially decomposed and the detonation wave never completely burned across the front until the wave became sufficiently curved at the front and near the interface. The failure process of a heterogeneous explosive must be a complicated interaction of the effective reaction zone thickness (presumably dependent upon the void and resulting hot spot size and decomposition rate), which determines how flat the wave should be and the curvature required for decomposition to occur near the surface of the charge. Because details of the hot spot reaction zone are missing from our calculation and model, much work remains to be done before realistic calculations of failure radius can be achieved.

Tanaka and Hikita¹⁸ are now attempting to model charge radius effects using large Arrhenius-type reaction zones.

Calculations were performed using the Forest Fire burn in 2DL for 0.7- and 1.3-cm-radius cylinders of X-0219 confined by Plexiglas and for half-thickness slabs of 1.3 and 2.6 cm. The thinner charges developed greater curvature and the 0.7-cm-radius cylinder failed to propagate. Calculations were also performed using the Forest Fire burn in the 2DE code for 0.65- and 1.3-cm-radius cylinders of X-0219 confined by air. The 0.65-cm-radius cylinder failed to propagate as shown in Fig. 16. The experimentally determined failure radius is 0.75 cm. Similar calculations were performed for 9404, Composition B, and X-0290. Results are compared with experimental failure radius in Table I. The calculated results depend upon the initiation method and the burn resolution. These results suggest that the dominant feature of failure in heterogeneous explosives is the same hot spot decomposition reaction that determines the shock initiation behavior.

IV. CONCLUSIONS

The process of detonation initiation and propagation of homogeneous explosives along surfaces may be qualitatively described using Arrhenius kinetics. However, because the reaction zone scale is orders of magnitude smaller than the scale of the experiments of interest, quantitative calculations are difficult to

TABLE I

EXPERIMENTAL AND CALCULATED FAILURE RADII

Explosive	Experimental Failure Radius (cm)	Calculated Results
X-0219	0.75 ± 0.05	1.3 propagated 0.7 failed
X-0290	0.45 ± 0.05	0.5 propagated 0.3 failed
Comp B	0.214 ± 0.03	0.3 propagated 0.2 failed
9404	0.06 ± 0.01	0.1 propagated 0.05 failed

achieve. The ability of thin metal cylinders to prevent detonation failure in nitromethane and the observed failure and reignition of nitromethane by changes in confinement geometry may be qualitatively reproduced by numerical reactive fluid dynamics with Arrhenius kinetics.

Detonation initiation and propagation of heterogeneous explosives cannot be described adequately using Arrhenius kinetics. The Forest Fire model can describe the decomposition that occurs from hot spots formed by shock interactions with density discontinuities in heterogeneous explosives and can also describe the passage of heterogeneous detonation waves around corners and along surfaces. Failure or propagation of a heterogeneous detonation wave depends upon the interrelated effects of the wave curvature and the shock sensitivity of the explosive. Some of the basic differences have been established between homogeneous and heterogeneous explosive propagation and failure.

ACKNOWLEDGMENTS

We gratefully acknowledge the assistance and contributions of William C. Davis, John Bdzil, Wildon Fickett, Bobby G. Craig, Douglas Venable, Richard Dick, and Elizabeth Marshall, LASL; Jim Kennedy, Sandia Corporation; and Per Anders Persson, Swedish Detonic Research Foundation.

Resolved nitromethane zone of various thicknesses proceeding perpendicular to a copper plate. The nitromethane activation energy was 30 kcal/mole. The pressure profiles are given at 20-kbar intervals, and the mass fraction of undecomposed explosive interval is 0.1. $Z = 1.0 \times 10^3$, 2.37 x 10³, and 6.0 x 10³.

Fig. 1. (cont)

Fig. 1. (cont)

Fig. 2. Resolved nitromethane zone proceeding perpendicular to a copper cylinder. $Z = 2.37 \times 10^3$; E = 30.

Fig. 3.

•

Resolved nitromethane zone proceeding perpendicular to a copper and then an aluminum wall. $Z = 2.37 \times 10^3$; E = 30.

Resolved nitromethane reaction zone proceeding perpendicular to a copper plate that becomes about as thin as the reaction zone thickness. $Z = 2.37 \times 10^3$; E = 30.

(a)

(b)

Fig. 5. Persson's smear camera traces of a detonation wave proceeding between two brass plates 1 cm apart. The groove in (a) is 0.04 cm deep by 0.075 cm high; that in (b) is 0.075 cm deep by 0.15 cm high.

Nitromethane reaction zone with a 30-kcal/mole activation energy and a 6.0 x 10^3 frequency factor interacting with a 0.04- by 0.08-cm groove. The temperature interval is 200° and the velocity interval is 0.02 cm/µs.

Fig. 6. (cont)

Fig. 6. (cont)

Fig. 7. Davis's smear camera traces of a nitromethane detonation proceeding between copper walls initially 1.27 cm apart and funneling out at 15 to 10°. The 10° wall shows numerous failures and reignitions; the 15° wall results in detonation wave failure.

Fig. 8. Resolved nitromethane detonation wave proceeding up a 10° copper funnel. The Z of 2.37 x 10³ may be compared with Fig. 1.

Fig. 9. Constant density profiles at 8 μs for a 5-cm half-thickness slab of Composition B detonation by the Forest Fire model proceeding perpendicular to a 2.5-cm-thick aluminum plate. The prominent features of a radiograph of the flow are shown by dashed lines.

Fig. 10. PHERMEX radiographs of a Composition B detonation wave proceeding up a 45° aluminum wedge.

Fig. 10. (cont)

Fig. 10. (cont)

I

Fig. 11. PHERMEX radiographs of a Composition B detonation wave proceeding up a 90° aluminum block.

Fig. 11. (cont)

Fig. 11. (cont)

Fig. 11. (cont)

Fig. 12. Calculated profiles of a Composition B Forest Fire detonation proceeding up a 45° aluminum wedge. The pressure profile interval is 50 kbar, the density profile is 0.02 cm³/g, the mass fraction interval is 0.1, and the last figure is the mesh used in the calculation. PHERMEX profiles from Fig. 10 are shown.

Fig. 12. (cont)

Fig. 13. Calculated profiles of a Composition B Forest Fire detonation proceeding up a 90° aluminum block. PHERMEX profiles from Fig. 11 are shown.

Fig. 13. (cont)

Fig. 14. Radiographic and calculated 2DL profiles of a detonation wave propagating around a corner of X-0219. The corner was filled with air in the experiment and with Plexiglas in the calculation.

Fig. 15. Calculated Eulerian 2DE code profiles of a detonation wave propagating around a corner of X-0219 where the corner is filled with air.

Fig. 16. Pressure and mass fraction profiles for a 0.65- and a 1.3-cm-radius cylinder of X-0219 calculated using the 2DE code with the Forest Fire burn model.

APPENDIX A

A MODEL FOR SHOCK INITIATION OF HETEROGENEOUS EXPLOSIVES

Our goal is to determine, for a particular explosive, a burn rate that is a function of the local state and that is also consistent with the shock initiation experiments.

The experiments of interest are those that enable direct solution of the time behavior of the shock-pressure wave as the shock builds to detonation. Such information forms a data line in space for the fluid flow equations. With some simple assumptions the flow equations can be solved in the neighborhood of the data line, and consequently, the reaction rate consistent with the time behavior of the shock-pressure wave can be solved.

Some experiments that give direct information about the shock-pressure front are:

A. Distance to detonation as a function of initial shock pressure

$$\ln(run) = \alpha_1 + \alpha_2 \ln(P-P_0)$$
,

where run = distance to detonation, α_1 , α_2 , and P_0 are constants, P_0 is usually 0, and P = pressure.

This relation is called the "Pop plot."

B. Shock velocity as a function of particle velocity

 $U_s = C + S U_p$,

where U_s = shock velocity, U_p = particle velocity, and C and S are constants from fits to experimental data.

These relations, together with the shock jump relations, define the state space line for the shock front.

C. If pressure as a function of time is reported at various mass points, these data can be used to estimate pressure gradients behind the shock and a time-pressure history at a single point.

The single-curve build-up principle¹⁹ is the assumption that a reactive shock wave grows to detonation along a unique line in distance, time, and state space. Experiments have often shown this relation to be plausible to the accuracy of the experiments. Applying the single-curve build-up principle to Pop
plots gives the interpretation that the Pop plots are direct descriptions of the shock front.

Figure A-1 shows the Pop plots for 9404, Composition B (60/40 RDX/TNT), X-0290 (95/5 TATB/Kel F), and X-0219 (90/10 TATB/Kel F). The HOM equation of state¹⁵ uses the BKW²⁰ equation of state for the detonation products and the experimentally determined unreacted Hugoniot to determine the partially reacted Hugoniots. The Hugoniots for 9404, together with Ramsey's²¹ partially reacted Hugoniot, are plotted in Fig. A-2. The equations of state are identical to those used in Ref. 4. The partially reacted Hugoniots for each explosive are shown in Fig. A-3. The equation-of-state constants, Pop plot constants, and Forest Fire burn functions are listed in Appendix B. The derivation of the Forest Fire burn and a computer code listing used to calculate the function are given in Appendix C.

Figure A-4 shows the decomposition rate calculated, using the Forest Fire model, as a function of pressure. Forest Fire was incorporated in the SIN code, ¹⁵ and the rate was programmed as a function of pressure [$ln(rate) = A + BP + CP^2 \dots XP^n$]. The rate was set to zero if the pressure was less than the minimum pressure used in the fit, and the burn was completed if the pressure was greater than C-J pressure. If W was less than 0.05 it was set equal to zero. Pressure and mass fraction profiles for 2 cm of 9404 initially shocked to 22.5 kbars are shown in Fig. A-5. The calculations closely reproduce the experimentally observed shock front profiles. We must compare the results of these profiles throughout the explosive to determine if the calculated state values are valid behind the shock front.

Craig and Marshall²² ran a series of experiments shocking various thicknesses of 9404 to various pressures and measuring the time histories of the velocity of free surfaces of Lucite plates in contact with the explosive. The equations of state used are described in Ref. 4.

The calculated and experimental velocity vs time profiles for a 63-kbar shock and for 30-kbar shocks initiating 9404 are shown in Figs. A-6 and A-7, respectively. The calculated and experimental initial free-surface velocity profiles for various thicknesses of 9404 in contact with a 0.508-cm Lucite plate are shown in Fig. A-8. Figure A-9 shows the velocity for various thicknesses of Lucite plates in contact with 0.254 cm of 9404 initially shocked to 63 kbars by an aluminum driver.

Calculations were also made to determine the model's response to driver pulse width. Gittings²³ reported the excess transit time for 9404 shocked by 0.0127- to 0.040-cm-thick aluminum foils traveling 0.14 to 0.20 cm/ μ s. The calculated and experimental results are summarized in Table A-I.

Kennedy²⁴ and Trott and Jung²⁵ have studied the effect of driver pulse width on the initiation of 9404 at lower shock pressures. The calculated and Trott and Jung²⁵ experimental results are summarized in Table A-II.

Forest Fire can be used to describe the effect of pulse width upon detonation propagation or failure in the pressure range covered by Gitting's experiments of 135 to 85 kbars and Trott and Jung's experiments to 35 kbars. Figure A-10 shows the calculated pressure and mass fraction of 9404 shocked to 50 and 40 kbars by a 0.1-cm-thick aluminum plate going 0.1 and 0.08 cm/ μ s. The 50-kbar shock grows and detonation occurs at 0.390 cm in 0.83 μ s. A long-duration pulse would result in detonation at 0.386 cm in 0.736 μ s.

Trott and Jung²⁵ also report the effect of driver pulse width for Composition B. The calculated and experimental results are summarized in Table A-III.

Forest Fire can reproduce some of the observed quantitative behavior of the shock initiation of 9404 and Composition B. Forest Fire becomes less realistic

TABLE A-I

CALCULATED AND EXPERIMENTAL RESULTS $^{\rm 23}$ for 9404

Foil Velocity (cm/µs)	Experimental Failure Thickness (cm)	Forest Fire Calculational Thickness (cm)		
0.20 (~135 kbars)	0.01 → 0.015	0.0127 failed 0.0190 marginal 0.0254 detonated		
0.16	0.019 → 0.025	0.019 failed 0.0254 marginal 0.0381 detonated		
0.14 (~85 kbars)	0.025 → 0.035	0.0254 failed 0.0381 detonated		

at very low pressures. More refinements will be required to describe the detailed shock initiation behavior upon the passage of multiple shocks through an explosive or any process that changes the Pop plot behavior. Forest Fire is being successfully applied to other explosives such as PETN

Forest Fire is being successfully applied to other explosives such as PETN and certain shock-sensitive propellants. The results of these studies will be published later.

TABLE A-II

CALCULATED AND EXPERIMENTAL RESULTS²⁵ FOR 9404

Driver Thickness (cm)	Experimental Driver Failure Velocity (cm/µs)	Forest Fire Calculational Driver Velocity Results (cm)
0.16	0.065 - 0.075 (~35 kbars)	0.06 failed 0.08 marginal
0.102	0.078 - 0.095 (~50 kbars)	0.08 failed 0.10 detonated
0.04	0 . 11 - 0.12 (~65 kbars)	0.10 failed . 0.12 marginal 0.13 detonated

TABLE A-III

CALCULATED AND EXPERIMENTAL RESULTS FOR COMPOSITION B

Driver Thickness (cm)	Experimental Driver Failure Velocity (cm/µs)	Forest Fire Calculational Driver Velocity Results (cm)
0.318	0.09 → 0.11 (~50 kbar)	0.08 marginal 0.10 detonated
0.102	0.11 → 0.12 (~60 kbar)	0.10 failed 0.12 marginal 0.13 detonated
0.04	0.15 → 0.16 (~85 kbar)	0.16 failed 0.17 marginal
Distance To Detanotion (cm) Distance To Detanotion (cm)	2	

Fig. A-1. Pop plots for X-0219, X-0290, Composition B, and 9404.

Fig. A-2. HOM 9404 partially reacted Hugoniots and Ramsey's experimental reactive Hugoniot.

Fig. A-3. Reactive Hugoniots.

Fig. A-5. Pressure and mass fraction profiles for 2 cm of 9404 ini-tially shocked to 22.5 kbars. The pressure scale is from -100 to 400 kbars and the mass fraction scale is from 0 to 1.1.

Fig. A-6. Free-surface velocity of a 0.5-cm-thick Plexiglas plate in contact with 0.254 cm of 9404 initially shocked to 63 kbars.

Fig. A-7. Free-surface velocity of 0.20-cm-thick Plexiglas plates in contact with 0.25and 0.63-cm-thick pieces of 9404 initially shocked to 30 kbars.

Pressure and mass fraction profiles for 0.4 cm of 9404 initially driven by a 0.1-cm-thick aluminum plate going 0.1 and 0.08 cm/ μ s. The pressure and mass fraction scales are identical to those of Fig. A-5.

APPENDIX B

FOREST FIRE RATES

Forest Fire results for 9404, Composition B, X-0290, and X-0219 are presented in Tables B-I — B-IV. The coefficients to the log rate as a function of pressure were used in the calculations described in this report. The other constants are given below.

The nomenclature and units in Tables B-I - B-V and C-I - C-IV are

RUN = distance to detonation (cm)

P = shock front pressure (mbars)

V = shock front volume (cm^3/g)

UP = shock front particle velocity (cm/µs)

US = shock front velocity $(cm/\mu s)$

W = mass fraction of undecomposed explosive

RATE = $-\frac{1}{W}\frac{dW}{dt}$, where t is time in μ s

TEMPERATURE = HOM temperature in °K of mixture of detonation products and undecomposed explosive

TIME = time to detonation (μs)

	9404	Comp B	<u>X-0290</u>	<u>X-0219</u>
ρ ₀ (g/cm ³)	1.844	1.715	1.894	1.914
Min P(kbar)	15	20	55	85
C-J pressure (kbar)	363	284	285	281

```
TABLE B-I
                                                                                      RHD = 1.84400
PBX 9404
           PCJ = 0.363 MBAR
POP PLOT, LN(RUN) = A1 + A2*LN(P-A3), A1 = -5,0409966+00 A2 = -1,3653686+00 A3 = -0.
                                        C = 2.460000E = 01 S = 2.530000E + 00
REACTION HUGONIOT, US = C + S \times DP,
CJ DETONATION VELOCITY => 8.880000E=01
HOM EQUATION OF STATE CONSTANTS
UNREACTED EXPLOSIVE
2,423000000000-01 1.8830000000000+00 1.000000000000-02-0.
                  -9,04187222042E+00-7,13185252435E+01-1,25204979360E+02
-0.
-9,20424177603E+01-2,21893825727E+01 6.75000000000E=01 4.000000000000E=01
5.42299349241E=01 5.0000000000E=05 0.
                                                      -0,
                                                      -0,
3.0000000000E+02 1.0000000000E-06-0.
-0.
                  -0.
                                    •0.
DETONATION PRODUCTS
-3.53906259964E+00-2,57737590393E+00 2.60075423332E=01 1.39083578508E+02
-1,13963024075E=02=1,61913041133E+00 5,21518534192E=01 6,77506594107E=02
4.26524264691E=03 1.04679999902E=04 7.36422919790E+00=4.93658222389E=01
2.92353060961E=02 3.30277402219E=02=1.14532498206E=02 5.00000000000E=01
1.00000000000E-01
```

```
PBX 9404 PCJ = 0.363 MBAR RHO = 1.84400

LN(RATE) = C(1) + C(2)*P + ... + C(M+1)*(P**M)

C(I=1,14) = *8.3979132644E+00 4.0524452315E+02 =1.2887959724E+04 2.9889932207E+05 =4.7962436917E+06

5.4017707404E+07 =4.3377143285E+08 2.5068548091E+09 =1.0433258901E+10 3.0950369616E+10

=6.3781135352E+10 8.6704208069E+10 =6.9876089170E+10 2.5277953727E+10

MAXIMUM RELATIVE ERROR AT 8.000000E=02 = 3.462491E=02
```

PBX 9404 PCJ = 0.363 M9AR RHO = 1.84400 POP PLOT, LN(RUN) = A1 + A2*LN(P=A3), A1 = -5.040996E+00 A2 = -1.365368E+00 A3 = -0. REACTION HUGONIOT, US = C + S*UP, C = 2.460000E-01 S = 2.530000E+00

RUN	P	v	UP	US	W	RATE	TEMPERATURE	TIME
2.00000	.01500	. 49697	.02607	31197	99248	1,2016E-02	352,34864	5,46666
1.62040	01750	49230	02958	32084	99038	1,7952E=02	363,44553	4 26596
1.35034	02000	48807	03293	32932	98813	2,54248-02	375,03754	3,43466
1.14974	.02250	48420	03616	33747	98575	3,4570E-02	387,07103	2,83266
99569	02500	48065	03926	34533	98327	4,55256-02	399 49584	2,38123
87420	02750	47736	04226	35291	98068	5.8423E=02	412,26638	2,03309
77627	.03000	47432	04516	36025	97800	7,3385E-02	425,34184	1 75838
69591	03250	47148	04797	36738	97525	9.0563E-02	438,68600	1,53741
62894	03500	46883	05071	37430	97242	1.1008E-01	452,26685	1,35678
57239	.03750	46634	05337	38103	96952	1.3206E=01	466,06824	1,20703
52411	04000	46400	05597	38759	96656	1.5665E=01	480,03825	1,08138
48248	04250	46178	05850	39400	96355	1.8398E=01	494,17862	97481
.44626	04500	45969	06097	40025	96049	2 . 1418E=01	508 44591	.88359
41450	04750	45771	06339	40637	95738	2.4741E-01	522,84694	.80484
.38646	05000	45582	06576	41236	.95422	2.8379E-01	537 .3 5853	,73634
36156	05250	45403	06807	41823	95102	3.2347E-01	551 96725	67636
33931	05500	45232	67035	42398	94778	3,6660E=01	566,66117	62352
31933	.05750	45069	07258	42963	94450	4,1332E-01	581 42881	.57669
30130	.06200	44912	07477	43517	94118	4,6379E=01	596,26266	53500
28496	06250	44762	07692	44062	93782	5.1817E-01	611 15335	49769
27011	06500	44619	07904	44597	93443	5.7660E=01	626 09338	46417
25654	06750	44481	08112	45124	93101	6 3926E 01	641.07607	43393
24411	07000	44348	P8317	45642	92756	7,0632E-01	656 09544	40654
23269	.07250	44220	08519	46153	92407	7,7794E=01	671 14611	38166
22217	P7500	44097	08718	46656	92055	8.5429E-01	686 22321	35898
21244	.07750	43978	08914	47151	91700	9.3557E-01	701 32253	33824
20343	08000	43864	09107	47640	91343	1.0243E+00	716,44011	31922
19506	08250	43753	Ø9297	48122	90981	1.1134E+00	731,58918	.30174
18727	.08500	43645	09485	48597	.90618	1.2106E+00	746,72972	28563
18000	08750	43542	09671	49067	,90251	1,3134E+00	761 87952	27075
.17321	09000	43441	09854	49530	89882	1 42222+00	777,03589	25697
16685	09250	43344	10035	49988	89510	1.5371E+00	792,19639	24419
16088	09500	43249	10214	50441	89135	1.6583E+00	807 35881	23231
15528	09750	43157	10390	50888	88758	1.7861E+00	822,52114	22124
15000	10000	43068	10565	51330	88378	1.9207E+00	837,68156	21092
14503	10250	42981	10738	51767	87995	2.06236+00	852,83841	20127
14033	10500	42897	10909	52199	87609	2,2112E+00	867,99019	19224
13590	10750	42815	11078	52626	87220	2.3676E+00	883,13552	18377
.13170	11000	42735	11245	53049	86829	2,5319E+00	898.27315	17583
12772	11250	42657	11410	53468	86435	2.7042E+00	913.40191	, 16835
12394	.11500	42581	1 1574	,53883	.86038	2.8849E+00	928,52077	. 161 3 2
12035	.11750	42507	1173 6	54293	85638	3.0742E+00	943 62875	15469
11694	.12000	42435	11897	54699	. 85236	3.2726E+00	958,72497	14843
.11370	12250	42365	.12056	.55102	8483P	3 . 4802E+00	973.80860	14252
_11060	.12500	42296	12214	.55501	84422	3.6974E+00	988,87888	. 13692
.10765	.12750	42229	.12370	55896	.84011	3.9245E+00	1003.93512	1 3162
.10484	.13000	.42163	1 2525	56288	.83598	4 . 1619E+00	1018,97666	.12660
10215	.13250	.42099	12678	. 56676	. 83181	4 . 4100E+00	1034.00290	. 12184
.09957	.13500	42936	.12830	.57061	.82761	4.6692E+00	1049.01319	11731
.09711	.13750	.41975	.12981	.57442	.82339	4 . 9397E+00	1064 00717	.11301

PBX 9404 PCJ = 0.363 MPAP RHO = 1.84400 POP PLOT, LN(RUN) = A1 + A2*LN(P-A3), A1 = -5.040996E+00 A2 = -1.365368E+00 A3 = -0. REACTION HUGONIOT, US = C + S*UP, C = 2.460000E-01 S = 2.5300000E+00

RUN	P	v	ijΡ	US	ĸ	RATE	TEMPERATURE	TIME
09475	. 14000	41915	.13131	57820	.81912	5.2418E+00	1079.00617	.10891
09249	14250	41856	13279	58196	.81483	5.5144E+00	1093,96110	10501
09032	14500	41798	13426	58568	81052	5.8220E+00	1108,89917	10129
08823	14750	41742	13572	58937	80617	6.1427E+00	1125_81974	.09775
08623	15000	41687	13717	59303	80180	6.4770E+00	1138,72228	.09436
08431	15250	41633	13860	59667	79739	6.8254E+00	1153,60631	09113
08246	15500	41579	14003	60028	79295	7.1884E+00	1168,47138	08803
08067	15750	41527	14144	60386	78847	7.5665E+00	1183 31706	.08507
07896	16000	41476	14285	60741	78397	7.9602E+00	1198,14293	.08224
07730	.16250	41426	14424	61094	77943	8.3702E+P0	1212 94862	.07953
07571	16500	41377	14563	61444	77486	8.7971E+00	1227 73374	Ø7692
07417	16750	41329	14700	61792	.77025	9.2414F+00	1242.49795	07443
07268	17000	41281	14837	62137	76561	9,7038E+00	1257 24989	,07203
.07125	17250	41235	14972	.62480	76093	1.0185E+01	1271.96223	.06973
06986	17500	41189	15107	62820	.75622	1.0686E+01	1286,66164	06751
06852	17750	41144	15241	63159	.75147	1.1207E+01	1301.33882	06539
06723	18000	41100	15373	63495	74669	1.1749E+01	1315,99336	.06334
86597	18250	41056	15505	63829	74187	1.2313E+01	1330.62518	.06137
06476	18500	41014	15637	64161	73700	1.2950F+01	1345.25304	05947
06358	18750	40972	15767	64490	73211	1.3485E+01	1359.82407	.05764
Ø62///	10000	40930	15896	64818	72718	1.4125E+01	1374.37542	.05588
94134	10250	40890	16025	65143	72222	1.47905+01	1388.99610	.05418
04027	10500	40850	16153	65467	.71721	1.5482E+01	1403.41523	.05254
05027	10750	40010	16280	65789	71216	1.6200F+01	1417.90199	05096
05925	20000	40771	16406	66108	70706	1.6947E+01	1432.36558	P4943
05724	20250	40711	16532	66426	70193	1.7723E+01	1446 80520	04795
05629	20500	40696	16657	66742	69675	1.8529F+01	1461.22012	.04652
05517	20750	40650	16781	67056	69153	1.93666+01	1475.60962	04514
05//7	21000	40622	160701	67368	68626	2. 42471+41	1489.97302	04381
05447 05160	-21350	40586	17027	67679	68095	2.11416+01	1504.30971	.04251
05300	21500	40551	171/10	67988	67560	2.1954F+01	1518.61908	.04126
105275	21750	40516	17271	68295	67020	2.3059F+01	1532.90063	04005
05172	22000	10/182	17301	68600	66475	2.407AF+01	1547.15386	.03887
05012	22250	10///8	17512	6898/	65926	2.5134F+01	1561.37834	.03774
0,057	22630	10/11/	17631	69206	45373	2.6235F+01	1575.57373	03663
04757	22750	40381	17750	69507	64814	2.73816+01	1589.73971	03556
_04003	-22/30	49301	17840	_07507	6//251	2.85746+01	1603 87605	03452
evi4011	-23000 37350	44:349	17084	70107	67697	2.9819F+01	1617.98258	.03352
.04/49	27500	10305	19100	70105	63100	3 11166+01	1632 05921	03254
.040/1	23700	49203	19310	78604	43571	2 2//705+01	1632 03701	.03159
.74004	• C 3 / 3 r	+49234 (0337	10219	70094	610/7	7 388//5401	1660 12271	03067
84339	24000	.411223	+ 10333	71370	+017W/ 447C9	7 57625464	1674 10977	02977
.04475	.24250	+4V143	10420	-112/0	64747	7 40085401	1688 06729	02890
.04415	24500	40103	+10303 18470	1100	40103	3 85385401	1701 00558	02805
.04352	24/50	.40135	100/9	1100/	60710C	7 0320CT01	1715 ROSIA	.02003
04245	.25000	. 40104	10/92	12144	59004	H 1977ELA4	1720 72167	026/11
04255	.25250	.400/5	10402	12430	-20740 50730	4 10/3C+01	17/12 55518	02545
.04178	. 45500	.40047	10170	./2/13	1002C7	4 8 5 7 5 5 4 5 4 6 1 // 8 5 7 5 5 4 5 4 6 1	1767 20077	02//89
.04125	25750	40019	19150	.72998	• 7//00 5 7/1 7 7	4 33/36441	1771 00006	02415
.04069	.26000	. 39991	19241	./ 3204	· 2/11/1	4.73485481	1701 07770	021/2
04016	,26250	, 39963	19352	.73560	• 76442	4.40106401	1104 02423	∎ ^v ≥ 343

PRX	9494	PCJ = P	.363 *	BAP				RHO =	1.84400
POP	PLOT,	LN(RUN) =	A1 +	A2*LN(P=A3),	A1 = +5.040996E+00	A2 = -1.365368E+00	A 3	z =0.	
REA	CTION I	HUGONIGT,	115 =	C + S*UP,	C = 2.460000E=01	s = 2 . 530000E+00			

RIIN	Р	v	UP	US	W	RATE	TEMPERATURE	TIME
. 03965	. 26500	. 39936	. 19462	.73840	.55800	5.17648+01	1798,50504	.02273
03914	26750	39909	19572	74118	55153	5.4015E+01	1812 15383	02204
03865	27000	39883	19682	74395	54499	5.6368E+01	1825 76601	.02138
03816	27250	39857	19791	74670	53839	5.8829E+01	1839 34096	02073
43769	27500	39831	19899	74945	53172	6.1404E+01	1852 87807	02010
03723	27750	39805	20007	75218	52498	6 4098E+01	1866 37664	01948
03678	28000	39780	20115	75490	51817	6 6918E+01	1879 83599	01888
03633	28250	39755	20222	75761	51130	6 9871E+01	1893 25537	01829
03590	28500	39731	20328	76030	50436	7.2963E+01	1966.63401	01772
03547	28750	39706	20434	76299	49734	7 6202E+01	1919 97108	01716
03505	29900	39682	20540	76566	49021	7.9748E+01	1933.29306	01662
03465	29250	39658	29645	76832	48304	8.3356E+01	1946 55250	01609
03425	29500	39634	20750	77098	47579	8 7150E+01	1959 76957	01557
03385	29750	39611	20854	77362	46847	9.1142E+01	1972 94362	01506
.03347	30000	39588	20958	77625	46196	9.5347E+01	1986 07395	01456
.03309	30250	39565	21062	77887	45357	9 9779E+01	1999 15989	01408
03272	30500	39543	21165	78148	44601	1.04456+02	2012.20071	01360
03236	30750	39520	21268	78408	43835	1.0939E+02	2025 19572	01314
03200	31000	39498	21370	78667	43261	1 1461E+02	2038 14417	01269
03165	31250	39476	21472	78925	42278	1.2012E+02	2051 04532	01224
03131	31500	39454	21574	79182	41487	1.2597E+02	2963.89843	01181
03098	31750	39433	21675	79438	40686	1.3216E+02	2076.70272	01139
03065	32000	39412	21776	79692	39876	1.3874E+@2	2089,45750	01097
.03032	32250	39391	21876	79946	39056	1.4573E+02	2102 16176	01057
. 03000	32500	39370	21976	80200	38227	1.5317E+02	2114 81494	01017
02969	32750	39349	22076	80452	37387	1.6110E+02	2127.41616	00978
02939	33000	39329	22175	80703	36538	1.6957E+02	2139,96463	00940
.0290A	33250	39309	22274	80953	35678	1.7863F+02	2152,45956	00903
02879	33500	39289	22373	81202	34808	1.8833E+02	2164 90014	00866
02850	33750	.39269	22471	81451	33927	1.9875E+02	2177 28559	00830
02821	34000	39249	22569	81698	33039	2.0941E+02	2189 59539	00795
. 02793	34250	39230	22666	81945	32137	2.2153E+02	2201 86269	00761
02765	34500	. 39211	22763	82191	31223	2.3443E+02	2214 07119	00727
02738	34750	39192	22860	82436	30298	2.4838E+02	2226.21987	00694
02712	35000	39173	22957	82680	29361	2.6350E+02	2238 30770	00662
02685	35250	39154	23053	82923	28412	2.7993E+02	2250.33360	00630
02660	35500	39135	23149	83166	27450	2.9784E+02	2262 29652	00599
92634	35750	39117	23244	83407	26476	3.1743E+02	2274,19533	00569
02609	36000	39099	23339	83648	25489	3.3892E+02	2286 02892	00539
02585	36250	39081	23434	83888	24489	3.6261E+02	2297.79615	00510
02561	36500	39963	23529	84127	23475	3.8882E+02	2309.49584	00481
92537	36750	39045	23623	84366	22448	4.1795E+02	2321.12682	00453
02514	37000	39028	23717	84603	21406	4.5051E+02	2332.68788	00425
02491	37250	39010	23810	84840	20350	4.8711E+02	2344,17780	00398
02468	37500	38993	23904	85076	19279	5.2853E+02	2355.59536	.00371
.02446	37750	38976	23997	85311	.1B193	5.7576E+02	2366.93931	00345
02424	38000	38959	24089	85546	17092	6.3007E+02	2378.20841	00320
02402	38250	38942	24182	.85780	15974	6.9314E+02	2389.40141	00294
02381	38500	38926	24274	86013	14840	7.6662E+02	2400 51709	00270
02360	38750	38929	24366	86245	13695	8.5273E+02	2411 53765	00245
								-

PRX 9404 PC Pop plot, ln(R Reaction Hugon	J = 0,363 MR UN) = A1 + A IOT, US = C	AR 2*LN(P=A3), + S*UP,	A1 = ⇒5,040 C = 2,460	996E+00 A 000F=01	2 = -1.365368E+00 \$ = 2.530000E+00	RH0 A3 = =0.	= 1 . 84400	
RUN	Ρ	v	UP	US	le	RATE	TEMPERATURE	TIME
02339 02319 02299 02279	.39000 .39250 .39500 .39750 .40000	.38893 .38876 .38860 .38844 .38844 .38829	24457 24548 24639 24730 24730 24820	86477 86707 86938 87167 87396	12529 11346 10145 Ø8925 Ø7687	9.5798E+02 1.0873E+03 1.2498E+03 1.4601E+03 1.7424E+03	2422.48936 2433.35857 2444.14362 2454.84291 2465.45479	00221 00198 00175 00152 00130

```
RHO = 1.71500
COMP B
          PCJ = 0.284
POP PLOT, LN(RUN) = A1 + A2*LN(P=A3), A1 = =4,384168E+00 A2 = =1,501545E+00 A3 = =0.
REACTION HUGONIOT, US = C + S*UP, C = 2.310000E+01 S = 2.500000E+00
CJ DETONATION VELOCITY = 8.084000E-01
HOM EQUATION OF STATE CONSTANTS
UNREACTED EXPLOSIVE
2.31000000000E-01 1.83000000000E+00 1.0000000000E-02-0.
               -8.86750780814E+00-7.97357471516E+01-1.59428975952E+02
-0.
-1.35411036759E+02-3.91274655950E+01 1.500000000E+00 2.5900000000000000
5 83090379009E-01 5 00000000000E-05-0.
                                               -0.
                                               -0.
-0.
ø.
               -0.
                               -0.
DETONATION PRODUCTS
+3.52584R78974E+00-2.334291R9056E+00 5.97267325606E=01 3.04510424546E=03
-1,75226403100E-01-1,56087684485F+00 5,33121475935E-01 8,06310874142E-02
3.33816891056E=03=6.84399991171E=04 7.50278058550E+00=4.41209000835E=01
1.000000000000000000
```

```
COMP R PCJ = 0.284 RHO = 1.71500

LN(RATE) = C(1) + C(2)*P + ... + C(M+1)*(P**M)

C(I=1,14) = -1.0354580437E+01 4.7342744951E+02 -1.6753704228E+04 4.4756746438E+05 -8.4931471542E+06

1.1555934358E+08 -1.1402565157E+09 8.2065910931E+09 -4.2986627008E+10 1.6183793696E+11

-4.2605817430E+11 7.4376767275E+11 =7.7289848996E+11 3.6167775705E+11

MAXIMUM RELATIVE ERROR AT 2.125000E=01 = 6.290758E=03
```

 COMP B
 PCJ = 0.284
 RHO = 1.71500

 POP PLOT, LN(RUN) = A1 + A2*LN(P=A3), A1 = -4.384168E+00 A2 = -1.501545E+00 A3 = -0.
 REACTION HUGONIOT, US = C + S*UP, C = 2.310000E=01 S = 2.5000000E+00

RUN	P	v	UP	US	W	RATE	TEMPERATURE	TIME
4.43670	.02000	.51736	.03626	.32164	.98958	6.3454E=03	400.66634	11,63320
3.71751	12250	.51297	03972	33030	98727	8.8952E=03	418 41861	9 42554
3,17355	02500	50896	04305	33862	98483	1.20388-02	436,95789	7 79832
2.75038	02750	50528	. 44626	.34664	98226	1.58376-02	456.20833	6.56271
2,41352	.03000	50188	04936	35440	97959	2.0352E+02	476.07009	5.60133
2 14020	03250	49873	05236	36191	97682	2.5658F+02	496.48991	4.83793
1 91482	03500	49579	.05528	36919	97395	3.1820E-02	517.40807	4.22120
1 72638	03750	49304	.05811	37628	97099	3.8911E-02	538,77184	3,71551
1 56693	.04000	49046	06087	38317	96795	4.70026-02	560.53451	3.29551
1.43959	.04250	48804	96356	38990	96483	5.6172E+92	582.65458	2.94272
1.31293	04500	48575	.06618	39646	.96163	6.6498E=02	645.09506	2.64340
1 21055	04750	48359	06875	40287	95836	7.8062F=02	627.82286	2.38720
1 12082	05000	48154	.07126	40914	95501	9.0948F+02	650.80826	2.16615
1 0/16/	05250	47950	97371	4152B	95159	1.05256-01	674.92446	1.97404
07136	05500	47774	07612	42130	94811	1.2105E=01	697.44721	1.80601
90845	05750	47597	07848	42720	94456	1.3844F=01	721.05452	1.65816
853//A	04000	47428	08080	42720	94994	1.5753F=01	744 82632	1.52736
80172	000000	47420	08307	43360	93725	1.78416-01	768.76375	1.41107
75584	. NOL 3V	.47207	09571	43000	93150	2.01205.01	792.80728	1.30720
+/J300 74//33	00500	4/113	08751	44427	02960	2.26026=01	816.96535	1.21403
e/1422	07007 07000	40704	00047	447//	02581	2 52965-01	8/1 22356	1.13014
• 0/02/	07050	40022	80188	41510	02187	2 82155-01	865 56860	1.05432
+04133	17500	40005	.0700	40050	01707	2 12725-01	880 08810	08556
.064/1	.6/200	40334	00504	40374	01107	7 //7815=01	01/ 17058	92301
.20042	anaga	.40421	00800	47941	00047	2 8/1575-01	010 00510	8459/
.55544	,08000	.40304	10000	.47000	005/01	J-04JJC+01	047 5823/	81371
.52841	• M825M	40100	.10001	-40102	80197	4 6 6 4 0 5 - 01	048 10200	76580
. 50525	.00500	.400/2	10199	+ 40347 # 0005	80401	6 10047E-01	1013 03573	7217/
.48373	.08/50	.45962	.10594	4900J	80322 804941	5+12035-01	1012 023/3	68112
.46369	.09000	45055	.10507	44200	104422	5.00036401	1057 47507	60112 4//360
44500	.09250	.45/51	10//8	.50044	- 000NY	0 8 1 3 14 E # 11	1002 13224	404337
.42754	.09500	45651	.10966	.50515	.00358	0 0 0 0 0 0 C = 01	1000.09/1	600003 67663
.41118	.09750	45554	11152	.50979	• 8790N	7.2040t=Ø1	1111 44044	BULLT
.39584	.10000	45459	11536	-51439	18/436	7.9203E=01	1130.07/73	- 3400/ E1070
.38144	.10250	45368	.11517	_51893	.86966	8.59/96-01	1160.0951/	10/0 10/0
. 36788	.10500	45279	11697	.52342	.86488	9.5195E=01	1105.20550	442//
35511	.10750	45192	11875	.52787	86005	1.00076+00	1209 84554	4004/
.34306	11000	.45108	12050	53226	85514	1 . 0903E+00	1234,36776	+447/4
.33168	11250	_45026	12224	5 3661	85016	1.1771E+00	1258,84744	.42444
.32091	.11500	.44946	12397	54092	84512	1.2691E+00	1283,28010	40445
.31071	.11750	44868	12567	54518	.84000	1.3668E+00	1307 65802	.3850/
.34104	.12000	.44792	.12736	.54940	.83481	1.470PE+00	1332,00878	- 366M1
.29187	.12250	.44718	12903	5 5358	82955	1.5798E+00	1356_26238	. 35130
2 8315	12500	.44646	.13069	55772	.82422	1.6962E+00	1380 45028	+3356/
.27485	.12750	.44575	.13233	. 56182	.81882	1.8194E+00	1404.56786	122082
,26695	.13000	.44506	1 3395	. 56588	81334	1.9497E+00	1428,61085	, 54684
25943	.13250	.44439	.13556	56991	. 80779	2:0877E+00	1452,57510	129359
25225	.13500	.44373	13716	,57390	80216	2.2336E+00	1476.45656	.28103
24539	.13750	44309	.13874	57786	79645	2 . 3878E+00	1500,25134	26913
23884	14000	44246	.14031	.58179	.79066	2.5508E+0P	1523.95561	25783
23258	14250	44185	.14187	58568	78480	2.7231E+00	1547.56568	.24710
-	-	-	-	-				

COMP B PCJ = 0.284

RHO = 1.71500

POP PLOT, LN(RUN) = A1 + A2*LN(P=A3), A1 = -4,384168E+00 A2 = -1,501545E+00 A3 = -0, REACTION HUGONIOT, US = C + S*UP, C = 2,3100000E=01 S = 2,5000000E+00

RUN	P	v	UP	US	W	RATE	TEMPERATURE	TIME
22/50	1.45.00	4.4.5.4	1 / 7 / 1	5805/	77895	3 9050F+00	1571 0770/	28690
.22030	.14500	• 44124	-14341	+ 30734 50774	37381	7 00725400	15/180//74	22710
.27984	.14/50	.44005	.14495	174330 50714	1/201	3 8 87 7 2 C T NO	1594 40000	2170/
.21534	.15000	.44008	.14647	.59/16	·/00/0	3 5001ET00	101/1/901	-C1/94 34017
.21006	15250	.43951	.14/97	.00043	. / 6050	3.3144E+00	1040 44302	20713
.20499	.15500	.43896	14947	.00467	./5421	5,74000	1004 0/900	10075
-20015	.15750	.43841	.15095	. 64838	.74785	5 9/92E+00	100/00100	19270
19545	1 6900	43788	15243	.61206	.74136	4.23126+00	1709 90570	18504
.19095	.16250	.43736	.15389	.61572	73481	4.49712+00	1732 63898	.17/71
. 18662	1 6500	43684	. 15534	61935	.72816	4 7777E+00	1755 24835	17070
1 8246	16750	.43634	. 15678	6 2295	.72142	5.0739E+00	1777 73085	16400
.17844	. 17000	43585	. 15821	. 62653	.71458	5.3865E+00	1800,08354	15757
.17457	.17250	43536	15963	63009	.70764	5.7634E+00	1822.30340	15141
.17084	.17500	43489	.16105	63361	,70059	6.0597E+00	1844.41200	14551
.16724	.17750	.43442	.16245	63712	69346	6 . 4281E+00	1866,34972	13984
16377	18909	43396	.16384	64660	.68623	6.8171E+00	1888,14877	13440
16041	18250	43351	16522	64496	67889	7.2278E+00	1909 80602	. 1291 7
.15716	.18500	43306	16667	64750	.67144	7.6614E+00	1931 31846	,12415
.15403	18750	43263	16796	65091	66389	8,1193E+00	1952,68316	11932
15100	19000	43220	16932	65430	65623	8.6031E+00	1973,89724	11467
14806	19250	43178	17067	65767	.64845	9.1143E+00	1994 95792	11020
14522	19500	43136	17201	66102	64056	9.65465+00	2015.86245	10589
14247	19750	43095	17334	.66435	63255	1.0226E+01	2036.60819	10174
13980	20000	43055	17467	66766	62443	1.0885E+01	2057, 19256	09773
13722	20250	43015	17598	67095	61619	1.1470F+01	2077.61308	09387
13/22	20500	42976	17729	67423	60782	1.2147F+01	2097.86734	09015
17228	20750	// 2078	17850	67748	59977	1.28656+01	2117.95302	08655
12007	-20/50	, -, -, -, -, -, -, -, -, -, -, -, -, -,	17088	68071	50071	1 36265+01	2137 86791	08308
12743	+ C 1 P P P	42700	10117	69707	59108	1 17036401	2157 60070	07973
12/04	+ 21230	+42003	10715	48713	57300	1 5201 6+01	2177 17688	07649
12742	121300	42020	+10247	600712 60070	54/07	1 62035401	2104 64700	07335
12320	.21/50	42190	10372	807030 60746	55407 55407	1 71775401	2170830788	07333
.12116	.22000	.42/55	.18498	.04340	872475	1 93075401	2213811040 3374 84078	0/032
.11912	.22250	.42720	18624	.09601	.74703	1.02076401	2234800730 3357 46074	10/37 04/155
.11/14	.22500	42085	.18744	.09975	.23014	1.43096401	2233 8 07031	84180
.11521	.22754	,42651	.18874	.70284	12000	2,040/2+01	22/2:323/0	100100
.11554	.23000	.42617	.18998	.70594	.5168/	2.1/462.401	2290,00415	105414
.11151	.23250	42584	,19121	70902	.50702	2.50582+01	2309,06026	.05650
10974	.23500	42552	19243	71298	49699	2.44602+01	2327.15003	05400
.10801	.23750	.42519	. 19365	71513	48681	2.5982E+01	2345,04547	.05164
.10632	24000	.42488	.19486	71816	.47646	2 . 7613E+01	2362,74561	.04929
.10468	.24250	.42456	19697	. 72117	.46595	2 . 9363E+01	2380.24828	.04700
.10308	24500	,42425	.19727	.72417	45527	3.1244E+01	2397,55162	04479
.10152	24750	42395	19846	72716	.44442	3 . 3268E+Ø1	2414.65380	.04264
10000	25000	42365	.19965	73013	43339	3,5451E+01	2431.55303	.04055
. 09852	25250	42335	20084	73309	42219	3,7808E+01	2448,24754	03853
.09707	25500	42305	20201	73603	41081	4,0359E+01	2464 73557	03656
09566	25750	42276	20318	73896	39924	4 3126E+01	2481,01538	03464
09428	26000	42248	20435	74188	38749	4.6132E+01	2497,08525	03278
09294	26250	42219	20551	74478	37554	4.9408E+01	2512,94349	03097
09162	26500	42191	29667	74767	.36339	5.2985E+01	2528.58840	02921
00010	26750	42164	20782	75054	35105	5.6904F+01	2544,01831	02750
* W 7 U J M	+ CU/3"	* - C 1 0 4						

 COMP R
 PCJ = 0.284
 RHO = 1.71500

 POP PLOT, LN(RUN) = A1 + A2*LN(P=A3), A1 = -4.384168E+00 A2 = -1.501545E+00 A3 = -0.
 REACTION HUGONIOT, US = C + S*UP, C = 2.310000E=01 S = 2.500000E+00

RLIN	P	v	UP	US	W	RATE	TEMPERATURE	TIME
,08909	.27000	. 42137	.20896	.75341	.33850	6.12085+01	2559,23153	.02584
08786	27250	42110	21010	75626	32567	6.6112E+01	2574 25452	02421
08667	27500	42083	21124	75910	31268	7.1427E+01	2589 03751	,02263
08550	.27750	42057	21237	76192	29946	7,73486+01	2603 60080	.02110
08435	28000	42031	21349	.76473	28602	8,3979E+01	2617 94302	01960
08323	28250	42005	21461	76753	27235	9.1446E+01	2632,06290	01814
.08214	.28500	41980	21573	77032	.25844	9,9908E+01	2645,95921	.01671
.08107	28750	41954	21684	77310	24428	1.0957E+02	2659.63077	.01533
08002	29000	41930	21795	77586	22988	1.2068E+02	2673 07641	01398
.07900	29250	41905	21905	77862	21521	1.3359E+02	2686 29505	01266
07799	29500	41881	22014	78136	20029	1 4876E+02	2699 28563	01137
67701	29750	41857	22124	78409	18510	1.6680E+02	2712 04714	01012
07605	30000	41833	22232	78681	16963	1,8859E+02	2724 57861	00889
07511	30250	41810	22341	78952	15387	2.15406+02	2736,87915	00770
.07419	30500	41786	22449	79222	13783	2.4916E+02	2748 94790	00653
07328	30750	41763	22556	79490	12148	5.9290E+02	2760,78405	00539
.07240	31000	41741	22663	79758	10482	3,5173E+02	2772,38685	.00428
.07153	31250	41718	22770	80025	08785	4.3449E+02	2783,75558	.00319
07968	.31500	41696	.22876	80290	07066	5.5874E+@2	2794.87717	.00213

TABLE B-III

```
XØ290
            PCJ = 0.285
                                                                                  RHO = 1.89400
POP PLOT, LN(RUN) = A1 + A2*LN(P-A3), A1 = -6.347114E+00 A2 = -2.917511E+00 A3 = -0.
REACTION HUGONIOT, US = C + S*UP,
                                      C = 2.400000E=01 $ = 2.500000E+00
CJ DETONATION VELOCITY = 7.707000E-01
HOM EQUATION OF STATE CUNSTANTS
UNREACTED EXPLOSIVE
 2.4000000000E-01 2.0500000000E+00 0.
                                                     0.
0
                 -2, 30141685560E+01+1, 36319013778E+02-2, 35068216661E+02
-1.71049590983E+02-4.22635505569E+01 1.5000000000E+00 3.0000000000E-01
5.27983104541E-01 5.00000000000E-05-0.
                                                    - 9 .
                                  -0.
•0.
-0.
                 -0.
                                   -0.
DETONATION PRODUCTS
-3.87828541159E+00-2.69032297231E+00 2.22074184951E=01 7.42482128000E=02
-3.42819430727E-02-1.58889615377E+00 5.34895448385E=01 9.42824251124E-02
8.25643459A24E=A3 2.89357822582E=A4 7.06740292649E+0A=5.67003244430E=01
5.17941586095E-02 9.84863946395E-03-1.09218419748E-02 5.00000000000E-01
1.00000000000E-01
```

```
X0290 PCJ = 0.285

LN(RATE) = C(1) + C(2)*P + ... + C(M+1)*(P**M)

C(I=1,15) = 1.6223658470E+02 =1.9660891926E+04 1.0170082035E+06 =3.1181988011E+07 6.3734890585E+08

=9.2043883492F+09 9.6978690159E+10 =7.5817519329E+11 4.4248348854E+12 =1.9206772744E+13

6.1110150327E+13 =1.3836158944E+14 2.1097494446E+14 =1.9413888714E+14 8.1425481008E+13

MAXIMUM RELATIVE ERROR AT 1.575000F=01 = 1.359446E=02

SEJ
```

X0290 PCJ = 0.285

RHO = 1.89400

POP PLOT, LN(PUN) = A1 + A24LN(P-A3), A1 = -6.347114F+00 A2 = -2.917511E+00 A3 = -0.REACTION HUGONIOT, $IIS = C + S \pm UP$, C = 2.400000E-01 S = 2.500000E+00

RUN	P	v	UP	US	Ņ	RATE	TEMPERATURE	TIME
9.49364	.05250	. 44962	.06772	. 40931	.96839	5.8999E=03	492.44427	20,86183
8 28875	05500	43894	.06998	41495	96604	7.2314E-03	505 11963	17,93768
7.28458	05750	43733	07220	42050	96363	8 7891E-03	517,96687	15 52375
6.43044	06000	43579	07437	42594	96116	1 06018-02	530,98558	13 51463
5.70843	N6250	. 43431	.07651	43128	95864	1.2696E-02	544 16574	11 82983
5.09122	06500	43290	.07862	43654	95606	1.5108E-02	557.49817	10.40718
4.56040	06750	43154	08068	44171	95344	1.7870E-02	570 97452	9 19819
4.10131	07000	43023	.08272	44680	95075	2.1021E-02	584 58710	8,16466
3.70220	97250	42898	08472	45181	94821	2.4602E-02	598,32887	7.27627
3.35355	07500	42776	08670	45674	94522	2.8655E-02	612 19333	6 50869
3.04760	.07750	42659	08864	46161	94237	3.3228E-02	626,17450	5 84232
2,77799	08000	42546	09056	46641	93947	3.8371E=02	640.26687	5,26121
2.53946	08250	42437	09245	47114	93650	4.4138E=02	654 46531	4,75231
2.32764	28500	42332	09432	47580	93349	5.0587E-02	668 76508	4,30490
2.13888	08750	42230	R9616	48041	93041	5.7781E-02	683,16177	3 91006
1.97012	09000	42131	09798	48496	92728	6.5786E=02	697.65128	3,56040
1.81876	99250	42035	0997A	48945	92408	7.4673E=02	712.22977	3,24972
1.68262	69500	41942	.10156	49389	92083	8.4520E-02	726.89367	2,97280
1.55982	09750	41851	10331	49828	91751	9 5407E=02	741.63961	2 72523
1.44875	10000	.41763	10505	50262	91414	1.0742E=01	756 46446	2,50329
1.34805	10250	41678	10676	50691	91969	1.2066E=01	771 36526	2,30378
1.25653	10500	41595	10846	51115	90719	1.35228-01	786.33921	2,12397
1.17317	10750	41514	11014	51534	90362	1.5121E=01	801 38370	1,96153
1.09706	11000	41436	11180	51949	89998	1.6913E=01	816 49624	1 81443
1.02744	11250	41359	11344	52360	89627	1.8792F-01	831,68987	1.68094
96362	11500	41285	11507	52767	89249	2.08926-01	846 92896	1,55952
90502	.11750	41212	11668	53170	88864	2.3187E-01	862 22978	1,44888
85110	.12000	41141	11827	53569	88472	2.5690E-01	877 59026	1,34785
80141	12250	41072	11985	53964	88073	2.8419E-01	893 00843	1,25542
75554	12500	41904	12142	54355	87666	3.13908-01	908 48242	1,17072
71313	12750	40938	12297	54743	87251	3.4622E=01	924,01044	1.09297
67385	13000	40873	12451	55127	86828	3.8136E-@1	939 59077	1,02146
63742	13250	40810	12603	55508	86397	4.1951E=01	955,22175	95561
60359	13500	40749	12754	55886	85957	4.6091E=01	970,90182	89487
57213	13750	49688	12904	56260	85509	5,0581E=01	986 62945	83876
54283	14000	40629	13052	56631	85051	5 5446E-01	1002 40316	78685
51551	14250	40571	13200	56999	84585	6,0715E-01	1018,22154	73876
49001	14500	40515	13346	57365	84109	6.6419E-01	1034 08322	.69415
46617	14750	40459	13491	57727	83624	7.2589E=01	1049 98687	65273
44386	15000	40405	13634	58086	83129	7.9261E-01	1065 93119	61420
42296	15250	40352	13777	58443	82623	8.6473E=01	1081 91494	57834
40337	15500	40300	13919	58797	82107	9.4265E=01	1097 93689	.54490
38497	15750	40248	14059	59148	81580	1.0268E+00	1113 99584	51371
36768	16000	40198	14199	59497	81942	1.1177E+00	1130,09004	48457
35142	16250	40149	14337	59843	80493	1.2158E+0P	1146 21956	4 5731
33611	16500	40101	14475	60186	79932	1.3217E+00	1162,38265	.43180
32168	16750	40053	14611	60528	79358	1.4360E+00	1178,57872	.40790
30808	17000	40006	14747	60866	78770	1.5583E+00	1194 82756	38548
29523	17250	39961	14881	61203	78172	1.6914E+00	1211 07899	,36443
28309	17500	39916	15015	61537	77559	1.8351E+00	1227,36094	3 4465
	-	-	-	-				

X0290 PCJ = 0.285

RHO = 1.89400

RUN	P	v	UP	US	м	RATE	TEMPERATURE	TIME
27162	.17750	. 39872	.1514A	61869	.76933	1.9900E+00	1243.67210	. 32605
26076	18000	39828	15280	62199	.76293	2.1573E+40	1260.01127	30855
25047	18250	39785	15411	62526	.75638	2.3377E+00	1276.37731	29205
24072	18500	39743	.15541	62852	.74967	2.5324E+00	1292.76908	27650
23148	18750	39702	.15679	.63175	74281	2.7426E+00	1309 18543	.26183
22270	19000	39661	15799	63497	73578	2.9696E+00	1325.62526	24798
.21437	19250	39622	.15926	.63816	.72858	3.2147E+00	1342.08745	23489
20645	19500	39582	16053	64134	72120	3.4795F+00	1358.57091	.22251
19892	19750	39544	.16180	64449	71365	3.76578+00	1375 07457	21079
19175	20000	39505	16305	64763	70590	4.0752F+00	1391 59733	19970
18493	20250	39468	16430	65075	69793	4.4305F+00	1408.15879	18918
17842	20500	39431	16554	.65385	68984	4.8137E+00	1424.66982	17921
17222	20750	39395	16677	65693	68145	5.1653E+00	1441.26979	16975
16631	21000	39359	16800	65999	67290	5.5291E+00	1457 82778	16077
16766	21250	39324	16922	66304	66404	6.1028F+00	1474.47725	15224
15528	21500	39289	17043	66607	65501	6.5550E+00	1491.07649	14413
15013	21750	39254	17163	66908	64571	7.1005E+00	1507.70385	.13641
14520	. 22000	39221	17283	67208	-63616	7.69435+00	1524.34207	12907
14949	22250	39187	17402	67506	62634	R 3414F+00	15/0 00016	12208
13599	22500	39155	17521	67802	.61623	9.0475F+00	1557 64716	11542
13167	.22750	39122	17639	68097	60583	9.8191F+00	157/ 31208	10007
12754	23000	30000	17756	68391	50512	1.06645+01	1500 08305	10302
12358	23250	30050	17873	68682	58410	1 150042+01	1607 66184	0072/
11978	22500	30028	17080	68973	57272	1 26075401	162/ 3//78	09172
11614	22750	18907	18105	69262	56101	1 37275401	16/1 0318/	09172
11265	2/10/00	30777	18220	605/0	50101 5/1807	1 //06264/01	1457 733104	800045
1/2020	2// 25/0	19017	1977/	40875	61653	1 47026401	163/ 12210	07660
10407	24230	39737	10//0	70120	53744	1 77075401	1674 37411	01000
10208	24300	19979	19541	70/03	6 1 A 7 8	1 0//445401	1747 77246	01200
10000	25000	19850	1967/	70495	10666	1 8 7400L T % 1	170/8/3200	00737
.10000	• CONNO	+ 3003C	e 100/4	70003	844003	2 1 2 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2	1724 40007	000000 0007/
804714	167676	. 30021	1000	· / */ 703	40240	C 3401CT01	1741807300	843434 ACC/17
09437	+CJ300	· 30/93	• 10090 10090	71544	1 40//0 //E350	2.3/302+01	1774 78057	10004/
.09174	· 23/30	, 30/00	10110	11700	843230	2 03342 101	1701 070/7	1001/D
00414	.20000	. 30/30	10770	77674	843004 //3857	3 1 1 2 2 C T U I	1/91 03203	04020
8000/3	+ 20230	, 30/12	19230	12014	142073	3 85405401	100/ 00407	.04470
a 8340	.20001	, 30005	14334	12340	84030N	3 0 0 0 0 C 4 0 1	1024 20220	104131 0797(
.00209	.20/54	.30054	19448	./2521	. 30004	4.50000000	1040,00540	.03030
.0/909	.27000	. 38635	1957	.72092	.36/80	4.01032+01	105/ 4/191	.03534
	.27250	. 3860/	19005	,/3163	. 54885	5.41966+01	10/4 039/5	. 43244
.0/5/2	.2/500	.36561	.19775	, 73432	-36915	6 1323E+V1	1090,50/51	. 12405
.0/3/5	. 27/50	.38570	19880	.75700	. 50761	6.9840E+01	1907.11254	.02041
· //185	.28000	. 38532	19987	./3967	.28/25	8.01607+01	1923.01230	, 112434
. 1001	. 28250	. 38507	.20093	.74232	.26495	9.28/16+01	1940.00000	.02190
.06023	.28500	. 58485	.20144	.74497	24166	1.00846+02	1956.55041	101952
.06651	.28750	. 58459	.24394	74760	21736	1.2943E+02	1972,94340	.01721
. 16485	.29000	. 58435	.24409	.75023	19195	1.5684E+02	1989.52250	.01500
.06525	.29250	.58412	20514	.75284	16535	1 9493E+02	2005.66511	01287
.06170	.29500	.38388	.20618	75544	.13748	2.5115E+02	2021,96850	.01081
.06020	.29750	.38366	.20721	.75803	10825	3.4229E+02	2038,22978	.00883
.05875	.30000	.38343	20825	76061	.07736	5.1490F+02	2054,49698	00691

TABLE B-IV

RHO = 1.91400XØ219 PCJ ≠ 0,281 POP PLOT, LN(RUN) = A1 + A2*LN(P-A3), A1 = -6.448715E+00 A2 = -3.540121E+00 A3 = -0. C = 2.400000E = 01 S = 2.500000E = 100REACTION HUGONIOT, US = C + S*UP, CJ DETONATION VELOCITY = 7.638000E=01 HOM EQUATION OF STATE CONSTANTS UNREACTED EXPLOSIVE 2.40000000000E-01 2.0500000000E+00 1.0000000000E-02-0. •Ø, -2.41732675010E+01-1.39872107139E+02-2.37879021477E+02 -1,70729283235E+02-4,16327143692E+01 1,50000000000E+00 3,000000000E=01 5,22466039700E-01 5,00000000000E-05-0. -0 -0. -0. -0. 0. - Ø. DETONATION PRODUCTS -3.91838765932E+00-2.71643821597E+00 2.05342343130E-01 6.61105468088E=02 -3,91459626339E-02-1,60416980796E+00 5,15253186395E-01 8,70181482233E-02 7.11483581354E-03 2.31252628821E-04 6.98197293179E+00-6.22066979658E-01 5.02599390363E-02 1.38984795152E=02-2.09898554653E=02 5.0000000000000E=01 1.00000000000E-01

X0219 PCJ = 0.281 LN(RATE) = C(1) + C(2) * P + ... + C(M+1) * (P**M) C(I=1,12) = 1.4075505136E+03 = 9.8714282915E+04 3.0649779677E+06 = 5.5916067561E+07 6.6670458079E+08 = 5.4576765803E+09 3.1312974566E+10 = 1.2597622279E+11 3.4845587692E+11 = 6.3145764386E+11 6.7508144963E+11 = 3.2273266347E+11 MAXIMUM RELATIVE ERROR AT 2.950000E=01 = 5.033449E=02

XØ219	PCJ =	0,281
POP PLOT,	LN(RUN)	= A1 +

POP PLOT, LN(RUN) = A1 + A2*LN(P=A3), A1 = +6.448715E+00 A2 = -3.540121E+00 A3 = -0. REACTION HUGONIOT, US = C + S*UP, C = 2.400000F=01 S = 2.500000E+00

RUN	P	v	UP	US	Ŵ	RATE	TEMPERATURE	TIME
9.75765	.08500	.41926	.09366	.47415	93252	1.0089E-02	657,22629	18,61415
8.80599	08750	41825	09549	47873	92941	1.1732E-02	671,10324	16,61652
7,97015	09000	41727	P9730	48326	92624	1.3591E=02	685 86487	14,87862
7.23339	09250	41632	09909	48772	92301	1.5689E-02	699.10743	13,36092
6.58174	09500	41540	10085	49214	91972	1.8052E-02	713,22741	12,03071
6,00350	09750	41450	10260	49650	91638	2.0705E-02	727,42153	10 86084
5 48883	10000	41363	10432	50081	91296	2.3679E-02	741 68670	9,82863
5 02940	10250	41279	10603	50507	90949	2.7004E=02	756,02004	8,91507
4 61814	10500	41196	10772	50929	99595	3.0714E-02	770,41880	8,10414
4 24903	10750	41116	10939	51346	90235	3.4847E-02	784,88041	7 38230
3,91692	11000	41038	.11104	.51759	89868	3.9442E-02	799.40244	6,73803
3,61738	.11250	40963	11267	52168	89493	4.4533E-02	813,99763	6,16154
3 34659	11500	40889	11429	52572	.89112	5.0184E-02	828,63112	5.64444
3,10125	11750	40816	11589	52972	88724	5 . 6436E#02	843,31881	5,17952
2.87851	12000	40746	.11748	53369	.88329	6.3343E-02	858,05867	4,76059
2,67588	12250	49677	.11905	53762	87926	7 . 0964E=02	872 84877	4,38228
2 49119	12500	40610	.12060	54151	87516	7.9362E-02	887,68725	4,03995
2.32253	12750	.40545	12215	<u>-</u> 54537	87098	8 . 8605E=02	902.57233	3,72958
2,16824	13000	40481	12367	54919	86672	9 .8767E=02	917.50233	3,44764
2,02685	13250	.40418	12519	\$5297	86238	1.0993E=01	932,47560	3,19106
1,89707	.13500	49357	12669	. 55673	85795	1.2217E-01	947.49057	2,95715
1,77775	.13750	. 40.297	.12818	56045	85344	1.3559E-01	962.54572	2,74354
1.66790	.14000	.40239	.12966	56414	.84883	1.5028E-01	977.63959	2,54816
1,56659	.14250	.40181	13112	56780	84414	1.6636E=01	992,77075	2,36917
1.47305	14500	.40125	13257	57144	,83935	1 . 8395E-01	1007.93783	2,20494
1,38655	.14750	.40070	.13402	57504	. 83447	2 . 0316E-01	1023.13949	2.05403
1,30646	.15090	.40016	13544	57861	.82949	2.2413E-01	1038 37441	1,91518
1,23220	15250	.39964	13686	,58216	82441	2.4702E=01	1053.64133	1,78723
1,16328	15500	.39912	1 3827	58568	.81922	2,7198E=01	1968.93844	1,66919
1.09921	15750	39861	1 3967	58917	81392	2.9919E=01	1084,26567	1,56013
1.03961	.16000	.39811	.14106	5 9264	80851	3.2884E=01	1099,62123	1,45925
98409	16250	.39762	.14243	5 9608	.80299	3.6112E=01	1115,00395	1,36583
.93231	.16500	.39714	1 4380	.59950	.79735	3,9628E=Ø1	1130,41313	1,27922
.88398	1 6750	.39667	.14516	6 0289	,79159	4.3454E=01	1145 84667	1,19882
.83881	.17000	.39621	.14650	.60626	78568	4.7586E=01	1161.32402	1.12411
7 9656	17250	.39576	.14784	.60961	.77967	5,2117E=01	1176,79840	1,05461
.75700	.17500	.39531	.14917	61293	77352	5.7046E=01	1192,29548	.98989
71993	.17750	.39487	.15049	61623	.76723	6.2407E=01	1207.81387	,92956
. 68515	.18000	.39444	.15180	.61951	.76880	6.8236F=01	1223,35232	.87327
.65250	18250	.39402	15311	.62277	,75422	7.4574E=01	1238,90963	82070
.62181	.18500	.39360	.15440	.62600	.74749	8.1466E-01	1254 48455	.//156
. 59296	.18759	.39319	15569	. 62922	.74060	8.8961E=01	1270 07589	.72558
•56579	.19000	.39279	.15697	.63242	73354	9.7113E-01	1285,68244	.00252
.54021	.19250	.39239	,15824	.63559	72631	1.0598E+00	1501 30299	.64217
.51609	.19500	.39200	15950	63875	.71891	1.1563E+00	1316,93637	.60431
.49333	1 9750	.39162	.16076	.64189	.71132	1.2613E+00	1332 58137	.56877
.47184	.22000	.39124	.16200	64501	70355	1.3756E+00	1348 23668	• 53537
.45154	20250	. 39087	.16324	6 4811	69557	1.4888E+00	1363,90364	.50597
43235	.20500	.39850	.16448	.65119	.68739	1.6359E+00	1379,57438	.4/443
_41419	20750	.39014	.16570	.65426	.67900	1,7839E+00	1595,25412	.44661

x0219 PCJ = 0,281 POP PLOT, LN(RUN) = A1 + A2+LN(P-A3), A1 = -6.448715E+00 A2 = -3.540121E+00 A3 = -0. REACTION HUGONIOT, US = C + S+UP, C = 2.400000E=01 S = 2.500000F+00

RHO = 1.91400

39609 21000 38979 16692 65730 67802 1.9551F+00 1410,91686 4203 36871 21250 38944 16813 66033 66155 2.9998E+00 1426,62974 3956 35626 21750 38979 16934 66355 6527 2.144E+00 1426,62974 3956 33671 22000 38842 17173 66632 63355 2.7564F400 1475,1287 3243 32351 22250 38840 17292 67229 62368 5.0011400 1499,41266 3002 32904 22750 38744 17527 67817 60310 3.59224400 1505,10022 2011 29004 22750 38744 1757 67817 60310 3.59224400 1520,8018 2753 29704 22526 38661 17767 6879 5127 4.299494400 1552,7563 3.402 11753 2410 25667 23708 38650 178755 66688	RUN	Р	v	UP	US	W	RATE	TEMPERATURE	TIME
\$871 2125n 389au 16813 66035 66155 2.9998E+80 1426,6297u 3956 35562 21570 38079 16934 66335 65247 2.1144F70 1442,37323 3723 35662 21750 38675 17074 66634 64314 2.5252F+00 1458,0101 3567 32351 22250 38A2 17173 66932 63355 2.7568E+00 1478,71587 3240 32964 22570 38740 17409 67524 61354 3.2669E+00 1507,10822 2911 29964 22750 38746 17409 67524 61354 3.2669E+00 1507,10822 2911 26660 25800 38712 1763 66109 59235 3.9283E+00 1536 40907 2566 26660 25800 38650 17970 66875 55808 51617F+00 1553 2175 24745 38620 17990 66975 55808 51617F+00	.39699	21000	38979	. 16692	.65730	.67042	1.9551F+00	1410,91686	.42039
5526 21500 38909 16934 66335 65247 2.1144E+P0 1442,33223 3722 35062 21750 38875 17054 66634 64314 2.552F+00 1456,01901 3587 33671 22000 38842 17173 66932 65355 2.7560E+00 1476,01147 3294 32994 22750 387744 17527 67817 601314 3.9802E+00 1520,01148 2735 29964 22750 38744 17527 67817 601314 3.9922E+00 1520,01148 2735 27686 23526 38650 17770 66839 52127 4.2989E+00 1557,854097 2266 2660 23500 38650 17875 666875 55808 5.1617F+00 1585,25668 211758 24007 24745 24007 38550 18104 69261 54080 5.6488E+00 1501,4208041 1552 23032 24507 385408 18104 69245 <t< td=""><td>38071</td><td>21250</td><td>38944</td><td>16813</td><td>66033</td><td>66155</td><td>2.0998E+00</td><td>1426 62974</td><td>39566</td></t<>	38071	21250	38944	16813	66033	66155	2.0998E+00	1426 62974	39566
356/2 21750 38875 17054 66632 63355 2.522f+00 1458,81901 3567 33671 22250 38842 17173 66032 63355 2.756460 1473,71567 3243 32351 22250 3876 17409 67229 62366 3.0091E+00 1499,41266 3096 31096 22550 38744 17527 67817 60314 3.5602E+00 1595,1082,2 2911 29904 22750 38681 17643 66199 59235 3.9283E+00 1556,4097 2566 27668 23590 36681 17675 66689 5695 4.7084E+00 1567,85479 2266 25670 23750 38620 17990 66975 55886 51617+07 1583,22668 2117 24745 24000 38590 18174 69261 54604 50468+00 1599,15754 1982 23054 24250 38567 18214 69267 53840 6208144411 <td>36526</td> <td>21500</td> <td>38909</td> <td>.16934</td> <td>66335</td> <td>65247</td> <td>2.3144E+00</td> <td>1442 32323</td> <td>37233</td>	36526	21500	38909	.16934	66335	65247	2.3144E+00	1442 32323	37233
33671 22000 38842 17173 66932 63355 2,756,0E,00 1473,71567 3294 32351 22250 38809 17992 67229 62368 3,0091E+00 1473,71567 3294 31096 22550 38776 17409 67524 61354 3,2694+00 1505,10022 2911 20904 22750 38744 17527 67817 60310 3,5922E+00 1520,80138 2758 28760 23000 38611 17767 68899 58127 4,2089E+00 1552,17583 2410 26660 23500 38650 17875 686875 55808 5117+00 1583,26668 2117 24745 24000 38590 18194 69545 53349 6.208E+00 1599,15754 1982 23083 24250 38502 18444 70110 50722 75149E+00 1640,4041 1657 22191 24750 38670 18218 69545 53349 6.266E+00<	35962	21750	38875	17054	66634	64314	2.5252F+00	1458,01901	.35030
32351 22250 38A00 17702 67229 62368 3.0001E+00 1440,41266 3002 31096 22500 38776 17409 67524 61354 3.2860E+00 1505,10822 2911 20904 22750 3A744 17527 67817 60310 3.5922E+00 1520,80138 2735 27669 23000 3A712 17643 68109 59235 3.9283E+00 1552,17583 2410 26660 235700 38650 17875 68648 56965 4.7084E+00 1552,17583 2410 27074 23500 38620 17090 68975 55808 5,1617F+00 1583,52666 2117 24745 24000 38550 18218 69245 53349 6,2081E+00 1644,80041 1854 23093 24500 38551 18104 69245 53349 6,2081E+00 1644,04200 1708 211 24500 38450 18231 69545 53349 6,2081E+00 1644,04431 1616 22077 24500 38441	.33671	22000	38842	17173	66932	63355	2.756PE+00	1473.71587	.32948
11096 22500 38776 17009 67524 61354 3.2869E400 1505,10822 2911 20904 22750 38744 17527 67817 60310 3.5922E400 1520,80138 2735 28769 23000 38611 177643 66109 59235 3.9283E400 1552,17563 2410 26660 23500 38681 17767 68399 58127 4.2089E400 1552,17563 2410 26660 23500 38620 17992 68975 55808 5.1617F400 1583,52668 2117 240745 24000 38590 18104 69241 54000 5.4488E400 1599,15754 1982 23854 24250 38500 18218 69545 53349 6.2881E400 1630,42908 1733 2191 24750 38572 18556 70390 49343 8.2666400 1646,64201 1616 2191 24750 38445 18656 70690 47916 9.1535	32351	22250	38809	17292	67229	62368	3.00910+00	1489_41266	.30980
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.31096	22500	.38776	17409	67524	.61354	3.2869E+00	1505 10822	,29118
28769 23000 3A712 17643 68109 59235 3.9283E+00 1556.40907 2566 27668 23250 38661 17760 68399 58127 4.2909E+00 1552.17503 2410 26660 233500 38650 17875 58688 5.6055 4.7084E+00 1557.45763 2410 24745 24000 38500 18104 69241 54600 5.6488E+00 1593.52668 2111 24745 24000 38500 18104 69241 54600 5.6488E+00 1614.480041 1852 23003 24500 38531 18331 69828 52057 6.8256E+00 1630.42908 1732 22191 24750 38502 18444 7010 50722 7.5149E+00 1630.42908 1552 22191 24750 38445 18668 70669 47916 9.1535E+00 1677.22122 1400 1945 25500 38445 18668 70649 47916 9.1535E+00 1677.22122 1400 19463 255500 38445 <	29904	22750	38744	17527	67817	60310	3.5922E+00	1520,80138	,27355
2768823250366811776068399581274.2089E+001552.175A324102666023500386501787568088569854.7084E+001567.8547922662474524000385901810469261546005.408E+001599.1575419822474524000385901810469261546005.408E+001599.1575419822385424250385601821869545533496.2081E+001644.80041185423033244500385311833169828520576.825614011630.4298817332219124750385021844470110507227.5149E+001646.0443116162141525000384731855670669479169.15354*001647.2212214062065425500384451866970649493438.2866E+001661.642001505199652550038490188997123449121.1237E+011708.316921209196525500383361910971772416871.3933E+011733.8296111111801826250383361910971772416871.5587E+011774.774.440441805426750382841932672316382161.7500E+011779.202756865130827000382881943472586363791.9731E+011785.998310794158042650	28769	23000	38712	17643	68109	59235	3,92836+00	1536,49097	25685
2666023500386501787568688569854.7084E+001567.8547922602075023750386201799068975558085.1617F+001583.5266821172074524000385901810469261546005.6488E+001599.1575419822385424250385601821869545533496.2081E+001614.8004118542300324500385311831169828520576.8256E+001614.8004116542141525000384731855670390493438.2866E+001661.6420015672467425250384431865670669479169.1535E+001677.2212214061926825500384451866870669479169.1535E+001677.2212214061926825500383631899971498433281.2495E+011723.829611114163926000383631999971498433281.2495E+011723.829611114160182655038336191097172416871.3933E+011739.3162010271639426750383361910971223449121.7508E+011778.2382910271643926500383101921872316382161.7508E+011778.2482910271643926500383361910971423324832.5472E+011861.2827666651530827	27688	23250	38681	17760	68399	58127	4.2989E+00	1552,17583	.24102
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	26660	23500	38650	17875	68688	56985	4.70846+00	1567 85479	.22601
24745 24030 38590 18104 69261 54600 $5.6488E+00$ $1599, 15754$ 1962 23654 24250 38560 18218 69265 53349 $6.2081E+00$ $1614, 80041$ 1652 23003 24500 38502 18311 69828 52057 $6.8256+00$ $1646, 04431$ 1616 2101 24750 38502 18444 70110 50722 $7.5149E+00$ $1646, 04431$ 1616 21415 25000 38473 18556 70390 493433 $8.2866E+00$ $1661, 64200$ 1566 20674 25250 38445 18668 70669 47916 $9.1535E+00$ $167, 22122$ 1400 19965 25500 38416 18779 70947 444400 $1.0131E+01$ $1692, 78015$ 1300 19288 25750 38363 18999 71223 44912 $1.1237E+01$ $1708, 31692$ 1207 16818 26700 38363 18999 71223 44912 $1.1237E+01$ $1708, 31692$ 1202 17424 26500 38310 19218 72044 39984 $1.5587E+01$ $1772, 920275$ 28656 16308 27000 38284 19326 72316 38216 $1.7500E+01$ $1770, 20275$ 28656 16308 27000 38284 19326 72316 36279 $1.9731E+01$ $1800, 95897$ 0716 15784 27250 38232 19434 72586	25679	23750	38620	17990	68975	55808	5.1617F+00	1583,52668	21177
2385424250385671821869545533496.2081E+001614,8004118542308324500385311833169828520576.8256±001636,4298817332219124750385021844470110507227.5149E+001646,0443116652141525000384451856670390493438.2866E+001661,6420015652067425250384451866870669479169.1535E+001677,2212214001996525500384461877970947464401.01316+011692,7801513001996525500383901888971223449121.1237E+011778,3169212001928825750383361910971772416871.3933E+011773,8296111141801826500383361910971772416871.3933E+011770,202750404168542675038284192672316382161.7500E+011770,202750404168542675038284192672316382161.7500E+011770,202750404168542750038284192672316382161.7500E+011770,2027506041578427250382321954272855344702.2355E+011800,9589707161528227500381821975673389304152.9219E+011813,566330583143862800	24745	24000	38590	18104	69261	54600	5.6488E+00	1599, 15754	,19825
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23854	24250	3856P	18218	69545	.53349	6.2081E+00	1614,80041	18541
22191 24750 38502 18444 70110 50722 7.5149E+00 1646.04431 1616 21415 25000 38473 18556 70390 49343 8.2866E+00 1661.64200 1505 20674 252500 38445 18668 70669 47916 9.1535E+00 1677.22122 1400 19965 25500 38418 18779 70447 46440 1.0131F+01 1692.78015 1300 19288 25750 38363 18999 71223 44912 1.1237E+01 1708.31692 1209 18639 26000 38363 18999 71498 43328 1.2495E+01 1723.82961 1114 18018 26500 38310 19218 72044 39984 1.5587E+01 1739.31620 1007 17424 26500 38310 19218 72044 39984 1.5587E+01 1776.20275 6865 16308 27000 38258 19434 72586 36379 1.9731E+01 1785.59831 0796 15784 27250 382807 <	23003	24500	38531	.18331	69828	52057	6.8256E+00	1630,42988	17320
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22191	24750	38502	18444	79110	50722	7.5149E+00	1646 04431	16160
2067425250384451866870669479169.1535E+001677.2212214001996525500384181877970947464401.0131E+011692.7801513001928825750383901888971223449121.1237E+011708.3169212031863926000383631899971498433281.2495E+011723.8296111141801826250383361910971772416871.3933E+011739.3162010021742426500383101921872044399841.5587E+011774.7746469441685426750382841932672316382161.7500E+011770.2027568651630827000382581943472586363791.9731E+011785.5983107961578427250382321954272855344702.2355E+011800.9589707161528227500381821975673389304152.9219E+011816.2827606421480027750381821966273654282593.3787E+011846.8074205211389428500381331996773919260103.9452E+011862.0032604601346728500381092007374182236624.6652E+011877.1509704031305728750380852017874444212095.9551E+011892.24751034612663	.21415	25000	.38473	18556	70390	49343	8.2866E+00	1661,64200	.15055
19965 25500 38418 18779 70947 46440 1.0131E+01 1692.78015 1300 19288 25750 38390 18889 71223 44912 1.1237E+01 1708.31692 1203 18639 26000 38363 18999 71498 43328 1.2495E+01 1723.82961 1114 18018 26250 38336 19109 71772 41687 1.3933E+01 1739.31620 1027 17424 26500 38310 19218 72044 39984 1.5587E+01 1770.20275 0865 16854 26750 38284 19326 72316 36216 1.7500E+01 1770.20275 0865 16854 26750 38284 19434 72586 36379 1.9731E+01 1785.59831 0796 15784 27250 38282 19542 72855 34470 2.2355E+01 1800.95897 0716 15282 27500 38182 19756 73389 30415 2.9219E+01 1816.28276 0649 14800 27750 38182 <td< td=""><td>20674</td><td>25250</td><td>38445</td><td>18668</td><td>70669</td><td>47916</td><td>9.1535E+00</td><td>1677.22122</td><td>14004</td></td<>	20674	25250	38445	18668	70669	47916	9.1535E+00	1677.22122	14004
19288 25750 38390 18889 71223 44912 1.1237E+01 1708,31692 1209 18639 26000 38363 18999 71498 43328 1.2495E+01 1723,82961 1114 18018 26250 38336 19109 71772 41687 1.3933E+01 1739,31620 1027 17424 26500 38310 19218 72044 39984 1.5587E+01 1770,20275 0865 16854 26750 38284 19326 72316 38216 1.7500E+01 1770,20275 0865 16308 27000 38258 19434 72586 36479 1.9731E+01 1785,59831 0796 15784 27250 38232 19542 72855 34470 2.2355E+01 1800,95897 0716 15282 27500 38207 19542 72855 34470 2.2355E+01 1800,95897 0716 14800 27750 38182 19756 73389 30415 2.9219E+01 1831,56633 0582 14338 28000 38158 <td< td=""><td>.19965</td><td>25500</td><td>38418</td><td>18779</td><td>70947</td><td>46440</td><td>1.01316+01</td><td>1692,78015</td><td>.13004</td></td<>	.19965	25500	38418	18779	70947	46440	1.01316+01	1692,78015	.13004
18639 26000 38363 18999 71498 43328 1.2495E+01 1723,82961 1114 18018 26250 38336 19109 71772 41687 1.3933E+01 1739,31620 1027 17424 26500 38310 19218 72044 39984 1.5587E+01 1770,20275 0.865 16854 26750 38284 19326 72316 38216 1.7500E+01 1770,20275 0.865 16308 27000 38258 19434 72586 36379 1.9731E+01 1785,59831 0.791 15784 27250 38232 19542 72855 34470 2.2355E+01 1800,95897 0.716 15282 27500 38207 19542 72855 34470 2.2355E+01 1800,95897 0.716 14800 27750 38182 19756 73389 30415 2.9219E+01 1815,26633 0583 14338 28000 38158 19862 73654 28259 3.3787E+01 1846,80742 0521 138094 28250 38133	19288	25750	38390	18889	71223	44912	1.1237E+01	1708,31692	.12050
18018 26250 38336 19109 71772 41687 1.3933E+01 1739.31620 1027 17424 26500 38310 19218 72044 39984 1.5587E+01 1754.77464 0944 16854 26750 38284 19326 72316 38216 1.7500E+01 1770.20275 0865 16308 27000 38258 19434 72586 36379 1.9731E+01 1785.59831 0796 15784 27250 38232 19542 72855 34470 2.2355E+01 1800.95897 0716 15282 27500 38207 19649 73122 32483 2.5472E+01 1816.28276 0644 14800 27750 38182 19756 7389 30415 2.9219E+01 1815.262 0521 14338 28000 38158 19862 73654 28259 3.3787E+01 1864.80742 0521 13894 28250 38133 19967 ,73919 26010 3.9452E+01 1867.15097 0403 13467 28500 38133 1	18639	26000	38363	18999	71498	43328	1.2495E+01	1723 82961	.11141
17424 26500 38310 19218 72044 39984 15587E+01 1754 77464 0944 16854 26750 38284 19326 72316 38216 17500E+01 1770.20275 0865 16308 27000 38258 19434 72586 36379 1.9731E+01 1785.59831 0796 15784 27250 38232 19542 72855 34470 2.2355E+01 1800.95897 0716 15282 27500 38207 19649 73182 32483 2,5472E+01 1816.28276 0644 14800 27750 38182 19756 7389 30415 2.9219E+01 1816.28276 0644 14338 28000 38158 19862 73654 28259 3.3787E+01 1816.80742 0521 13894 28250 38133 19967 73919 26010 3.9452E+01 1877.15097 0403 13467 28500 38109 20073 74182 23662 4.6625E+01 1877.15097 0403 13057 28750 38085 <td>.18918</td> <td>26250</td> <td>.38336</td> <td>19109</td> <td>71772</td> <td>41687</td> <td>1.3933E+01</td> <td>1739 31620</td> <td>10275</td>	.18918	26250	.38336	19109	71772	41687	1.3933E+01	1739 31620	10275
16854 26750 38284 19326 72316 38216 17500E+01 1770.20275 0865 16308 27000 38258 19434 72586 36379 1.9731E+01 1785.59831 0796 15784 27250 38232 19542 72855 34470 2.2355E+01 1800.95897 0716 15282 27500 38207 19649 73122 32483 2.5472E+01 1816.28276 0649 14800 27750 38182 19756 7389 30415 2.9219E+01 1815.56633 0581 14338 28000 38158 19862 73654 28259 3.3787E+01 1846.80742 0521 13894 28250 38133 19967 73919 26010 3.9452E+01 1877.15097 0403 13467 28500 38109 20073 74182 23662 4.6625E+01 1877.15097 0403 13057 28750 38085 20178 74444 21209 5.5951E+01 1892.24751 0348 12663 29000 38062 2	17424	26500	38310	19218	72044	39984	1.5587E+01	1754 77464	29448
16308 27000 38258 19434 72586 36379 19731E+01 1785.59831 0796 15784 27250 38232 19542 72855 34470 2.2355E+01 1800.95897 0716 15282 27500 38207 19649 73122 32483 2.5472E+01 1816.28276 0649 14800 27750 38182 19756 7389 30415 2.9219E+01 1816.28276 0649 14338 28000 38158 19862 73654 28259 3.3787E+01 1846.80742 0521 13894 28250 38133 19967 73919 26010 3.9452E+01 187.15097 0403 13467 28500 38109 20073 74182 23662 4.6625E+01 187.15097 0403 13057 28750 38085 20178 74444 21209 5.5951E+01 1892.24751 0348 12663 29000 38062 20282 74705 18642 6.8496E+0	16854	.26750	38284	.19326	72316	38216	1.7500E+01	1770,20275	.08658
15784 27250 38232 19542 72855 34470 2.2355E+01 1800.95897 0716 15282 27500 38207 19649 73122 32483 2.5472E+01 1816.28276 0649 14800 27750 38182 19756 7389 30415 2.9219E+01 1831.56633 0583 14338 28000 38158 19862 73654 28259 3.3787E+01 1846.80742 0521 13894 28250 38133 19967 73919 26010 3.9452E+01 1862.00326 0460 13467 28500 38109 20073 74182 23662 4.6625E+01 1877.15097 0403 13057 28750 38085 20178 74444 21209 5.5951E+01 1892.24751 0348 12663 29000 38062 20282 74705 18642 6.8496E+01 1907.28972 0295	.16308	27000	38258	19434	72586	36379	1.9731E+01	1785,59831	07905
15282 27500 38207 19649 73122 32483 2,5472E+01 1816,28276 0649 14800 27750 38182 19756 73389 30415 2,9219E+01 1831,56633 0583 14338 28000 38158 19862 73654 28259 3,3787E+01 1846,80742 0521 13894 28250 38133 19967 73919 26010 3,9452E+01 1862,00326 0460 13467 28500 38109 20073 74182 23662 4,6625E+01 1877,15097 0403 13057 28750 38085 20178 74444 21209 5,5951E+01 1892,24751 0348 12663 29000 38062 20282 74705 18642 6,8496E+01 1907,28972 0295	15784	27250	38232	19542	72855	34470	2,2355E+01	1800,95897	07185
14800 27750 38182 19756 73389 30415 2.9219E+01 1831,56633 0583 14338 28000 38158 19862 73654 28259 3.3787E+01 1846,80742 0521 13894 28250 38133 19967 73919 26010 3.9452E+01 1862,00326 0460 13467 28500 38109 20073 74182 23662 4.6625E+01 1877,15097 0403 13057 28750 38085 20178 74444 21209 5.5951E+01 1892,24751 0348 12663 29000 38062 20282 74705 18642 6.8496E+01 1907,28972 0295	15282	27500	38207	19649	73122	32483	2,5472E+01	1816,28276	.06497
14338 28000 38158 19862 73654 28259 3 3787E+01 1846 80742 0521 13894 28250 38133 19967 73919 26010 3 9452E+01 1862 0326 0460 13467 28500 38109 20073 74182 23662 4 6625E+01 1877.15097 0403 13057 28750 38085 20178 74444 21209 5 5951E+01 1892.24751 0348 12663 29000 38062 20282 74705 18642 6 8496E+01 1907.28972 0295	14800	.27750	38182	19756	73389	30415	2,9219E+01	1831 56633	,05839
13894 28250 38133 19967 73919 26010 3.9452E+01 1862.00326 0460 13467 28500 38109 20073 74182 23662 4.6625E+01 1877.15097 0403 13057 28750 38085 20178 74444 21209 5.5951E+01 1892.24751 0348 12663 29000 38062 20282 74705 18642 6.8496E+01 1907.28972 0295	14338	28000	38158	.19862	73654	28259	3.3787E+01	1846 80742	,05210
13467 28500 38109 20073 74182 23662 4,6625E+01 1877,15097 0403 13057 28750 38085 20178 74444 21209 5,5951E+01 1892,24751 0348 12663 29000 38062 20282 74705 18642 6,8496E+01 1907,28972 0295	13894	28250	38133	19967	73919	26010	3 94526+01	1862 00326	04698
13057 28750 38085 20178 74444 21209 5.5951E+01 1892 24751 0348 12663 29000 38062 20282 74705 18642 6.8496E+01 1907 28972 0295	13467	28500	.38109	.20073	74182	23662	4,6625E+01	1877,15097	04032
12663 29000 38062 20282 74705 18642 6,8496E+01 1907,28972 0295	13057	28750	38085	20178	74444	21209	5.5951E+01	1892 24751	03480
	12663	29000	.38062	20282	74705	18642	6.8496E+Ø1	1907 28972	02952
12284 29250 38039 20386 74965 15954 8.61658+01 1922.27425 0244	12284	29250	38039	20386	74965	15954	8.6165E+01	1922 27425	02445
11919 29500 38016 20489 75223 13137 1.6286E+02 1937.19761 ,0196	11919	29500	38016	20489	75223	13137	1.6286E+02	1937, 19761	01960
11569 29750 37993 20592 75481 10160 1.5748E+02 1952 10301 0149	11569	29750	37993	20592	75481	19160	1.5748E+42	1952 10301	Ø1494
11231 .30000 .37970 .20695 .75738 .07048 2.4498E+02 1966.90355 .0104	11231	30000	37970	20695	75738	.07048	2.4498E+02	1966 90355	.01047

APPENDIX C

EQUATIONS AND COMPUTER LISTING USED TO COMPUTE

FOREST FIRE RATES

Where the explosive burn is fast enough to affect the reactive shock motion, single curve build-up is assumed to apply and the Pop plot is interpreted to give a relationship between pressure and distance for the shock front. Using a reactive Hugoniot for the reactive shock, complete solution may be obtained for the state variables and their time derivatives at the shock front as shown in Ref. 4.

More information is needed to obtain a burn rate function that is consistent with the Pop plot and the reactive Hugoniot data line. The assumption that the pressure gradient at the front is zero was found to be adequate for many purposes. Tables C-I - C-IV show burn rates calculated at various points behind the shock for a growing square wave. The "RUN" entry, which marks the wave position, is the initial distance of the mass point from the detonation point. For example, in each sublist at constant pressure the smallest "RUN" marks the shock front. Tables C-I - C-IV show that the rate varies some, but not drastically, at various points in the wave. Therefore, the assumption that the pressure gradient at the front is zero is about equal to assuming a growing square wave if the rate derived at the front is used throughout the flow. When the shock front approaches the detonation state, the growing square wave is inappropriate and the Forest Fire model ceases to approximate a square wave.

The following equations present a general derivation of the Forest Fire model. The derivation is then restricted to the growing square wave used in Tables C-I — C-IV. It is also restricted to zero pressure gradient at the front to calculate the explosive rates described in Appendix B. The code listing given at the end of this Appendix was written in FORTRAN IV for the CDC-7600 computer. This code was used to calculate the explosive rates in Appendix B.

Nomenclature

Р	= pressure		ρ = density
Us	= shock velocity		I = internal energy
U	<pre>= particle velocity</pre>		W = mass fraction
۷	= specific volume		x = distance
		t = time	

Notation: The Lagrangian "mass coordinates" are

$$\frac{\partial}{\partial m} = \frac{1}{\rho} \frac{\partial}{\partial x}$$

and

$$\frac{\partial}{\partial \tau} = \frac{\partial}{\partial t} + u \frac{\partial}{\partial x}$$
.

The fluid flow equations are

$$U_{T} = -P_{m} ,$$
$$V_{T} = U_{m} ,$$

 $I_{\tau} = -P \cdot V_{\tau}$.

and

The solution of burn rates is consistent with growing reactive shock. Solve for

and

Then solve for W and \textbf{W}_{τ} from

$$P = H (V, I, W)$$

 $P_{\tau}, V_{\tau}, I_{\tau}$.

and

$$P_{\tau} = H_{V} V_{\tau} + H_{I} I_{\tau} + H_{w} W_{\tau} .$$

Notation: Let \hat{P} , \hat{V} , \hat{I} , and \hat{U} be shock front functions. Let $m_s()$ = mass position of the shock so that $m_s(o)$ = 0. Let $t_s(m)$ = time of shock arrival at mass point m.

Note:
$$\frac{d m_s(\tau)}{d\tau} = \rho_0 U_s(\tau)$$

and
$$\frac{d t_s(m)}{dm} = \frac{1}{\rho_o U_s(m)}$$

Assumption: Let $\frac{\partial P}{\partial m} \equiv P_m = f(\tau)$.

Then the shock-pressure wave looks like

The solution of flow equations is

$$P(m,\tau) = \hat{P}(m_{s}(\tau)) + P_{m}(\tau) (m - m_{s}(\tau)) ,$$

$$P_{\tau}(m,\tau) = \left(\frac{\hat{dP}}{dm} - P_{m}(\tau)\right) \frac{dm_{s}(\tau)}{d\tau} + \frac{dP_{m}(\tau)}{d\tau} (m - m_{s}(\tau)) ,$$

$$U(m,\tau) = \hat{U}(m) - \int_{t_s(m)}^{\tau} P_m(t') dt',$$

$$U_{m}(m,\tau) = \frac{\hat{d}U}{dm} + P_{m}(t_{s}(m)) \frac{dt_{s}(m)}{dm} \qquad \begin{bmatrix} a \text{ function} \\ of m \text{ only} \end{bmatrix},$$

$$V(m,\tau) = \hat{V}(m) + U_{m}(m) \int_{t_{s}}^{\tau} dt',$$

$$I(m, \tau) = \hat{I}(m) - U_{m}(m) \int_{t_{s}(m)}^{\tau} P(m, t') dt',$$

$$V_{\tau} = U_{m}(m)$$
,

•.

and

 $I_{\tau} = -P(m,\tau) \cdot U_{m}(m)$.

The reactive shock Hugoniot and shock jump relations are

$$U_{s} = c + \hat{SU},$$

$$\hat{P} = \rho_{o} U_{s} \hat{U},$$

$$\hat{V} = V_{o} (U_{s} - \hat{U}) / U_{s}$$

$$\hat{I} = \hat{U}^{2} / 2.$$

,

and

Then,

$$\hat{U} = -\left(-c + \left[c^{2} + 4V_{o}S\hat{P}\right]^{\frac{1}{2}}\right)/2S,$$

$$U_{s} = -\left(c + \left[c^{2} + 4V_{o}S\hat{P}\right]^{\frac{1}{2}}\right)/2,$$

$$\hat{dP} = \rho_o \left(\hat{SU} + U_s \right) \hat{dU}$$
.

The Pop plot is

$$\ln(\mathrm{run}) = \alpha_1 + \alpha_2 \ln(\hat{P} - P_o)$$

$$\frac{dP}{d run} = \frac{\left(\hat{P} - P_{o}\right)}{\alpha_{2} run (\hat{P})}$$

Then,

$$\frac{\hat{dP}}{dm} = \frac{V_o (\hat{P} - P_o)}{\alpha_2 \operatorname{run}(P)}$$

and

$$\frac{d\hat{U}}{dm} = \frac{1}{\rho_o(S\hat{U} + U_s)} \frac{d\hat{P}}{dm} .$$

The solution for t_s is

$$\frac{d t_s}{d run} = \frac{1}{\begin{pmatrix} \frac{d run}{d t_s} \end{pmatrix}}$$

Thus integrate

$$\frac{dt_{s}}{d run} = \frac{-2}{c + \left[c^{2} + 4V_{o}S\left(e^{-\alpha}1^{\alpha}2_{run} + P_{o}\right)\right]^{\frac{1}{2}}}$$

with initial conditions

$$t_{s}(o) = 0$$

Remember that $m_s = \rho_o run$.

Special integral evaluations are given for $\hat{P}_m \equiv 0$. Here \hat{P} may be used as the independent variable dt' = d $\hat{P}/(d\hat{P}/dt)$. Thus,

(*)
$$\int_{t_s(m)}^{\tau} dt' = \int_{\hat{P}(m)}^{\hat{P}(\tau)} \frac{-\alpha_2 \operatorname{run}(P)}{U_s(P) (P-P_o)} dP$$

and

$$\int_{t_s(m)}^{\tau} P(t') dt' = \int_{P(m)}^{P(\tau)} \frac{-P \alpha_2 \operatorname{run}(P)}{U_s(P) (P-P_o)} dP$$

where

$$\frac{\operatorname{run}(P)}{\operatorname{U}_{S}(P)} = \frac{2 \exp \left[\alpha_{1} + \alpha_{2} \ln \left(P - P_{o} \right) \right]}{C + \left[C^{2} + 4 \operatorname{V}_{o} S P \right]^{1/2}}$$

65

,

The integral (*) can also be used to calculate the time to detonation, ${\rm t}_{\rm DET},$ if the upper limit is set to ${\rm P}_{\rm DET},$ where

$$P_{DET} = \rho_0 D_{CJ} (D_{CJ} - C)/S$$

and

$$D_{CJ} = C-J$$
 detonation velocity

Restriction of the square wave solution ($\hat{P}m = 0$) to the shock front only gives further simplification. In summary, using \hat{P} as the independent variable,

 $ln(run) = \alpha_1 + \alpha_2 ln(\hat{P} - P_o) ,$ $\hat{U} = \left[-C + (C^2 + 4V_o S \hat{P})^{1/2} \right] / (2S) ,$ $U_s = C + S\hat{U} ,$ $V = V_o (U_s - \hat{U}) / U_s ,$

and

$$I = \hat{U}^2/2$$

W is solved from $\hat{P} = H(V,I,W)$,

$$P_{\tau} = (P-P_{o})U_{s}/(\alpha_{2} run) ,$$

$$U_{\rm m} = \frac{-V_{\rm o}^2 (\hat{\rm P} - P_{\rm o})}{\alpha_2 \cdot {\rm run} \cdot (U_{\rm s} + {\rm s}\hat{\rm U})}$$

,

$$V_{\tau} = U_{m},$$
$$I_{\tau} = -P V_{\tau}.$$

and

Finally, we solve for \textbf{W}_{τ} from

 $P_{\tau} = H_{V} \cdot V_{\tau} + H_{I} \cdot I_{\tau} + H_{W} W_{\tau}$.

Temperature is calculated as an additional output of the HOM equation of state.

			TABLE	C-I			
PRX 9464	PCJ = 3 363 MF	349				RH0) = 1.844Ø
POP PLOT,	LN(R) = A +	RALN(P).	= -5,0409	96E+00	B = -1.36	5368E+00	
REACTION HU	GOBIDT, US = C	: + 5×11P, (c = 2,4600	100E-01	s = 2,53	7000E+90	
8UN	P	v	ijP	US	W	RATE	TEMPERATURE
2.040%0	.01500	. 49697	. 02607	. 31197	.99248	1.20165-02	352.34864
5. 20000	91570	50139	02461	30826	98643	1.1513E-02	372.08939
2.40000	P1502	58501	. @2333	34543	.98154	1.11258-02	388,21313
5.62000	P1500	50804	.02221	30220	.97751	1.0816E=02	401.63889
2.80000	. 11500	51460	02122	29968	97412	1 05726-02	412,99791
3.00020	.01500	51279	.02032	.29742	97125	1.0374E .02	422.73805
.99569	.02500	48065	.P3926	.34533	.98327	4.55256-02	399.49584
1.09526	.42558	48668	03718	34906	97335	4 3925E-02	428 72565
1,19483	19560	49957	\$3536	33547	,96529	4.2703E-02	452 82587
1.29440	. 42509	49434	03376	33141	95859	4 1748E=02	473.08033
1,39397	·6526	.49756	. @3233	32779	95295	4 N989E-02	490 37218
1.49354	. 025MD	50034	.03104	,32454	94812	4 0378E-02	545 32972
.62894	63500	.46883	. 05071	.37430	.97242	1.1008E-01	452.26685
.69183	P35110	47485	4813	36777	95888	1 0685E-01	488 51048
.75472	03501	47984	R4587	36205	94783	1 0441E-01	518 57058
.81762	. 03500	48496	.04387	35700	93863	1.0252E=01	543.99477
. 88051	.43500	.48767	.04289	.35248	.93085	1.0104E-01	565.83618
.94348	. 63260	_490A0	.0404R	.34841	.92417	9,9876E=02	584,84324
.44626	. 0450A	. 45969	. 06097	.40025	.96049	2.1418E-01	508,44591
.49088	. 44590	. 46669	\$95796	.39264	94351	2 0909F-01	549 87602
. 53551	.04500	47141	P5532	38597	92962	2.05276-01	584,43009
.58013	• 44500	47591	.05299	.38005	.91802	2.0238F-01	613 80287
.62476	.04500	.47978	.05089	.37476	90819	2.0016E-01	639,16064
• * * 9 3 8	.04500	.48314	.04901	.37000	.89974	1.9846F=01	661.33466
. 33931	• 05582	45232	.07035	42398	.94778	3.6660E=01	566.66045
.37324	. 65508	45898	.06696	41541	92747	3,5978E-01	611,93135
.40717	.25560	46453	.06398	.40788	91082	3.5481F=01	649.85478
.44110	• 0 5500	46923	.06135	40120	89690	3,5116E-01	682,23058
.47503	• P556M	.47327	.05898	.39523	88509	3.4850E-01	710.29777
.50896	.055M	47679	. <i>0</i> 5685	•38984	87491	3.4640E=01	734,97015
.27011	.06500	44619	.07904	44597	93443	5.7660E=01	626,09370
.29712	. 46588	45304	.07531	43652	91087	5.6882E=01	674 12018
.32413	P6500	45875	.07203	,42823	89152	5.6510E=01	714,54379
.35114	. 86588	,46359	.P6911	42086	87535	5,5966E=01	749,15578
.37815	.86564	46775	. ⁰ 6651	41426	.86160	5.5734E-01	779,27922
.40516	. 44260	.47139	₽ ⁰⁶⁴¹⁵	.40830	.84975	5.5595E=01	805.82610
.22217	.07500	.44997	.08718	.46656	92055	8,5429E=01	686,22360
.2443R	· U750A	.44796	. Ø8312	.45630	.89378	8.4695E=01	736 13463
.26660	.07500	45379	.07956	.44730	.87180	8.4280E-01	778,25888
.28882	.87520	.45874	.07640	.43929	.85340	8.4067E-01	814,50376
.31103	.07500	.46391	.07357	43212	. 83774	8.4002E-01	846.16098
,33325	. 97523	.4673	.07100	42564	82424	8.4044E=01	874.15436

PBX 9444	PCJ = 0.363 MB	AR				RHC) = 1.8440
POP PLOT,	LN(R) = A +	R*LH(P), A	= -5.0409	196F+190	8 = -1.365	368E+10	
REACTION HU	GONIOT, HS = C	:+ \$*UP, C	= 2.4600	100E - 01	S = 2.530	1000E+00	
RUN	Р	۷	UP	US	W	RATE	TEMPERATURE
,18727	.08500	43645	.09485	48597	99618	1.21.466+00	746.73005
.20599	.08500	.44356	09050	47498	87625	1.2069E+00	797.73859
.22472	.08500	44948	08668	46530	85165	1 2064E+00	840.98702
24345	.08500	45451	0832A	45671	83104	1.2081E+00	878.33880
.26217	.08500	45885	08024	44900	81349	1.2114E+00	911.07793
.28090	.28500	46264	.07749	44204	79835	1.2158E+00	949 12446
.16988	.09500	. 43249	.10214	. 50441	.89135	1.6583E+00	807,35911
17697	09500	43968	69751	49271	85827	1.6622E+00	858.85671
19306	09500	44568	.03344	48241	.83106	1.6694F+00	902.69982
20915	0.9500	45077	08983	47326	80825	1.6786E+0P	940.70963
22523	09500	45517	98658	46506	78881	1.6881F+00	974.17355
.24132	09500	45900	08365	45764	77205	1.7005E+00	1003 91987
. 14033	. 10500	42897	. 10909	.52199	.87609	2,2112E+00	867-99048
15437	10500	43623	10422	50962	83984	2.2288F+00	919,42239
16840	10500	44229	09990	49874	81003	2.2493E+00	963.40141
18243	10500	44743	09607	48907	78501	2.2705E+00	1001-69856
19647	10500	45187	29264	48039	.76372	2.2946F+00	1035 48710
21050	10500	45574	08954	47254	74532	2.3189F+00	1965.67593
4 - 7 - 4	11500				0.070		
.12394	11500	.42581	·115/4	• 2 2 2 4 2	.05038	2.88496+99	928,52104
13034	.11500	.45515	.11061	.52543	.82N97	2.92471+00	979.40109
14875	.11500	43925	.10608	51439	78852	2.9656E+NN	1023 12860
.10112	.11540	.44442	.10206	.54422	./6132	3. 11962 + 11	1061.55506
,1/352	.11500	.44889	. 19845	49509	.75015	5. 0555E+00	1095,20537
•18241	•115NN	-47280	• 19219	• 4868 S	·/1810	3. N97NE+NN	1125.57214
.11960	.12500	42296	.12214	.55501	.84422	3.6974F+00	988.87914
.12167	.12500	.43032	.11676	•54141	.80161	3.7695E+00	1038,79478
13273	.12500	.43647	.11203	.52944	.76654	3.8458E+00	1081.87465
.14379	.12500	.44168	.107P2	,51879	,73711	3.9212E+00	1119,72410
.15485	12500	.44619	.10404	.50923	.71203	3,99548+00	1153,41635
.16591	.12520	.45012	.10062	.50058	.69036	4.0685F+00	1183,73307
.09957	.13500	42936	.12830	.57061	.82761	4.6692F+00	1949.01350
. 10953	.13509	42776	12270	55643	.78178	4.79236+00	1097 54941
.11949	13500	43394	.11777	54395	74404	4.9164E+00	1139.70656
12944	13502	43919	11338	53284	71237	5.03836+00	1176,92861
13940	13500	44371	19943	52287	68537	5.1580E+00	1210 21112
.14936	13500	44766	19587	51385	66205	5.28802+00	1240 26077
. 19032	14500	41798	13426	.58568	81052	5.82201+00	1108.89939
49935	14540	42542	12844	57095	76142	6.0189F+00	1155 70593
10838	14500	43162	12331	55798	72098	6.2490F+00	1196.64994
.11741	14500	43689	11875	54643	68704	6.4016F+00	1233.00481
12644	14500	44143	.11465	53606	65810	6.5997F+00	1265.67895
13547	14500	40540	. 11094	52668	67309	6.7689F+00	1295.31643
	• • • • • •		• • • • • • •				

PBX 9404	PCJ = 0.363 MB	AR				RHC	= 1.8440
POP PLOT,	LN(R) = A +	B*LN(P), A	= -5.0409	96E+00	B = =1.365	368E+00	••••
REACTION HU	GONIOT, HS = C	+ S≭UP, C	= 2,4600	00E-01	S = 2,530	1000E+00	
DUA	n	V	Lin.		ы	D 4 7 F	TENDEDATURE
RUN	P	v	UP	05	M	RAIL	TEMPERATURE
.08246	.15500	41579	.14003	.60028	7 9295	7 . 1884E+00	1168,47157
. 69676	15500	.42326	.13496	.58501	.74053	7 . 4838E+00	1213,26086
.09895	15560	42948	12868	. 57156	.69734	7.7745E+00	1252,73303
.10719	.1550P	.43477	.12395	5 5959	.66109	8.1206E+00	1288,00999
.11544	.155ev	.43932	.11970	•54884	.63018	8 . 3406E+00	1319.87889
1236 8	·15500	.44331	.11586	. 53912	€0345	8.6051E+00	1348.95790
.07571	. 16500	41377	. 14563	61444	.77486	8.7971E+00	1227.73389
98328	16500	42126	13939	59866	71907	9.2812F+00	1270.18790
09085	16500	42750	13389	58475	67308	9.6665F+00	1307.96916
.09842	16560	43280	12940	57237	63445	1 00765+01	1342 01403
10599	16500	43737	12461	56125	60155	1 04816+01	1372 80005
11356	16500	4/136	12047	55110	57308	1 00376+01	1//// 25048
.11550	• 10 36.4		• 12403	• 11114	• 1/ 5/0	1.007577.401	1401823400
.06986	.17500	41189	.15107	. 62820	.75622	1.0686E+01	1286.66175
P7685	17500	41939	14463	61192	69696	1.1301E+01	1326.57006
08384	17500	42565	13896	59757	64812	1,1920E+01	1362.44128
.09082	17500	43097	13391	58480	60714	1.25158+01	1394.97455
.09781	17509	43555	12938	57332	57218	1.3128F+01	1424.76438
10480	17500	43955	12527	56293	54196	1.3725F+01	1452.22968
•••			••• C 5 C 7			1.01000001	1452,22700
.06476	.18500	41014	.15637	.64161	.73700	1.2950E+01	1345,25338
.07124	.18500	.41766	14974	62483	67423	1.3774E+01	1382 32285
07771	18500	42393	14390	61006	62247	1.4623E+01	1416.07923
08419	18500	42925	13869	59690	57901	1.5359E+01	1447.03138
.09066	18500	43384	13402	58507	54199	1.6371E+01	1475.54264
.09714	.18500	43785	12979	57437	50998	1.7512E+01	1501 99657
06037	10500	40950	14157	45 44 7	71771	1 5/035+01	1//07 //1531
466667	10500	44030	45474	+ 03407 + 77#7	e / 1 / C 1 4 E / 7 9	1.44805401	1403 41321
	19300	41005 400770	· 104/1	+03/43	• 0 3 M / 0	1.00046401	143/ 490/1
• V' / C) C	.19500	42232	.140/1	.02423	• 240KO	1.79146+01	1400,43577
• 0 / 0 3 5	.19520	42765	.145.56	.6/6//	.55/11	1.91346+91	1498,10290
• 10430	14200	.43224	.13855	.54654	.51094	2.03516+01	1525.24027
• • • • • •	•14200	.43620	.13420	•24222	.47705	2.10012+01	1550.6/015
.05629	.20500	40696	.16657	.66742	.69675	1.8529E+01	1461.22001
.06192	.20500	41451	,15957	.64971	.62662	2.0153E+01	1492 04395
. 66755	20500	42080	15340	.63411	56883	2.1849E+01	1521 03017
07318	20500	42614	14791	62021	52032	2.3566E+01	1548.28530
07881	20500	43074	14297	.60773	47890	2.5385E+01	1573.98262
08444	20500	43476	13851	59642	44311	2.7240E+01	1598 20216
06376	21500	10554	17140	47000	675/0	3 105/16+04	1518 61808
+ C)2/)	+ C 1 7 1 M	447331	+1/147	44473	601J0M	2 4 1 7 J 4 C 7 M 1 3 / 2 4 4 5 4 M 4	1210 00040
.4277	•C17M	41341	10452	.001/C	0V10/	2+43102791	1343 76314
. 403 54	.21500	-41457	+15/99	.043/2	.54075	2.0020L+V1	12/2,320/9
• ****57	.21500	.47472	.17236	.0314/	.48954	2. 90846+01	1241.01100
.07584	.21590	.42952	.14730	•h1866	44588	5,1560E+01	1621.69452
• 1 7 9 1 2	.21206	43334	.14272	.60707	.40810	3.3601E+01	1644 66315
CONF O			TABLE	C-II		РНО	- 17150
-------------	---	-------------	-------------	------------	------------	--------------	-----------------------
DOR PLOT.	$P_{LJ} = P_{0} Z R 4$ $I N (91 = A + 1)$	8+1 M(P). A	= -// 38/41	686400	B = =1.501	5456+00	= 1 ₁ /13/
REACTION HE	160NTOT. US = C	+ S*UP. C	= 2.3120	0 0 F - 01	S = 2.500	000E+00	
RUN	P	v	IIP	US.	w	RATE	TEMPERATURE
4.43679	.02000	.51736	.03626	.32164	.98958	6.3454E-03	400.66634
4 88H37	изнри	52268	03450	31725	.98288	6.1176E-03	430.35075
5.32404	."2000	52129	. 113296	.31339	.97742	5.9409E=03	454.59395
5,76771	.N5000	.53082	.03159	.30998	.97289	5.8046E-03	474.81595
6,21138	02000	.53491	.03037	.36692	.96986	5.6969E=03	491.97653
6.65585	.02000	.53677	.02927	.30417	.96579	5.6084F-03	506.74867
2,41352	.03000	50188	.04936	.35440	.97959	2.03528-02	476.07010
2 65487	03000	50700	64708	34870	96933	1.97638-02	516,14336
2.89622	03000	51291	04508	34369	.96893	1.9315E=02	548.97410
3,13758	03000	51717	04330	,33924	95392	1.8967E=02	576.46154
3.37893	030:10	52082	.94170	33526	94798	1.8693E=02	599.88299
3.62028	.03300	52400	.04026	33166	94288	1.8475E-02	620.13102
1.56693	.04020	49046	.00487	. 38317	.96795	4.70028-02	560.53451
1.72362	PADAG	49690	P5816	37639	95414	4.59956-02	608 47218
1.88032	P4P00	59227	45577	37042	94278	4.5240F-02	647.8287P
2.43701	. Р 4 Р 40	50683	05364	36510	93328	4.4667E=02	680 86477
2.19370	04000	51077	05173	36033	,92520	4.4229E=?2	709,09488
2.35040	.04000	51420	05001	35602	.91825	4.3894F-02	733.57439
1.12082	. 05000	48154	.07126	40914	.95501	9.0948E=02	650.80826
1.23290	มรุสสต	48824	26816	40141	93759	8.9673E=02	704 70880
1.34498	45000	49385	06544	39459	. 92323	8 8762E-02	749,02661
1.45706	950:0	49862	06301	38852	91117	8.8336F • 92	786 33559
1.56915	05000	50213	06083	38307	90091	8.7646E-02	818,25126
1.68123	.05000	50633	058AS	.37814	89205	8.7346E -02	845,99336
85240	06000	47428	. 48080	43300	.94094	1.5753E=01	744.82632
93767	реали	48118	07736	42441	91982	1.5647E=01	803.15128
1 02287	.06000	48695	07433	41684	90238	1.5586E • 01	851.14588
1.10811	PADOD	49185	07164	41009	88772	1.55588=01	891.57654
1,19335	. 06000	49609	06921	40402	87521	1.5553E=01	926 26796
1.27859	.06000	49980	06701	39853	,86439	1.5564F=01	956.48409
67627	67000	46822	08967	45518	. 92581	2.5296F=01	841,22286
74389	07000	47525	08592	44581	90091	2.5316E-01	902.59360
.81152	07000	48114	.98262	43755	88030	2.5379E-01	953,16861
87915	07020	48614	07967	43018	86294	2.5472E=01	995 83657
94677	A7000	49047	07702	42355	84810	2.5586E=01	1032,50913
1.01440	. 07000	49426	07462	41755	.83525	2.5714E=01	1064.50910
. 55340	. 08000	46304	. 69800	47600	.99967	3.84536-01	939.00506
60874	08000	47918	49396	46591	88086	3.8773E+01	1002.25576
66408	08090	47615	P9040	45700	85698	3.9121E-01	1054,43398
71942	08000	48123	.08722	44906	83683	3.94852-01	1098.51491
77476	08000	48562	.08437	44192	81959	3.9858E-01	1136.46437
83010	.08000	48947	0817A	43544	80465	4.0235E-01	1169.63630

COMP P PC	J = 0.284					RHC	= 1.7150
POP PLOTA REACTION HUGON	LN(R) = A + (TOT, US = ($B \neq L N(P)$, A + $S \neq UP$, C	= -4.3841	68E+00	B = =1.501	5456+00	
			- 2,510			10 11 1 1. T 11 1.	
RIIN	P	v	11P	115	ĸ	RATE	TEMPERATURE
. 46369	, 1'9290	45855	. 10587	. 49568	. 89253	5,60838=01	1037.47506
.51026	69020	46576	.19157	48491	85967	5.6982F=01	1101.52929
55643		47180	. 19776	47541	83240	5.7874E=01	1154.42700
60280	DONED	47694	09437	46693	80938	5.8751E-01	1199.17907
64917	09000	48138	09132	45930	78964	5.9591F=01	1237.80110
• 69554	6.90110	48527	. UAR55	45238	77253	6.0440E-01	1271,58181
.39584	.13000	.45459	.11336	51439	.87436	7.9203E-01	1136.07773
.43543	.100P0	.46187	.10880	50299	83731	8.1107E-01	1199,94805
47501	19999	46796	.10477	49292	80653	8.2912E-01	1252 79087
.51460	.10000	47314	19117	48393	78053	8.4694F-01	1297.52455
55418	• 10M10	47762	09794	47585	75824	8.6411F=01	1336.17282
,59377	.10000	.48154	.09500	.46851	73888	8.8069E=01	1370,08366
. 34306	.11004	.4519H	.12050	.53226	.85514	1.0903E+00	1234.36866
• 37737	11000	45840	.11570	52026	81374	1.1253E+00	1297.16855
41167	.11000	46453	.11146	50965	77934	1.1593E+00	1349.13526
,44598	11200	.46975	.10767	.50019	75026	1.1917E+00	1393 25952
.4R029	.11030	47426	.10427	49166	72530	1.2229E+00	1431 45619
.51459	.11000	.47820	.10117	48393	.70363	1.2530E+00	1465,03610
.30124	.12000	.44792	.12736	.54940	.83481	1.4700F+00	1332.00966
.33115	.12000	45529	12233	,53682	78892	1.5308E+00	1392 81865
.36125	.12000	.46145	.11788	,52570	75076	1.5890E+00	1443 28552
, 39136	.12000	.46669	.11391	51578	71849	1.6448E+00	1486,23088
.42146	.12000	.47122	.11034	.50684	.69078	1.6985E+00	1523,49376
.45157	.12000	.47518	.10710	.49874	. 66671	1.7489E+00	1556,33984
.26695	.13000	.44506	.13395	.56588	81334	1.9498E+00	1428.61099
,29365	.13020	.45246	.12870	\$5275	76278	2 0488E+00	1486 69879
.32034	13020	45865	.12496	54115	72072	2.1440E+00	1535.03441
.34704	.13000	46391	.11992	53079	68513	2.2331E+00	1576 32246
.37373	.13000	46846	.1161R	.52146	.65461	2.3246E+P0	1612 17467
.40043	.13000	.47244	.11280	51299	.62807	2.4123E+00	1643.89461
.23884	14000	.44246	.14031	.58179	.79966	2.5508E+00	1523,95535
,26272	.14000	44989	.13485	.56813	73524	2.7064E+00	1578 58619
.28661	.14000	.45609	.13002	.55605	68914	2.8541E+00	1624 25044
.31049	.14000	46137	12571	54527	65017	3.0048E+00	1663 29515
, 3343A	.14000	.46593	.12182	•53 556	61670	3.1503E+00	1697 43692
.35826	.14000	.46993	.11830	• 52675	58761	3 . 2916E+00	1727.71857
.21534	.15000	.4400A	.14647	.59716	.76670	3.3001E+00	1617,79534
.23687	.15000	.44752	.14080	58299	.70624	3.5381E+00	1668,28915
.25840	.15000	.45375	.13579	.57047	65597	3.7722E+00	1710.68323
.27994	.15000	.45904	. 13131	. 55928	61346	4.0493E+00	1747,18911
.30147	.15000	.46361	12728	54921	.57697	4.2358E+00	1779,22847
.32300	.15000	.46761	.12363	.54006	54525	4.4660E+00	1807.76716

POP PLOT, REACTION HUG	LN(R) = A + DNIOT, US = C	B∗LN(P), A : + S∗UP, C :	= -4.3841 = 2.3100	168E+04 700F=01	B = -1.501 S = 2.500	15455+00 10005+00	<i>i</i> = 1./150
RUN	P	v	IJP	US	W	PATE	TEMPERATURE
,19545	16000	43788	.15243	.61206	.74136	4.2312E+00	1709.90594
.21499	.16000	44535	.14656	.59740	₀ 67567	4 . 5866E+00	1755.64746
.23454	.16000	4 5158	.1413A	58444	.62108	4 . 9484E+00	1794.33294
.25408	.16000	45689	13675	.57287	.57492	5.3093E+00	1827.88530
.27363	. 16000	.46147	13258	.56244	.53531	5.6782E+PP	1857,52463
.29317	.16000	.46547	12879	.55297	.50089	6.0435E+0H	1884,06518
.17844	.17000	43585	.15821	.62653	.71458	5.38651+00	1800.08371
. 19629	.17000	.44333	15216	.61140	₀ 64345	5.9170E+00	1840,48927
.21413	.17000	.44958	.14681	.59801	<u>,58438</u>	6.4679E+00	1875 . 06378
.23197	17000	45489	14202	.58606	.53445	7,02626+00	1905.34463
.24982	.17000	.45948	.13772	.57529	.49163	7,5981E+00	1932, 30152
.26766	.17000	.46349	.133AØ	•56551	.45442	8,1933E+00	1956.63915
.16377	14000	.43396	.163R4	.64060	.68623	6.8171E+00	1888.14889
18014	.18000	4/11/15	15760	62500	60946	7.6P10E+00	1922.71043
19652	18000	44771	15208	.61121	54575	A. 4251E+00	1952 7953A
21284	18000	45303	.14716	59889	49194	9 28946+00	1979.50610
.22927	18000	.45762	.14271	58779	44579	1.0207F+01	2003.58237
2 4565	.18000	46163	13868	.57771	.40573	1.1173E+01	2025,51289
.15100	19800	. 43220	.16932	.65430	.65623	8.6031E+00	1973.89732
16610	19000	43970	16290	63826	.57360	9.78676+00	2002.15832
18119	19000	44597	15723	62407	54507	1.09886+01	2027.45345
19629	19000	45129	.15216	.61139	44724	1 2340E+01	2050.37367
21139	19000	45589	14759	59996	39769	1.3811E+01	2071.36022
22649	19000	45990	.14344	58959	35461	1.5468E+01	2090.81241
. 13980	20000	- 43055	. 17467	.66766	.62443	1,08856+01	2057-19260
15378	22000	43806	16807	65118	53569	1.2516E+01	2078.79810
.16776	20000	44433	16224	.63660	46220	1.4394E+01	2098,99218
18174	20000	44966	15703	.62358	40023	1.6525E+01	2117.91520
19572	20000	45426	15234	.61184	34709	1.90075+01	2135.74319
20970	20000	45828	14828	60119	30098	2.1872E+01	2152,52339
. 12993	. 21000	42900	.17988	- 68071	. 59071	1.3626F+01	2137.86793
14292	21000	43652	17312	66380	49564	1.6095F+01	2152.44432
15591	21000	41280	16714	64885	41699	1.8998F+01	2167.35883
16890	21000	44813	16179	63549	35068	2.2496F+01	2182,18809
18190	21000	45273	15698	62344	29390	2.6761F+01	2196.68257
19489	21000	45675	15260	61251	24462	3.2118E+01	2210.75515
12116	22000	42755	18498	69346	. 55402	1.71736+01	2215.77841
17728	22000	43508	17804	67614	45127	2.08376+01	2223,06127
14530	22000	44135	17193	66082	36925	2.54258+01	2232.54337
15751	22000	44669	-16645	64713	20AUA	3,1322F+01	2243,13820
16963	22000	45129	.16151	63479	23791	3,9222F+01	2254, 26394
~							

V//20// D/	-1 - 13 -305		TABLE	C-III		рио	- 1 80//6
	J = ₩ ₈ 203 N(R) = A +	SHINCP). A	= = 6 3/171	14F+00	B = = = 2 917	511F+00	- 1.0440
REACTION HUGO	VJOT, IIS = C	C + S×UP, C	= 2,4000	00E=01	S = 2.500	000000	
RUM	p	v	UP	US	W	RATE	TEMPERATURE
-			-			-	
9.49364	.05250	. 44062	. 26772	. 40931	.96839	5.8999E=03	492.44427
10.44300	45250	44371	96617	40543	.95781	5.7128E-#3	513.77132
11.39237	P5250	44632	06478	40196	94890	5.5627E-03	531.71011
12.34173	05250	44858	.06353	39882	94126	5.4406E=03	547.09047
13,29109	05250	45056	.06238	39595	93463	5.3400E=03	560.48058
14.24946	05250	45230	06133	39332	92880	5.25638-03	572,28761
5.70843	. 96259	.43431	.07651	.43128	.95864	1.2696E=02	544.16574
6.27927	06259	43749	07480	42699	94591	1.2341E=02	567,27023
6.85012	P6250	44018	07326	42315	93518	1.2057E-02	586 69686
7.42096	0625 0	44251	07187	41967	92599	1.1827E=02	603 34469
7,99180	P625P	44454	07060	41650	91800	1.1638E=02	617,83519
8,56265	.06250	44634	06943	41359	91098	1.1482E=02	630,61251
3.70220	.07250	42898	.98472	45181	94801	2.4602E=02	598,32887
4 07242	07250	43222	08286	44714	.93306	2.40086-02	622,80652
4,44264	. 07250	.43497	08118	44295	92045	2.3537E=02	643,36664
4,81286	.07250	43735	07967	43917	.90964	2.3158E=02	660.97325
5,18308	.07250	43942	.07828	43571	.90025	2.28496-02	676.29243
5.55330	• ⁰⁷²⁵⁰	.44126	•07702	.43254	.89199	2,2597E=02	689,79835
2.53946	. 28250	.42437	.09245	.47114	93650	4.4138E=02	654,46531
2.79340	.08250	.42767	.09045	.46612	91923	4 . 3252E=02	679 . 95979
3,94735	.08250	.43047	.08865	4 6161	90466	4.2555E=02	701.34574
3.30129	·08250	43288	.08701	45754	89217	4 . 2002F-02	719.64507
3,55524	. 08250	.43499	.08553	45382	88132	4 . 1560E=02	735 55991
3.80919	. 08250	.43685	.08416	4 5040	.87177	4 . 1205E=02	749,58662
1.81876	.09250	. 42035	.09978	48945	.92408	7.46735-02	712.22977
2.00064	,09250	.42369	. 19764	.48410	90438	7.34948-02	738,42675
2,18252	.09250	.42652	.09572	.47930	.88776	7 . 2585E - 02	760.37185
2,36439	.09250	.42896	.09398	.47496	87351	7.1882E=02	779.13185
2,54627	.09250	43109	.09240	.47099	86112	7.1314E=02	795.45879
2.72815	.09250	.43297	.09094	, 46735	.85023	7.08985-02	809.81954
1.34805	.10250	.41678	.19676	.50691	.91070	1.2066E=01	771.36461
1.48286	.10250	.42015	.10450	.50124	88844	1.1930E=01	797,98532
1,61767	.10250	.42301	.10247	.49616	86966	1.1828E=01	820,26809
1.75247	.19250	.42548	.10063	.49156	85357	1.17568-01	839.27829
1.88728	.10250	.42763	.09895	4 8737	8 3958	1.1705E-01	855,78989
5.05508	.10250	42953	.09740	.48351	82728	1.1671E=01	870.33286
1.0274/1	.11250	41359	.11344	.52360	89627	1.8792E=01	831.68955
1.13018	.11250	41699	.11106	.51765	.87133	1.8674E-01	858 47836
1,23293	.11250	41947	.12892	.51230	.85029	1.8599E-01	880.84919
1.33567	.11250	.42235	.10698	50746	83225	1.8558E=01	899,93380
1.43842	.11250	42452	.10522	.50304	.81657,	1.8542E-01	916,49740
1.54116	.1125P	42643	.10359	49898	.8027A	1.8545E=01	931,07912

X0290	PCJ = P.	285								RHO	= 1.8940
POP PLOT.	FW(B)	= A +	5+LN(P),	A =	-6.34	71146+00	8 =	-2.91	7511F+00		
REACTION H	WGDHIOT#	118 = C	+ S×UP,	C =	2.40	10000E-01	s =	2.54	1009E+00		
RUN	Р		v		uР	IIS	Ŵ		RATE		TEMPERATURE
.8014	1.12	250	41072		11985	.53964	. 8/	973	2.84195	-01	893.04830
8815	5 .12	250	41414		11736	53340	. 89	294	2.8392F	61	919 74647
9617	0 12	250	41704		11512	52780	. 8	950	2.8414E	01	942.03711
1.0418	4 17	250	41953		11309	.52273	.80	1940	2.8471E	01	961.02954
1,1219	A 12	250	42171		.11124	51810	.70	193	2.85556	01	977.50051
1.2021	2 .12	250	42363		10954	51385	.7	657	2.8659E	01	991 99318
.6374	2 .13	250	40810		12603	-55508	. 87	397	4.1951F	01	955 22174
7011	7 13	250	41154		12343	54857	8	1315	1 21576		081 70303
7649	1 17	250	41445		12100	5/273	• ··· 	716	/ 2///OF.	- 01	1007 72012
8286	5 17	2512	//1606		11807	• J = C. I J 5 2 7 // //	7.	// 97	4 24075	- 0 1	1003+73712
8023	0 17	250	/1015		1170/	67744	• 7 6	550	4 COTSC-	- 3 4	1070 72000
0145	· · · · · · · · · · · · · · · · · · ·	1274	41713		11794	+ JJE 01	• / (יארכו ייים	4.30002		1030 7 3909
• 4 3 6 1	4 .13	1624	•42100		.1172/	• 72817	• / 4	1046	4,328/14	1 1	1055.04759
5155	1 .14	250	40571		.13200	.56999	. 84	1585	6.07155	01	1018.22153
5670	6 .14	250	40917		12929	.56323	.81	181	6.1407E.	01	1044.25739
6186	1 .14	259	41209		12686	55715	.78	309	6.2130F	10	1065.88104
.6701	6 .14	250	41461		12466	55165	.7	846	6.2823F	01	1084.27879
.7217	2 .14	250	41680		12265	54662	. 7	708	6.3601E	0 1	1100.17168
7732	7 14	250	41874		12080	54201	7	828	6 4374F	01	111/ 15017
•••••	••					• 0~C01	• • •	020	0.45746		1114013011
.4229	6 _15	250	40352		13777	.58443	.82	623	8.6473E-	01	1081.91480
.4652	6 .15	250	49698		13496	.57741	.78	873	8.8083E	01	1107 33238
5075	6 .15	250	40992		13244	57111	.79	709	8.9646E.	01	1128.41304
5498	5 .15	250	41244		.13016	56540	.7	999	9.1284E	01	1146.28133
5921	5 .15	250	41464		12808	56019	.79	643	9.2890E-	01	1161.74471
6344	4 .15	250	41659		12616	55540	66	573	9.4464E	01	1175.33177
. 3514	2 . 16	250	40149		14337	59843	. 80	493	1.2158F4		1146.21968
3865	6 .16	250	40497		14047	59117	.76	370	1.247864		1170 87208
4217	P .16	250	40701		13786	58465	72	805	1 280354	aa	1191 24159
//568	F 14	250	11011		17550	· JU403		046	1 213164		1200 6176/
, 4 3 6 6	0 14	250	// 1 7 4 5		1222/	67775	.0.	10	1 2// 2054		1227 1/215
5371	7 10	350	.41203		+ 1 3 3 3 4	E71333	• 0 1 4 0	320	4 777754		1223.44213
• 5271	5 •10	2.34	* 4 T 4 3 4		•13130	• 2004¥	.0	55	1.3/3/64	. 4 1 41	1230 8 33004
,2952	3 .17	250	.39961		.14881	.61203	.78	171	1.6914E+	00	1211.07945
3247	5 .17	250	40329		14581	60454	.73	650	1.7531E+	00	1234,78017
3542	8 .17	250	40604		14312	59781	. 69	836	1.8135E+	10	1254.35334
3838	Ø .17	250	40858		14068	59171	.66	568	1.8726E+	00	1270.92060
4133	2 .17	250	41079		13846	58614	. 67	729	1.9308F+	00	1285.22606
4428	4 17	250	41274		13641	58103	. 61	234	1.988764	ิตต	1297.78615
	•••	2.51	• * 1 C. / *		• 1 3041	• U.114.0	•01	234	1.00707	•••	1277 (1017
.2504	7 .18	250	.39785		.15411	.62526	.75	638	2.33776+	96	1276,37767
,2755	2 .18	250	.40135		.15102	.61754	.70	680	2.44768+	90	1299,03085
.3005	6 .18	250	49439		.14824	61061	.66	500	2,5559E+	00	1317.69071
3256	1 .18	250	40684		.14573	69433	.62	918	2.66346+	90	1333.46243
.3506	6 .18	250	40906		14344	59859	. 59	807	2.7715E+	99	1347.08065
3757	1 .18	250	41101		.14133	59332	.57	075	2.8744E+	00	1359 00759
• • • • • •			• • • •				• • •	. –			

X0290	PCJ = 0.285					RHC	1.8940
POP PLOT,	1.4(R) = A +	R*LN(P),	A = -6.3471	14E+00	8 = -2.917	511E+00	- 1.0740
REACTION HH	CONINT, US = C	+ S*UP, 0	C = 2,4000	00E=01	S = 2.500	IOPAE+AA	
RUN	ħ	v	UP	US	w	RATE	TEMPERATURE
.21437	19250	.39622	15926	.63816	.72858	3.2147E+00	1342.08770
,23581	.19250	39972	15609	.63022	67426	3.4456E+00	1363.56058
.25724	,19250	40268	15324	.62309	62846	3.5973E+00	1381,20737
.27868	19250	40522	15065	61663	58922	3.79236+00	1396, 11779
30012	19250	40744	.14829	61073	55518	3.9801F+00	1408.94189
.32156	19250	40939	14612	69531	52526	4 1722E+00	1420.20561
. 18493	20250	. 39468	. 16430	- 65075	. 69793	4.43056+00	1408 15881
20342	20250	39819	16104	64259	63844	4.7383E+00	1428 31273
22191	20250	40115	15811	63527	58826	5 07736+00	1/1/1 87017
24040	20250	4/370	15545	62863	54532	5-41318+00	1/158 70028
25890	29250	40591	15303	62257	50803	5 76065400	1430 01500
27739	20250	40787	15080	61700	47527	6 11/185 AMA	1/01 76157
•••		• • • • • • • • •	• • • • • •		• • / JE /	0.11405460	1401.37137
.16966	.21250	.39324	.16922	.66304	.66404	6.1028E+00	1474.47670
.17673	.21250	.39675	16587	65467	59882	6.6177E+00	1493.23824
.19280	.21250	.39972	16286	64716	54386	7.1998E+00	1508.58778
.20886	.21250	40226	.16014	64035	49680	7.8119E+00	1521.51917
.22493	.2125P	. 40448	.15766	63414	45595	8.4516E+00	1532.65472
.24100	.21254	. 40644	.15537	62843	42008	9.1197E+00	1542 41453
.14049	.22250	. 39187	.17402	.67506	.62634	8.3414F+00	1540,99019
.15454	22250	39539	17060	66649	.55478	9.30428+00	1558.25690
.16859	22250	39836	16752	65879	49449	1.03445+01	1572.35713
18264	22250	40091	16473	65182	44289	1.1469F+01	1584.21686
.19669	.22250	40313	16218	64545	39811	1.2686E+01	1594.42043
.21074	22250	40509	15984	.63960	.35874	1.4037E+01	1603 40848
.12358	.23250	. 39859	. 17873	- 68682	58410	1.1590F+01	1607 66183
13594	23250	39411	17522	67806	50550	1.32645+01	1623 33020
14830	23250	39708	17207	67018	43928	1 51646+01	1625 33024
. 16266	23250	39963	16922	66304	38263	1 73105+01	16/6 9/2/7
.17301	23250	42185	16661	. 65653	22241	1 98275+01	1656 12180
.18537	23250	40381	16422	65054	29055	2.2729E+01	1664,25637
. 10929	24250	38937	. 18334	69835	53652	1 62055401	167/ 37/10
12022	24250	30280	17075	68030	1/1000	1 07105401	10/483/410
13115	2/1250	39587	17457	6817/	.44790	2 20585401	1000 30403
14208	2//250	308/12	17740	67/04	B 37712	2 2 2 7 3 0 2 7 1	1044 /0203
15301	- C 4 2 3M	10042	17005	667484	.314/3	2 7403C+01	1/04 30425
1630/	+ C 4 2 3 M	10240	16050	00/3n	.20001	5.51296+01	1/1/ 66565
.10,174	• C 4 C J VI	. 41/201/	• 1003V	.00120	.21311	4.05022+01	1/24 94358
.09714	.25250	.38821	18786	.70965	.48246	2.3401F+01	1741.07503
.10685	.25250	.39174	18420	.70050	.38696	2.9112E+01	1753,34774
.11657	.25250	.39472	.18091	69228	.30661	3.6677E+91	1763.30863
12628	•22522P	.39727	.17793	.68482	23772	4.7392E+01	1771.75492
.13599	.25250	.39949	,17521	67802	.17803	6.3355E+01	1779,02285
. 14571	·22220	40145	.17271	.67176	.12563	8.9946E+01	1785,43636

V / 210	001 - 0 201		TABLE	E C-IV		DH	- 1 01/0
POP PLOT,	LN(R) = A +	8*LN(P), A =	-6,4487	15E+00	B = -3.540	1216+00	1 - 194146
REACTION HUG	ONIOT, $HS = C$	+ S*UP, C =	2.4000	100E=01	s = 2,500	00000+00	
RUN	P	v	UP	IJS	W	RATE	TEMPERATIJR
9,75765	.08500	.41926	.09366	.47415	,93252	1.00896-02	657.22629
10,73341	.08500	42196	09199	46996	.91750	9.8430E-03	677.08086
11,70918	UA500	42426	09048	46619	.90478	9.6451E=03	693.77218
12.68494	.08500	42624	.08911	.46277	.89384	9.4842E=03	708 07757
13,66071	.08500	42798	.98786	.45964	.88430	9.3521E=03	720,53152
14,63647	.48500	.42951	.08671	45676	.87588	9.2427E-03	731.51762
6,58174	.09500	.41540	.10085	.49214	.91972	1.80526-02	713.22741
7,23992	09500	.41A13	09907	48768	.90265	1.7676E=02	733,40858
7,89809	09543	42045	\$9747	48367	88820	1.73768-02	750.34719
8,55626	09500	.42245	09601	48003	87576	1 . 7135E-02	764.84690
9.21444	09590	42421	.09468	47670	86490	1.6934F=02	777.48013
9,87261	.09500	.42576	.09345	.47363	₽ ⁸⁵⁵³⁴	1.67748-02	788,59519
4.61814	.10500	.41196	.10772	.50929	.90595	3.07146-02	770.41834
5 07995	10500	41472	10583	.50458	88672	3.0272E-02	790.69770
5,54177	10500	.41706	10414	59035	.87043	2.97776-02	807.70371
6,00358	10500	41929	18260	.49650	.85643	2.9455E • 02	822,22622
6,46539	10500	42986	.10119	49298	.84422	2.9198E-02	834.84796
6,92721	.10500	•42242	. N9989	.48974	. 83346	2.89956-02	845,96859
3.34659	.11500	40889	11429	52572	.89112	5.0184E=02	828,63091
3,68124	.11500	41166	11231	.52077	86962	4.95426-02	848,79804
4 01590	.11500	41402	.11053	5 1632	.85142	4.90546-02	865.66684
4.35056	.11590	41696	.10891	. 51227	.83576	4 . 8683E=02	880,06928
4.68522	11500	41784	.10743	.50857	. 82211	4 . 8402F - 02	892,57438
5,01988	.11500	.41942	19697	.50517	.81008	4.8193E=02	903.58455
2.49119	.12500	40610	12060	.54151	.87516	7.9362E-02	887.68718
2.74031	12500	40890	11853	53633	85126	7 . 8708E-P2	907.56348
2.98943	12500	41127	.11667	53167	.83192	7.8248E-02	924,15679
3,23854	12500	41332	.11498	.52744	81361	7.7937E=02	938,30481
3.48766	12500	41511	11343	•2357	.79843	7.77406-02	950.57637
3,73678	.12500	41669	11200	.52000	. 78506	7.7633E=02	961.37308
1.89707	.13520	.40357	12669	.55673	.85795	1.22176-01	947.49057
2.08677	13500	40638	12453	55133	.83149	1.2177F=01	966,90683
2.27648	13590	40877	12259	54647	.80908	1.2160E=01	983,08392
2.46619	13500	41082	12082	5429.6	78982	1,2160E=01	996.85634
2.65589	13590	41262	11921	53802	.77302	1.21736-01	1008.79001
2.84560	.13500	41421	.11772	53431	"7582Ø	1.21836-01	1019.30897
1.47305	,14500	40125	13257	.57144	.83935	1.8395E=01	1007.93779
1.62035	14500	40407	13033	56583	.81016	1.8436E=01	1026.74001
1.76766	14570	49647	.12831	56078	78545	1.8501E=01	1042.37269
1.91496	14500	40853	12648	55619	.76418	1.8566E=01	1055.68564
2.06227	14500	41034	12480	55200	74568	1.8668E=01	1067.17259
2.20957	14500	41193	12325	54813	72936	1.8778E=01	1077.27086

ŧ

X0219 PC	CI = 0.281					RH) = 1.9140
POP PLOT,	LN(P) = A +	B*LN(P), A	= -6,4487	156+00	B = -3.540	121E+00	
REACTION HUGON	VIOT, US = 0	: + S*UP, C	= 2,4000	00E=01	s = 2,500	1020E+00	
RUN	P	v	UP	us	W	RATE	TEMPERATURE
1,16328	.15500	. 39912	.13827	- 58568	. 81922	2.7198F=01	1048 07881
1.27960	15500	40195	13595	.57987	.78710	2.74265-01	1086 98623
1,39593	15500	40435	13385	.57463	75991	2.7659F=01	1101.97174
1,51226	.15500	40642	.13195	56988	73655	2.7930E=01	1114.66922
1.62859	·15500	40823	13021	56553	71619	2.8207E-01	1125.65338
1.74491	.15500	40983	12861	56153	.69824	2.8487E=01	1135.30015
.93231	.16500	.39714	14380	.59950	.79735	3.9628E=01	1130.41263
1,02554	.16500	39998	14140	59349	.76208	4.0218E-01	1147.58612
1,11877	.16500	.40239	13923	58808	73225	4.0849E=01	1161 78441
1,21200	.16500	. 40447	13727	58317	.70660	4.1477E-01	1173.82256
1.30523	16500	40.628	.13547	•57867	.68428	4.2144E-01	1184,19837
1,39846	.16500	40788	13381	• 57 4 5 3	.66456	4.2718E-01	1193,34561
.75700	.17500	.39531	.14917	.61293	.77352	5.7046E=01	1192,29586
.83270	·17500	.39816	14669	69673	73487	5.8394E=01	1208.44705
.98840	.17500	.40057	.14446	60115	70217	5.9722E-01	1221 79262
.98410	.17500	40265	.14243	59648	67405	6.1029E-01	1233 08568
1.05980	.17500	.40447	14058	.59144	64958	6.2287E-01	1242 80860
1.13550	.17500	40607	.13887	.58716	.62798	6.3604E=01	1251.37490
.62181	.18500	.39360	.15440	62600	.74749	8.1466F=01	1254.48484
.68399	.18500	.39646	.15185	61962	70515	8.4123E-01	1269.53362
.74617	.18520	.398A7	.14955	61387	.66932	8.6736E=01	1281.93410
∎ 80836	.18500	40096	.14746	60865	.63854	8 9322E=01	1292.41017
.87054	18500	.40277	14555	.69387	.61172	9.1904E=01	1301.44561
,93272	18500	.40438	.14379	•59947	58808	9.4502E=01	1309,37694
.51609	.19500	.39200	15950	.63875	.71891	1.1563E+00	1316-93657
.56769	.19590	39486	15688	63219	67254	1.2063E+00	1330.77775
.61930	.19500	.39728	.15451	62628	63332	1.2560E+00	1342,15510
.67091	1 9500	.39937	.15236	.62091	59961	1,30615+00	1351.76121
.72252	.19500	.40119	.15040	.61599	.57028	1.3539E+PA	1360.01833
.77413	19500	.40279	.14859	.61147	• 54443	1.4024E+00	1367 26217
.43235	20500	.39050	.16448	65119	.68739	1.6359E+00	1379.57450
.47558	.20500	.39337	.16178	64445	.63662	1.7277E+00	1392,11631
•51882	.20500	.39579	.15935	63838	59366	1 A212E+00	1402.41169
. 56245	22590	.39788	15715	63287	55679	1.9121E+00	1411.06393
• 60253	.20500	. 3997И	. 15513	.62782	52467	2 00506+00	1418.52260
64852	.70529	40131	.15327	.62318	49638	2.09826+00	1425 05765
.36526	.21500	.38909	.16934	.66335	.65247	2.3144E+00	1442.32329
.40179	.21500	.39196	16658	65644	59682	2.4820E+04	1453 49153
.43832	.21509	39439	.16409	65022	54979	2 6502E+00	1462 61417
.47484	.2150P	.39648	.15182	64456	.50938	2 A239E+00	1470 29803
.51137	.21500	.39830	.15976	63939	07420	3.0016E+00	1476 91041
.54790	.21500	.39991	. 15785	.63462	44324	3.1832E+00	1482 70392

XAZIA	PCJ = 0.281					вна	= 1.9140
POP PLOT,	LN(R) = A +	B*LN(P), A	= -6.4487	15E+00	R = -3.540	1216+40	•••••
REACTION HU	IGANIAT, US = $($	C + S×UP, C	= 2.4000	100E - 01	S = 2.500	HODE + OO	
R(IN	р.	v	ιp	US	W	RATE	TEMPERATURE
.31096	.22500	.387/6	.17409	.67524	.61354	3.2869F+00	1505, 10823
34206	22500	39963	.17126	66816	55251	3.5864F+00	1514-81109
. 37316	22500	39306	16872	.66179	50092	3.9019F+00	1522 73629
40425	22500	39515	16640	65600	45661	4 2335F+00	1520 20070
43535	22500	39698	16428	65070	41805	4 5820F+00	1535 13211
46645	22500	39858	16233	64582	38413	4 9480E+00	15/0 15240
	• E C J + 17		• 10: 33	.04302	* 20413	4 4 7 4 D W [, 4 W W	1244.012540
.26666	.23500	3 8650	.17875	68688	56985	4.7084F+00	1567 85478
. 29 526	.23500	. 38938	17586	.67964	.54282	5.25326+00	1576 02541
.31992	.23500	.39181	. 17325	.67312	44615	5.8533E+00	1582.69979
• 34658	.23500	. 39390	.17088	•99150	.39749	6.50928+00	1588,30755
.37324	.23500	39572	.16871	. 66177	35518	7.2270E+00	1593,12744
.39989	.23500	.39733	. 16671	•65678	. 31783	8.0446E+00	1597.42229
.23403	.24500	. 38531	.18331	.69828	.52057	6.82568+00	1630,42988
25303	24500	38819	18035	69089	44672	7.8621F+00	1637.04433
.27694	24500	39962	.17769	68422	38434	9.45545+00	1642.42978
29994	24500	39271	17527	67817	33081	1.0440F+01	1646.94892
32204	24500	39454	17305	67263	28412	1.2114F+M1	1650.91522
34505	.24500	. 39614	.17101	.66752	.24309	1 4105E+01	1654,38810
10965	25500	38/118	18770	700117	16/10	1 01715+01	1603 78430
21962	25500	39706	+ + + + + 7 7	70101	20304	1 31955401	1692 10020
+21702 22058	+CJJVV	- JO / MO	104//	- / Y 1 4 1	+ 30C00	1 (7575+01	109/8//019
35055	- C 7 3 9 M	- 30444	+10244	e 0 7 0 1 1	e 21401	1.4/536.401	1705 73/77
17050	.25544	.39130	1/95/	.00073	e 73484	1.01296.00	1/05.326/3
.21937		. 34 34 1	1//51	.00327	.24334	2.20521+01	1708.54000
• 24448	.22214	. 34241	.1/522	.0/8/6	·15006	5.44845+01	1/11.02414
.17424	.26500	.38310	.19218	.72044	.39984	1.5587E+01	1754 77480
,19166	.26500	.38598	.18910	71274	.36949	2.0031E+01	1758,11592
.2490A	.26500	•36845	.18632	70580	.2331A	2.6541F+91	1760,89672
.22651	.26500	.39051	.18380	.69949	.16757	3_6863E+01	1763,26842
,24393	.26540	39233	.18149	.69372	.11056	5.58406+01	1765,36729
. 26135	. 26569	.39394	17936	68840	.06039	1.02285+02	1767.27199
- 15282	.27500	. 38207	19649	. 73122	- 32483	2.5472F+01	1816-28267
16811	27500	38496	19335	72337	22420	3.6931F+01	1817.98213
18339	27540	38739	19052	71629	.13922	5.9451E+01	1819, 42666
19867	27590	389/10	1870/	70986	06628	1 250/16+02	1820 72006
•1/00/	• • • 5 114		• • • • • •			1.200-0100	1010471000
.13467	.28590	.38109	.20073	.74182	.23662	4.6625E+01	1877.15081
.14814	.28500	58398	19753	,73381	.12393	8.9442E+M1	1877.20041
.16161	.28500	,38642	.19464	. 72661	.02881	3.80876+02	1877,34143
.11919	.29500	.38016	.20489	.75223	.13137	1.62865+42	1937.19734

LASL Identification No. LP-0601

```
PROGRAM FFIRE( INP, OUT, PUN)
 1
 2
         CHARLES & FOREST, JAN 1976
       С
 3
       C
 4
       С
 5
         CODE CONTROL INPUT, THE FIRST TWO CARDS
       С
 6
       C---
                                                          7
       С
          JPUN(I=1,4), JDBUG = INTEGER FLAGS, FORMAT(1216)
 8
             JPUN(1), NE. 0, PUNCH COEFFICIENTS, W = POLYNOMIAL( U )
       С
 9
             JPUN(2), NE.0, PUNCH COEFFICIENTS, LN(RATE)=POLYNOMIAL(LN(TEMP))
       С
             JPUN(3).NE.0, PUNCH COEFFICIENTS, W = POLYNOMIAL( P )
JPUN(4).NE.0, PUNCH COEFFICIENTS, LN(RATE) = POLYNOMIAL( P )
10
       C
11
       C
             JDBUG, NE, Ø, TURN ON ERROR EXIT PRINT IN DIFFHOM AND SOLVEWT
12
       C
13
       C----
         PSTART, OLLP, PSTOP = PRESSURE GRID CONTROL, FORMAT(651)
PSTART = MINIUM PRESSURE TO TRY IN RATE CALCULATION
14
       С
                                                       FORMAT(6F12.6)
15
       С
             PDELP = PRESSURE INCREMENT
16
       С
17
             PSTOP = MAXIMUM PRESSURE FOR RATE CALCULATION
       C
18
       C = = =
                                                            -----
19
       C END OF CODE CONTROL INPUT
20
       С
21
       C
22
       C INPUT FOR EACH EXPLOSIVE MATERIAL
23
       C-
                                                 24
       C LABEL(I=1,8) = HOLLERITH DESCRIPTION, FORMAT(8A10)
25
       C---
26
       C HUG(I=1,4) = COEFFICIENTS FOR (US,UP) RELATION, FORMAT(6F12.6)
             US = HUG(1) + HUG(2) + UP
27
       C
28
       C
29
             PHSW IS CALCULATED BY THE CODE FROM THE HUG(I=1,4) INPUT
       С
30
       C---
31
       C POP(I=1,3) = COEFF. FOR (DIST., PRESS.) RELATION, FORMAT(6F12.4)
             LN(DISTANCE TO DETONATION) = POP(1)+POP(2)*LN(P=POP(3))
32
       C
33
       C ----
34
       C RHG, HSCJ = INITIAL DENSITY, DETONATION VELOCITY, FORMAT(6F12.6)
35
       C - - - -
36
       C SX(I=1,23) = HOM EOS CONSTANTS FOR SOLIO EXPLOSIVE, FORMAT(4F18,11)
37
       C ----
38
       C GX(I=1,17) = HOM CONSTANTS FOR DETONATION PROUDCTS, FORMAT(4E18_11)
39
       C -
40
       C END OF INPUT FOR EACH EXPLOSIVE MATERIAL
41
       ٢.
42
       C
43
       C JOB TERMINATION CARD, FOLLOWS LAST MATERIAL
44
       C •
                                                             45
       C END PUNCHED IN COLUMNS 1-3 CAUSES NORMAL EXIT , FORMAT(A10)
46
       C = 4
                                                          47
          END OF INPUT DECK
       C
48
       С
119
       С
50
       С
51
             EXTERNAL OTDPF
52
       C
53
             DIMENSION JPUN(4)
             COMMON / PBUG / JOBUG
54
55
       C
56
                COMMON BLOCK FOR COEFFICIENTS TO HOM EQUATION OF STATE
       С
57
             COMMON /HOMC / SX(23), GX(17)
```

E 0	~	CY - C C NEW CA CA E C M T T L'ANNA CY VIA ALDUA SDA USD
20	L	5x = C/5/V5W/L1/514F/G/H/1/J/GAMMA/CV/V0/ALFMA/3FA/U3F/
59	C	TØ, PØ, 2*YØ/3, MU, PLAP, SPALL P, MINV
60	С	GX = A,B,C,D,E,K,L,M,N,O,Q,R,S,T,U,CV,Z
61	r	
42	ř	ADDAYS FOD SHOCK FOONT CALCULATION
	i,	ARRATS FOR SHOCH FRONT CALIDEATION
6.5		LIMMON /SHULK/ RHO, VM, PUP(3), HUG(4), PHSW, LABEL(8), VV(10),
64		1 0H0M(3)
65	C.	ARRAYS FOR SAVING SOLUTION POINTS
<u> </u>		DIMENSION HY/EAR DY/EAR HY/EAR HY/EAR DY/EAR DY/EAR
	•	DIMENSION MACHUNI, PACHUNI, VACHUNI, MACHUNI, MACHUNI, MACHUNI, MACHUNI,
67	L	ARRAYS FOR LEAST SQUARES RUUTINE
68		DIMENSION XX(300), XXX(300), YY(300), YYY(300), WGHT(300),
69		A YYP(300), DELY(300), COEF(30), SB(30), TT(30), CC(30), SC(30),
70		A A(30.30) ST(30) BB(30)
<u>/·</u>	· · ·	# #(3//3/)/ 3/(3/)/ 00(30)
/1	C	
72		DATA RUNMX / 10. /
73		DATA DEL / 0.002 /
70	r	
75	č	
17	L	READ CODE CONTROL CARDS
76		RFAD 9003, (JPUN(I),I=1,4),JDBUG
77		READ 9000, PSTART, DELP, PSTOP
78	r	
70	ĉ	
14	L	PRINT OPTIONS SELECTED
80		Dn 110 I=1,4
81		IF(JPUN(I) _E9_ 0) GO TO 110
85		PRINT 9106
A L		PDTNT 9124
0.7		
34		IF() .EU. 1) PRINT 9111
85		IF(I _FQ_ 2) PRINT 9112
86		IF(I _EQ_ 3) PRINT 9113
87		TECT FO. 4) PRINT 9114
00		
00		FRINI 7100
<u>8</u> 9	110	CONTINUE
90		IF(JOBUG _GT_ 0) PRINT 9120, JDBUG
91		PRINT 9106
0.2		
76		FRINT 7113 FSTART, VELF, FSTUP
95		PRINT 9106
94	С	
95	С	BEGIN MAIN MATERIAL LOOP
96	1000	CONTINUE
07		
41	-	READ YOULD (LADEL(1)) 1=1,0)
98	C	
99	С	NORMAL EXIT
100		IF(LABEL(1) .EQ. 3HENO) RETURN
01	r	
	C	
ne		READ 9000, $(HUG(I), I=1, 4)$
03		READ 9000, (POP(I),I=1,3)
04		READ 9000, RHO, USCJ
195	r	READ HUM EDS CONSTANTS
124	c	
0.01		
07		READ 9002, (GX(I),I=1,17)
08	С	
09	С	
10	ř	LOCK AT HUGONTOT CONSTANTS, ARE THERE MORE THAN ONE DATE OF SY
11.	L	LUDE AT FOULATION CONSTANTS, ARE THERE MURE THAN UNE PAIR (U,S)
11		MP2M = +1.
15		IF(ABS(HUG(3))+ABS(HUG(4)) .EQ. 0.) GO TO 1020
13	c	SOLVE FOR INTERSECTION OF HUGONIOTS
14	ŕ	IS = HIG(1) + HIG(2) + IP FOR P CREATER THAN PHSM
	~	SS - SSCAT T NOULLINNE FOR E UNLAILA THAN THAN

```
US = HUG(3) + HUG(4) + UP FOR P LESS THAN PHSW
115
         С
                U = (HUG(3) - HUG(1)) / (HUG(2) - HUG(4))
116
117
                US = HUG(1) + HUG(2) \times U
                PHSW = PHO*US*U
118
119
          1020 CONTINUE
120
         С
121
         C
122
                   PRINT HEADER PAGE
         С
                PRINT 9103, (LABEL(I), I=1,8) , RHO
PRINT 9106
123
124
125
                PRINT 9104, (POP(I), I=1,3)
                PRINT 9106
126
127
                PRINT 9105, (HUG(I), I=1,2)
                IF (PHSW .GT. 0.) PRINT 9117, PHSW, HUG(3), HUG(4)
128
129
                PRINT 9106
130
                PRINT 9118, USCJ
                PRINT 9106
131
                PRINT 9107
132
                PRINT 9108, (SX(I), I=1,23)
PRINT 9109, (GX(I), I=1,17)
133
134
                PRINT 9106
135
136
         С
137
                P = PSTART
138
                PMX = PSTOP
139
                VØ = 1./RHO
                NPT = 0
140
141
                LINE = Ø
142
                W = _96
                HTEST = 10, *DEL
143
144
                IF(P _{\text{LT}} POP(3)) P = POP(3) + DELP
145
         С
                   CALC. PRESSURE ON REACTIVE HUGONIOT FOR CJ DETONATION VELOCITY
146
         С
                PUSCJ = RH0*USCJ*(USCJ=HUG(1))/HUG(2)
147
148
                IF(PMX _GT_ PUSCJ) PMX = PUSCJ
149
         С
                   BEGIN PRESSURE LOOP
150
         С
151
          1100 CONTINUE
         С
152
153
         С
                   SET REACTION HUGONIOT CONSTANTS
                KK = 1
IF(P .LT. PHSW) KK = 3
HUG1 = HUG(KK)
154
155
156
157
                HUG2 = HUG(KK+1)
158
                CA1 = HUG1 \pm 2
                CA2 = 4. *V0+HUG2
159
160
         С
                   P GIVEN AT THE SHOCK FRONT
RUN = DISTANCE TO DETONATION
161
         C
162
         С
                RUN = EXP( POP(1) + POP(2) + ALOG(P - POP(3)) )
163
                IF(PUN .LE. RUNMX) GO TO 1118
164
165
          1105 CONTINUE
                P = P + DELP
166
                W = .96
167
                GO TO 1100
168
169
         С
170
          1110 CONTINUE
171
         С
                   CALC. V. U. US, W ON THE REACTIVE HUGONIOT
```

```
SR = SQRT(CA1 + CA2 * P)
172
               U = (-HUG1+SR)/(2_*HUG2)
173
174
               US = HUG1 + HUG2*U
175
               V = V@*(US=U)/US
               E = _5*U*U
176
177
         С.
                   CALC. TIME TO DETONATION (TDET)
178
         С
179
               TOET = SIMPSN( DTDPF, P, PUSCJ, 1,0E=07)
180
         r
                   CALC. TOTAL DERIVATIVES AT SHOCK FRONT
181
         С
182
               PDOT = -(P=POP(3)) \times US/(POP(2) \times RUN)
               UDOT = V0+PDOT/SQ
183
184
               VDOT = =HUG1*V0*U00T/(US**2)
185
               EDOT = U*UDOT
186
         С
187
         ٢
             ASSUME FLAT PRESSURE WAVE,
                                            PX = 0.
                  THEN
188
         С
189
               DP = POOT
               DUDX = UDOT/(US-U)
190
191
               OV = V \star DUDX
               DE = -P+OV
192
193
         С
                   CHECK FOR CLOSENESS TO NONREACTIVE HUGONIOT
194
         С
                   JHUG=0. ON OR CLOSE TO NONREACTIVE HUGONIOT
195
         С
196
                   JHUG=1, AWAY FROM NONREACTIVE HUGONIOT
         С
197
               KK = 1
† 9 R
               IF(V LE. SX(3)) KK = 4
199
               UPH = SORT(P*(VO-V))
260
               USH = SX(KK) + SX(KK+1) + UPH
201
               PH = RHO*USH*UPH
202
               VH = VØ*(USH=UPH)/USH
203
               JHUG = \emptyset
204
               IF(ABS(V=VH)/V + ABS(P=PH)/P .GT. HTEST) JHUG = 1
205
         С
206
                   SOLVE FOR W AND T
         C
207
               CALL SOLVEWT( P, V, E, W, T, JHUG)
               IF(W GT. 0.) GO TO 1150
IF(NPT EQ. 0) GO TO 1105
208
249
               GO TO 2000
210
211
212
          1150 CONTINUE
                  CALC, DERIVATIVES OF HOM EOS WITH RESPECT TO V, E, AND W
         С
213
               VV(1) = V
214
215
               VV(2) = E
               VV(3) = W
516
217
               VV(4) = P
218
               CALL DIFFHOM( VV, DHOM, DEL, JHUG)
               IF(VV(4).LT.@. AND. NPT.EQ.0) GO TO 1105
IF(VV(4).LT.0.) GO TO 2000
219
25N
221
         C
                   CALC. DW FROM TOTAL DERIVATIVE OF EOS ALONG THE PARTICAL PATH
555
         С
                   DP = DHOM(1) * DV + DHOM(2) * DE + DHOM(3) * DW
553
         C
               DW = (DP - DHOM(1) * OV - DHOM(2) * OE) / DHOM(3)
224
225
         C
               RATE = -DW/W
556
227
         С
228
                 SAVE VALUES
         C
```

```
559
               NPT = NPT + 1
               UX(NPT) = U
536
               PX(NPT) = P
231
               VX(NPT) = V
235
233
               TX(NPT) = T
               WX(NPT) = W
234
235
               RX(NPT) = RATE
236
         С
237
        r
                  PRINT
238
               LINE = LINE+1
239
               IF(MOD(LINE, 50) , NE. 1) GO TO 1810
240
               PRINT 9103, (LABEL(I), I=1,8), RHO
241
               PRINT 9104, (POP(I), I=1, 3)
               PRINT 9105, (HUG(I), I=1,2)
242
243
               IF (PHSW .GT. 0.) PRINT 9117, PHSW, HUG(3), HUG(4)
               PRINT 9106
244
245
               PRINT 9100
246
               PRINT 9106
          1810 CONTINUE
247
248
               PRINT 9101, RUN, P, V, U, US, W, RATE, T, TDET
249
          1950 CONTINUE
250
               P = P + DELP
               IF(P .GT. PMX) GO TO 2000
GO TO 1100
251
252
253
        С
                  END PRESSURE LOOP
254
        ſ,
255
          2000 CONTINUE
256
        C.
                  GENERATE POLYNOMIAL FITS FOR W AND RATE
257
        C
258
               PRINT 9106
259
               DO 2300 NFIT=1,4
260
               GO TO (2010,2020,2030,2040) NFIT
261
        C
          2010 CONTINUE
262
                  FIT, W = FCN(U)
263
        С
               XXX(1) = XX(1) = \emptyset_{\bullet}
264
265
               YYY(1) = YY(1) = 1_{+}
               WGHT(1) = .1 * FLOAT(NPT)
NP = NPT + 1
266
267
               00 2012 I=2,NP
268
269
               XXX(I) = XX(I) = UX(I-1)
               YYY(I) = YY(I) = WX(I-1)
270
271
               wGHT(I) = 1.
272
          2012 CONTINUE
273
               GO TO 2100
274
        С
275
          2020 CONTINUE
276
                  FIT, LOG(RATE) = FCN(T)
        C
277
               NP = NPT
278
               DO 2022 I=1,NP
279
               XXX(I) = XX(I) = ALOG(TX(I))
280
               YYY(I) = YY(I) = ALOG(RX(I))
               WGHT(I) = 1.
281
282
          2022 CONTINUE
283
               GO TO 2120
284
        С
          2030 CONTINUE
285
```

•

```
FIT, W = FCN(P)
286
         С
                XXX(1) = XX(1) = 0
287
288
                YYY(1) = YY(1) = 1
                WGHT(1) = .1*FLOAT(NPT)
NP = NPT + 1
289
290
                00 2032 I=2,NP
291
292
                XXX(I) = XX(I) = PX(I-1)
293
                YYY(I) = YY(I) = wX(I=1)
                WGHT(I) = 1.
294
295
          2032 CONTINUE
296
                GO TO 2100
297
         С
          2040 CONTINUE
298
299
         С
                   FIT,
                          LOG(RATE) = FCN(P)
                NP = NPT
300
301
                DO 2042 I±1,NP
302
                XXX(I) = XX(I) = PX(I)
                YYY(I) = YY(I) = ALOG(RX(I))
303
                WGHT(I) = 1.
324
          2042 CONTINUE
305
396
                GO TO 2100
397
         С
308
          2100 CONTINUE
309
                MID = 0
                ERRMX = 1.0E+300
310
311
                KM = 14
                M = NP
312
313
          2110 CONTINUE
                CALL PFTS(M,KM,1,0,0,0,1,MID,KDEG,SIGMA,XX,YY,WGHT,YYP,DELY,BB,SB,
314
315
               A
                            TT,ST,CC,SC,A)
                MID = 1
316
                NX = KDFG + 1
317
                CALL LSGERR( NP, XXX, YYY, NX, BB, XERR, ERR)
318
                IF(ERR .GE. ERRMX) GO TO 2118
319
320
                NN = NX
                XXMX = XERR
321
                ERRMX = ERR
355
                DO 2115 I=1,NN
COEF(I) = BB(I)
323
324
325
          2115 CONTINUE
          2118 CONTINUE
326
                IF(NX .GT. KM) GO TO 2120
GO TO 2110
327
328
          2120 CONTINUE
329
330
                PRINT 9106
331
         C
                IF(JPUN(NFIT) .EQ. 0) GO TO 2190
PUNCH SELECTED POLYNOMIAL COEFFICIENTS
332
333
         С
334
                PUNCH 9119, (LABEL(I), I=1,7), RHO
                IF(NFIT .EQ. 1) PUNCH 9111
335
                IF(NFIT .EQ. 2) PUNCH 9112
IF(NFIT .EQ. 3) PUNCH 9113
IF(NFIT .EQ. 4) PUNCH 9114
336
337
338
339
                PUNCH 9003, NN
                PUNCH 9002, (COEF(I), I=1, NN)
340
          2190 CONTINUE
341
342
         С
```

```
343
               GO TO (2200, 2225, 2250,2275) NFIT
344
        С
345
         2200 CONTINUE
346
        С
                  FIT,
                        W = FCN(U)
               PRINT 9103, (LABEL(I), I=1,8), RH0
347
348
               PRINT 9111
349
               PRINT 9110, NN, (COEF(I), I=1, NN)
               PRINT 9116, XXMX, ERRMX
350
351
               GO TO 2300
352
        C
353
         2225 CONTINUE
354
        С
                 FIT, LOG(RATE) = FCN(T)
355
        С
                  CALCULATE FIT AT EACH TEMPERATURE
356
        С
                  LOG(RATE) = POLY(LOG(TEMP))
357
               DO 2235 J=1,NP
358
               RATE = EXP( POLYNL(XX(J), NN, COEF) )
               D = (RX(J)-RATE)/RX(J)
359
360
               IF(MOD(J,50) .NE. 1) GO TO 2230
               PRINT 9103, (LABEL(I), I=1,8), RHO
361
               PRINT 9112
362
               PRINT 9110, NN, (COEF(I), I=1, NN)
363
               PRINT 9106
364
               PRINT 9123
365
366
               PRINT 9106
         2230 CONTINUE
367
368
               PRINT 9122, TX(J),RX(J),RATE,D
369
         2235 CONTINUE
370
               GO TO 2300
371
        С
         2250 CONTINUE
372
        С
373
                 FIT, W = FCN(P)
374
               PRINT 9103, (LABEL(I), I=1,8), RHO
375
               PRINT 9113
376
               PRINT 9110, NN, (COEF(I), I=1, NN)
               PRINT 9116, XXMX, ERRMX
377
37B
               GO TO 2300
379
        С
380
         2275 CONTINUE
                  FIT, LOG(RATE) = FCN(P)
381
        С
382
                  CALCULATE FIT AT EACH PRESSURE
        ٢.
383
               DO 2285 J=1,NP
               RATE = EXP(POLYNL(XX(J), NN, COEF))
384
385
               0 = (RX(J) = RATE)/RX(J)
386
               IF(MOD(J,50) .NE. 1) GO TO 2280
PRINT 9103, (LABEL(I),I=1,8), RHO
387
388
               PRINT 9114
389
               PRINT 9110, NN, (COEF(I), I=1, NN)
               PRINT 9106
390
391
               PRINT 9121
               PRINT 9106
392
393
         2280 CONTINUE
394
               PRINT 9122, PX(J),RX(J),RATE,D
395
         2285 CONTINUE
396
               GO TO 2300
397
        С
398
         2300 CONTINUE
399
        С
                  ENO PLOYNDMIAL FIT LOOP
```

•

400 ſ GO TO 1000 491 492 C. FND MAIN MATERIAL LOOP 403 C FORMATS 404 С 405 INPUT FORMATS С 9000 FORMAT(6F12.6) 406 407 9001 FORMAT(8A10) 9002 FORMATE 4E18.11) 448 499 9003 FORMAT(1216) 410 С OUTPUT FORMATS 9100 FORMAT(7X, 3HRUN, 9X, 1HP, 11X, 1HV, 11X, 2HUP, 10X, 2HUS, 10X, 1HW, 11X, 411 A 4HRATE, 7X, 11HTEMPERATURE, 6X, 4HTIME) 412 9101 FORMATC 6F12.5, 1PE16.4, 0P, 2F12.5) 413 9103 FORMAT(1H1, 8A10, 5X, 5HRHO =, F8, 5) 414 415 9104 FORMAT(1X,43HPOP PLOT, LN(RUN) = A1 + A2*LN(P+A3), A1 =,1PE14.6, A 2X,4HA2 =,1PE14_6,2X,4HA3 =,1PE14_6) 416 9105 FORMAT(1x,43HRFACTION HUGONIOT, US = C + S*UP, C =, 1PE14,6, 417 418 A = 2X, 4H = S = 1PF14.69106 FORMAT(1H) 419 9107 FORMAT(1X, 31HHOM EQUATION OF STATE CONSTANTS) 420 421 9108 FORMAT(1X, 19HUNREACTED EXPLOSIVE / (1X, 1P4E18, 11)) 9109 FORMAT(1X, 19HDETONATION PRODUCTS / (1X, 1P4E18, 11)) 422 9110 FORMAT(1X,6HC(I=1, ,I2,4H) = ,1P5E18.10/(13X,1P5F18,10)) 423 9111 FORMAT(1X,39HW = C(1) + C(2)*U + ___ + C(M+1)*(U**M)) 9112 FORMAT(1X,46HLN(RATE) = C(1) + C(2)*T + ___ + C(M+1)*(T**M) , 424 425 A 5x,20HT = LOG(TEMPERATURE)) 426 9113 FORMAT(1X,39HW = C(1) + C(2)*P + ... + C(M+1)*(P**M)) 9114 FORMAT(1X,46HLN(RATE) = C(1) + C(2)*P + ... + C(M+1)*(P**M)) 427 428 429 9115 FORMAT(1X,8HPSTART =,1PE14.6,2X,6HDFLP =,E14.6,2X,7HPSTOP =,E14.6) 9116 FORMATCIX, 25HMAXIMUM RELATIVE ERROR AT, 1PE16, 6, 3H = , 1PE16, 6) 430 9117 FORMAT(4X, 20H AND IF P LESS THAN , FB. 5, 5X, 4HC = , 1PE16.6, 431 A 5x, 4HS = , 1PE16, 6) 432 9118 FORMAT(1X,24HCJ DETONATION VELOCITY =, 1PE14,6) 433 434 9119 FORMAT(6A10, A7, 2X, 4HRH0=, F7, 4) 9120 FORMAT(1X,23HDBUG PRINTS ON, JDBUG =, 16) 435 9121 FORMAT(7X, BHPRESSURF, 8X, 4HRATE, 12X, 3HFIT, 13X, 10HREL, ERROR) 436 9122 FORMAT(1X, 1P4E16_6) 437 438 9123 FORMAT(6X,11HTEMPERATURE.6X,4HRATE,12X,3HFIT,13X,10HREL, ERROR) 439 9124 FORMAT(1X, 34HPUNCHED OUTPUT FOR COEFFICIENTS OF) 440 END ------1 FUNCTION DTDPF(P) 2 С SET INDEX FOR HUGONIOT CONSTANTS 3 COMMON /SHOCK/ RHO, VØ, POP(3), HUG(4), PHSW, LABEL(8), VV(10), u 1 DHOM(3) KK = 1 5 IF(P LT PHSW) KK = 3 6 7 С US = _5*(HUG(KK) + SQRT(HUG(KK)**2 + 4,*VØ*HUG(KK+1)*P)) 8

RUN = EXP(POP(1)+POP(2)*ALOG(P+POP(3)))

Q

```
10
         С
               OTDPF = -RUN*POP(2)/(US*(P-POP(3)))
   11
   12
               RETURN
   13
               END
FUNCTION POLYNL( X, NC, C)
    1
    2
               DIMENSION C(1)
    3
          С
                  POLYNL = SUM( C(N)*(X**(N=1)) ),N=1,NC
    4
          С
    5
               NCM = NC=1
    6
               S = C(NC)
    7
               DO 10 N=1, NCM
               S = S \star X + C(NC - N)
    8
             10 CONTINUE
    Q
               POLYNL = S
   10
   11
               RETURN
   12
               END
SUBROUTINE DIFFHOM( VV, DHOM, DEL, JHUG)
    1
    2
         С
                     VV(1) = V
                                      VV(2) = E
                                                        VV(3) = W
    3
         С
                     VV(4) = P
                                   OHOM(2) = OP/OE
    4
         С
                   \partial HOM(1) = DP/OV
                                                     DHOM(3) = DP/DW
    5
         С
    6
7
               COMHON / HOMC / SX(23), GX(17)
Common / DBUG / JOBUG
    8
         С
    9
               OTMENSION VV(1), DHOM(1)
   10
               P0 = VV(4)
               DO 100 N=1.3
   11
   12
               VSAVE = VV(N)
               IF (JHUG .EQ. 1) GO TO 40
CASE (JHUG=0, ON OR NEAP NONREACTIVE HUGONIOT)
   13
   14
         С
   15
               GC TO ( 70, 65, 60) N
         С
   16
   17
            48 CONTINUE
   18
         С
                  CASE(JHUG=1. (IFF NONREACTIVE HUGONIOT)
               GO TO (65, 65, 55) N
   19
   23
         С
            55 CONTINUE
   21
   22
         С
                  SUBCASES FOR DIFFERENCES WITH RESPECT TO W
               IF (VSAVE .LT. .05) GO TO 70
IF (VSAVE .GT. .98) GO TO 60
   23
   24
   25
               GO TO 65
   26
         С
   27
            60 CONTINUE
```

.

```
DIFFERENCE TO SMALLER ARGUMENTS
 58
         C
 29
               VA = VSAVE*(1. - DEL)
  30
               VB = VSAVE*(1. - 2.*DEL)
               GO TO 80
 31
            65 CONTINUE
  32
  33
                  CENTRAL DIFFERENCE
         C
               VA = VSAVE*(1. - DEL)
 34
 35
               VB = VSAVE*(1. + DEL)
               GO TO 80
  36
            70 CONTINUE
  37
  38
         Г.
                  DIFFERENCE TO BIGGER ARGUMENTS
               VA = VSAVE*(1. + DFL)
VR = VSAVE*(1. + 2.*DEL)
  39
  40
               GO TO 80
 41
 42
         С
 43
            80 CONTINUE
 44
               VV(N) = VA
               CALL HOM ( VV, SX, GX, IND)
 45
               IF(IND .EQ. -3) GO TO 200
 46
 47
               P_1 = VV(4)
               VV(N) = VB
 48
  49
               CALL HOM (VV, SX, GX, IND)
               IF(IND .EQ. -3) GO TO 200
P2 = VV(4)
 50
  51
               A = (VB - VSAVE)/(VA - VSAVE)
DHOM(N) = ( (P1=P0)*A = (P2=P0)/A )/( VB = VA )
  52
 53
  54
               VV(N) = VSAVE
  55
           100 CONTINUE
         С
                   NORMAL EXIT
  56
  57
               RETURN
           200 CONTINUE
  58
  59
         С
                  ERROR EXIT
               VV(4) = -1.
IF(JDBUG .EQ. 0) RETURN
  60
  61
               PRINT 9000
  62
               PRINT 9001, (VV(I), I=1,10)
  63
  64
               RETURN
          9001 FORMAT(1X, *VV*/ (1P5E18.8) )
  65
          9000 FDRMAT(1X*ERROR EXIT, SUBROUTINE DIFFHOM*)
 66
               FND
  67
SUBROUTINE SOLVEWT( P, V, E, W, T, JHUG)
   1
               DIMENSION TX(10), VV(10)
   2
   3
               COMMON / HOMC / SX(23), GX(17)
               COMMON / DBUG / JDBUG
   4
   5
         С
               IF(JHUG_EQ, 1) GO TD 50
CASE(JHUG=0, ON OR NEAR NONREACTIVE HUGONIOT)
   6
   7
         С
                VV(1) = V
   8
   Q
                VV(2) = E
  10
                VV(3) = 1.
```

```
CALL HOM ( VV, SX, GX, IND)
IF(IND .EQ. ≈3) GO TO 200
  11
  12
                W = 1
T = VV(5)
  13
  14
                RETURN
  15
  16
         С
             50 CONTINUE
  17
          С
                   CASE(JHUG=1, AWAY FROM NONREACTIVE HUGONIOT)
  18
  19
                DP = Ø.
                TX(1) = W
  5ø
                TX(2) = .98
TX(3) = 1.0E=07
  21
  55
  23
                TX(10) = 0.
  24
                VV(1) = V
  25
                VV(2) = E
  26
         С
            100 CONTINUE
  27
  28
                CALL LFB( W, DP, TX)
  29
                IF(TX(10)) 200, 120, 110
  319
            110 CONTINUE
                IF(W .GT. 1.) W = .99
VV(3) = W
  31
  32
                CALL HOM ( VV, SX, GX, IND)
IF(IND .EQ. -3) GO TO 200
DP \pm P = VV(4)
  33
  34
  35
                T = VV(5)
GO TO 100
  36
  37
  38
            120 CONTINUE
  39
         С
                   NORMAL EXIT
  40
                RETURN
            200 CONTINUE
  41
  42
         С
                   FRROR EXIT
  43
                W = -1.
                IF(JDBUG .EQ. 0) RETURN
  44
  45
                PRINT 9002
                PRINT 9000, (TX(I), I=1,10)
PRINT 9001, (VV(I), I=1,10)
  46
  47
                RETURN
  48
           9000 FDRMAT(1X,*TX*/ (1P5E18.8) )
  49
  50
          9001 FORMAT(1X, *VV*/ (1P5E18, 8) )
           9002 FORMAT(1X, *ERROR EXIT, SUBROUTINE SOLVETW*)
  51
  52
                END
1
                SUBROUTINE LSQERR( NPT, XX, YY, NC, C, XMX, ERRMX)
   2
                DIMENSION XX(NPT), YY(NPT), C(NC)
   .
3
4
                ERRMX = 0.
                XMX = XX(1)
   5
                NCP = NC + 1
                DO 10 J=1, NPT
   6
   7
                X = XX(J)
   8
                Y = YY(J)
```

9		S = 0.		
10		00 4 N=1,NC		
11		$S = S \star X + C(NCP - N)$		
12	4	CONTINUE		
13		ERR = ABS(Y = S)		
14		IF (ABS(Y) .GT. 0.)	ERR =	ERR/ABS(Y)
15		IF(ERR .LT. FRRMX)	GO TO	10
16		$X^{14}X = X$		
17		ERRMX = ERR		
18	10	CONTINUE		
19		RETURN		
20		END		

SUBROUTINE HOM (V,S,G,IND) 1 2 С 3 C HOM CALCULATES THE EQUATION OF STATE FOR A SULID, GAS, OR 4 С SOLID=GAS MIXTURE. 5 С THE PARAMETERS ARE 6 С 7 С v AN ARRAY OF DIMENSION 5 ß SPECIFIC VOLUME С V(1) INPUT 9 C v(2) INTERNAL ENERGY INPUT 10 c V(3) MASS FRACTION INPUT 11 С V(4) -ABS(DP/DX) INPUT 12 С IF V(4) IS _GE, @ NO SPALLING CALCULATION IS DONE FOR A PURE 13 С SOLID 14 С V(4) PRESSURE OUTPUT C C 15 V(5) TEMPERATURE OUTPUT AN ARRAY OF DIMENSION 18 CONTAINING THE PARAMETERS FOR THE 16 S 17 С SOLID EQUATION OF STATE 18 С S(1) С 19 С S(2) S Ċ C zα \$(3) VSW VOLUME TO SWITCH TO SECOND US, UP FIT S(4) 21 C 1 **S**1 22 С \$(5) č 23 \$(6) F С 24 S(7) G C C 25 S(8) н 26 S(9) I С S(10) J Ċ 28 5(11) GAMMA 29 С \$(12) C۷ 30 С VИ \$(13) INITIAL VOLUME С 31 ALPHA S(14) 32 ٢ S(15) SPALL 4 33 С ULTIMATE SPALL PRESSURE TØ INITIAL TEMPERATURE S(16) 34 С S(17) 35 С S(18) PØ INITIAL PRESSURE С 36 S(22) IS SPALL INTERFACE PRESSURE S(23) IS MIN V FOR TWO PHASE FE EQUATION OF STATE 37 С 38 С G AN ARRAY OF DIMENSION 17 CONTAINING THE PARAMETERS FOR THE

39	С	GAS EQUATION OF STATE
40	č	G(1) A
41	С	G(2) B
42	С	G(3) C
43	С	G(4) D
44	С	G(5) E
45	C	G(6) K
46	С	G(7) L
47	С	G(8) M
48	C	G(9) N
49	С	G(10) O
50	С	G(11) Q
51	С	G(12) R
52	С	G(13) S
53	С	G(14) T
54	С	G(15) U
55	С	G(16) CV
56	С	G(17) Z
57	С	IND OUTPUT INDICATOR
58	C	SET TO @ FOR NORMAL EXIT
59	C	SET TO 1 FOR SPALLED SOLIO
60	C	SET TO -1 FOR HOM ERROR IN ITERATION
61	C	IND INPUT INDICATOR FOR SHARP SHOCK BURN AND IS EQUAL TO 3
62	C	WILL GIVE HUGONIAT PRESSURE AND ENERGY FOR INPUT V AND W = 0
65		DIMENSION V(S),S(23),G(17),VIT(10)
64		
65		
60		
6/		
00 40		
ירח אר		
71		
72		
73		$T = \{V(3), j \in G, j \in O, j \inO, j \in O, j \inO, j \inO$
74		
75	r	FRIATION OF STATE FOR SOLTD DNLY
76	÷	
77	C	FOR TWO PHASE FE TYPE FOUNTION OF STATE
78	Ũ	F(Y(1), GI = S(3)) GO IO 11
79		IF(V(1)-LT-S(23)) GO TO 45
80		V(1)=S(23)
81		GO TO 45
82		11 C1=S(1)
83		S1=S(2)
84		20 VOMV=S(13)-V(1)
85		HP=((C1/(S(13)-S1*VOMV))**2)*VOMV
86		HE = (HP=S(18))★V0MV★0,5
87		V(4) = HP + (V(2) - HE) + S(11) / V(1)
88	С	IF NO HFAT CAPACITY SKIP TEMP CALCULATION
89		IF (S(12)) 21,22,21
90		21 ALNV=ALOG(V(1))
91		V(5)=(V(2)=HE)*23890./S(12)+EXP(S(6)+ALNV*(S(7)+ALNV*(S(8)+ALNV*
92		1(S(9)+ALNV*S(10))))
93		22 RETURN
94	С	SWITCH TO SECOND US, UP FIT
95		45 C1=S(4)

96		S1=S(5)
97		GO TO 20
98	C	SPALLING SOLID FOUATION OF STATE
00	čς	
100	~ ´	TE ALQUA TE ZEDO EET D-QA ANN NO NOT SPALL
100	Ľ	IF ALFRA IS ZERU SEL FERU AND DU NOT SFALL
101	-	JF (5(14)) 51.51,52
1112	5	1 v(4) = S(1R)
103		V(5)=S(17)
104		RETURN
105	5	2 V(4)=(S(11)*(V(2)+(1,-V(1)/S(13))*S(12)*1,39528394E-5/S(14)))/V(1)
196		V(5)=V(2)*23890,/S(12)+S(17)
197		IF (DPDX.GE.Ø.) RETURN
108	С	IF SPA LESS THAN / 0.0001 DO NOT SPALL
109	-	IF (S(15) - IT-0-0001) RETURN
110		I = S(15) + SQRI(-DPDX)
111		
112		
117		$T = (T_{\mu} (T_{\mu}) ($
113		TE (MAN) OF SOLON BETHON
114		
115	_	
116	C	SET IND FOR SPALLED SULTD
117		
118		RETURN
119	CE	QUATION OF STATE FOR GAS ONLY
120	11	Ø ALNV=ALOG(V(1))
151		ALNPI=G(1)+ALNV*(G(2)+ALNV*(G(3)+ALNV*(G(4)+ALNV*G(5))))
155		ALNII=G(6)+ALNPI*(G(7)+ALNPI*(G(8)+ALNPI*(G(9)+ALNPI*G(10))))
123		ALNTI=G(11)+ALNV*(G(12)+ALNV*(G(13)+ALNV*(G(14)+ALNV*G(15))))
124		EI=FXP(ALNII)-G(17)
125	С	SHARP SHOCK BURN
126	•	IF(IND_FR_3) G0 T0 111
127		V(4) = E Y P(A NPT) + (ET = V(2)) / V(1) + (B(12) + A NV + (B(13) + B(13) + A NV + (B(13) + B NV + (B(13) + A
128		
120		13. ~ ((14) + ((14) + (14) + (13) + (14) + (
170		V(J)=LAF(ALN+1)+(V(E)=L1)*23040,0(10)
1 30	~	
1 3 1	· · · ·	
152	111	SIP = EXP(ALNPI)
155		V(4) = SIP
134		DO 112 IX = 1,6
135		$V(2) = 0_{+}5*V(4)*(S(13) - V(1))$
136		V(4) = SIP + (EI - V(2)) / V(1) * (G(12) + ALNV * (G(13) + G(13) + ALNV * (
137		13 _* *C(14)+ALNV*4 _* *C(15)))
138	112	CONTINUE
139		RETURN
140	CE	QUATION OF STATE FOR MIXTURE OF SOLID AND GAS
141	15	0 OMW=1,-+V(3)
142		OMWR=1./OMW
143		IF (V(1), IT, S(13)) GO TO 230
144		
1/15		
142		VII()-(V()-V())-V())-V())-V()-V()-V()-V()-V
140	~	TILLET LEVUE
147	۲.	TONET FOR TICKALTON AR
140		
149	51	5 LALL LPB (X,F,VIT)
150		IF (VIT(10)) 900,260,220
151	22	Ø IF (¥,LE,Ø,) GO TO 225
152		VG=X

153			VS=(V(1)-OMW*VG)*WR
154			IF (VS.LE.Ø.) GO TO 225
155			IF (VS.GT.S(13)) VS=S(13)
156			GO TO 250
157	С		SET VS≖VG≖VOLUME WHEN GET IN TROUBLE
158		552	VS=V(1)
159			VG=V(1)
160			X=V(1)
161			G0 10 250
162		230	VTT(1) = V(1)
163		C 31/	
16/	r		TRE-2 FOR TTERATION ON VS
145	C		
165		776	IDEAC CALLED /V E VITS
100		6.22	
167		7 " 0	IF (VII(10)) 900,260,240
160		200	IF (X,LE,M,) G0 10 225
169			IF(x,GT,S(13)) = S(13)
170			vs=x
171			VG=(V(1)-V(3)+VS)+OMWR
172			IF (VG_LE_0_) GO TO 225
173	С		CALCULATE TEMPERATURE/PRESSURE OIFFERENCE FOR MIXTURE ITERATION
174		250	VOMV=S(13)-VS
175			HP=((S(1)/(S(13)-S(2)*VOMV))**2)*VOMV
176			HE = (HP+S(18)) * VOMV * 0 = 5
177			ALNV=ALOG(VS)
178			HT=EXP(S(6)+ALNV*(S(7)+ALNV*(S(8)+ALNV*(S(9)+ALNV*S(10)))))
179			ALNV=ALOG(VG)
180			ALNPI=G(1)+ALNV*(G(2)+ALNV*(G(3)+ALNV*(G(4)+ALNV*G(5))))
181			EI=EXP(G(6)+ALNPI*(G(7)+ALNPI*(G(8)+ALNPT*(G(9)+ALNPT*G(10))))-
182			16(17)
183			
184			
185			BETEP = (G(1)) + (G
186			$\frac{1}{2} = \frac{1}{2} = \frac{1}$
187			
107			
100			TEMORT (EMPT 1 + 1 + 1 EMPT) + 4 + 10 303182E+5
104			
190			$v_{S} 0 = (5 2) = G(16) + v(3) + G(16)$
191			F=((UMW+G(16)+T)+V(3)+S(12)+HT)+4,18585182E=5+(EI=HE)+V(3)=EI+
192			1 V (2)) * 1 E MP / VSTO + F = P I + HP
193			GO TO (215,235), IBR
194	С		HAVE FOUND A SOLUTION FOR THE MIXTURE
195	С	_	GET THE TEMPERATURE AND PRESSURE
196		260	VARST=((((TI=HT)*G(16)*4.18585182E=5+V(2)*OMWR=EI)*S(12)+HE*G(16))
197			1*0M#/VST0)=HE
198			V(4)=HP+VARST*S(11)/VS
199			V(5)=HT+VARST*23890./S(12)
2011			RETURN
201	С		EPROR IN HOM ITERATION SET IND TO -1
202		900	IND==1
203			RETURN
204			END

SUBROUTINE (FB (XP, FP, TX) 1 2 INITIAL GUESS 3 С TX(1) RATIO TO GET SECOND POINT 4 C TX(2) ZERO DEFINITION 5 С TX(3) COUNT OF NUMBER OF ITERATIONS 6 С TX(10) SET TO ZERO ON SOLUTION 7 r SET TO NEGATIVE OF COUNT ON ERROR 8 ٢ 9 r. FP =FUNCTION(XP) WHEN A SOLUTION IS FOUND, XP IS THE ROOT 10 C С 11 FRROR EXITS OCCUR FOR С 12 1. TOO MANY ITERATIONS, GT. CNTMAX 13 С P. TWO SUCESSIVE XP S OR FP S ARE EQUAL DIMENSION TX(10) 14 C 15 DATA CNTMAX /1000./ 16 IF (TX(10).LE.0.) GO TO 1 17 $T \times (1 \%) = T \times (1 \%) + 1_{+}$ 18 IF (TX(10)=3,) 2,3,4 ENTRY FIRST TIME THROUGH 19 20 С 21 1 T X (10) = 1. IF $(TX(1)_EQ_0)_TX(1) = 1_e$ 22 XP = TX(1)23 C GO GET F(XP) 24 25 RETURN С ENTRY SECOND TIME THROUGH 56 2 TX(9)=FP 27 28 Tx(8)=XP 29 Tx(5) = FPIF (ABS(FP) LT. TX(3)) GO TO 18 30 31 XP=TX(1) * TX(2)32 С GO GET F(XP) 33 RETURN ENTRY THIRD TIME THROUGH С 34 35 3 TX(5)=FP Tx(6) = XP36 37 Tx(7) = FPIF (ABS(FP) LT. TX(3)) GO TO 18 38 39 XP=TX(6)=TX(7)*(TX(6)=TX(8))/(TX(7)+TX(9)) 40 GO GET F(XP) С RETURN 41 ENTRY FOR FOURTH AND SUCCEDING TIMES THROUGH 42 C 43 4 IF (TX(10).GT.CNTMAX) GO TO 99 TX(4) = XP44 45 Tx(5) = FP46 $T=T\times(4)=T\times(6)$ IF (T_EQ.M.) GO TO 99 47 48 IF (ABS(FP) LT TX(3)) GO TO 18 49 R=TX(5)=TX(7)IF (R.EQ. M.) GO TO 99 50 XP=TX(4)=TX(5)*(T/R)51 IF (TX(5)*TX(7)_LT.0.) GO TO 11 52 IF (TX(5)*TX(9).GE.0.) GO TO 11 53 IF (XP.GT.TX(4)) GO TO 6 54 55 IF (XP.GT.TX(8)) GO TO 10 8 XP=TX(4)+TX(5)+(TX(4)+TX(8))/(TX(5)+TX(9)) 56

57890123456789012345	c c c	10 Tx(7)=Tx(5) Tx(6)=Tx(4) GO GET F(XP) RETURN 6 IF (XP,GT,TX(8)) GO TO 8 GO TO 10 11 Tx(9)=Tx(7) Tx(8)=Tx(6) GO TO 10 HAVE FOUND A SOLUTION 18 Tx(10)=0. Tx(1)=XP RETURN AN ERROR HAS OCCURED SET COUNT NEGATIVE AND EXIT 99 Tx(10)=Tx(10) RETURN END
1 2 3 4	с	FUNCTION SIMPSN(ARG,Y1,Y2,FERR) SIMPSN INTEGRATION ROUTINE WRITTEN AS FORTRAN IV FUNCTION J.SMITH DIMENSION F2T(20),FMT(20),F3T(20),F4T(20),FBT(20), 1DXT(20),X1T(20),X2T(20),ART(20),EPST(20),ES2T(20),
567	¢	2FS3T(20),LEG(20),SUM1(20),SUM2(20) INITIAL SET-UP
, 8 9 10 11 12 13 14 15 16 17	с	EPS=FFRR B=Y2 DA=R=A FA=ARG(A) FM=4.*ARG((A+R)*.5) FB=ARG(H) AREA=1.0 EST=1.0 L=1 BEGIN SIMPSON
18 19 20 22 23 24 25 26 28 26 28		1 0x=DA/3. x1=A+Dx x2=x1+Ox F1=u.*ARG(A+.5*Dx) F2=ARG(x1) F3=ARG(x2) F4=u.*ARG(A+2.5*Dx) Dx6=Dx/6. EST1=(FA+F1+F2)*Dx6 EST2=(F2+FM+F3)*Dx6 EST3=(F3+F4+FR)*Dx6 ABS(EST1)*ABS(EST1)*ABS(EST3)
30 31	с	SUM=EST1+EST2+EST3 TEST FOR CONVERGENCE

•

32			IF(ABS(EST=SUM)=EPS*AREA)2,2,3
33		2	IF(FST=1,0)6,3,6
34		3	IF(L=20)5,6,6
35		5	l = l + 1
36			LEG(L)=3
37	С		STORE PARAMETERS FOR SIMPSON II AND III
38			F2T(L)=F2
39			FMT(L)=FM
40			$F \leq T(L) = F \leq 1$
41			$F_{4}T(1) = F_{4}$
42			FRT(L)=FR
42			
4 7			
44			
45			
40			ARI(L)SARLA
47			
48			ES2T(L)=EST2
49			ES3T(L)=EST3
50	С		RETURN TO SIMPSON I
51			DA=OX
52			Fr=F1
53			FB=F2
54			EST=EST1
55			FPS=EPST(L)
56			G0 T0 1
57		6	IF(LEG(L)=2)9,8,7
58		7	SUM1(L)=SUM
59			LEG(1)=2
60	r		RETURN TO STMPSON TT
61	••		
62			
47			
63			FN-F21(L)
64			
C D			
00			
6/			
68			EPS=EPST(L)
69			GO TO 1
70		8	S11M2(L)=S(1M
71			LEG(L)=1
77	C		RETURN TO SIMPSON III
73			A=X2T(L)
74			DA=DXT(L)
75			FA=F3T([)
76			FM=F4T(L)
77			FB=FBT(L)
78			ARFA=ART(L)
79			EST=ES3T(L)
80			EPS=EPST(L)
81			
82		٥	
8 Z		7	1 ml = 1
8/1			TE(1=1)11.4
05			IT VE-171171170 STMDSK - SUM
07		11	01""" - 00" 05100
00			
ņ/			LNU

REFERENCES

- C. L. Mader, "One- and Two-Dimensional Flow Calculations of the Reaction Zones of Ideal Gas, Nitromethane, and Liquid TNT Detonations," in <u>Twelfth</u> <u>International Symposium on Combustion</u>, (The Williams and Wilkins Company, Baltimore, MD, 1968), p. 701.
- 2. C. L. Mader, "Numerical Calculations of Explosive Phenomena," in <u>Computers</u> <u>and Their Role in the Physical Sciences</u>, (Gordon and Breach Science Publishers, Inc., New York, 1970), p. 385.
- 3. C. L. Mader, "Detonation Induced Two-Dimensional Flows," Acta Astronaut. <u>1</u>, 373 (1974).
- 4. C. L. Mader, "An Empirical Model of Heterogeneous Shock Initiation of 9404," Los Alamos Scientific Laboratory report LA-4475 (October 1970).
- 5. C. L. Mader, "The Two-Dimensional Hydrodynamic Hot Spot Volume III," Los Alamos Scientific Laboratory report LA-3450 (April 1966).
- C. L. Mader, "A Study of the One-Dimensional, Time-Dependent Reaction Zone of Nitromethane and Liquid TNT," Los Alamos Scientific Laboratory report LA-3297 (August 1965).
- C. L. Mader, "An Equation of State for Shocked Copper Foam," Los Alamos Scientific Laboratory report LA-4381 (May 1970).
- 8. A. W. Campbell, M. E. Malin, and T. E. Holland, "Detonation in Homogeneous Explosives," Second ONR Symposium on Detonation, Washington, D.C. (1955).
- 9. P. A: Persson, Swedish Detonic Research Foundation, personal communication (1975).
- C. L. Mader, "The Two-Dimensional Hydrodynamic Hot Spot Volume IV," Los Alamos Scientific Laboratory report LA-3771 (November 1967).
- 11. W. C. Davis, Los Alamos Scientific Laboratory, personal communication (1975).
- 12. D. Venable, "PHERMEX," Phys. Today <u>17</u>, 19-22 (1964).
- 13. D. Venable, Los Alamos Scientific Laboratory, personal communication (1968).
- 14. R. Dick, Los Alamos Scientific Laboratory, personal communication (1975).
- C. L. Mader and W. R. Gage, "FORTRAN SIN. A One-Dimensional Hydrodynamic Code for Problems which Include Chemical Reactions, Elastic-Plastic Flow, Spalling, and Phase Transitions," Los Alamos Scientific Laboratory report LA-3720 (September 1967).
- C. L. Mader and B. G. Craig, "Nonsteady-State Detonations in One-Dimensional Plane, Diverging, and Converging Geometries," Los Alamos Scientific Laboratory report LA-5865 (April 1975).

- 17. J. D. Kershner and C. L. Mader, "2DE: A Two-Dimensional, Continuous, Eulerian Hydrodynamic Code for Computing Multicomponent Reactive Hydrodynamic Problems," Los Alamos Scientific Laboratory report LA-4846 (March 1972).
- K. Tanaka and T. Hikita, University of Tokyo, "A Numerical Study of the Charge Diameter Effect on the Unsteady Detonation," personal communication (1975).
- 19. C. L. Mader, "The Two-Dimensional Hydrodynamic Hot Spot Volume II," Los Alamos Scientific Laboratory report LA-3235 (April 1965).
- 20. C. L. Mader, "Detonation Properties of Condensed Explosives Computed Using the Becker-Kistiakowsky-Wilson Equation of State," Los Alamos Scientific Laboratory report LA-2900 (February 1963).
- 21. J. B. Ramsey and A. Popolato, "Analysis of Shock Wave and Initiation Data for Solid Explosives," Fourth Intern. Symposium on Detonation, White Oak, MD, October 1965, ACR-126, 233 (1965).
- 22. B. G. Craig and E. F. Marshall, "Behavior of a Heterogeneous Explosive When Shocked but Not Detonated," Fifth Intern. Symposium on Detonation, Pasadena, CA, August 1970, ACR-184, 321 (1970).
- 23. E. F. Gittings, "Initiation of a Solid Explosive by a Short-Duration Shock," Fourth Intern. Symposium on Detonation, White Oak, MD, October 1965, ACR-126, 373 (1965).
- 24. J. E. Kennedy, Sandia Corporation, personal communication (1975).
- 25. B. D. Trott and R. G. Jung, "Effect of Pulse Duration of Solid Explosives," Fifth Intern. Symposium on Detonation, Pasadena, CA, August 1970, ACR-184, 191 (1970).

★U.S. GOVERNMENT PRINTING OFFICE: 1976-677-343/166