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LEGAL NOTICE

This report was prepared as an account of Govern-
ment sponsored work. Neither the United States, nor the
Commission, nor any person acting on behalf of the Com-
mission:

A, Makes any warranty or representation, expressed
or implied, with respect to the accuracy, completeness, or
usefulness of the information contained in this report, or
that the use of any information, apparatus, method, or pro-
cess disclosed in this report may not infringe privately
owned rights; or

B. Assumes any liabilities with respect to the use
of, or for damages resulting from the use of any informa-
tion, apparatus, method, or process disclosed in this re-
port.

As used in the above, “person acting on behalf of the
Commission” includes any employee or contractor of the
Commission, or employee of such contractor, to the extent
that such employee or contractor of the Commission, or
employee of such contractor prepares, disseminates, or
provides access to, any information pursuant to his em-
ployment or contract with the Commission, or his employ-
ment with such contractor.
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ABSTRACT

The coefficient of viscosity and the coefficient of thermal conductivity
for dissociating hydrogen gas has been computed for the temperature range
from 1500°K to 5000°K and for the pressures of 0.1, 0.5, 1, 2, 10, 50, and
100 atmospheres. The coefficient of diffusion in a binary mixture of the
H—HZ system and the coefficient of self-diffusion for H atoms and H2 mqle-

cules have been computed for the same set of conditions.
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INTRODUCTION

Coefficient of Viscosity

Dissociated hydrogen gas consists of a mixture of H atoms and H

2
molecules, so it can be considered as a binary mixture in which one gas has

the properties of the diatomic gas and the second gas has the properties of
the monatomic gas. In this work the coefficient of viscosity for the corre-
sponding composition of the mixture at any given temperature and pressure
has been calculated using the formula for a binary mixture of gases given in
Molecular Theory of Gases and Liquids (MTGL).1

It is necessary to have the coefficients of viscosity corresponding to
the HZ-H2 interaction, to the H-H interaction, and to the H-H2 interaction in
order to calculate the coefficient of viscosity of the mixture,

The HZ-H 9 interaction was assumed to obey the mod;ﬁed Buckingham
(exp-6) potential. The method of Hirschfelder and Eliason has been applied
to the two potential energy curves (32u and lzg) for the H-H interactions,
and the weighted average of the effective rigid-sphere collision diameters so
obtained was then used to calculate a coefficient of viscosity corresponding

to the H-H interaction. The interaction energy of the H-H_ system was taken

to be those values as computed by Margenau3 for two orieitations of the H
atom approaching the H2 molecule, parallel (i1) and perpendicular (1) to the
H-H molecular axis. The weighted averages of the parameters used to fit
these two potential curves to Lennard-Jones (12-6) potential curves were then

used as the parameters (0 for an "average'" Lennard-Jones (12-6)

12' €12)




potential function. These "average'" Lennard-Jones (12-6) potential parameters
were then used in the evaluation of the necessary collision integrals in the

computation of the coefficient of viscosity.

Coefficients of Diffusion

In MTGL, the coefficient of diffusion in a binary mixture and the co-
efficients of self-diffusion have been shown to be functions of the collision
integrals and cross sections. Therefore, if one decides to utilize certain
interaction potentials for the viscosity calculations -as outlined above, one can
obtain diffusion coefficients consistent with the chosen molecular interactions,

The coefficient of diffusion in a binary mixture was computed using the
formula given in MTGL and the potential parameters (o

€
12’ 12
age" Lennard-Jones (12-6) potential which was obtained as outlined above.

)for an "aver-

The coefficient of self-diffusion for the H2—H2 system was computed
using the formula given by Mason and Rice4 for a system that obeys the
modified Buckingham (exp-6) potential.

The coefficient of self-diffusion for the H-H system was computed from
the formula given in MTGL for a system obeying the rigid-sphere type of
potential, The effective rigid-sphere collision diameter for the H-H system
was obtained by the method of Hirschfelder and Eliasonz as applied to the

two potential energy curves (32u and 12g) for the H-H interactions.

Coefficient of Thermal Conductivity

For the calculation of the coefficient of thermal conductivity of dis-
sociating hydrogen it was treated as a reacting gas mixture. The analysis
used for this system was a combination of the methods given by Hirschfelder5
and Butler and Broka.w.6

Following the procedure of Butler and Brokaw for a reacting gas mixture,




it is first necessary to compute the coefficient of thermal conductivity for
the "frozen'" mixture, This 'frozen" mixture is a binary mixture of H atoms
and H2 molecules 7a.nd can be considered a mixture of polyatomic gases.

Hirschfelder has given a method of computing the thermal conductivity
of a polyatomic gas mixture and his procedure was used here, In this method
it is necessary to have the thermal conductivity of the gas mixture which the
mixture would possess if the gases had no internal degrees of freedom. This
latter hypothetical thermal conductivity will be called the thermal conductivity
of the monatomic mixture. I is obtained from the mixing formula for binary
monatomic mixtures as given in MTGL, and involves the three coefficients of
thermal conductivity corresponding to the thermal conductivities of monatomic
gases which have molecular interactions corresponding to the interactions
evidenced by HZ-HZ, H-H, and H-HZ. These three coefficients of thermal
conductivity are obtained from the previously computed viscosities and the
relationship between viscosity and thermal conductivity for monatomic gases
as given in MTGL.

After obtaining this thermal conductivity of the monatomic mixture as
prescribed above, the thermal conductivity of the polyatomic gas mixture is
obtained by applying the Eucken-type correction as given by Hirschfelder.7

Utilizing this coefficient of thermal conductivity for the polyatomic gas
mixture as the thermal conductivity of the “frozen" mixture, we next apply
the correction as given by Butler and Broka.w6 and get the coefficient of

thermal conductivity of the reacting mixture.
METHOD AND RESULTS

Coefficient of Viscosity

The coefficient of viscosity of a binary mixture of monatomic gases as
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expressed in MTGL and utilized in this work is:
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where xl,x2 mole fractions of H and HZ’ respectively,

M 1’ M2 = molecular weights of H and HZ’ respectively,
A;z = a function of kT/elz, defined in Equation (8.2-15) of MTGL,
n 1,112 = coefficients of viscosity of H and HZ’ respectively,

Mo = coefficient of viscosity of a hypothetical gas with molecular
interactions characterized by Lennard-Jones (12-6) potential
parameters 012 and 612. See MTGL.

iz = coefficient of viscosity of the mixture.

Equation (1) was used to evaluate the coefficient of viscosity, , of

n
mix
the mixture resulting from hydrogen dissociating at any given temperature and
pressure.

The mole fractions of the species present in the dissociated hydrogen

| at any given temperature and pressure were obtained by solution of the




hydrogen dissociation equilibrium, Hz(g) = 2H(g). The thermodynamic data
used to solve this equilibrium were taken from the National Bureau of Stand-
ards Series III Circ{z.lar.8 Details of the method of solution are given in
Appendix A. The results of these solutions are given in Table A-2 in Ap-
pendix A,

The coefficient of viscosity of pure H2 gas was computed using the
modified Buckingham (exp-6) potential9 to describe the intermolecular poten-

tial, This potential is expressed as

6
5) o) = ———— % eOZ(1 ") - (r—m> ,
1-6/ala r
where @ (r) = the potential energy of the two molecules at a separation dis-
tance r,
€ = the depth of the potential minimum,
rm = the position of the minimum,
o = a parameter which is a measure of the steepness of the re-

pulsion energy.

Evaluation of the necessary constants in Equation (5) from available
experimental data for hydrogen has been made by Mason and Rice.4 These
authors have established that the use of this interaction potential function
gives better agreement between calculated and experimental viscosities of
hydrogen in the temperature range of about 320°K to about 1100°K than the
Lennard-Jones (12-6) potential function.

The constants for Equation (5) appropriate to hydrogen as given by

Mason and Rice are:

) @ = 14.0,
) r_ = 3.337 A,
m
®) e/k = 37.3°K.




In the third approximation, the viscosity of hydrogen (undissociated) is

then expressed as

1/2 f(3)

7 266,93(MT) " (o, T*)
) n,] X 10 = " ,
[ 2]3 r2 9(2’ 2) (o, T*)
m

where [nz] = the coefficient of viscosity in

3

gm/cm-sec,
M = the molecular weight,
rm = position of minimum in angstroms,

(3)
n

*
9(2’ 2) (¢, T¥) and f “(o, T*) = dimensionless functions which are

given in the references. ’

Equation (9) was used to obtain the coefficient of viscosity of hydrogen
(H 2) over the temperature interval of interest.

The coefficient of viscosity of a gas with intermolecular interactions
corresponding to the H-H interactions was calculated using the estimation
method of Hirschfelder and Elia.son2 as applied directly to the potential en-
ergy curves for H-H interaction,

As two hydrogen atoms approach one another they may interact in ac-
cordance with either of two potential energy curves representing two different
states, the lzg and 32u states, These potential energy curves have been
established over a wide range of separations by a combination of theoretical
treatments and spectroscopic experimental data for normal Hz(1 Zg). These
potential curves are shown in Figure 1 and have been generated here by the
data given in References 10-13., These data and the respective sources are
also tabulated in Appendix B.

The method of Hirschfelder and Eliason of obtaining an effective rigid-

sphere collision diameter for two particles interacting has been amply

- 10 -
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demonstrated by those authors for certain inverse-power potentials, The 32u
potential curve of H_ generally follows the shape of an inverse-power repul-
sive potential, ¢(r) = a/rn, and the portion of the lzg potential curve to the
right of the potential minimum is, in general, in the shape of an inverse-
power attractive potential, ¢(r) = -b/rn. From this consideration of these
curves it seems that the Hirschfelder-Eliason method is applicable,

In this method one supposes that for transport processes the effective
collision diameter would correspond to a separation such that the intermolec-
ular potential energy is comparable to the average relative kinetic energy, RT.
The computation of this effective rigid-sphere collision diameter involves
knowing the parameter, n, which gives the best inverse-power type
[qo(r) = a/r" or —b/rn] of fit to the appropriate potential energy curve in the
range where the potential energy is comparable to the average relative kinetic
energy. This is obtained by finding d¢ /dr when ¢ (r) = RT; and then the ef-
fective n = -(r/p)(dp /dr). Knowing this best effective n, one then obtains
from the tables provided by Hirschfelder and Eliason (for both inverse-power
attractive and repulsive potentials) a factor 9visc° Then using the appropriate
potential energy curve, one finds the value of r for which ¢(r) = 6 viscRT.
This value of r is the effective collision diameter, o, which, when substituted
into Equation (13), will give the correct coefficient of viscosity appropriate to
the corresponding collision considered.

The values of RT, n, and gvisc used in this work are listed in Table 1
for both the 32u and lzg potential curves. In practice, exploded versions of
Figure 1 were used to obtain these parameters. The n's are given to the
nearest integer. Included in this table are the o's determined for each po-
tential curve and temperature and the effective weighted average, 02.

It should be noted that only certain portions of the two potential curves
were actually used in these determinations, since the method employs only

- 12 -
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Table 1

Parameters Used in the Hirschfelder and Eliason Analysis for [nl]
1

3

1

Eu State Eg State
o2 02)

T RT R R av rig sph
(K) (kcal/mole) n vise Urig sph (A) vise Urig sph (A) (weighted av)
1000 1987.19 11 0.838 2,196 6 0.5831 2,963 5.812
1500 2980,79 12 0.831 2.106 6 0.5831 2.801 5.288
2000 3974.38 11 0.838 2.056 6 0.5831 2,675 4,958
2500 4967,98 9 0.854 2.008 6 0.5831 2,580 4.688
3000 5961.57 10 0.846 1,969 6 0.5831 2,507 4.481
3200 6359.01 9 0.854 1,955 6 0.5831 2,480 4,404
3500 6955,17 8 0.863 1.934 6 0.5831 2.447 4,303
3700 7352.60 8 0.863 1.921 6 0.5831 2.425 4,238
4000 7948,76 7 0.891 1,894 6 0.5831 2,394 4,125
4200 8346.20 7 0.891 1.884 6 0.5831 2.376 4.073
4500 8942.36 7 0.891 1.868 6 0.5831 2.350 3.997
5000 9935,95 7 0.891 1.826 6 0.5831 2.311 3.835




those portions of the curves corresponding to potential energy ranges com-
parable with RT. The ranges of the interatomic separation corresponding

to these potential energy intervals are about 4 to 6 a, (Bohr orbitals) and
3.5 to 6 a, for the lzg and 32u states, respectively. The potential energies
of these two states over these ranges of interatomic separation have been
computed by Dalgarno and Lynn.11 See Appendix B.

Another significant feature considered in these computations is that the
a priori probability of interaction in accordance with the 32u curve is 3/4,
whereas for the lzg curve it is 1/4; therefore, to obtain an over-all value
for Grig sph to compute a corresponding over-all effective viscosity, 7, these
two possible interactions must be weighted properly.

Konowalow, Hirschfelder, and Linder,14 and Mason, Vanderslice, and
Yos15 have shown that when molecules or atoms interact in accordance with
more than one potential energy function and if a given collision has the a
priori probability, pi’ of occurring in accordance with the ith potential en-
ergy, <I>i(r), then the collision cross sections, Qi’ for any type. of process

are additive such that

(10) Q = 213piQi .

Since the collision cross sections are proportional to the collision diameters

2
squared, o,, it follows that the mean value of the collision diameter is given
by

2 2
(11) o = Zi)pi(ri .

Accordingly, for the two potential curves for the H-H interaction, one obtains

2

(12) Tav rig sph B

- 14 -



where 03 effective rigid-sphere collision diameter for the 32u state,

%

Following the procedure outlined above, one obtains the effective

effective rigid-sphere collision diameter for the lzg state.

weighted average rigid-sphere collision diameter for the H-H interaction at

a chosen temperature. Upon inserting this quantity into the following equa-
1

tion" the viscosity of a gas obeying the interactions of the H-H system are

obtained.

vMT

2
Gav rig sph

7
(13) [nl] X 10 = 266.93 gm/cm-sec .

1

The coefficient of viscosity of a gas with particle interactions corre-
sponding to the H-H2 interactions was calculated using an "average! Lennard-
Jones (12-6) potential function.

Two limiting cases arise for the interaction of a hydrogen atom and a
hydrogen molecule. The atom may approach the molecule perpendicular to
the line of the nuclei (1) or the approach may be parallel to the line of the
nuclei (11). A quantum mechanical calculation of the energy as a function of
distance of separation for these two cases has been made by Margenau.3
These values are also listed in MTGL. A plot of these calculated potential
energy values versus internuclear distance was made for the two directions
of approach (.l and 1), and the necessary parameters to fit these curves to
a Lennard-Jones (12-6) potential function were taken from the plot. See

Figure 2. The values obtained are:

(14) e/k(l) 37.9°K, o, = 2.63%,
(15) e/k(ll) 23.4°K, 0, = 3.00A.

In order to obtain a single "average' potential function for the H-H2

system, and from a very general consideration of the geometry of the system,

- 15 -
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the two sets of parameters corresponding to the above two potential curves
were averaged by weighting the perpendicular ()) approach two times and the
parallel (li) approach one time. Using these weights, an arithmetic average

for the o's and a geometric average for the e/k's was ma.de.1

20, + g o
(16) %o av - 3 2TA,
€ € € 1/3
L 1L
(17) (elz/k)aw =(Y T T) = 32.27°K.

Use was then made of these numbers as parameters for an "average"
Lennard-Jones (12-6) potential function, which was applied to Equation (18)

to compute the viscosity corresponding to the H-HZ interaction;

7 26693[2M (M1+M)
(18) n x10 = gm/cm-sec,
[M2], o2 2) "
12 12 )
where T = temperature in °K,
t 3
= k =
T 12 T/e 12 reduced temperature,
M1,M2 = molecular weights of H and H2 respectively,
012, elz/k = parameters of the potential function; 2.75A, and 32.27°K,
respectively,
9(2’ 2)* T* | = parameter as defined by MTGL
12 (T12) Y '
The three coefficients of viscosity, My nl, and 7’12’ corresponding to
the three interactions, H2 H2 H-H, and H—H2 respectively, were calculated

using the methods described above. These calculations were made for a
number of temperatures from 1000°K to 5000°K. The results obtained are
listed in Table 2,

The coefficient of viscosity of the dissociated hydrogen mixture was

calculated using Equation (1). The appropriate values of the coefficients of

- 17 -
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Table 2

Coefficient of Viscosity for Interactions in Dissociating Hydrogen System

[n2]3 X 10I7 gm/cm-sec [nl]l X 10I7 gm/cm-sec [1712]1>< 10I7 gm/cm-sec

T (°K) HZ—H2 H-H H—H2
1000 2013 1458 1855
1500 2643 1963 2409
2000 3207 2417 2902
2500 3722 2858 3351
3000 4202 3276 3769
3200 4387 3443 3934
3500 4655 3685 4150
3700 4829 3847 4291
4000 5096 4109 4503
4200 5270 4264 4642
4500 5523 4498 4850
5000 5926 4942 5192

Method: Modified Hirschfelder Lennard-Jones
Buckingham and (12-6)

(exp-6) Potential Eliason Potential




viscosity were taken from Table 2, and the appropriate values for the mole
fractions of the species in the mixture were taken from Table A-2. Because
of the pressure dependency of the dissociation of hydrogen, the resulting co-
efficients of viscosity for partially dissociated hydrogen show a pressure de-
pendency. These coefficients of viscosity of the mixture are listed in Table
3 for the appropriate temperatures and pressures. Figure 3 is a plot of

these coefficients of viscosity versus temperature for various pressures.

Coefficients of Diffusion

The formula for the coefficient of diffusion of a binary mixture as

given in MTGL and used here is:

3
g /T, + M) oM

= 2,628 X 10
@9 D] 2 LD, ’
1 o, T
12 12 ( 12)
where D, = diffusion coefficient in cmz/sec,
p = pressure in atmospheres,
T = temperature in °K,
*  _
Tip = KT/€1y
Ml’ M2 = molecular weights of H and HZ’ respectively,
o 19° € 1 2/k = intermolecular potential energy parameters characteristic

of the H-H 9 interaction in & and °K, respectively.

The parameters o _, and el , which were used in conjunction with

12 2
Equation (19) to obtain the [D12] were the parameters for the 'average"

1
Lennard-Jones (12-6) potential function discussed in the section on viscosity.

These values are:

(20) = 2.75R,

912 av

(21) (e 12/k)av

32.27°K.

- 19 -
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Table 3
Coefficient of Viscosity of Dissociating Hydrogen

7
x 10 gm/cm-sec

Tmix
T (°K) 0.1 atm 0.2 atm 0.5 atm 1 atm 2 atm 10 atm 50 atm 100 atm
1500 2643 2643 2643 2643 2643 2643 2643 2643
2000 3205 3206 3206 3206 3206 3207 3207 3207
2500 3695 3703 3711 3714 3717 3720 3721 3722
3000 3983 4049 4108 4137 4157 4182 4195 4196
3200 3995 4103 4208 4263 4301 4350 4371 4376
3500 3962 4089 4258 4365 4448 4564 4615 4627
3700 3997 4094 4259 4388 4502 4679 4763 4782
4000 4164 4210 4314 4426 4554 4815 4966 5004
4200 4293 4320 4387 4471 4585 4876 5079 5133
4500 4510 4521 4553 4600 4675 4949 5218 5300

5000 4945 4948 4957 4971 4997 5144 5412 5527
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Applications of these parameters and Equation (19) gave the results
listed in Table 4 in the form of p[D12]1°
The formula for the coefficient of self-diffusion for a system obeying

a modified Buckingham (exp-6) potential as given by Mason and Rice4 is:

_ 2,628 X 1073V °/m

(22) [D ] = )
22 2 ,(@,1)*
Q *
where [Dzz] = coefficient of self-diffusion in cmz/sec,
1
p = pressure in atmospheres,
T = temperature in °K,
T* = kT/e,
M = molecular weight (in this case for HZ)’
*
Q:(zl’zl) (o, T*) = dimensionless function which may be obtained from

Reference 9,

€ = depth of potential energy minimum,

T position of the potential energy minimum.

m
Equation (22) and the parameters for the modified Buckingham (exp-6)
potential for the HZ-H2 interaction (see the section on viscosity) were used

to obtain the coefficient of self-diffusion for H2. The values of these param-

eters are:

(23) a = 14,0,
(24) r_= 3.3374,
(25) e/k = 37.3°K.

The results of these calculations are given in Table 4, in the form of

p[D22]1°

- 22 -~



Table 4

Coefficients of Diffusion

P[Dy2]y PPuly P[P,
T (°K) (atm cmz/sec) (atm cmz/sec) (atm cmz/sec)
1000 15.276 15.662 11.244
1500 29.880 31,701 22.343
2000 48.132 52.670 36.351
2500 69.643 78.595 53.011
3000 94.373 111.49 72,122
3200 105.54 125.29 80.432
3500 121.96 147.48 93.547
3700 133.35 164.05 102,71
4000 151.24 189.91 117.35
4200 163.64 208,57 127.55
4500 183.24 237.93 143,44
5000 217.92 291.94 171.41

The formula for the coefficient of self-diffusion for a system obeying
the rigid-sphere type potential as given in MTGL is:

_a /13 /M

(26) [Dll] = 2,628 x 10 —
1 po

where [D 1 1] = coefficient of self-diffusion in cmz/sec,
1
T = temperature in °K,
p = pressure in atmospheres,
M = molecular weight (in this case for H),
o = rigid-sphere collision diameter,

- 23 -



In order to employ Equation (26) to obtain the self-diffusion coefficient

for the H-H system it is necessary to have a value for the rigid-sphere
collision diameter, o. As stated in the section on viscosity, there are two
potential energy curves for the H-H interaction, (32u and lzg . If one ap-
plies the method of Hirschfelder and Elia.son2 to each of these potential
energy curves, one obtains an effective rigid-sphere collision diameter for
the interaction curve considered and the temperature considered. Since the
degeneracy of the two curves are 3 and 1, by the same reasoning as outlined
in the section on viscosity, these rigid-sphere diameters are weighted and
averaged to obtain the appropriate "effective! rigid-sphere diameter at any
one temperature,

In the description of the method of Hirschfelder and Eliason in the
section on viscosity, it is seen that a specific procedure is used to obtain

a factor, 6 , which is then used in the evaluation of the effective rigid-

visc
sphere collision diameter. For the case of diffusion, essentially the same

procedure is used; however, one now obtains a factor, 6 , which is then

diff
used to get the effective rigid-sphere collision diameter for the diffusion
process, This procedure is explained more fully in the article by Hirsch-
felder and Eliason,

The values of RT, n, and 6 used in the work presented here to obtain

the collision diameters are giveilfin Table 5. Also in Table 5 are the <'r's

for each potential curve and the effective weighted average value for 02.
Substituting these values of the effective rigid-sphere collision diameters

into Equation (26) gives the coefficient of self-diffusion for the H-H system.

These results are listed in Table 4 in the form of p[D11]1°

Coefficient of Thermal Conductivity

1t has been shown by Butler and Broka.w6 that the coefficient of thermal
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Table 5

Parameters Used in the Hirschfelder and Eliason Analysis for [Dll]
1

32u State lzg State
T RT ":v rig sph (3%)

o o g sp
(°’K) (kcal/mole) n 6 disf Urig sph (A) n 6 dist Urig sph A) (weighted av)
1000 1987.19 11 1.841 2,026 6 -0,5979 2.950 5,285
1500 2980.79 12 1,846 1,951 6 -0,5979 2,787 4,797
2000 3974.38 11 1.841 1.887 6 -0.5979 2.664 4,445
2500 4967.98 9 1.807 1,830 6 -0,5979 2,570 4,163
3000 5961.,57 10 1.844 1,751 6 -0.,5979 2.496 3.858
3200 6359.01 9 1.807 1,734 6 -0.,5979 2,471 3.782
3500 6955,17 8 1.759 1,709 6 -0,5979 2.436 3.675
3700 7352.60 8 1,759 1.686 6 -0,5979 2.416 3.591
4000 7948.76 7 1,727 1.660 6 -0,5979 2.383 3.487
4200 8346.20 7 1,727 1,640 6 -0,5979 2.365 3.416
4500 8942,36 7 1.727 1.613 6 -0,5979 2,340 3.321
5000 9935.95 7 1,727 1.568 6 -0.5979 2,303 3.170




conductivity of a dissociating gas may be expressed as follows:

(@

(5]
= + 6 — .
(27) A, = AL EL 1

pf

In this equation Ae = effective thermal conductivity of the dissociating
mixture in cal/cm-sec-°K,

A, = thermal conductivity of the '"frozen' mixture, or the

) ' thermal conductivity due to molecular collisions in
cal/cm-sec-°K,
epe = equilibrium heat capacity of the mixture at constant
pressure in cal/°K-gm of mix,
ﬁpf = heat capacity of the mixture at constant pressure and
constant composition in cal/°’K-gm of mix,
D, ,#Cs . N .
6 =T= dimensionless quantity which is a function
of the 1.'eaction under consideration. See Ref. 6,
or . 21C ¢ |
Af
where D12 = coefficient of binary diffusion in cmz/sec,
n = number of moles of gas mixl:ure/cm3
Cpf = "frozen" composition constant pressure heat capacity

per mole of gas mixture per °K.
The ratio C /6 is the same as the ratio C /C _, where the latter quan-
pe pf pe’ pf
tities are for the total mixture.

For a better understanding of Cpe and C consider the following steps.

pf’
The enthalpy of the mixture at a given composition is:

(28) H = ZitniHi ,
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where n number of moles of ith species,

i

H,
i

Then the equilibrium heat capacity at constant pressure is:

oH on
oH 1) ( i)
= [— = X — + Z2\—— H. .
(29) Cpe (8T> ini(BT i \oT i
p p p

enthalpy per mole of the ith species.

The "frozen' heat capacity at constant pressure, or the constant pressure

heat capacity at constant composition, is:
&
= ZIn\—) =X .
(30) Cpf in1 3T 2) 1 O

These two heat capacities, computed for dissociating hydrogen as a function
of temperature and pressure, are listed in Appendix A in Table A-3. The
Lewis number, 6, of Equation (27) varies with composition for a mixture of
two gases. Butler and Broka.w6 made estimates of the variation of 6 for the
dissociation of a diatomic molecule, and they suggest that 6 varies from
about 1.4 (gas composed entirely of diatomic molecules) to about 0.6 (gas
composed entirely of atoms). These authors also state that for rough esti-
mates, 6 is of the order of unity, and therefore one may make the approxi-

mation,

C
pe

Cpf

~

(31)

’_b>¢|0>¢

Thus, the use of either Equation (27) or Equation (31) will give two methods
of computing 7\e with varying degrees of approximation.

The term 7\f in the above equations is the coefficient of thermal con-
ductivity of the mixture when no reaction is considered; however, since the

mixture contains H 9 and H, it may be thought of as a polyatomic gas mixture
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of two components. Henceforth this term, Af, will be called the coefficient

of thermal conductivity of the "frozen" polyatomic gas mixture, Apoly mix"

Hirschfelder7 has shown that the coefficient of thermal conductivity
for a polyatomic gas mixture of two components is given by:

b \°
11
(32) A = A +x<x+x—><7\—-7\ >
poly mix mon mix 1\1 2D12 1 [ 1]mon

where for our case:

Apoly mix coefficient of thermal conductivity of the polyatomic gas
gas mixture (cal/cm-sec-°K),
A = the coefficient of thermal conductivity the mixture would
mon mix
possess if the molecules were all monatomic (cal/cm-sec-°K),
xl,xz = mole fraction of H and HZ’ respectively,
D 11,D22 = coefficients of self-diffusion of H and HZ’ respectively
2
(cm”/sec),
D 12 = coefficient of diffusion in a binary mixture of H and H2
2
(cm” /sec),
A, = [7\ ] = coefficient of thermal conductivity of H atoms
1 Lmon

(cal/cm-sec-°K),

.7\2 = coefficient of thermal conductivity of H2, where the gen-
eralized Eucken correction has been made for the internal
degrees of freedom (cal/cm-sec-°K). See Equation (34),

= coefficient of thermal conductivity of H2 if it is considered

[*a]
2lmon
to be monatomic (cal/cm-sec-°K).
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Equation (32) is used to obtain the term ?\f for Equations (27) and (31).

In order to obtain the terms [7\1]
from MTGL is used:

and [7\2] the following equation

mon mon

7 16 R 7
(33) [Amon]l x 100 = 3 = [n]1 x 10" ,
where P\mon] = 1st approximation to the thermal conductivity

(cal/cm-sec-°K),

R = gas constant (cal/mole, °K),

[],

To obtain the term 7\2 of Equation (32), the following equation as given

molecular weight,

coefficient of viscosity (gm/cm-sec).

7
by Hirschfelder is used:

o0 =]+ alog) (o) - ).

where A, = coefficient of thermal conductivity of the polyatomic gas,

Hz, where the generalized Eucken-type correction has

been made (cal/cm-sec-°K),

[7\ ] = coefficient of thermal conductivity of H_ when it is con-
2mon 2
sidered monatomic, See Equation (33),
n = number of moles of the gas mixture per cm3,
D22 = gelf-diffusion coefficient of H2 (cmz/sec),
Cp(HZ) = constant pressure heat capacity of H2 (cal/mole, °K),
R = gas constant (cal/mole-°K).

The term Am of Equation (32) is the thermal conductivity of the

on mix
mixture if it is considered to be a mixture of monatomic gases. The follow-
ing equations for a binary mixture of monatomic gases as given in MTGL

were used:
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(35) 1 _ .
[Amix]1 1+2Z, °
2
(36) N W - R
A A A A ’
[ 1]1 [ 12]1 [ 2]1
_’fi M) :2.x1x2 ) __f;
e - Ur’ + v o+
* [Al] Ao) [%]
(38) Z)\ = in(l) + 2x1x2U(Z) + XZU(Z) ’
M
o) o - %A;Z - 112 1_52]3’;2 * I)i '
M
M+ M) [7\1:22
(41) S 4, (M) .
15712 | M M, [7\1]1[;\2]1
5
- *
32%,
2\ /A
(42) p®) = A K(Ml ) ><[ 12)
e[V A, T

- 30 -



where xl,xz = mole fraction of H and H2, respectively,
M 1’M2 = molecular weight of H and Hz, respectively,
A’; o B’; o = functions of T’; 0 = k‘I‘/e1 0 defined in Equations

8.2-15 and 8.2-16 of MTGL,
[7\1] , [7\2] , [7\1 2] = coefficients of thermal conductivity corresponding
to the H-H, HZ-HZ, and H-Hz interactions, re-
spectively,
[Amix] = coefficient of thermal conductivity of the binary
monatomic mixture.
All of the terms in these equations except the term [7\12]1 have been
explained. The term [7\12]1 was obtained from the following equation taken

from MTGL:

15 (M1 + Mz)

(43.) [7‘12]1 =R 2M M, [7'12]1 ’

where [7\12] coefficient of thermal conductivity of a hypothetical gas, the
1

molecules of which have a molecular weight of

M_/(M, +
2M1 2/( 1 MZ

curve specified by the parameters %o and € 12 as used to

) and interact according to a potential

determine [n (cal/cm-sec-°K),

12]1
M_, M_ = molecular weights of H and H 9’ respectively,
[nlz] = coefficient of viscosity as discussed in the section on vis-

cosity (gm/cm-sec),

=
I

gas constant (cal/mole, °K).

Table 6 presents the values of [7\1]1, [7\2 mon]l’ and [7\12]1 as obtained
from the above equations, the values for [7’1] and [7’12]1 as given in Table 2,
1
and the value of [nz]l which was used to get the third approximation, [nz]s,
to the viscosity of H2°
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Coefficients of Thermal Conductivity for the Systems

Table 6

H-H, H—Hz, and HZ-HZ, Considering Each System
as Monatomic (cal/cm-sec-°K)
[7\1]1 x 107 [7\12]1 x 107 [7\2]1 x 10"
T (°K) H-H H-H2 H2-H2
1000 10,780. 10,283. 7,389.9
1500 14,512, 13,356, 9,702.2
2000 17,870, 16,088, 11,773.
2500 21,130. 18,579, 13,664.
3000 24,219, 20,900, 15,423,
3200 25,451. 21,813. 16,100,
3500 27,240, 23,008, 17,084,
3700 28,440, 23,794. 17,722,
4000 30,379. 24,969, 18,700.
4200 31,526. 25,7317. 19,337.
4500 33,249. 26,890, 20,265.
5000 36,533. 28,787, 21,741.
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Table 7 gives the values of A .. obtained from Equation (35)
mon mix

using the appropriate mole fractions and the results given in Table 6.
Table 8 gives the values of the coefficient of thermal conductivity of

HZ’ AZ’

Equation (34). Also listed in this table are the factors (7\2 - [7\2]

when the generalized Eucken-type of correction has been made. See
) which

mon

are used in Equation (32) to obtain 7\p

Table 9 lists the values of the c%leszrff:rc];znt of thermal conductivity of
the mixture when no reaction is considered but the Eucken-type correction
for the polyatomic gas is applied. This is Apoly mix’

Equation (31) gives the first and roughest approximation to the thermal
conductivity of the reacting mixture, 7\e or Areac' In arriving at this approxi-
mation, the term 6 of Equation (27) was assumed to be unity. The values of
Cpe and Cpf which are necessary for Equation (31) are given in Table A-3 of
Appendix A,

Table 10 gives the results for Areac as obtained from Equation (31).

Equation (27) is the more exact expression for the coefficient of thermal
conductivity for the reacting mixture. This expression involves &, which is

defined as follows:

3 D12nCpf
Af

(44) 6

where the symbols have the significance given above. The values of 6 as
computed and used in this work are given in Table 11.

The final results for the coefficient of thermal conductivity for the re-
acting mixture of dissociating hydrogen as obtained from the more exact ex-
pression, Equation (27), are given in Table 12 and graphed in Figure 4.

The recommended 'best' values for the coefficient of thermal conductivity
of the dissociating mixture are those given in Table 12 and Figure 4. The

values given in Table 10 are more approximate,
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Table 7

Coefficient of Thermal Conductivity for the Dissociating Hydrogen Mixture
When it is Considered a Binary Mixture of Monatomic Gases .

S 107 (cal/cm-sec-"K)
T (°K) p = 0.1 atm p = 0.5 atm p = 1.0 atm p = 2.0 atm p = 10 atm p = 50 atm p = 100 atm
1500 9,702.4 9,702.2 9,702.2 9,702.2 9,702.2 9,702.2 9,702.2
2000 11,803. 11,786. 11,783. 11,780. 11,776. 11,775. 11,774,
25600 14,164. 13,955. 13,830. 13,778. 13,715. 13,687. 13,680,
3000 18,450, 16,917, 16,518. 16,198. 15,771, 15,583. 15,536,
3200 21,007, 18,725. 18,032, 17,504, 16,750. 16,395. 16,310,
3500 24,893. 22,075, 20,923. 19,957, 18,461. 17,7117, 17,534.
3700 27,083. 24,563. 23,225, 21,973. 19,838, 18,707, 18,425,
4000 29,798, 28,167, 26,923. 25,474. 22,370, 20,4517, 19,959,
4200 31,195. 30,117. 29,134, 27,808. 24,315. 21,796. 21,109,
4500 33,097, 32,541, 31,946. 30,992, 217,515, 24,108, 23,069,
5000 36,480, 36,273. 36,026. 35,573. 33,076. 28,810, 27,088,



Table 8

Coefficient of Thermal Conductivity for H2

with the Eucken-Type Correction Included

[7\2]1 x 10 (*o - [xz]mon) x 10"
T (°K) (cal/cm-sec-°K) (cal/cm-sec-°K)
1000 10,472, 3,081.7
1500 14,685, 4,982.8
2000 18,877, 7,103.6
2500 22,858, 9,194.3
3000 26,623, 11,200,
3200 28,098, 11,998,
3500 30,194, 13,110,
3700 31,585. 13,863.
4000 33,656, 14,956,
4200 35.007, 15,670,
4500 37,023. 16,758,
5000 40,211, 18,470,

- 35 -



_98_

Table 9

Coefficient of Thermal Conductivity for the "Frozen"
Polyatomic Gas Mixture [Equation (32)]

x 107 (cal/cm-sec-°K)

Apoly mix
T (°K) p = 0.1 atm p = 0.5 atm p = 1.0 atm p = 2.0 atm p = 10 atm p = 50 atm p = 100 atm
1500 14,685. 14,685, 14,685, 14,685, 14,685. 14,685, 14,685.
2000 18,879, 18,878. 18,877. 18,877. 18,8717. 18,877, 18,8717,
2500 22,814, 22,903, 22,850, 22,849, 22,854. 22,857, 22,857,
3000 25,9717, 26,324, 26,427, 26,473. 26,555, 26,593. 26,602,
3200 26,889, 27,493, 27,661, 27,785, 27,956, 28,034, 28,053,
3500 27,948, 28,763. 29,090, 29,364. 29,791, 30,007, 30,061,
3700 28,812, 29,506, 29,882, 30,243, 30,888, 31,251, 31,344,
4000 30,495, 30,836, 31,117, 31,4686, 32,329, 32,966, 33,149.
4200 31,584, 31,783. 32,054, 32,262, 33,156. 33,979. 34,239,
4500 33,272. 33,358, 33,455. 33,622. 34,367, 35,368, 35,746.
5000 36,536, 36,548, 36,562, 36,592. 36,824, 37,539. 37,974.
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Table 10

Coefficient of Thermal Conductivity for the

Dissociating Hydrogen Mixture Using the Equation:

A A “pe
reac poly mix Cpf
A x 107 (cal/cm-sec-°K)
reac
T (°K) p = 0.1 atm p = 05 atm p = 1.0 atm p = 2.0 atm p = 10 atm p =50 atm p = 100 atm
1500 14,753, 14,7186. 14,706, 14,700, 14,692, 14,688, 14,688,
2000 23,270, 20,841, 20,265, 19,859, 19,316, 19,073, 19,017,
2500 73,423. 45,748, 38,989, 34,264, 27,965, 25,144, 24,475,
3000 246,050, 135,300, 104,830, 82,425, 51,849, 37,948, 34,638,
3200 318,230, 196,130, 151,930, 117,770, 69,186, 46,624, 41,215,
3500 292,580, 280,880, 233,550, 185,760, 105,320. 64,563, 54,602,
3700 206,580, 295,360, 273,740, 231,690, 135,820, 80,258, 66,272,
4000 105,880, 232,320. 268,670, 268,840, 185,820, 109,140, 87,975,
4200 71,968, 170,090. 224,230, 256,460, 215,020, 130,980. 104,870,
4500 49,635, 101,990, 146,550, 197,230, 237,680, 164,570, 132,600,
5000 40,895, 57,175, 75,197, 104,910, 201,550, 205,120, 176,010,




Table 11

Values of 6 as Computed from the Expression:

5 DIZ:CPf
f
T (CK) p = 0.1 atm p = 0.5 atm p = 1.0 atm p = 2.0 atm p = 10 atm p = 50 atm p = 100 atm
1500 1.277 1.277 1.277 1.277 1.277 1.277 1.277
2000 1.266 1.268 1.268 1.268 1.269 1.269 1.269
2500 1.228 1.245 1.253 1.257 1.262 1.264 1.264
3000 1.078 1.170 1.195 1.215 1.243 1.256 1.259
3200 0.9903 1.112 1.152 1.184 1.230 1.252 1.258
3500 0.8707 0.9978 1.054 1.104 1.185 1.228 1.239
3700 0.8192 0.9220 0.9806 1.038 1.144 1.205 1.221
4000 0.7738 0.8325 0.87986 0.9367 1.070 1.161 1.187
4200 0.7593 0.7959 0.8284 0.8785 1.016 1.127 1.159
4500 0,7463 0.7638 0.7836 0.8141 0.9358 1.069 1.113
5000 0.7238 0.7296 0.7365 0.7494 0.8232 0.9620 1.023
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Table 12

Coefficient of Thermal Conductivity for the Dissociating Hydrogen Mixture from the Equation:

(]

pe

= + -
Areac Apoly mix 1 6<Cpf 1>

X 107 (cal/cm-sec-°K)

Areac
T (°K) p = 0.1 atm p = 0.5 atm p = 1.0 atm p = 2.0 atm p = 10 atm p = 50 atm p = 100 atm
1500 14,772, 14,725. 14,711, 14,704, 14,694, 14,689, 14,689,
2000 24,438, 21,366, 20,6317, 20,122, 19,434, 19,126, 19,054,
2500 84,946, 51,341, 43,071, 37,196. 29,302, 25,748, 24,903,
3000 263,220, 153,790, 120,110, 94,472, 57,992, 40,853. 36,719,
3200 315,400, 215,090, 170,850, 134,280, 78,657, 51,310, 44,605,
3500 258,360, 280,340, 244,650, 202,010, 119,300, 72,443. 60,463.
3700 174,440, 274,620, 269,010, 239,420, 150,970, 90,298, 73,976.
4000 88,826, 198,580, 240,070, 251,930, 196,590, 121,430, 98,200,
4200 62,246, 141,850, 191,250, 229,210, 217,930, 143,300, 116,130,
4500 45,483, 85,774. 122,080, 166,810, 224,630, 173,490. 143,570,
5000 39,691, 51,597, 65,018, 87,788, 172,420, 198,750, 179,240,
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Figure 4 Coefficient of thermal conductivity of dissociating hydrogen.
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APPENDIX A

In the calculations of the coefficients of viscosity and the coefficients
of thermal conductivity of dissociating hydrogen for various temperatures and
pressures, it is necessary to have the equilibrium composition of the mix-
ture, the equilibrium heat capacity at constant pressure, and the constant
pressure, "“frozen" composition, heat capacity.

The following analysis of this equilibrium was used:

Al H2 = 2H,
A2 1- o) = 2q,
A3 n1 = 2a = number of moles of H,
A4 nz =1 — @ = number of moles of H2,
A5 X, = 2o mole fraction of H
: 1 1+« ton ot =
A6 =l-a_ mole fraction of H
: ¥ "1+ a © o Ho»
4a2
AT K = P 5 = thermodynamic equilibrium constant,
P l1— ¢«
2
4o AF°
= + =
A.8 anp lnl_-OZ2 Inp ’T °
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In equation A.1 consider 1 mole of originally undissociated H2 to be at
equilibrium at a given temperature and pressure. In equation A.2 the «
represents the degree of dissociation. It is the fraction of the originally
undissociated H2 which has dissociated. In equation A.8 the AF° represents
the change in the standard Gibbs free energy for the reaction, R equals the
gas constant, T is the temperature in °K, and p is the pressure in atmos-
pheres.

An IBM 704 computer program which solves for the composition of
multicomponent systems was used to solve the above equilibrium. For the
convenience of handling, the thermodynamic data used as input data for the

program were fit to polynomials in temperature. The form of these ex-

pressions is:

A 2 3 4
F cT  dT eT °
A.g —'RT =alnT+ bT + 2 + 3 + 4 + k — RT ’
A.10 Cp=a+bT+cT2+dT3+eT4,
A1l (-}-I—%E) = a4+ bT + ¢T2 + dT° + eT™,

The basic data used to evaluate the constants in the above equations
were obtained from Reference 8. The constants for the fits are tabulated in
Table A-1. For further details of the IBM program and the handling of the
thermodynamic data, see Reference 16,

Using the program described, the degree of dissociation, «, the mole
fractions, x, and the number of moles, n, of the components were calculated
for the hydrogen dissociation equilibrium for the temperatures and pressures
of interest to these calculations. The degree of dissociation and mole frac-

tion of H are listed in Table A-2.

- 42 -




H, (@)

H(g)

F°
RT

H°-H$

F°
RT

H°-H3

Constants for Polynomial Fits of Thermodynamic Data

Table A-1

Temp

a b c d e k H3 Range
1000° to

3.4426017 00  -5.6229289-05 1.4891164-07 -3.4545064-11 2.5711512-15 -7.3150000 00 5000°K
1000° to

5.9285929 00 1.3850613-03  -8.8392668-08  -3.0634184-11 4,1311159-15 5000°K
1000° to

6.8407357 00 -1,1112171-04 2.9554909-07 -6.8555066-11 5.1012020-15 5000°K
2.5000018 00  -2.3828664-09 5.4167994-13 2.4203764-16  -7.4527263-20 -2.9593000 00 5.1620000-04 ;ggg,xto
1000° to

4,9681000 00 5000°K
1000° to

4,9681000 00 5000°K




Table A-2

Degree of Dissociation and Mole Fraction of H for Dissociated Hydrogen

p = 0.1 atm p = 0.2 atm p = 0.5 atm p = 1.0 atm
T (K) @ Xy a X o 1 « “H
1500 2.78 x 107> 5.56 x 1070 1.97 x 1070 393 x 1070 1.24 x 1077 249 x10°  s79x10® 176 x 1070
2000 257 x 1070 512x 1070 1.82x 100  3.63x 100 115 x 1070 2.29 x 10 s12x10? 1e2x107°
2500 0.03967 0.07632 0.02806 0.05460 0.01775 0.03489 0.01255 0.02480
3000 0.24194 0.38962 0.17364 0.29589 0.11082 0.19954 0.07861 0.14576
3200 0.40561 0.57713 0.29939 0.46081 0.19465 0.32588 0.13896 0.24402
3500 0.68207 0.81099 0.55056 0.71015 0.38497 0.55592 0.28290 0.44103
3700 0.82001 0.90110 0.71168 0.83156 0.53949 0.70086 0.41268 0.58425
4000 0.92946 0.96344 0.87202 0.93163 0.74792 0.85578 0.62313 0.76781
4200 0.96177 0.98051 0.92762 0.96245 0.84354 0.91513 0.74314 0.85265
4500 0.98371 0.99179 0.96820 0.98384 0.92571 0.96142 0.86585 0.92810

5000 0.99523 0.99761 0.99052 0.99524 0.97680 0.98826 0.95514 0.97706




Table A-2 (continued)

Degree of Dissociation and Mole Fraction of H for Dissociating Hydrogen

p = 2.0 atm p =10 atm p = 50 atm p = 100 atm
T (°K) o Xy o Xy o }&_{ o Xy
1500 6.21 x 100 124x10° 277 x10% ssex10®  120x10®  249x10%  s79x 107 1.76 x 107
2000 5.74x 10°% 115 x 10 257 x 107 saax10? 1asx10? 2s0x 10 s12x10®  162x 107t
2500 8.88 x 1070 0.01760 3.07x 1070 701 x 1070 178 x 1070 355 x 1070 1.26 x 1070 251 x 107
3000 0.05567 0.10547 0.02493 0.04864 0.01115 0.02205 7.88 x 10°°  0.01565
3200 0.09874 0.17973 0.04433 0.08490 0.01984 0.03891 0.01403 0.02767
3500 0.20417 0.33910 0.09287 0.16995 0.04168 0.08002 0.02948 0.05728
3700 0.30509 0.46754 0.14182 0.24841 0.06394 0.12020 0.04526 0.08660
4000 0.49084 0.65847 0.24431 0.39268 0.11197 0.20138 0.07942 0.14715
4200 0.61762 0.76362 0.33136 0.49778 0.15516 0.26864 0.11038 0.19882
4500 0.77435 0.87283 0.48009 0.64873 0.23774 0.38415 0.17053 0.29138

5000 0.91582 0.95606 0,71403 0.83316 0.41497 0.58655 0.30694 0.46971




The two heat capacities necessary for the thermal conductivity calcu-
lations were obtained from the following formulations as an extension of the
previously mentioned computer program.

Consider the total enthalpy of the dissociated mixture.

. H° =n H° + °
A.12 (tot) ~ M1ty T Moy o
where nl,n2 = number of moles of H and HZ’ respectively,
H°,H® =

1 2
Therefore, from A.3, A.4, and A,12,

enthalpy per mole of H and H 9" respectively.

. ° = 2aH° + (1 — o)H°® ,
A.13 H(tot) o 1 ( Q) 9
oH°
tot ) t:2e)
. F = + — + (-] — (-] —_— ,
A.14 Cpe %T—z Zosz1 a oz)sz (ZH1 Hz) (BT)
p p
where Cp 1,Cp2 = constant-pressure heat capacity per mole for H and HZ’
respectively,
Cpe = equilibrium constant pressure heat capacity of the mixture,
2H‘i - H"2 = AH° = standard enthalpy change for the reaction at T

1t follows that,

9 In K
A.15 da\ _ o . p
) oT 9 In K oT ’
p Pp p

dIm KN Ap
A.16 T ==,
b RT

and from A.8




1] oz(l — ozz)

A7 8 In K_ = 2 ;
P

therefore,

' da AH°a(1 - ozz)
A.18 (a'r) 2 ’

P 2RT
2 2
A.19 C =2acl+(1—a)cz+AH“(12“°‘),
pe p P oRT

and

. = 2 + - ’
A.20 Cpf osz1 1 a)sz

where Cpf = the constant pressure heat capacity for '"frozen'" composition,

¢ computed with the IBM computer using

these formulas and the appropriate data for the temperatures and pressures

The values of C and C
pe p

of interest are given in Table A-3.

The above reported values of Cpe and Cp are the heat capacities in

terms of cal/°K for the mixture, f
In the computation of § in Equation (27), the quantity Cpf’ the 'frozen"
composition constant pressure heat capacity per mole of mixture, is neces-
sary. Table A-4 gives the number of moles of mixture and Cpf per mole of
mixture, as computed from the data in Tables A-2 and A-3.
Table A-5 gives the values of CpH
to obtain A _, the coefficient of thermal conductivity of H2 with the Eucken-

2
type correction applied.

which were used in Equation (34)
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Table A-3

Equilibrium and »Frozen" Heat Capacities for Dissociated Hydrogen (cal/°K)

p = 0.1 atm p = 0.5 atm p=1atm p =2 atm p = 10 atm p = 50 atm p = 100 atm
T (°K) Cpe Cpf Cpe Cpf Cpe o] of Cpe C of Cpe Cpf Cpe Cpf Cpe Cpf
1500 7.761 17.725 7.7141 17,725 7.736 7.725 7.733 17.725° 7.728 17.725 7.726 7.725 7.726 17.725
2000 10.07 8.171 9.018 8.168 8.768 8.168 8,592 8.167 8.357 8.167 8.251 8.167 8.226 8.166
2500 27.61 8.578  17.07 8.547 14.57 8.539 12.80 8.534  10.43 8.527 9.377 8.524 9.126 8.523
3000 85.93 9.072  45.86 8.922 35.24 8.885 27.58 8.859 17.23 8.824 12.57 8.809 11.47 8.805
3200 110.2 9.311 64.85 9.090 49.60 9.031 38.10 8.989 22.10 8.932 14.81 8.906 13.08 8.900
3500 100.9 9.639 91.41 9.360 74.38 9.265 58.15 9.191 32.12 9.087 19.45 9.039 16.40 9.028
3700 70.12 9.780 95.45 9.535 86.34 9.425 71.49 9.331 40.41 9.189 23.43 9.121 19.25 9.105
4000 34.31 9.881 73.37 9.738 83.24  9.641 81.48 9.5637 53.70 9.343 30.59 9.239 24,45 9.214
4200 22,58 9.908 52.56 9.821 68.19 9.748 76.76 9.656 61.26 9.446 35.91 9.316 28,44  9.284
4500 14.81 9.926  30.23 9.887 43.14 9.847 57.41 9.787 66.34 9.592  43.88 9.431 34.82 9.387
5000 11.12 9,934 15.53 9.924 20.39 9.912 28.36 9.891 53.54 9.782 52.57 9.621  44.32 9.562




Table A-4

Number of Moles of Mixture and Cpf (cal/mole of mix-°K)

p = 0.1 atm p = 0.5 atm p=1atm p =2 atm p = 10 atm p = 50 atm p = 100 atm
No. moles No. moles No, moles No. moles No, moles No, moles No, moles

T (°K) mix Cpf mix Cpf mix Cpf mix Cpf mix Cpf mix Cpf mix Cpf

1500 1.00003  7.7247 1.00001 7.7248 1,00001 7.725 1.00001 7.7248 1.00000 7.7248 1.00000 17,7248 1.00000 7.7248
2000 1.00257 8,1498 1.00115 8.1588 1.00081 8.161 1.00057 8.1625 1.00026 8.1645 1,00011 8,1655 1.00008 8.1656
2500 1.03%67 8.2503 1.01775 8.3975 1.01255 8.433 1.00888  8.4590 1,00397 8.4934 1.00178 8.5089 1.00126 8.5126
3000 1.24194 17,3045 1.11082 8.03020 1.07861 8,237 1.05567 8.3920 1.02493 8.6096 1.01115 8,7114 1.00788 8.7358
3200 1.40561 6.6245 1.19465 7.6086 1,13896 7.929 1.09874 8.1810 1,04433 8,5525 1,01984 18,7326 1.01403 8.,7767
3500 1.68207 6.7302 1,38497 6.7586 1.28290 7.222 1.20417 17.6328 1.09287 8.3147 1.04168 8.6774 1.02948 8.7691
3700 1.82001 5.3734 1.53949 6.1939 141268 6.672 1.30509  7.1499 1,14182 8.0478 1.063%4 8,5732 1.04526  8.7109
4000 1,92946 5.1211 1,74792 5.5714 1.62313 5.940 1,49084 6.3969 1.24431  7.5087 1.11187 8,3091 1,07942 8.5360
4200 1.96177 5.0506 1.84354 5.3275 1,74314 5.592 1.61762 5.9691 1,33136  7.0947 1.15516 8,0649 1,11038 8.3606
4500 1.98371 5.0035 1.92571  5.1342 1.86585 5.277 1.77435 5.5157 1.48009 6.4806 1,23774 7.6199 1,17053 8.0193
5000 1.99523 4.9787 1.97680 5.0201 1.95514 5,070 1.91582 5.1627 1.71403 5,7070 1,41497 6.7991 1,30694 17.3166




Table A-5

Constant Pressure Heat Capacity of H2

CpHZ

T (°K) (cal/mole-°K)
1500 7.713
2000 8.175
2500 8.526
3000 8.791
3200 8.885
3500 8.993
3700 9.066
4000 9.151
4200 9.202
4500 9,282
5000 9.389
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APPENDIX B

The data used to plot Figure 1, the potential energy curves for the
lzg and 32u states of the H-H interaction, and the source of these data are
listed in Tables B-1 and B-2. As stated in the text, the method of Hirsch-
felder and Eliason when applied to these interaction curves utilizes only a
portion of the curves. The particular portion of the curves used here cor-
responds only to the range of values of the potential energies which were

1
computed by Dalgarno and Lynn, 1
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Table B-1

Binding Energy for lzg State of Hydrogen

Binding energy

r(a 0) (kcal/mole) Source
0,78 14.38 )
0,79 20;14
0.81 26.68
0.83 33.91
0.85 41.84
0.88 50.46
0,92 59,70
0,96 69,57
1.01 80.13
1.09 91,32
1.23 103.20
1.40 109.32
1.68 103.20 ; Rydberg Experimental Values
1.94 91.32 as given in MTGL, pp. 1060-1061
2.15 80,13
2.32 69.57
2.49 59,70
2.66 50,46
2.84 41.84
3.05 33.91
3.28 26.68
3.51 20,14
3.73 14,38 J
4,0 10.372
5.0 2.48
6.0 0.568
7.0 0.137 f Reference 11
8.0 0.0386
10.0 0.0058
12.0 0.0016
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Table B-2

Repulsion Energy for the 32u State of Hydrogen

Energy of repulsion

r(a 0) (kcal/mole) Source
1.0 245 )
1.25 166
1.50 119 > Reference 12
1.75 88.8
2.00 68.0 y
‘ 2
2.5 30.45
3.0 16.35 d Reference 13
3.5 8.45
4.0 2.378
5.0 0.295
6.0 - 0.0100
7.0 - 0.0317 r Reference 11
8.0 - 0.0195
10.0 - 0,0053
12.0 - 0,0016 J

- H3 -
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