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ABSTRACT

In Part I, an elementary review is given concerning the stability

properties of some simple linear partial difference equations. Part II

contains examples illustrating some properties of typical nonlinear par-

tial difference equations and an analysis for predicting these properties.
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INTRODUCTION

In many cases, the changes with time of a physical situation can

be represented well by a set of partial differential equations, but often

the appropriate equations are much more easily

Analytical methods for obtaining solutions can

cated for various reasons. The equations may,

derived than solved.

become impossibly compl3-

for example, be nonlinear,

or even if linear, they may be subjected to initial conditions of great

complexity. Thus it is sometimes necessary to use numerical methods.

In a commonly-used class of numerical methods, the differential

equations are replaced by finite difference approximations, and the solu-

tion is obtained by algebraic processes, stepwise through time. (De-

tailed illustrations are given in Part I.) The resulting solution is

not exactly that of the differential equations, but may be close pro-

vided that proper care is taken. It is necessary that the increments of

independent variables be small.compared to the structure of solution

which must be resolved. But such a requirement is not sufficient to

guarantee accuracy; i.nmany cases the difference”representation can be

unstable, so that any perturbation will be amplified indefinitely, ob-
e

5cW*XU. 3x3al.istic--features.

The stability properties of linear partial difference equations

can be e~lored by well-known techniques. Considerable discussion and

1
many references have been given by Richtmyer, and this report includes

in Part I some of the techniques as applied to several representative

examples. Concerning the effects of nonlinearity on stability, rela-

tively little has been written. Part II is concerned with some of these

effects.
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PART I

STABILITY AND ACCURACY OF LINEAR EQUATIONS

To illustrate the methods of solution by finite-difference ap-

proximation, and to exhibit some of the properties of the techniques,

consider several simple examples. ‘I’heresults will be useful for com-

we

parisons with those of Part II.

Example 1. The one-dimensional partial

the diffusion of temperature in a material with

cient of diffusion, a, is

differential equation for

constant positive coeffi-

(1)

where T is the temperature and x and t are the independent space and time

variables. This equation is linear in the unknown temperature function,

so that the sum of several solutions is also a solution.

The differential equation is stable in the following sense: If

a certain initial-condition boundary-value problem is posed, and the re-

sulting solution is compared with that obtained from slightly different

initial conditions, the two solutions will be only s13.ghtlydifferent.

We shall demonstrate this fact for comparison with later results in which

such stability is not present.

The difference between the two solutions of (l), arising from

the two different initial conditions, can be written

-4-



which is simply a Fourier decomposition of bT, in which the sum is over

an appropriate set of values of k and u. The difference itself must

satisfy (l), and so indeed must each term in the Fourier sm. Substitu-

tion into (1) produces the result that each Fourier term is a solution

provided that

This

cays

(D= -ak2

relation shows that for any value of k, u <—

exponentially to zero as time increases; or

O so that the

in the case k

(2)

term de-

=Oit

remains constant, corresponding to a constant difference everywhere be-

tween the two solutions. Thus the two solutions, subsequent to initial

time, approach each other to within a constant difference which can be

no larger than the average of the initial difference.

Consider now a finite-difference method for solving (1) approxi-

mately. To be specific, suppose that the material extends from

X. ~tox . ~ and that boundary conditions are supplied for those

two ends, and initial conditions for the intermediate part. To vis-

ualize the finite difference procedure, imagine the material to be di-

vided into J equal space intervals of length 5X = (~ - ~)/J. The re-

sulting cells are labeled with the index j = 1,2,”””,J. Define the

“temperature for cell j“ by the relation

-5-



where x is the distance to the center of cell.j.
s

Then, from (l),

‘Tj _ a—_—
dt 5X {[ 1% -x.x +% wx=x8X}32 J-T

This equation is exact. The next step is to introduce the

tion

[12 X=xj +%
=+ [TjA1 - Tj]

so that

dT
J

[~ = & ‘j+l + ‘j-l
-2T

S1
The final step in the procedure is to divide the time

time (t = O) into finite intervals of constant duration M

count the time cycles by index n, so that Tn
s

=n

& atj
the time derivative can be approximated by T - T; /M,

fitite difference equation becomes

approxima-

(3)

af%er initial

each. We

5t. Then

and the

(4)

The above procedure is arbitrary in several respects; various alterna-

tive difference approximations could have been obtained, for example

(5)

or

-6-



n+1
T. =T:+
J

or an infinite number of

[

a M Tn+l n+1

8X2 j+l ‘T;; -2TJ 1 (6)

others. They must all satisfy the requirement

of formal reduction to (1) as 5X and & become vanishingly small.

Equations (k) and (~) are called “explicit.” In both cases

temperature for each cell for the new time cycle can be found from

the

in-

formation from the old cycle simply by algebraic substitution. Equa-

tion (6), on the other hand, is in “implicit” form. Solution for the

new temperatures requires somewhat more complicated techniques which

are straightforward,but which are not discussed here. We shall see

that in some cases the implicit form offers advantages of stability

which may overcome the disadvantages of solution complexity.

The finite difference equations as written above force considera-

tion of two additional fictitious cells, numbers j = O and j = J + 1.

The temperatures of these cells are needed for computing the new tem-

peratures for cells j = 1 and j = J. The difficulty is resolved by a

proper adaptation of the desired boundary conditions. Suppose, for

example, that

x = ~. Then

age of T: and

a variable temperature TL(t) is specified for the point

T: may be determined by requiring TL(nM) to be the aver-

n
‘1

T: s2TL(n&t) - T;

If the temperature gradient GL(t) is specified at that boundary

(the gradient is directly proportional to the heat flux), then T:

-7-



is easily found from the relation

n n
‘1 - ‘o

5X
= GL(nM)

ence

ence

Next we consider the stability properties of some of the differ.

equations. As in the differential stability analysis, the differ-

between two solutions can be decomposed into Fourier components, of

which a typical one is

Substitution of this into (4) leads

u M
e

[
= 1 + ~ eikbx

5X2

to the condition for solution

+ e-ikbx - z

1

u) Fit
Thus e is always < 1; as long as it is also > - 1, the Fourier compon-

ent will.not grow in amplitude. To assure that this is the case for all

values of k (the worst case is for cos k 5X = - 1) it is thus necessary

that

abtl
>% (7)

This is the well-known stability condition for the explicit heat diffus-

ion difference approximation of Eq. (4); its validity has been proved in

numerous numerical tests involving the actual sequential solving of (4).

The significance of this stability result can be seen as foJlows.

-8-



Essentia~, it is a restriction on the size of bt, the time step

interval. For a given set of temperatures at t = n~t, the difference

n+1

‘3
- T; depends linearly on &t. If, for example, the temperature

profile at t = nat has a small fluctwtion which is concave downwards,

then the calculation will tend to decrease the temperature in the bump.

For a small.~.t,the decrease in one cycle is small; fgn?a kxrger bt,

the bump could be qxactly flattened out; for even larger M, it could

be reflected into a bump of similar shape and amplitude, but concave

u M
upwards. This last is the case of e = - 1. For any larger M the

bump is reflected in one cycle into one of larger amplitude than before.

This is the case of instability, since in each succeeding cycle, the

bump alternately reflects back and forth with ever increasing amplitude.

In contrast, the difference approximation in (6) is stable for

all values of bt. The analysis to prove this is the same as before, and

leads to the condition for solution of a Fourier term

U.)&t 1
e =

, + 2abt
—(l- COS kbx)
5X2

‘5t<loso that for any size of tit,e _ It would thus seem that one

should always use the implicit form (6) or some other with similar sta-

bility properties, since then the solution could be advanced to the de-

sired final time”in a small

additional consideration of

solution represent the true

number of cycles. There is,

accuracy. How well does the

solution of the differential

however, the

approximate

equations?

-9”



In seinecases, nothing is to be gained by the allowance of long time

steps given by the unconditionally-stable forms, since the condition

for accuracy is very close to that for the conditional stability.

One circumstance, however, in which the implicit form may be use-

ful arises when the calculation is to be applied to a material with dis-

continuity in difftmion coefficient. Suppose, for example, that a = aL

for~~x< xlanda=~forxl C x ~ ~. (The value that should be

used at x = ~ for the finite difference calculation need not be con-

sidered here. The matter is somewhat complicated and has been discussed

elsewhere.2) Suppose further that aL >> ~ so that the temperature

diffuses much more rapidly in the left section than in the right section.

If, then, heat enters the materials from the left, that side conducts it

quickly to the boundary and may remain always at almost the same tempera-

ture. The right side will then have the large temperature gradients and

contain all the features of interest. But to calculate the entire sys-

tem with (h), one would have to be limited by the requirement 2a#6x% 1

which is much more stringent than the condition for the region of interest.

Thus an implicit, uriconditionally-stableprocedure wouldbe useful, with

the size of bt determinedly the requirements of accuracy on the right

side, which would be a far less stringent restriction.

The difference approximation (5) might seem reasonable, on the

argument that basing the new temperature in a celd.on the average of

adjacent old temperatures would have a smoothing effect and thus improve

the stability. That this idea is wrong canbe seen by repeating the

-1o-



analysis, which leads

(D&t
e = Cos

to the condition

kbx -%(1 -coskbx)
5XC -

which is unconditionally unstable, since there are values of k (for which

U)bt<
COS kbx = - 1) leading to e - 1 for ~ non-zero intervals.

The form of the first tezm on the right of (5) is bad for another

reason. The equation can be made unconditionally stable by changing the

.
timing of the second term to n + 1, but the first term contributes an in-

accuracy, which, for fixed 5x, gets worse as & +0! To see this, and to

illustrate a method of accuracy analysis, consider (5) in the form it is

written. Use the Taylor expansions, centered about j and n,

Then (5) becomes, to order 8t2 and 5X2,

(8)

The right side, which has the form of a source to the otherwise-conservative

temperature field, expresses the lowest order errors. The last term can

be rewritten, using the lowest order equation

-11-



Also we define

a bt
~=~

Then

(9)

The first term on the right side of (8) and (9) is particularly un-

desirable. With fixed bx, that error term increases as at + O. Further-

more, for reasonable e, it is larger than the real diffusion term and

completely obscures the true solution. Such a term does not appear in

the

one

analogous expansion of (4) or (6).

Note that the term proportional to bt in (8) actually contributes

proportional to $x’. Since bx’ terms are already otherwise present,

there is, therefore, no point in attempting

more careful time centering of the equation

form

removal of the M term by a

(such as in the implicit

$+’ - ~n-1
J ( )

S* T.n+Tn-2~
5X

J+l j-1

which actually has very bad stability properties — see neti page —but

from which terms of order M cancel

such a procedure produces otherwise

out in the Taylor expansion), unless

good results. Indeed the W term

would appear to be of value in increasing accuracy, since by the choice

/
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e = 1/6, the 5X2 term can be

higher-order terms may be as

made to vanish. Actually, however, the

important as the one which has been made to

vanish. Usually the procedure of testing an approximation method is the

most efficient way of determining its accuracy.

To conclude this example, we mention a comparison between two addi-

tional forms of the difference approximation to the diffusion equation.

These are both’bentered” in time and

These stability.properties,however,

n+l

‘J [
=T:-l+~ T n

6X
J+l

appear to resemble each other closely.

are extremely different. They are

n+l
T. = T;-l +— ~{

2a5t 1 ~n+l
+ ~: - 2Tn+’

J ~.2 2 j+l 3 )

{

1 ‘Tn-l - n-1
+ 2 j+l + ‘~-~ - 2Tj )1

Application of the foregoing analysis shows that the first one is uncon-

ditionally unstable, while the second one is unconditionally stable.

Example 2. The wave equation in difference form exhibits somewhat

different properties from those of the diffusion equation. We shall

study

a2tl C2 a2u—=
at2 z

(lo)

in which u

function v

is the compression and c i’sthe propagation speed. Define a

by the equations

(“II)

-13-



%+ ’%=0 (E’)

of which (10) is a consequence. The form (11), (12) is more convenient

for differencing, and, together with additional terms, is a common form

of equations of this type.

The differential stability properties can be determined from

(10) or from (I-1)and (K’) by study of a Fourier component of the differ-

ence between two solutions. We use (IL) and (12) in analogy with the

procedure for the difference approximation, and try the solution

ikx eat
u=ue

o

ikx eat
v=ve

o

Then,

(DV + icku
o =0

o

au + ich =0
o 0

which can be solved for non-zero uo and V. only if m = * ick. Since u.)

is therefore purely imaginary, the difference between two solutions is

composed entirely of oscillating components which neither damp nor ampli-

fy in time.

We shall consider two forms of the difference approximation to

(11) and (lZ’). The value of u~ ,fora cell will be an appropriate inte-

gral over the cell, similar to that used to define the temperature in

Example 1.

-14-



Thus (12) becomes

du .

++& [
V(xj+:)-v(x-: =0)]

Here V(Xj + ~) means the value of v at the point x + @2, as
d

opposed to v. 1 which we here define, in analogy to u , by
J+= d

Xj+ 5X

J‘J++ax= x Vdx

j

With this definition, we can similarly write for (11)

dv 1
*+L

[
5X U(xj + 5X) - U(xj)1=Q

in which there is the analogous distinction between U(X ) which is the
J

value of u at x
J’

and u , the cell-wise average.
J

So far there is no approximation; the equations are exactly cor-

rect. We now introduce the approximate replacements

U(xj) +U
d

V(x + 5x/2) +V 1
J j+~

whereby the equations become

‘v.:Fxd+l-h)=o-.&.2+

-15-



Finally

rivative as in

n+l
‘j+&

n+l

%

with the same approximate representation of the time de-

Example 1, the equations become

= Vj+: - ~ (u,: - ‘:)
,

1

(13)
,

n c bt

(

n

J

n
=u-—

3 5X ‘J+* - ‘j-L

(Note: The reader who is interested in pursuing further the subject of

deriving difference approximations to differential equations, may con-

sult the papers by Taub3 and Bromberg4 for interesting reading.)

While the difference approximation (4) was conditionally stable,

the analogous form (13) is unconditionally unstable. The reason for the

difference in stability properties arising from essentially the same type

of approximation comes from the difference between the respective differ-

ential stability properties. In the differential diffusion equation,

perturbations are damped; while in the wave eqwtion they remain at
—.

fixed amplitude. Thus the same type of difference approximation applied >’

to both — in both cases causing a tendency towards amplification of per-

turbations — would bring the wave equation to immediate instability
.

while the diffusion-equation stability would be protected by its posses.

sion of an initial degree of perturbation damping.

The instability of (13) is easily demonstrated by an examination

of the trial solution

-16-



Substitution into (13) leads to the pair of equations

fO?? which

This is a

nitude of

u)6t
vo(e - 1) + u

o

(D5t
uo(e - 1) + v

o

the condition for

(-)4+. o

(-)++)= o

non-trivial solution is

()

k 5X
sin ~

complex result. The stability properties are related to the mag-

U)bt
e 9 since the amplitude of u and v changes with time by the

I
n

product of an oscillating factor with the quantity Ieoat .

Now

Iu)t3te Ii ()~ + 4 c28t2 sin2 ktjx=
5X2 Z--

so that the magnitude will always be greater than unity for at least some

Fourier components, no matter what non-zero values of bt and 5X are used.

Conditional stability can be achieved through a simple modification

of (13). In each time cycle, the new values of v are first computed,

and these are used to find the new values of u,

,,
n+1

v. c bt-—
(1 = ‘j+; bx ‘j+? - ‘fJ +2

)

Un+1 n c bt=u-—
(

n+l
J

n+1
J J 5X -v‘J+% J-L }

which lead to the stability analysis equation

(14)

-17-



Abbreviate the

a8t
e

(D8tbracket factor by ~; then the solution for e 18

=1- +~*$G

For ~ < 4, this Is complex and has magnitude unity. For A > 4 there are

two magnitudes, one of which is always less than -1. Thus the difference

equations are stable if A C 4 for all values of k, that is, if

I
*

A further modification of (14) leads to unconditional

n+1 c 5t
= v;+~. 5X (

n+1 n+1
VJ+$ -—

‘J+l - ‘j )

\

stability,

(15)

n+1 n c Et

(

n+1 n+1
‘J

=u.-—
J 5X ‘j+;

)J- VJ-;.

require special techniques for so-

A, the stability analysis gives

which equations are now implicit, and

lution. With the same definition for

from which

II(DE5te .—A
which is always < 1 since A._

Example 3.

two examples. The

is always > 0.

combines properties of the firstThe diffusing wave

equations we use are an extension of (11) and (12)

~
\

This well-knom restriction has been Caued the “coWant con~tione?l

-18-



(16)

and the difference approximation is similar to that in (13)

1(17)

The stability analysis leads to

in which, as before,

22

2 (y)
~=+. sin

5X

and, in addition,

= 2 a&
v sin2 (*)

6X2

LDbt
In the A-w plane, e is complex but

has magnitude ~ 1 between the parabola

~= V2 ~dthe ~ne ~. 2p. In the

rest of the triangle, defined by the

lines h=2w, ~=0, andh =4#-4,

u ?%the value of e is completely real,

and lies between -1 and +1. Thus the

-19-
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condition for stabilitv is 2A < 4U < 4 + A. or

than a

of the

of the

lieved

“
—.- r

~ =26.2

0
~in2 ‘k6X < 2a6t ~in2 k bX < , +

()
C%2 ~in~ k 5X

~_— -
5X2 5X2 L-

6X2 ()-r

shows that the diffusion must be

that it overcome the instability

The left-hand inequality

certain minimum in order

wave equation.

c26t < a

The right-hand

That inequality can be written simply

inequality is related to the conditional quality

(18)

greater

effects

(19)

diffusion stability — see (7). The condition is, however, re-

somewhat by the wave motion; only for c = O does it become as

stringent as (7). The worst cases are those for which sin2 (kbx/2) = 1,

so that the stability conditions can be written

2

(

1 5X2 2

)c5t~a~Ew+c5t

-20-
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PART II,---

STABILITY OF NON-LINEAR EQUATIONS

The examples in Part I have demonstrated some of the distinctive

stabi~ty properties of linear difference equations. A perturbation of

initial conditions produces a new solution which either diverges from or

converges to the old solution (in either case exponentially) or else, on

the borderline of stability, continues to differ from the old solution

by a constant amount. If the equation is nonlinear, then the initial be-

havior for a very small perturbation may closely resemble that of a lin-

ear equation. If unstable, however, the nonlinear effects can change

the rate of growth of amplitude.- ps.even-prevent..the.disturbance

from unbounded growth. On the other hand, nonlinearity can introduce

at least one class of instability, not present in lir.earequations, in

which the perturbation grows linearly in time, rather than exponentially.

We shall exhibit these features by means of two examples. No

atteqpt will be made here to generalize the analysis, nor to pkce it

on a rigorous basis. In both examples, validity of the analysis will

be demonstrated by comparison with a numerical solution of the differ-

ence equations involved.

~“ Consider the coupled ordinary differential equations,

in which y and z are functions of time t

9=22
dt - g YIYI

dz
m=-y 1 (20)

-21-



(This pair of equations was chosen because

more complicated hydrodynamic equations in

equations exhibit parts of the features of

of its resemblance to the

Example 2. These simpler

interest and are examined

first because of the relative ease of analysis.)

The nonlinear term containing contributes the essential fea-

tures of interest to the study. Without it the

fectly periodic with arbitrary amplitude. Note

can be combined to give

dE
: Y21YI—= -.

dt

where we have used the definition for E,

Er+y2+z2

For any initial values of y

amplitudes of y and z.

These

still

Thus,

The time-difference

r

solutions would be per-

that these equations

(21 )

and z, E-+Oas t -co, and so also do the ‘{s

approximation corresponding to (20) is

n+1
Y

1 IY 1] ]=yn+bt 2zn..;yn n

n+1 n
z = z - yn bt J

equations can likewise be combined to show the change in E, as

defined in equation (22),

~n+l
-En=
bt [- g (Yn)2 lYnl + ~t Man - g Yn nIY 1)2+ (:)2]

(24)

there is a conflict between two terms, each of which always retains

-22-



the same sign. The first term is cubic in the amplitude while the second,

which is proportional to bt, contains quadratic through quartic parts.

When the amplitude is small, the second term dominates, and E increases.

As the amplitude thereby increases, the first term increases in magnitude

and can eventually balance, on the average, the second term. For very

large initial amplitude, the quartic part of the second term dominates;

and the amplitude can then grow without bound.

The condition that En+l = En is accomplished if

‘= WW%=l

If Iynl < ~, then there is no real value of Zn for which En+’ = En;
/

indeed, for any value of Zn, En+l > En if Iynl <~. Thus the mean am-

4 28tplitude of y will asymptotically be at least~.

To determine more precisely the equilibrium amplitude, we proceed

as fo120ws. First, determine the solution of equations (20) in the llmit

a 40. An appropriate solution is

z =Asin(t~2) (25)

Y=- A{2 COS (t&) (26)

We assume that the effects of finite a and bt do not change”these solu-

tions much, but only govern the equilibrium value of the amplltude A.

Since we are thus working with small values of 6t,

(23) and (24) by the lowest order approximations,

9+#Z=2z-gYIYl
dt

dt2

we replace equations

(27)



(28)

dE
aT= (-; Y21YI-* Y9+2Z9) (29)

dt dt

Putting the approximate solutions (25) and (26) into equation (2$3),we

get

dE—=-
dt

a A3{2 cos2(t ~2)lcos(t ~2)1 + 2 A2 bt (30)

At equilibrium, the average of dE/dt over a cycle of oscillation must \

vanish, so that

-c%A3~2($-)+2A2bt =0

or

(31)

Next we examine the manner in which A approaches the asymptotic

value given by

E=

=

=

equation (31). With

+y2+z2

A2 COS2 (t{2) + A2 sin2t {2)

A2

equation (~) becomes, averaged over a quarter cycle,

dA 2d2
-—A(A -Aa)m’ 3YC

This has the solution

AOAW
A=

A. + (A - Ao) e-t6tm
(32)
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where A. is the value of A at t = 0. The

cantly toward equilibrium is given by t6t

With this predicted behavior of A,

slightly more accurate solution

equation (28), we get the final

z =A(t) ~in(t~2)

for z and

solution

time required to come slgnifi-

=1.

%& may proceed to derive a

Y. Putting equation (25) into

(33)
Y“ -~2A(t) cos(t&!) +A(t)Msin(t&) I

AoA~
A(t) =

A. + (A - Ao) e-tbtan

3%8tAm =

2a J2
1

and from this solution derive

AA2&~2 sin(2t~2)E(t) =A2 - ~ (34)

which exhibits the final amplitude and period of the oscillations of E.

Accuracy of the Solution

In order to test the results of the analytical approximations, a

digital-computer code was written for solving equations (23) exactly.

Computations were performed for various values of a and M, as well as

for a variety of initial values of y and z. In all cases examined, the

behavior at late times was independent of the initial values, except as

they affected the final phase of the oscillations. (“kte time” means

after the execution of ten or more cycles of oscillation, corresponding

to t values of ~ or more. In each case the calculation was run to
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t = 100 to assure equilibrium.) The amplitudes of y and z are shown as

functions of 6t/c%In Fig. 1. For comparison, the theoretical solution

is also shown; and the agreement is surprisingly good for values of

6t/cYup to 0.5. For any particular value of

proves as M decreases.

Part of a late-time cycle is shown in

5t/cx,the agreement im-

Fi.g.2. The phase differ-

ence between y and z is not quite %/2,

of equations (33). Indeed, from those

) F

Y=-A v2 + M2
1

Cos t J2

in agreement

equations, y

+ tan_’ ~ 1
so that the minimum of y should precede the zero of

in t of approximately M/2. For the case in Fig. 2,

with the prediction

can be written

z by a difference

with M = 0.2, the

displacement should be 0.1, while an average of 0.12 is actually observed.

A more crucial test of the theory is given by a comp~lson of

the time variation of E. Fig. 3 illustrates this for one of the calcu-

lations. The phase difference between theoretical and obse~ed oscill-

ationswas so small that it could not be well shown on the figure. The

envelope of the theoretical E oscillations, wherein the discrepancy is

more appreciable, is shown instead. For late times the mean theoreti-

cal and observed E values agreed to within much

amplitude of

amplitude by

in Fig. 3.

observed oscillations

about the same smount

exceeded the

as shown for

less than 1$, but the

theoretically predicted

the latest times shown

We remark in passing that there are at least two simple
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modifications which greatly improve the stability of the difference equa-

tions while still retaining the advantages of explicit form. They bear

direct

where,

v = o,

second

analogy to the changes shown in equation (14) of Part 1.

n+1
Y [

= yn + 6t 2zn+p II.; ynyq
1

n+l n
z = z - M yn+v J

(35)

either p=l, v= O, and the second equation is solved first; or

v = 1, and the first equation is solved first. In a test of the

case, for example, the late-time amplitude of oscillation was cut

by more than a factor of 10 over the ampldtude with w = v = O.

Proof of greater stability can be accomplished by an analysis simi-

lar to that used in deriving the amplitude of oscillations. Analo@us to

equation (18), the result is

A-- .2?E.r(l-~-v)w
2CY42

Example 2. We work with

in the form

one-dimensional

where

hydrodynamic equations

(36)

(37)

V iS an “artificial viscosity” coefficient (here a function of velocity
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only), 5 u and p are respectively velocity and density, and c is sound

speed. (These equations are not quite correct since the term

$2 %has been neglected, thus simplifying the analysis but still

leaving the qualitative features we wish to exhibit.) In example 3 of

Part I, the Linearized form of these equations was studied.

The spatial domain of the problems is divided into cells num-

bered j = 1,2,”””,J.

analogous to (27) md

The difference

(28), are

c1

equations, to first order in M,

~= .#&&J+, .UJ-l) &_(q3+1dfj ,)
dt

v

-+(
(38)

+
6x

‘J+l + ‘J-1 - 2UJ)

~= A@!M__(9J+1 ) 2:X (u- QJ-1 - — - ‘j-1 ) (39)
2 dt2

j+l

To determine the equilibrium amplitudes of oscillation, we follow

the same procedure as in

suits, but further on we

show how the error is to

J=l

Then

Example 1. This will provide-some useful re-

shall demonstrate a fallacy in the argument and

be corrected. Define

t
(u: + c%@

j=l

I
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Nowa solution of the linearized form of equations (~) and (39), in the

limit as M -0, and with v = O, is

q = (pO Cos Otcos ja
)

‘J = cqo sinu)t sin ju
J

(41)

where

and P. is an arbitrary amplitude. To be specific we pick bounrkmy condi-

tions such that the ends of the spatial domain are at rest; u, = UJS O,

$, g = 1,2, ‘“*, J-1.so that u = This solution is put”into (~) and

averaged over a cycle of oscillation. Many of the terms vanish. The re-

sult is also

equation, in

P.

in which <>

to be summed over the cells of the system and leads to the

which CPomust now be considered to vary with time,

signifies time average.

J

z
< Vjuj(uj+l + ‘1J.1- 2u~)>(J+3)

j=l

Consider first the case V = constant. Then the SUDI becomes

v
t

<U(u
J J+l + ‘J-1 - ‘J)>

J=l

22
=Cvq

o f
sin jU [sin(j+l) U + sin(j-1) U . 2 sin Ju] < sin2~t>

J=l J
22

=Cvq
o I

sin2 JU(COS u - 1) . - ~J C2V 9:(1 - Cos u)

J=l
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where terms of order unity have been neglected as small compared with

terms of order J. Thus (43) becomes

dqo qlovsin% ~

[
c bt 2(1 - Cos u)

%F=—
—-

25X2
v

sin2u 1
This leads to the stability requirement

c25t ~ 2(1 - Cos a
-ii---

sin2u

which is the analo~ of (1$3),and is precisely the same result that

would be obtained by application of the method of Part I to the linear-

ized equations. (The difference between this result and (19) arises

from the difference in space differencing in

Consider now the results also for the

Cosit2

the twu cases.)

Particle-in-cell type vis-

V=
: 5XIUJI

The appropriate averages and sums can be performed in the same manner

as before, leading to the result

dqo
—= - K(PO((PO-To)dt

where
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The equation can be integrated and it is found that the time required

for the amplitude to grow from an initial value of qoo to half of the

asymptotic value is

4 8X2 V. - 900
t=

c25t(1
2 lr

- Cos u) 900

To test these conclusions, a program was written for high-speed

computer to solve the difference equations through sufficient successive

cycles to obtain equilibrium. The initial disturbance had a wave length

of four cells, a = %/2. The results showed good agreement in most re-

spects with those predicted above. The one serious discrepancy occurred

in the value of q in every other cell. In those special cells, the value

of q increased without bound at nearly a constant rate. This instability

had no effect on the rest of the cells, whose equilibrium fluctuation am-

plitudes were nearly at the predicted values. [They were lower than pre-

dicted by about 15% for the two values of cbt/a5x= 0.5 and 0.2. The

discrepancy is probably due to the neglect of phasing differences in the

trial solution (41), which diagnosis is indicated by the form of the im-

proved trial solution which follows - see (45)].

To explain the instability which the above analysis fails to re-

veal, it is necessary to re-examine the trial solutions, and to find a

more accurate set than those given in (41). Since the machine cal.cul.a-

tion showed good agreement with the p~dictedu function in (41),

reasonable to retain that function and look for a more accurate (p

tion. To do this, we substitute

it is

func-
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‘J = cQo sin ut sin ju

Td=v ~ Cos cot Cos ju + q
d

Into (39), and look for a solution for q,. The resulting equation to be

solved is

~+

=

+

d

~t d2qJ uFq)oM

T dt2 - — Cos u)t Cos ju
2

ccp2
& sin mtcos at sin2 jcrsin u

We assume that an expansion can be made in powers of (pO

where p and r

the eq~tions

dr
x

~US dr/dt iS

q = 90 r cos JU + (p:p sin2 ju sin u

are functions of time only, and are determined by solving

tit d2r m25t
— Cos Lot

‘Z-~= 2

6t d2-!!‘-z-dt =& sinut (r + cosat)

of order bt, as is also d2r/dt2. For consistency, we must

here drop tenus of order &t2; the resulting equation has the solution

r _ u5t
- ~ sin at
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It is the resulting sin2ut term

the instability we are seeking.

keep only that part which leads

in the p equation which contributes to

Discarding the oscillating terms, we

to the solution

~=~t

so that, finally (with

Td = go Cos

CD = c sin U/5x),

JUICOS ut+”# sinot]

(45)

()2 c26t
+q— t sin2jU sin2u

0 48X2

plus oscillating terms of order 9;.

This solution has just the behavior necessary to explain the anoma-

lous growth of q in every other cell which occurred in the test with

u= %/2. For the cell with j = 1, for example, this result predicts

Q: c2M
ql=— t (46)

4 5X2

This consistent growth of Q arises.from a persistent coupling in the non-

llnear term u @/ax, which became the second term on the right side of

(39). Had (39) been in conservative form, this difficulty would

have arisen.

In the test problems we used c = 1, 5X = 1. For W = 0.5,

not

the

machine calculations gave To = 0.60 (theoretical q = O.@); while for
o

6t = 0.2 the machine gave go = 0.235 (theoretical q. = 0.278). With the

observed CPovalues, dcpl/dtwas predicted to be, respectively, 0.045
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and 0.0028. Since the initial behavior of ql depends

tions of the problem, it should be expected that this

upon initial condi-

slope would be

reached only after an initial adjustment. Comparisons between the above

analysis and the machine calculations are shown in Figs. 4 and 5. Scatter

of the machine-calculated points is not followed by the results of analy-

sis because of neglect of oscillating terms in the latter. In both cases,

agreement of the slope prediction is excellent.

A modified

computing machine

creased. In each

procedure, analogous to that in (14), was tried on the

to see if the amplitude of oscillations could be de-

cycle, the new values of velocity were computed first,

and these new values were used in finding the new values of T. The re-

sult was a cut in smplitude by more than a factor of ten, and while the

every-other-cell instability in q)was still present, its rate of growth

was greatly reduced.
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Fig. 1: Theoretical (straight line) and observed(points) amplitudes
of y and z for various values of bt/a. In all cases a = 1
except that for which M = 0.2 is explicitly marked.
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Fig. 2: Part of a late-time cycle of y and z showing their smplitude
and phase relationships.
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Fig. 3: Early-time variation of E as observed (oscillating line) and as
predicted (shown by envelope of oscillations and mean thereof).
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Fig. 4: The value of gl as a function of time for M = 0.5. Points are
from machine calculation, solid line is from Eq. (46), dashed
line is that result transposed.

-3f3-



O.lc

4 I

O.of

c

I I I #

/0
/’0

/

/ I I I

20 40
●

60 80

Fig. 5: The value of Q, as a function of time for bt = 0.2. Points are
from machine calculation, solid line is from Eq. (46), dashed
line is that result transposed.
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