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ABSTRACT

The coefficient of viscosity and the coefficient of thermal conductivity

for dissociating hydrogen gas has been computed for the temperature range

from 1500”K to 5000”K and for the pressures of 0.1, 0.5, 1, 2, 10, 50, and

100 atmospheres. The coefficient of diffusion in a binary mixture of the

H-H2 system and the coefficient of self-diffusion for H atoms and H mole-
2.

cules have been computed for the same set of conditions.
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INTRODUCTION

Coefficient of Viscosity

Dissociated hydrogen gas consists of a mixture of H atoms and H2

molecules, so it can be considered as a binary mixture in which one gas has

the properties of the diatomic gas and the second gas has the properties of

the monatomic gas. Jn this work the coefficient of viscosity for the corre-

sponding composition of the mixture at any given temperature and pressure

has been calculated using the formula for a binary mixture of gases given in

Molecular Theory of Gases and Liquids (MTGL).l

It is necessary to have the coefficients of viscosity corresponding to

the H2-H2 interaction, to the H-H interaction, and to the H-H2 interaction in

order to calculate the coefficient of viscosity of the mixture.

The H2-H2 interaction was assumed to obey the modified Buckingham

(exp-6) potential. The method of Hirschfelder and Eliason2 has been applied

to the two potential energy curves
(

3
Zu and %

)
for the H-H interactions,

g—
and the weighted average of the effective rigid–sphere collision diameters so

obtained was then used to calculate a coefficient of viscosity corresponding

to the H-H interaction. The interaction energy of the H-H2 system was taken

to be those values as computed by Margenau3 for two orientations of the H

atom approaching the H2 molecule, parallel (i! ) and perpendicular (L) to the

H-H molecular axis. The weighted averages of the parameters used to fit

these two potential curves to Lennard-Jones (12-6) potential curves were then

used as the parameters a
( 12’ ’12)

for an “average” Lennard-Jones (12-6)

-5-



potential functio~ These l’average” Lennard-Jones (12-6) potential parameters

were then used in the evaluation of the necessary collision integrals in the

computation of the coefficient of viscosity.

Coefficients of Diffusion

In MTGL, the coefficient of diffusion in a binary mixture and the co-

efficients of self-diffusion have been shown to be functions of the collision

integrals and cross sections. Therefore, if one decides to utilize certain

interaction potentials for the viscosity calculations ‘as outlined above, one can

obtain diffusion coefficients consistent with the chosen molecular interactions.

The coefficient of diffusion in a binary mixture was computed using the

formula given in MTGL and the potential parameters a12, 612 for an ?laver-
( )

age” Lennard-Jones (12-6) potential which was obtained as outlined above.

The coefficient of self-diffusion for the H2-H2 system was computed
4

using the formula given by Mason snd Rice for a system that obeys the

modified Buckingham (exp-6) potential.

The coefficient of self-diffusion for the H-H system was computed from

the formula given in MTGL for a system obeying the rigid-sphere type of

potential. The effective rigid-sphere collision diameter for the H-H system

was obtained by the methd of Hirschfelder and Eliason2 as applied to the

two potential energy curves
(

3
Zu and 12

)
for the H-H interactions.

g

Coefficient of Thermal Conductivity

For the calculation of the coefficient of thermal conductivity of dis-

sociating hydrogen it was treated as a reacting gas mixture. The analysis

used for this system was a combination of the methods given by Hirschfelder5

and Butler snd Brokaw.6

Following the procedure of Butler and Brokaw for a reacting gas mixture,

-6-



it is first necessary to compute the coefficient of thermal conductivity for

the “frozen!’ mkture. This Wrozent’ mixture is a binary mixture of H atoms

and H molecules and can be considered a mixture of polyatomic gases.
2
Hirschfelder7 has given a method of computing the thermal conductivity

of a polyatomic gas mixture and his procedure was used here. In this method

it is necessary to have the thermal conductivity of the gas mixture which the

mixture would possess if the gases had no internal degrees of freedom. This

latter hypothetical thermal conductivity will be called the thermal conductivity

of the monatomic mixture. It is obtained from the mixing formula for binary

monatomic mixtures as given in MTGL, and involves the three coefficients of

thermal conductivity corresponding to the thermal conductivities of monatomic

gases which have molecular interactions corresponding to the interactions

evidenced by H2-H2, H-H, and H-H20 These three coefficients of thermal

conductivity are obtained from the previously computed viscosities and the

relationship between viscosity and thermal conductivity for monatomic gases

as given in MTGL.

After obtaining this the rmal conductivity of the monatomic mixture as

prescribed above, the thermal conductivity of the polyatomic gas mixture is

obtained by applying the Eucken-type correction as given by Hirschfelder. 7

Utilizing this coefficient of thermal conductivity for the polyatomic gas

mixture as the thermal conductivity of the ?’frozen!~ mixture, we next apply

the correction as given by Butler and Brokaw6 and get the coefficient of

thermal conductivity of the reacting mixture.

METHOD AND RESULTS

Coefficient of Viscosity

The coefficient of viscosity of a binary mixture of monatomic gases as

-7-



expressed in MTGL and utilized in this work is:

1
Xq+y

(1) — = v

‘mix
l+Z ‘

~

(2)

2
2X1X2 X2

x
_xl+ —+2,

n % ’12 ‘2

(4) zv=~z[x~(:)+zxlx
(-)]zM2

‘X2 Ml ‘

where
‘1’ ‘2

= mole fractions of H and H., respectively,

Ml, M2 =

A;2 =

ql$ ~2 =

%2 =

~m~ =

Equation (1) was used to evaluate the coefficient of viscosi@, qm~, of

the mixture resulting from hydrogen dissociating at any given temperature and

pressure.

The mole fractions of the species present in the dissociated hydrogen

at any given temperature and pressure were obtained by solution of the

molecular weights of H an; H2, respectively,

a function of kT/c12, defined in Equation (8.2-15) of MTGL,

coefficients of viscosity of H and H2, respectively,

coefficient of viscosity of a hypothetical gas with molecular

interactions characterized by Lennard-Jones (12-6) potential

parameters a12 and C12. See MTGL.

coefficient of viscosity of the mixture.
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hydrogen dissociation equilibrium, H2(g) ===2H(g)o The thermod~mic

used to solve this equilibrium were taken from the National Bureau of
8

ards Series IU Circular. Details of the method of solution are given

Appendix A. The results of these solutions are given in Table A-2 in

pendix A.

data

Stand-

in

Ap-

The coefficient of viscosity of pure H2 gas was computed using the
9

modified Buckingham (exp-6) potential to describe the intermolecular poten-

tial. This potential is expressed as

(5) q (r)

where q (r) =

c=

r =
m
Q1.

[

6 (
ai- r/r r6

E

) -[–)]

m m=
1- 6/cY ; e r 9

the potential energy of the two molecules at a separation dis-

tance r,

the depth of the potential minimum,

the position of the minimum,

a parameter which is a measure of the steepness of the re -

pulsion energy.

Evaluation of the necessary constants in Equation (5) from available
4

experimental data for hydrogen has been made by Mason and Rice. These

authors have established that the use of this interaction potential function

gives better agreement between calculated and experimental viscosities of

hydrogen in the temperature range of about 320”K to about 11OO”K than the

Lennard-Jones (12-6) potential function.

The constants for Equation (5) appropriate to hydrogen as given by

M%on and Rice are:

(6) o! = 14.0,

(7) rm = 3.337 i,

(8) c/k = 37.3”K.

-9-



In the third approximation, the viscosity of

then expressed as

266.93(MT)
1/2 (3)

17 f_ (a, T*)
(9)

where

hydrogen (undissociated) is

[1
)( 10’ = II

‘2 s 9
r

2 ~(2,2)*(a, T*)

m

the coefficient of viscosity in[1
q2 =

3

M.

r =
m

(3)Q(2’2)*(a, T*) and fq (Q, T*) =

gm/cm-see,

the molecular weight,

position of minimum in

dimensionless functions

angstroms,

which are
4,9

given in the references.

Equation (9) was used to obtain the coefficient of viscosity of hydrogen

()H2 over the temperature interval of interest.

The coefficient of viscosity of a gas with intermolecular interactions

corresponding to the H-H interactions was calculated using the estimation

method of Hirschfelder and Eliason2 as applied directly to the potential en-

ergy curves for H-H interaction.

As two hydrogen atoms approach one another they may interact in ac-

cordance with either of two potential energy curves representing two different

states, the lZg and 3ZU states. These potential energy curves have been

established over a wide range of separations by a combination of theoretical

0
treatments and spectroscopic experimental data for normal H2 Z These

g“
potential curves are shown in Figure 1 and have been generated here by the

data given in References 10-13. These data and the respective sources are

also tabulated in Appendix B.

The method of Hirschfelder and Eliason of obtaining an effective rigid-

sphere collision diameter for two particles interacting has been amply

-1o-



I20

100

80

60

40

20

0

-20

-40

- 6C

-8C

Oc

2C

32”

I

I I I I I I I I I

I 2 3 4 5 6 7 8 9 10

r

Figure 1 Energy of interaction of two

(ao)

1S hydrogen atoms as a function of—
internuclear separation.

-11-



.

demonstrated by those authors for certain hverse-power potentials. The ‘Z
u

potential curve of H2 generally follows the shape of an inverse-power repul-
1

sive potential, q(r) = a/m, and the portion of the Zg potential curve to the

right of the potential minimum is, in general, in the shape of an inverse-

power attractive potential, q (r) = -b/rn. From this consideration of these

curves it seems that the Hirschfelder-Eliason method is applicable.

IU this method one supposes that for transport processes the effective

collision diameter would correspond to a separation such that the intermolec-

ular potential energy is comparable to the average relative kinetic energy, RT.

The computation of this effective rigid-sphere collision diameter involves

knowing the parameter, n, which gives the best inverse-power type

[q(r) = a/m or -b/rn] of fit to the appropriate potential energy curve in the

range where the potential energy is comparable to the average relative kinetic

energy. This is obtained by finding dq /dr when q (r) = RT; and then the ef-

fective n = -(r/q) (dq /dr). Knowing this best effective n, one then obtains

from the tables provided by Hirschfelder and Eliason (for both inverse-power

attractive and repulsive potentials) a factor 6 Then using the appropriate
Vise”

potential energy curve, one finds the value of r for which q (r) = 6tiscRT.

This value of r is the effective collision diameter, a, which, when substituted

into Equation (13), will give the correct coefficient of viscosity appropriate to

the corresponding collision considered.

The values of RT, n, and 0 used in this work are listed in Table 1
Vise

for both the 3ZU and lZg potential curves. In practice, exploded versions of

Figure 1 were used to obtain these parameters. The n?s are given to the

nearest integer. Included in this table are the a!s determined for each po-

tential curve and temperature and the effective weighted average, a2.

It should be noted that only certain portions of the two potential curves

were actually used in these determinations, since the method employs only

-12-
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those portions of the curves corresponding to potential energy ranges com-

parable with RT. The ranges of the interatomic separation corresponding

to these potential energy intervals are about 4 to 6 a. (Bohr orbitals) and

3.5 to 6 a. for the %g and 3ZU states, respectively. The potential energies

of these two states over these ranges of interatomic separation have been
11

computed by Dalgarno and Lynn. See Appendix B.

Another significant feature considered in these computations is that the
3

a priori probability of interaction in accordance with the Zu curve is 3/4,

whereas for the lZg curve it is 1/4; therefore, to obtain an over-all value

for CT to compute a corresponding over-all effective viscosity, q, these
rig sph

two possible interactions must be weighted properly.

Konowalow, Hirschfelder, and Linder,
14

and Mason, Vanderslice, and

Yos
15

have shown that when molecules or atoms interact in accordance with

more than one potential energy function and if a given collision has the a

priori probability, pi, of occurring in accordance with the ith potential en-

ergy, @i(r), then the collision cross sections, Q~, for any type of process

are additive such that

(lo) Q=ZPQ .
iii

Since the collision cross sections are proportional to the collision diameters
2

squared, a
i’

it follows that the mean value of the collision diameter is given

by

(11)
~2 2

= z piai ●

i

Accordingly, for the two potential curves for the H-H interaction, one obtains

(12)
2 .52 +12

‘av rig sph 4‘3 ~uI ‘
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3
where a

3
= effective rigid-sphere collision diameter for the Zu state,

1

al
= effective rigid-sphere collision diameter for the Zg state.

Following the procedure outlined above, one obtains the effective

weighted average rigid-sphere collision diameter for the H-H interaction at

a chosen temperature. Upon inserting this quantity into the following equa-

tionl the viscosity of a gas obeying the interactions of the H-H system are

obtained.

(13) [1‘1 ~
x 107 = 266.93

.:v:sph
gm/cm-sec .

The coefficient of viscosity of a gas with particle interactions corre-

sponding to the H-H2 interactions was calculated using an !~verage f’ Lemard-

Jones (12-6) potential function.

Two limiting cases arise for the interaction of a hydrogen atom and a

hydrogen molecule. The atom may approach the molecule perpendicular to

the line of the nuclei (1) or the approach may be parallel to the line of the

nuclei (I1). A quantum mechanical calculation of the energy as a function of

distance of separation for these two cases has been made by Margenau.3

These values are also listed in MTGL. A plot of these calculated potential

energy values versus internuclear distance was made for the two directions

of approach ( 1 and II ), and the necessary parameters to fit these curves to

a Lennard-Jones (12-6) potential function were taken from the plot. See

Figure 2. The values obtained are:

(14) e/k(l) 37.9”K, ‘1

(15) e/k(il) 23.4°K, alI

III order to obtain a single

system, and from a very general

= 2.63X,

= 3.ooi.

Ilaverage ?! potential function for the H-H2

consideration of the geometry of the system,

-15-
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Figure 2 Potential of interaction between
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the two sets of parameters corresponding to the above two potential curves

were averaged by weighting the perpendicular (1.) approach two times and the

parallel (II ) approach one time. Using these weights, an arithmetic average

for the ats and a geometric average for the e/kls was made.1

(16)

2a* + q,

a12 av = 3
= 2.75X ,

Use was then made of

Lennard-Jones (12-6) potential function, which was applied to Equation (18)

to compute the viscosity corresponding to the H-H2 interaction

1/3
’11

)F
= 32.2’7°K.

these numbers as parameters for an “average”

266.93

(18) x 107 = /

[1
2M1M2T (Ml + ‘2) gm,cm_sec,

’12 # #, 2)* T*1
12 12 () 12

where T=

Ml, M =
2

’12’ ’12
/k =

~(z 2)* T*

12 () 12 =

temperature in “K,

kT/e12 = reduced temperature,

molecular weights of H and H2 respectively,

parameters of the potential function; 2.75A, and 32.27”K,

respectively,

parameter as defined by MTGL.

The three coefficients of viscosity, q2, ql, and q12, corresponding to

the three interactions, H2-H2, H-H, and H-H2, respectively, were calculated

using the methods described above. These calculations were made for a

number of temperatures from 1000”K to 5000”K. The results obtained are

listed in Table 2.

The

calculated

coefficient of viscosity of the dissociated hydrogen

using Equation (1). The appropriate values of the

-17-
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viscosi~ were taken from Table 2, and the appropriate values for the mole

fractions of the species in the mixture were taken from Table A-2. Because

of the pressure dependency of the dissociation of hydrogen, the resulting co-

efficients of viscosity for partially dissociated hydrogen show

pendency. These coefficients of viscosity of the mixture are

3 for the appropriate temperatures and pressures. Figure 3

a pressure de-

listed in Table

is a plot of

these coefficients of viscosity versus temperature for

Coefficients of Diffusion

The formula for the coefficient of diffusion of a

given in MTGL and used here is:

various pressures.

binary mixture as

I/(T3 Ml + M2)/2M1M2

(19) [1D = 2.628 X 10-3
12 ~ 2 (1, 1)* >

()
pfJ2~12 T:2

where D = diffusion coefficient in cm2/see,
12

P = pressure in atmospheres,

T = temperature in “K,

T~2 = kT/c12,

Ml, M2 = molecular weights of H and H2, respectively,

/k = intermolecular potential energy parameters characteristic
’12’ 612

of the H-H2 interaction in ~ and “K, respectively.

The parameters a12, and e12 , which were used in conjunction with

Equation (19) to obtain the D[1121
were the parameters for the ?’average”

Lennard-Jones (12-6) potential function discussed in the section on viscosity.

These values are:

(20)
’12 av

= 2.75X,

(21) ( /)k = 32.27”K.
’12 av

-19-
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Applications of these parameters and Equation (19) gave the results

listed in Table 4 in the form of P [D12]1.

The formula for the coefficient of self-diffusion for a system obeying

a modified Buckingham (exp-6) potential as given by Mason and Rice4 is:

= 2.628 x 10‘3 ~ T3/M
(22)

[1’22 ~ prz &, 1)*
m 2,2 ‘a’ T*) ‘

where
[1’22 ~ =

p.

T=

T* =

M=

~(1, 1)*
z z (a, T*) =

Y

coefficient of self-diffusion

pressure in atmospheres,

temperature in ‘K,

kT/6,

in cm2/see,

molecular weight (in this case for H2),

dimensionless function which may be obtained from

Reference 9,

depth of potential energy minimum,

position of the potential energy minimum.

Equation (22) and the parameters for the modified Buckingham (exp-6)

-H interaction (see the section on viscosity) were usedpotential for the H2 z

to obtain the coefficient of self-diffusion for H2. The values of these param-

eters are:

(23) a = 14.0,

(24) r = 3.3371,
m

(25) e/k = 37.3”K.

The results of these calculations are given in Table 4, in the form of

pP2211”

-22-



Table 4

Coefficients of Diffusion

P[%2]1 p pll]~ P[D22]1

T ~K) (atm cm2/see) (atm cm2/see) (atm cm2/see)

1000

1500

2000

2500

3000

3200

3500

3700

4000

4200

4500

5000

15.276

29.880

48.132

69.643

94.373

105.54

121.96

133.35

151.24

163.64

183.24

217.92

15.662

31.701

52.670

78.595

111.49

125.29

147.48

164.05

189.91

208.57

237.93

291.94

11.244

22.343

36.351

53.011

72.122

80.432

93.547

102.71

117.35

127.55

143.44

171.41

The formula for the coefficient of self-diffusion for a system obeying

the rigid-sphere type potential as given in MTGL is:

(26) [1’11 =
1

where [1’11 ~ =

T=

P =

M=

u=

2.628 x 10 T-3 T /M
9*

pa”

coefficient of self-diffusion
2

in cm /see,

temperature in “K,

pressure in atmospheres,

molecular weight (in this case for H),

rigid-sphere collision diameter.

-23-



In order to employ Equation (26) to obtain the self-diffusion coefficient

for the H-H system it is necessary to have a value for the rigid-sphere

collision diameter, a. As stated in the section on viscosity, there are two

(

3
potential energy curves for the H-H interaction,

)
Zu and % . If one ap-

13
plies the method of Hirscbfelder and Eliason2 to each of these potential

energy curves, one obtains an effective rigid-sphere collision diameter for

the interaction curve considered and the temperature considered. Since the

degeneracy of the two curves are 3 and 1, by the same reasoning as outlined

in the section on viscosity, these rigid-sphere diameters are weighted and

averaged to obtain the appropriate ?~effective~~ rigid-sphere diameter at any

one temperature.

In the description of the method of Hirschfelder and Eliason in the

section on viscosity, it is seen that a specific procedure is used to obtain

a factor, 6~sc, which is then used in the evaluation of the effective rigid-

sphere collision diameter. For the case of diffusion, essentially the same

procedure is used; however, one now obtains a factor, Oditi, which is then

used to get the effective rigid-sphere collision diameter for the diffusion

process. This procedure is explained more fully in the article by Hirsch-

felder and Eliason.

The values of RT, n, and Odiff used in the work presented here to obtain

the collision diameters are given in Table 5. Also in Table 5 are the a?s
I

for each potential curve and the effective weighted average value for U2.

Substituting these values of the effective rigid-sphere collision diameters

into Equation (26) gives the coefficient of self-diffusion for the H-H system.

These results are listed in Table 4 in the form of

Coefficient of Thermal Conductivity

It has been shown by Butler and Brokaw6 that

-24-
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conductivity of a dissociating gas may be expressed as follows:

(27) A

[

=Afl+
e

In this equation Ae =

,

or

where

The ratio

tities are

For

Af =

t=
pe

e=
pf

t?

[ )17?tie-l.
pf

effective thermal conductivity of the dissociating

mixture in cal/cm-sec-°K,

thermal conductivity of the “frozenl~ mixture, or the

thermal conductivity due to molecular collisions in

cal/cm-sec-°K,

equilibrium heat capacity of the mixture at constant

pressure in cal/’’gmgm of mix,

heat capacity of the mixture at constant pressure and

constant composition in cal~K-gm of mix,
A

~ = ‘12pcpf
A=

= dimensionless quantity which is a function
1-

of the reaction under consideration. See Ref. 6,

d=

D=
12
n.

c=
pf

D nC
12 pf

Ag ‘
1.

coefficient of binary diffusion in cm2/see,

number of moles of gas mixture/cm3

l!frozen~~ composition constant pressure heat capacity

per mole of gas mixture per “K.

tpe/tpfis the same as the ratio C /C where the latter quan-
pe pf’

for the total mixture.

a better understanding of C and C consider the following steps.
pe pf’

The enthalpy of the mixture at a given composition is:

(28) H=2n H
iii’

-26-



where n
i

= number of moles of ith species,

Hi = enthalpy per mole of the ith species.

Then the equilibrium heat capacity at constant pressure is:

The “frozen” heat capacity at constant pressure,

heat capacity at constant composition, is:

or the constant pressure

These two heat

of temperature

Lewis number,

capacities, computed for dissociating hydrogen as a function

and pressure, are listed in Appendix A in Table A-3. The

6, of Equation (27) varies with composition for a mixture of

two gases. Butler and Brokaw6 made estimates of the variation of 6 for the

dissociation of a diatomic molecule, and they suggest that 6 varies from

about 1.4 (gas composed entirely of diatomic molecules) to about O.6 (gas

composed entirely ,of atoms). The se authors also state that for rough esti-

mates, 6 is of the order of unity, and therefore one may make the approxi-

mation,

Ac
e

(31) —-~.
‘f pf

Thus, the use of either Equation (27) or Equation (31) will give two methods

of computing Ae with varying degrees of approximation.

The term Af in the above equations is the coefficient of thermal con-

ductivity of the mixture when no reaction is considered; however, since the

mixture contains H2 and H, it may be thought of as a polyatomic gas mixture

-27-



of

of

two components. Henceforth this term, A$, will be called the coefficient

thermal conductivity of the “frozen” polyatomic gas mixture, A
v poly mix”

for a

(32)

where

Hirschfelder’ has shown that the coefficient of thermal conductivity

polyatomic gas mixture of two components is given by

A ~ A
poly mix mon mix

‘x1[1+x2%!~~a1-[’l]mo~

/ %\-l/

\

+X2X2+X l=) ~2-[’2]~on/

for our case:

A
poly mix =

A =
mon mix

‘1’X2 =
D

11’’22 =

D=
12

.

‘2 =

[1‘2 =mon

coefficient of thermal conductivity of the polyatomic gas

gas mixture (cal/cm-sec-°K),

the coefficient of thermal conductivity the mixture would

possess if the molecules were all monatomic (cal/cm-sec-°K),

mole fraction of H and H
2’

respectively,

coefficients of self-diffusion of H and H~, respectively

(cm2/see),

coefficient of diffusion in a binary mixture of H and H2

(cm2/see),

[1A1 = coefficient of thermal conductivity of H atoms
mon

(cal/cm-sec-°K),

coefficient of thermal conductivity of H
2’

where the gen-

eralized Eucken correction has been made for the internal

degrees of freedom (cal/cm-sec-°K). See Equation (34),

coefficient of thermal conductivity of H2 if it is considered

to be monatomic (cal/cm-sec-°K).
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Equation (32) is used to obtain the term Af for

In order to obtain the terms (Al 1 and

from MTGL is used:

(33)
[Amonll

15 R
xlo7=— — [14Mq1

where
[?tlonll

=

R=

M=

[1‘1=

1st approximation

(cal/cm-sec-°K),

x 107 ,

Equations (27) and (31).

[1
A2 the following equation

mon

to the thermal conductivity

gas constant (cal/mole, ‘K),
I

molecular weight,

coefficient of viscosity (gm/cm-see).

To obtain the term 12 of Equation (32), the following equation as given
u

by Hirschfelder 1 is used:

(34)
[1

A2=A
2 mon + n[D221,(%(H2)

where A2 =

[1
A2 =

mon

n=

’22 =
C“H=

()p2
R=

The term A
n’

coefficient of thermal

5R.—
)2’

conductivity of the polyatomic gas,

H2, where the generalized Eucken-type correction has

been made (cal/cm-sec-°K),

coefficient of thermal conductivity of H2 when it is con-

side red monatomic. See Equation (33),

number of moles of the gas mixture per cma,

self-diffusion coefficient of H2 (cm2/see),

constant pressure heat capacity of H2 (cal/mole, ‘K),

gas constant (cal/mole-°K).

of Equation (32) is the thermal conductivity of the
Ion mix

mixture if it is considered to be a mixture of monatomic gases. The follow-

ing equations for a binary mixture of monatomic gases as given in MTGL

were used:
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(38)

(41)

X+y

[~:ixl
‘l+ZA

1

XA

1.

i- 353
[1
A

12 ~

+

2X1X2 X2

[1
+ A12

~(y) + a

[1
1

‘2 ~
J.

2X1X2U(Z)

#) . ~A* -(1 12B*
15 “12– 12 5 12

(12B*
5 12

+ *2U(2)

2’

U(2)
Y

(Ml ~M1– M2
)

2

+1
)

—+—

‘2 2
M1M2

)
M2

+1—
(+ ~ ‘;-MMl~ ,

M,212
J.

()Ml+ M2~ [’lz~(
4M1M2 [Alll[%]l

--(1 12B*
12 5 12
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where
‘1’X2 =

mole fraction of H and H2, respectively,

molecular weight of H and Hz, respectively,

functions of T~2 = kT/~ 12 defined in Equations

8.2-15 and 8.2-16 of MTGL,

[All+,[A21.’ [A121-
= coefficients of thermal conductivity corresponding

1

All of the

explained. The

from MTGL:

(43)
[1
A

12 ~

[1
where ~

121=

Ml, M =
2

[1’12 ~ =

R=

1 1

[’mix]
=

1

to the H-H, H2-H2, and H-H2 interactions, re -

spectively,

coefficient of thermal conductivity of the binary

monatomic mixture.

terms in these equations except the term [ A12]1 have been

term [ A12]1 was obtained from the following eq~ation taken

. 15R (M1+M
2)

4 2M1 M2 [1’12 ~ ‘

coefficient of thermal conductivity of a hypothetical gas, the

molecules of which have a molecular weight of

(
2M1M2/ Ml + M

2)
and interact according to a potential

curve specified by the parameters IJ and e as used to

determine q
[ 12]1 (cal/cm-sec-”K), 12 12

molecular weights of H and H
2’

respectively,

coefficient of viscosity as discussed in the section on vis -

cosity (gm/cm-see),

gas constant (cal/mole, “K).

Table 6 presents the values of A
[ 111’ [AZ

from the above equations, the values for ql ,
[1

1mon 1‘ [1
and A12 as obtained

1

and r ~121, as given in Table 2,
L

and the value of [q2 ]1 which was used to get ‘the third
JA

approximate on, [1772~,
to the viscosity of H2.
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Table 6

Coefficients of Thermal Conductivity for the Systems

H-H, H-H2, and H2-H2, Considering Each System

as Monatomic (cal/cm-sec-°K)

[1Al x 10
7

[1’121 x 107
[1‘2 1

x 107

T ~K) *-H H-H2 H2-H2

1000

1500

2000

2500

3000

3200

3500

3700

4000

4200

4500

5000

10,780.

14,512.

17,870.

21,130.

24,219.

25,451.

27,240.

28,440.

30,379.

31,526.

33,249.

36,533.

-32-

10,283.

13,356.

16,088.

18,579.

20,900.

21,813.

23,008.

23,794.

24,969.

25,737.

26,890.

28,787.

7,389.9

9,702.2

11,773.

13,664.

15,423.

16,100.

17,084.

17,722.

18,700.

19,337.

20,265.

21,741.



using

Table 7 gives the values of Xmon fix obtained from Equation (35)

the appropriate mole fractions and the results given in Table 6.

Table 8 gives the values of the coefficie@ of thermal conductivity of

H2, A2, when the generalized Eucken-type of correction has been made. See

Equation (34). Also listed in this table are the factors X
( 2- [Azlmon) ‘Mch

are used in Equation (32) to obtain A
poly mix”

Table 9 lists the values of the coefficient of thermal conductivity of

the mixture when no reaction is considered but the Eucken-type correction

for the polyatomic gas is applied. Thfs is X
poly mix”

Equation (31) gives the first and roughest ‘approximation to the thermal

conductivity of the reacting mixture, A or X In arriving at this approxi-
e reac”

mation, the term 6 of Equation (27) was assumed to be unity. The values of

c and C which are necessary for Equation (31) are given in Table A-3 of
pe pf

Appendix A.

Table 10 gives the results for Areac as obtained from Equation (31).

Equation (27) is the more exact expression for the coefficient of thermal

conductivity for the reacting mixture. This expression involves d, which is

defined as follows:

D nC

(44) 6 = 1; Pf ,
f

where the symbols have the significance given above. The values of 6 as

computed and used in this work are given h Table 11.

The final results for the coefficient of thermal conductivity for the re-

acting mixture of dissociating hydrogen as obtained from the more exact ex-

pression, Equation (27), are given in Table 12 and graphed in Figure 4.

The recommended “best” values for the coefficient of thermal conductivity

of the

values

dissociating mixture are those given in Table 12 and Figure 4. The

given in Table 10 are more approximate.

-33-



+i?
!

?
!

dm..+

.%i!

,.
.s00a*

m
.

w0m
-

N.
s

0d-Jwm
.

l-lIn&
-

‘=
4

N
o

mo
-a

-

0m$d
“

m

.

GInN
“

c
me
.

O
Y

0“mm00Inw

-3
4
-



Table 8

Coefficient of Thernml Conductivity for H2

with the Eucken-Type Correction Included

[1AZ x 107 (% - [Mmon)x’07
T ~K) (cal/c~-sec-OK) (cal/cm-sec-°K)

1000 10,472. 3,081.7

1500 14,685. 4,982.8

2000 18,877. 7,103.6

2500 22,858. 9,194.3

3000 26,623. 11,200.

3200 28,098. 11,998.

3500 30,194. 13,110.

3700 31,585. 13,863.

4000 33,656. 14,956.

4200 35.007. 15,670.

4500 37,023. 16,758.

5000 40,211. 18,470.
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Figure 4 Coefficient of thermal conductivity of dissociating hydrogen.
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APPENDIX A

In the calculations of the coefficients of viscosity and the coefficients

of thermal conductivity of dissociating hydrogen for various temperatures and

pressures, it is necessary to have the equilibrium composition of the mix-

ture, the equilibrium heat capacity at constant pressure, and the constant

pressure, !Ifrozen!l composition, heat capacity.

The following analysis of this equilibrium

A.1 H2 == 2H,

A.2 (1 – o!) == 2a,

A.3 n, = 2a = number of moles of H,

A.4
‘2 =

l– ~.

A.5

A*6

20!=— =
‘1 l+a

1–Q!=— =
‘2 1+~

number of moles of

mole fraction of H,

mole fraction of H
2’

was used:

H2,

A.7 K = 4a2p = thermodynamic equilibrium constant,
P ~_a2

A.8 lnK =ln
4a2 AFO

+lnp=
P 1-CY2

–m “

-41-



In equation A.1 consider 1 mole of originally undissociated H2 to be at

equilibrium at a given temperature and pressure. In equation A.2 the a

represents the degree of dissociation. It is the fraction of the originally

undissociated H2 which has dissociated. In equation A.8 the AFO represents

the change in the standard Gibbs free energy for the reaction, R equals the

gas constant, T is the temperature in “K, and p is the pressure in atmos-

pheres.

An IBM 704 computer program which solves for the composition of

multicomponent systems was used to solve the above equilibrium. For the

convenience of handling, the thermodynamic data used as input data for the

program were fit to polynomials in temperature. The form of these ex-

pressions is:

A.9

A.1O

All

were

F“ 2
CT +@+&+k

‘aln T+ bT+—
H:

–= 2 3 4 –G’

c =a+bT+cT2+dT3+eT4 ,
P

()H“ –I%

T
=a+bT+cT2+dT3+eT4.

The basic data used to evaluate the constants in the above equations

obtained from Reference 8. The constants for the fits are tabulated in

Table A-1. For further

thermodynamic data, see

Using the program

details of the IBM program and the handling of the

Reference 16.

described, the degree of dissociation, a, the mole

fractions, x, and the number of moles, n, of the components were calculated

for the hydrogen dissociation equilibrium for the temperatures and pressures

of interest to these calculations. The degree of dissociation and mole frac-

tion of H are listed in Table A-2.
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The two heat capacities necessary for the thermal

lations were obtained from the following formulations as

previously mentioned computer program.

conductivityy calcu-

an extension of the

Consider the total enthalpy of the dissociated mixture.

A.12 =nHO+n HO
‘~tot) 1 1 2 2 ‘

where n , n
12

= number of moles of H and H2, respectively,

Ho, H“
12

= enthalpy per mole of H and H2, respectively.

Therefore, from A.3, A.4, and A.12,

A.13
‘~tot)

= 2aH~ + (1 – a)H~ ,

waH”

A.14 c = a~ = 2Ci!c + (1 – a)c!
pe

P
pl P2 + kH~-Hw$p $

where C , C =
pl p2

c=
w

2H0 –Ho=
12

constant-pressure heat capacity per mole for H and H2,

respectively,

equilibrium constant pressure heat capacity of the mixture,

AH” = standati enthalpy change for the reaction at T

It follows that,

[)
aln K

A.16 P _ AHO

aT
*

D RT2

and from A.8
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A.17

()

aa = CY(l - a’)
ahl K 2;

P
P

therefore,

A.18
a~

()m
P

A.19 c=
w

and

A.20 c=
pf

= ~“dl- a’),
9

2RT2

‘ac + (1 – (y)c + ~02& - ~’)
pl p’ 9

2RT2

2 ac + (1 – ~)c
pl p’ ‘

where C = the constant pressure heat capacity for “frozen!’ composition.
pf

The values of C and C computed with the IBM computer using
pe pf

these formulas and the appropriate data for the temperatures and pressures

of interest are given in Table A-3.

The above reported values’ of C and C are the heat capacities in
pe pf

terms of calPK for the mixture.

In the computation of d in Equation (27), the quantity C , the “frozen?!
pf

composition constant pressure heat capacity per mole of mixture, is neces-

sary. Table A-4 gives the number of moles of mixture and C
pf

per mole of

mixture, as computed from the data in Tables A-2 and A-3.

Table A-5 gives the values of C
PH2

which were used in Equation (34)

to obtain A2, the coefficient of thermal conductivity of H2 with the Eucken-

type correction applied.
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Table A-5

Constant Pressure Heat Capacity

CPH2

of H
2

T ~K) (cal/mo&°K)

1500 7.713

2000 8.175

2500 8.526

3000 8.791

3200 8.885

3500 8.993

3700 9.066

4000 9.151

4200 9.202

4500 9.282

5000 9.389
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APPENDIX B

The data used to plot Figure 1, the potential energy curves for the
1

Zg and 3ZU states of the H-H interaction, and the source of these data are

listed in Tables B-1 and B-2. As stated in the text, the method of Hirsch-

felder and Eliason when applied to these interaction curves utilizes only a

portion of the curves. The particular portion of the curves used here cor-

responds only to the range of values of the potential energies which were
11

computed by Dalgarno and Lynn.
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Table B-1

Binding Energy for lZg State of Hydrogen

Binding energy
r (ao) (kcal/mole) Source

0.78

0.79

0.81

0.83

0.85

0.88

0.92

0.96

1.01

1.09

1.23

1.40

1.68

1.94

2.15

2.32

2.49

2.66

2.84

3.05

3.28

3.51

3.73

4.0

5.0

6.0

7.0

8.0

10.0

12.0

14.38

20:14

26.68

33.91

41.84

50.46

59.70

69.57

80.13

91.32

103.20

109.32

103.20

91.32

80.13

69.57

59.70

50.46

41.84

33.91

26.68

20.14

14.38

10.372

2.48

0.568

0.137

0.0386

0.0058

0.0016

Rydberg Experimental Values
as given in MTGL, pp. 1060-1061

Reference 11
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Table B-2

3
Repulsion Energy for the Zu State of Hydrogen

Energy of repulsion

r ( q (kcal/mole) Source

1.0

1.25

1.50

1.75

2.00

245

166

119

88.8

68.0

2.5

3.0

3.5

30.45

16.35

8.45
}

4.0

5.0

6.0

7.0

8.0

10.O

12.0

2.378

0.295

- 0.0100

- 0.0317

- 0.0195

- 0.0053

- 0.0016

Reference 12

Reference 13

Reference 11
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