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ABSTRACT

In Part I, an elementary review is given concerning the stability
properties of some simple linear partial difference equations. Part II
contains examples illustrating some properties of typical nonlinear par-

tial difference equations and an analysis for predicting these properties.
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INTRODUCTION

In many cases, the changes with time of a physical situation can
be represented well by a set of partial differential equations, but often
the appropriate equations are much more easily derived than solved.
Analytical methods for obtaining solutions can become impossibly compli-
cated for various reasons. The equations may, for example, be nonlinear,
or even if linear, they may be subjected to initial conditions of great
complexity. Thus it is sometimes necessary to use numerical methods.

In a commonly-used class of numerical methods, the differential
equations are replaced by finite difference approximations, and the solu-
tion is obtained by algebraic processes, stepwise through time. (De-
tailed illustrations are given in Part I.) The resulting solution is
not exactly that of the differential equations, but may be close pro-
vided that proper care is taken. It is necessary that the increments of
independent variables be small compared to the structure of solution
which must be resolved. But such a requirement is not sufficient to
guarantee accuracy; in many cases the difference'representation can be

p—

unstable, so that any perturbation will be amplified indefinitely, ob-

scuripng all.realistic—features.,

The stability properties of linear partial difference equations
can be explored by well-known techniques. Considerable discussion and
many references have been given by Richtmyer,1 and this report includes
in Part I some of the techniques as applied to several representative
examples. Concerning the effects of nonlinearity on stability, rela-
tively little has been written. Part II is concerned with some of these

effects,
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PART 1

STABILITY AND ACCURACY OF LINEAR EQUATIONS

To illustrate the methods of solution by finite-difference ap-
proximation, and to exhibit some of the properties of the techniques, we
consider several simple examples. The results will be useful for com-
parisons with those of Part II,

Example 1. The one-dimensional partial differential equation for
the diffusion of temperature in a material with constant positive coeffi-

cient of diffusion, a, is

=gl (1)
o ox

ar _ Fr
2
where T is the temperature and x and t are the independent space and time
variables. This equation is linear in the unknown temperature function,
so that the sum of several solutions is also a solution.
The differential equation is stable in the following sense: If
a certain initial-condition boundary-value problem is posed, and the re-
sulting solution is compared with that obtained from slightly different
initial conditions, the two solutions will be only slightly different.
We shall demonstrate this fact for comparison with later results in which
such stability is not present.

The difference between the two solutions of (1), arising from

the two different initial conditions, can be written

ikx wt
8T _EE}Ak,w e e




which is simply a Fourier decomposition of 8T, in which the sum is over

an appropriate set of values of k and w. The difference itself must

satisfy (1), and so indeed must each term in the Fourier sum. Substitu
tion into (1) produces the result that each Fourier term is a solution

provided that

W= -8 k2 (2)

This relation shows that for any value of k, w < O so that the term de-
cays exponentially to zero as time increases; or in the case k = 0 it
remains constant, corresponding to a constant difference everywhere be-
tween the two solutions. Thus the two solutions, subsequent to initial
time, approach each other to within a constant difference which can be
no larger thah the average of the initial difference,

Consider now a finite-difference method for solving (1) approxi-
mately. To be specific, suppose that the material extends from
X = xL to x = gR and that boundary conditions are supplied for those
two ends, and initial conditions for the intermediate part. To vis-
ualize the finite difference procedure, imagine the material to be di-
vided into J equal space intervals of length &x = (xR - xL)/J. The re-
sulting cells are labeled with the index j = 1,2,°*+,J., Define the

"temperature for cell j" by the relation



where X4 is the distance to the center of cell j. Then, from (1),

sl
dat C osx | 9x) 5x - |ox
x-xj+—2 X

.
i~ 2

This equation is exact. The next step is to introduce the approxima-

tion
e s [fe - 1]
[&Fxt_g_x‘“'& Tyz = Ty
j 2
so that
aT a[
& 2 Tj+1+Tj-1'2TJ] (3)

5x

The final step in the procedure is to divide the time after initial
time (t = 0) into finite intervals of constant duration 5t each, We

count the time cycles by index n, so that Tn =T, at t = n 8t, Then

J 7J

the time derivative can be approximated by (? +1

I In
- T.> 8t, and the
5 YA

finite difference equation becomes

n+1 a 8t n n n
! = BOT [T. 0. ]
J J 5x2 g+ ¥ TJ-1 2 TJ (%)

The above procedure is arbitrary in several respects; various alterna-

tive difference approximations could have been obtained, for example

n+1 1 n n a 8t n n n
Ty =3 <Tj_1 + TJ+1>+ ~2 [TJH * Ty -2 TJ] (5)

or
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Tn+1 _ Tq + a &5t [Tn+1 + Tn+1 N Tn+1] (6)

; 3T 2 Lan R J

or an infinite number of others. They must all satisfy the requirement
of formal reduction to (1) as &x and &t become vanishingly small,

Equations (4) and (5) are called "explicit." In both cases the
temperature for each cell for the new time cycle can be found from in-
formation from the old cycle simply by algebraic substitution. Equa-
tion (6), on the other hand, is in "implicit" form. Solution for the
nevw temperatures requires somewhat more complicated techniques which
are straightforward, but which are not discussed here. We shall see
that in some cases the implicit form offers advantages of stability
which may overcome the disadvantages of solution complexity.

The finite difference equations as written above force considera-
tion of two additional fictitious cells, numbers j = O and J=Jd+ 1,
The temperatures of these cells are needed for computing the new tem-
peratures for cells j =1 and j = J. The difficulty is resolved by a
proper adaptation of the desired boundary conditions. Suppose, for
example, that a variable temperature TL(t) is specified for the point

X = X Then T may be determined by requiring TL(nSt) to be the aver-

n
o]
age of Tg and T?

n= _ n
T, =2 TL(nSt) T,

If the temperature gradient GL(t) is specified at that boundary

(the gradient is directly proportional to the heat flux), then Tg



is easily found from the relation
e]
o - Gplmot)

Next we consider the stability properties of some of the differ-
ence equations. As in the differential stability analysis, the differ-
ence between two solutions can be decomposed into Fourier components, of

which a typical one is

AeikJSx énnSt

Substitution of this into (4) leads to the condition for solution

ébst =1+ a 8; [eika N e-1k8x _ 2]
Bx -

2a 5t

8x2

(1 - cos k &x)

=1 =

Thus éDSt is always < 1; as long as it is also > - 1, the Fourier compon-
ent will not grow in amplitude. To assure that this is the case for all

values of k (the worst case is for cos k &x = - 1) it is thus necessary

that
5t 1
E;—g <'§ (7)
Ox

This is the well-known stability condition for the explicit heat diffus-
ion difference approximation of Eq. (4); its validity has been proved in
numerous numerical tests involving the actual sequential solving of (4).

The significance of this stability result can be seen as follows.



Essentially, it is a restriction on the size of &t, the time step
interval. For a given set of temperatures at t = ndt, the difference
T§+1 - Tg depends linearly on &t, If, for example, the temperature
profile at t = ndt has a small fluctuation which is concave downwards,
then the calculation will tend to decrease the temperature in the bump.
For a small 5t, the decrease in one cycle is small; for a larger &t,
the bump could be exactly flattened out; for even larger &t, it could
be reflected into a bump of similar shape and amplitude, but concave
upwards., This last is the case of éDSt = = 1, For any larger 8t the
bump is reflected in one cycle into one of larger amplitude than before.
This is the case of instability, since in each succeeding cycle, the
bump alternately reflects back and forth with ever increasing amplitude.

In contrast, the difference approximation in (6) is stable for
all values of 5t. The analysis to prove this is the same as before, and
leads to the condition for solution of a Fourier term

énat | 1
2adt

8x2

1 + (1 - cos kbx)

so that for any size of 8t, €20V < 1, It would thus seem that one

should always use the implicit form (6) or some other with similar sta-
bility properties, since then the solution could be advanced to the de-
sired final time in a small number of cycles., There is, however, the
additional consideration of accuracy. How well does the approximate

solution represent the true solution of the differential equations?




In some cases, nothing is to be gained by the allowance of long time
steps given by the unconditionally-stable forms, since the condition
for accuracy is very close to that for the conditional stability.
One circumstance, however, in which the implicit form may be use-
ful arises when the calculation is to be applied to a material with dis-
continuity in diffusion coefficient. Suppose, for example, that a = a

L

for xi's x< x, and a = ap for X, <x< gR. (The value that should be

1
used at x = X for the finite difference calculation need not be con-
sidered here. The matter is somewhat complicated and has been discussed
elsewhere.e) Suppose further that ar > ap SO that the temperature
diffuses much more rapidly in the left section than in the right section.
If, then, heat enters the materials from the left, that side conducts it
quickly to the boundary and may remain always at almos* the same tempera-
ture. The right side will then have the large temperature gradients and
contain all the features of interest. But to calculate the entire sys-
tem with (4), one would have to be limited by the requirement aaLSt/8x2< 1
which is much more stringent than the condition for the region of interest.
- Thus an implicit, unconditionally-stable procedure would be useful, with
the size of &t determined by the requirements of accuracy on the right
side, which would be a far less stringent restriction. -
The difference approximation (5) might seem reasonable, on the
argument that basing the new temperature in a cell on the average of
adjacent old temperatures would have a smoothing effect and thus improve

the stability. That this idea is wrong can be seen by repeating the
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analysis, which leads to the condition

&8 _ o5 kbx - 2a8;: (1 - cos k &x)

5x

which is unconditionally unsta.blé, since there are values of k (for which

cos kdx = - 1) leading to ew 5t < - 1 for any non-zero intervals.

The form of the first term on the right of (5) is bad for another
reason. The equation can be made unconditionally stable by changing the
timing of the second term to n + 1, but the first term contributes an in-
accuracy, which, for fixed dx, gets worse as &t - 0! To see this, and to
illustrate a method of accuracy analysis, consider (5) in the form it is

written. Use the Taylor expansions, centered about J and n,

b

I 8x° 33T . &x° T  x' d'T
T.n=T:':&xF+ + + + *°°
n+1 o | st° v

Ty =T+t 3"

2 2 2 2 2 by
T+8t§+8%a—g=’l‘+8’2( ag+a82[8x2ag+?:é ai]
ot ox &x ox ox
or
o Pr_ &2 1 amddm st T (8)

-8 = + ——
ot a2 2ot 327 12 JE T2
The right side, which has the form of a source to the otherwise-conservative

temperature field, expresses the lowest order errors. The last texrm can

be rewritten, using the lowest order equation

-11=




a bt
€='—'—§
B5x
Then
2 2 2
oT T a O T abdx /1 T
X% 2"z 2 (-9 % (9)
ox’ ox ox

The first term on the right side of (8) and (9) is particularly un-
desirable., With fixed 8x, that error term increases as 5t — 0., Further-
more, for reasonable €, it is larger than the real diffusion term and
completely obscures the true solution. Such a term does not appear in
the analogous expansion of (4) or (6).

Note that the term proportional to &t in (8) actually contributes
one proportional to Sx?. Since Sx? terms are already otherwise present,
there is, therefore, no point in attempting removal of the &t term by a
more careful time centering of the equation (such as in the implicit
form
which actually has very bad stability properties — see next page —but
from which terms of order &t cancel out in the Taylor expansion), unless
such a procedure produces otherwise good results. Indeed the &t term

would appear to be of value in increasing accuracy, since by the choice

rd
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€ = 1/6, the 8x° term can be made to vanish. Actually, however, the
highef-order terms may be as important as the one which has been made to
vanish., Usually the procedure of testing an approximation method is the
most efficient way of determining its accuracy.

To conclude this example, we mention a comparison between two addi-
tional forms of the difference approximation to the diffusion equation,
These are both tentered" in time and appear to resemble each other closely.

These stability properties, however, are extremely different. They are

ntl _ -1  2a8t | n n n]
T =T + T + 7T - 2T

3 3 52 L o+l © T3 J

n+1 n-1 2adt | 1/ _n+1 +1 n+1
T, =T + ~(T. + T, - 2T,

J J px= L2t J+! J-1 J

1 n-1 n-1 n-1
+ T + T - o ﬂ

Application of the foregoing analysis shows that the first one is uncon-

ditionally unstable, while the second one is unconditionally stable.

Example 2. The wave equation in difference form exhibits somewhat

different properties from those of the diffusion equation. We shall

study
2 2
é—% = o? é—% : (10)
ot ox

in which u is the compression and ¢ is the propogation speed. Define a

function v by the equations

g% +c g% =0 (1)

-13-




g_‘-é_.q.c%;rzzo (12)

of which (10) is a consequence. The form (11), (12) is more convenient
for differencing, and, together with additional terms, is a common form
of equations of this type.

The differential stability properties can be determined from
(10) or from (11) and (12) by study of a Fourier component of the differ-
ence between two solutions. We use (11) and (12) in analogy with the

procedure for the difference approximation, and try the solution

ikx wt
u = uo e e

ikx wt
e e

<
n

v
(o)

Then,

]
o

w v_ + icku
o o

1]
o

wu + ickv
o o

which can be solved for non-zero u, and Vo only if o = * ick. Since w
is therefore purely imaginary, the difference between two solutions is
composed entirely of oscillating components which neither damp nor ampli-
fy in time,

We shall consider two forms of the difference approximation to
(11) and (12). The value of uJ.for a cell will be an appropriate inte-

gral over the cell, similar to that used to define the temperature in

Example 1.

“1h-



x 29X
[ .
uJ8x= 5x u dx
X,= =
J 2

Thus (12) becomes

duy c[ bx 5x
F+§ V(XJ+-2—)-V(X-?]=O

Here v(xj + %) means the value of v at the point x 3 + 8x/2, as
opposed to VJ+L which we here define, in analogy to u 3’ by
2
X.+ 5x
oY ’ dx
X = v
J+2 xj

With this definition, we can similarly write for (11)

dV l -
-Ej%i'-a + g_x [u(xj + 85x) - u(xj):| =9

in which there is the analogous distinction between u(x J) which is the

value of u at x,, and u

J J’

So far there is no approximation; the equations are exactly cor-

the cell-wise average.

rect. We now introduce the approximate replacements
u{x,) -su

( J) J
vix, + 5x/2) > v
(xy + 8%/2) vy, 4

whereby the equations become
duJ c
S <"J+% - VJ-%) =0
J+— - =
&t * 5% < Uy ~ M > =0

-15-



Finally with the same approximate representation of the time de-

rivative as in Example 1, the equations become

\
vn+1 - v n_c¢c 5t n u#)
57 Vi T TRx Wyl T Yy

e (13)

n

un+l un _c 5t <} n _ v 2)
3 37 T8x \i+d - Ti-% J

(Note: The reader who is interested in pursuing further the subject of
deriving difference approximations to differential equations, may con-
sult the papers by Taub3 and Brombergh for interesting reading.)

While the difference approximation (4) was conditionally stable,
the anslogous form (13) is unconditionally unstable, The reason for the
difference in stability properties arising from essentially the same type
of approximation comes from the difference between the respective differ-
ential stability properties. In the differential diffusion equation,
perturbations are damped; while in the wave equation they remain at
fixed amplitude. Thus the same type of difference approximation applied
to both — in both cases causing a tendency towards amplification of per-
turbations -~ would bring the wave equation to immediate instability
while the diffusion-equation stability would be protected by its posses-
sion of an initial degree of perturbation damping.

The instability of (13) is easily demonstrated by an examination
of the trial solution

n ikjdx rnwdt
=u_ e e
J o

o
|

. .01
3 elk(J+§)8x JTWwBE
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Substitution into (13) leads to the pair of equations

v () 4y <21c8> <5§55>=
LRI <2 ic8t> oin (k 5x>_ o

for which the condition for non-trivial solution is

ew&t__: 1t 2 :i:cSt sin k 8x>
te) ¢ 2

This is a complex result. The stability properties are related to the mag-
nitude of éDSt » since the amplitude of u and v changes with time by the

n
product of an oscillating factor with the quantity IéDStl .

Now

2.2
[ewSt | =Vl Shceet L 2 <k8x
— 7 2
&x

s0 that the magnitude will always be greater than unity for at least some
Fourier components, no matter what non-zero values of &t and §x are used.

Conditional stability can be achieved through a simple modification
of (13). In each time cycle, the new values of v are first computed,

and these are used to find the new values of u,

c 5t '; n n
T Tdx g T Y

n+1 un _¢c 5t (}n+1 _ vn+12> ’
J 3 5x \'J+3 = -3

which lead to the stability analysis equation

w8t Y ost[s Cet? | 2 (k ox
1 + e "_2_ sin — = O
8x 2

-17-
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(14)
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wdt

Abbreviate the bracket factor by A; then the solution for e is
KEEA D R B R VN

For A < 4, this is complex and has magnitude unity. For A > 4 there are
two magnitudes, one of which is always less than -1. Thus the difference

equations are stable if A < 4 for all values of k, that is, if

c &t *

5x

| <

A further modification of (14) leads to unconditional stability,

vn+1 =, .8 &t un+1 _ un+1
2 T er T TBx \Tgn T Yy
(15)
un+1 B 5t vn+1 _ vn+1>
J J 8x \'J+5 -k

which equations are now implicit, and require special techniques for so-

lution. With the same definition for A, the stability analysis gives

wdt 1 13 J&
e =
1 +

from which
| wStl 1
e = r——
V1 + A
which is always < 1 since A is always > O,
Example 3. The diffusing wave combines properties of the first

two examples. The equations we use are an extension of (11) and (12)

*
This well-known restriction has been called the "Courant Condition,"

-18-




2

L Ao
ot ox 2
ox

and the difference approximation is similar to that in (13)

|

vn+1 vn _¢c &5t (;n _ un
5T T B5x J+1 3

o
n
[~

n+1 n cHt n _n a &t n n
J i T TEx <VJ+% "J-%)* o <“J+1+“J-1

The stability analysis leads to

2

in which, as before,
A = b c28t (k8x
- b&x

and, in addition,

_ 2 adt k8x
5x

In the A-p plane, éDSt is complex but
has magnitude < 1 between the parabola
A= u2 and the line A = 2u, In the
rest of the triangle, defined by the
lines A = 24, A =0, and A = 4p - k4,
the value of & ot is completely real,

and lies between -1 and +1, Thus the

=19-

)

(16)

(17)

1




condition for stability is 2A < 4u <4 + A, or

2 Bt~ 5t k bx 2a8t K &x ¢ m k bx b
sin° (—— <1+ s

(18)

The left-hand inequality shows that the diffusion must be greater
than a certain minimum in order that it overcome the instability effects
of the wave equation. That inequality can be written simply

c28t <a (19)

The right-hand inequality is related to the conditional quality
of the diffusion stability — see (7). The condition is, however, re-
lieved somewhat by the wove motion; only for ¢ = O does it become as
stringent as (7). The worst cases are those for which sin® (kdx/2) = 1,

so that the stability conditions can be written

c St < a<yz (2;— + ¢ 8t>

-20-
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PART II1

STABILITY OF NON-LINEAR EQUATIONS

The examples in Part I have demonstrated some of the distinctive
stability properties of linear difference equations. A perturbation of
initial conditions produces a new solution which either diverges from or
converges to the old solution (in either case exponentially) or else, on
the borderline of stability, continues to differ from the old solution
by a constant amount. If the equation is nonlinear, then the initial be-
havior for a very small perturbation may closely resemble that of a lin-
ear equation. If unstable, however, the nonlinear effects can change

the rate of growth of amplitude, perhaps even prevent_the disturbance

from unbounded growth. On the other hand, nonlinearity can introduce

at least one class of instability, not present in lirear equations, in
which the perturbation grows linearly in time, rather than exponentially.
We shall exhibit these features by means of two examples. No
aftempt will be made here to generalize the analysis, nor to place it
on & rigorous basis, In both examples, validity of the analysis will
be demonstrated by comparison with a numerical solution of the differ-
ence equations involved.
Example 1. Consider the coupled ordinary differential equations,

in which y and z are functions of time t

X -2z - Zylyl
(20)

21-
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(This pair of equations was chosen because of its resemblance to the
more complicated hydrodynamic equations in Example 2. These simpler
equations exhibit parts of the features of interest and are examined
first because of the relative ease of analysis.)

The nonlinear term containing ¢ contributes the essential fea-
tures of interest to the study. Without it the solutions would be per-
fectly periodic with arbitrary amplitude. Note that these equations

can be combined to give

dE o 2
T=-3Y Iyl (21)

where we have used the definition for E,

E=dy° + 22 (22)

For any initial values of y and z, E 40 as t 4o, and so also do the Q

.

amplitudes of y and z.

The time-difference approximation corresponding to (20) is

n+1 n n ¢ _npn
y y+8’c[2z‘-§y|y|]

zn+1 zn _ yn 5t

]

(23)

]

These equations can likewlise be combined to show the change in E, as

still defined in equation (22),

n+1 n 2
E - E o, n n n Q¢ _npnp2 n,2
S e Y LAl R

(24)

Thus, there is a conflict between two terms, each of which always retains

-22=



the same sign. The first term is cubic in the amplitude while the second,
which is proportional to &t, contains quadratic through quartic parts.
When the amplitude is small, the second term dominates, and E increases.
As the amplitude thereby increases, the first term increases in magnitude
and can eventually balance, on the average, the second term. For very
large initial amplitude, the quartic part of the second term dominates;
and the amplitude can then grow without bound.

The condition that E**' = EP is accomplished if

n n
[0
S AL N T

Ir |y < ggﬁ’ then there is no real value of z" for which E°T) = E //
indeed, for any value of z%, E®' > E" ir Iy | < 233, Thus the mean am-

plitude of y will asymptotically be at least-ggz.

To determine more precisely the equilibrium amplitude, we proceed
as follows. First, determine the solution of equations (20) in the limit

a -0, An appropriate solutlon is

A sin(t v2) (25)

2

]

y = - AV2 cos (t v2) (26)

We assume that the effects of finite @ and 8t do not change these solu-
tions much, but only govern the equilibrium value of the amplitude A,
Since we are thus working with small values of 5t, we replace equations

(23) and (24) by the lowest order approximations,

2
d 5t d o
_X + —— _x = 22 = = ylyl ) (27)
dat 2 dt2 2 A
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2

‘gg + 5t d 2z y ( 8)
8t a7z _ _ .
ittt 7 2
dE a 2 ot [ a° a2
T--3Y IYI-2— y_X2+22_2 (29)
dt dt

Putting the approximate solutions (25) and (26) into equation (29), we

get

%% =-a a2 cose(t V2)|cos(t J2)| + 2 A% &t (30)

At equilibrium, the average of dE/dt over a cycle of oscillation must

vanish, so that

3 L 2 _
-aA ~/.-2(-3—“)+2A 85t = 0

or
A=Aw32’t—8;b- (31)
2

Next we examine the manner in which A approaches the asymptotic
value given by equation (31)., With
3 y2 + 22
A% cos® (& V2) + A2 sin’t V2)

.-=A2

E

n

]

equation (30) becomes, averaged over a quarter cycle,

dA 2a~/.’_e ‘
_d.E=-—3—,(—-_A(A-Am)
This has the solution
AA
Q oo

A =
A +(A -A)e
(o] ] [o]

5t (32)

=24




where Ao is the value of A at t = 0. The time required ?o come signifi-
cantly toward equilibrium is given by tdt = 1,

With this predicted behavior of A, we may proceed to derive a
slightly more accurate solution for z and y. Putting equation (25) into

equation (28), we get the final solution

N
z = A(t) sin(t Jé)
¥y = - V2 A(t) cos(t v2) + A(t) 5t sin(t ¥2)
A \ (33)
O oo
Ae) = + (A -A) e tOF
o] oo (o]
A = oot
2 V2 J
and from this solution derive
E(t) = A% - 1 A%t V2 sin(2t V2) (34)

which exhibits the final amplitude and period of the oscillations of E.

Accuracy of the Solution

In order to test the results of the analytical approximations, a
digital=computer code was written for solving equations (23) exactly.
Computations were performed for various values of & and &t, as well as
for a variety of initial values of y and z. In all cases examined, the
behavior at late times was independent of the initial values, except as
they affected the final phase of the oscillations. ("lLate time" means
after the execution of ten or more cycles of oscillation, corresponding

to t values of 50 or more. In each case the calculation was run to
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t = 100 to assure equilibrium.) The amplitudes of y and z are shown as
functions of St/a in Fig. 1. For comparison, the theoretical solution
is also shown; and the agreement is surprisingly good for values of
8t/o up to 0.5. For any particular value of 8t/q, the agreement im-
proves as &t decreases,

Part of a late-time cycle is shown in Fig. 2. The phase differ-
ence between y and z is not quite 1/2, in agreement with the prediction
of equations (33). Indeed, from those equations, y can be written

y=-Al/2+8t2 cos[tJé+tan-1 9—3]

V2

so that the minimum of y should precede the zero of z by a difference
in t of approximately &t/2. For the case in Fig. 2, with &t = 0.2, the
displacement should be 0.1, while an average of 0.12 is actually observed,
A more crucial test of the theory is given by a comparison of
the time variation of E, Fig. 3 illustrates this for one of the calcu-
lations. The phase difference between theoretical and observed oscilla-
tions was so small that it could not be well shown on the figure. The
envelope of the theoretical E oscillations, wherein the discrepancy is
more appreciable, is shown instead. For late times the mean theoreti-
cal and observed E values agreed to within much less than 1%, but the
amplitude of observed oscillations exceeded the theoretically predicted
amplitude by about the same amount as shown for the latest times shown
in Fig. 3.

We remark in passing that there are at least two simple
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modifications which greatly improve the stability of the difference equa-
tions while still retaining the advantages of explicit form. They bear

direct analogy to the changes shown in equation (14) of Part I.

yI‘1+'| - yn + at[22n+u _ Ct nly I]

zn+1 - zn - Bt yn+v

(35)

where, either H = 1, v = 0, and the second equation is solved first; or
KH=0, v=1, and the first equation is solved first. In a test of the
second case, for example, the late-time amplitude of oscillation was cut
by more than a factor of 10 over the amplitude with p = v = O,

Proof of greater stability can be accomplished by an analysis simi-
lar to that used in deriving the amplitude of oscillations. Analogous to
equation (18), the result is

51(8"[; ( 1

A
" oav2

- K -V)

Exomple 2, We work with one-dimensional hydrodynamic equations

in the form
2
o)
2, °2%§”a_3 (36)
X
g—oé+ug—$+%(=0 (37)
where

oo (2)

artificial viscosity" coefficient (here a function of velocity

v is an "
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only),5 u and p are respectively velocity and density, and ¢ is sound
speed. (These equations are not quite correct since the term
% %;S g% has been neglected, thus simplifying the analysis but still
leaving the qualitative features we wish to exhibit.) In example 3 of
Part I, the linearized form of these equations was studied.

The spatial domain of the problems is divided into cells num-
bered J = 1,2,°**,J. The difference equations, to first order in &t,

analogous to (27) and (28), are

2
du du u 2
5t [

'&76‘1 =7 e | 2% (“3+1 - “3-1) - 25x (q’3+1 - q’3-1)

v (38)

+ gi§ (uJ+1 Uy 2“3)

oy el Y 1
dt ~ T Z 2 T Btx (95,0 = 2500) - 355 (uyyq - uy) (39)

To determine the equilibrium amplitudes of oscillation, we follow
the same procedure as in Example 1. This will provide some useful re-
sults, but further on we shall demonstrate a fallacy in the argument and

show how the error is to be corrected. Define

E= i EJ E-% i (u§ + c2cpJ2)
J=1

3=

Then
2 2 2 2 |

dE du ao u cu,®

Bt 2 3%3
w7 <“J :1:2"1 e :;%) - 2 gy = 2ny) = ™ (9, 95)

02 v.,u

Taex [95(@gpq = @50) + @yuy muy ) B2 (uy gt uyqm 29y
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Now a solution of the linearized form of equations (38) and (39), in the

limit as &t « 0, and with v = 0, is

]

P cpo cos wt cos Jo

J (42)

o
]

3 ccpo sin wt sin Jjo

where
o= k dx

(42)

c
w=a—-zsineo
B5x

and (po is an arbitrary amplitude. To be specific we pick boundary condi-
tions such that the ends of the spatial domain are at rest; u, =Euy= o,
so that o = %’l, § =1,2, *++, J-1. This solution is put into (40) and
averaged over a cycle of oscillation. Many of the terms vanish. The re-

sult is also to be summed over the cells of the system and leads to the

equation, in which cpo must now be considered to vary with time,

J
do 2
o _®0t 2

T =72 % T 8x z <v 3 J+1 tuy - 2 uJ)>(1+3)

in which < > signifies time average.

Consider first the case v = constant. Then the sum becomes

v i<u‘j(u‘j+1 +uJ_1 - 2uJ)>

J=1
2. 2 2
=c V@ i sin jo [sin(j+1) o + sin(J-1) o - 2 sin jo] < sin“ w t>
J=1 J
= c2V cpi Z sin2 Ja(cos o - 1) = - .g_ c2v qai(1 - Ccos a)

3=
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where terms of order unity have been neglected as small compared with

terms of order J. Thus (43) becomes

dt 2 v T 2

25
a9, _ Pov sin [cest 2(1 - cos 0)]
26x sin~o

This leads to the stability requirement

2ot ¢ 2(1 - cos 0)
v -

sinea

which is the analogy of (19), and is precisely the same result that
would be obtained by application of the method of Part I to the linear-
ized equations. (The difference between this result and (19) arises
from the difference in space differencing in the two cases.,)

Consider now the results also for the Particle-in-cell type vis-

cosity5
x
VvV = 3 leujl
The appropriate averages and sums can be performed in the same manner

as before, leading to the result

a _
T - K wo(wo - wo)
where
K= (?ac <s (1 - cos a)
= < > 35 V(1 - cos 20) _ (44)
adx 8(7 - cos o)




The equation can be integrated and it is found that the time required
for the amplitude to grow from an initial value of woo to half of the
asymptotic value is

= %00

7;6!

y 8x2

t:
c28t(1 - coseo) Poo

To test these conclusions, a program was written for high-speed
computer to solve the difference equations through sufficient successive
cycles to obtain equilibrium, The initial disturbance had a wave length
of four cells, 0 = x/2. The results showed good agreement in most re-
spects with those predicted above. The one serious discrepancy occurred
in the value of ¢ in every other cell. In those special cells, the value
of @ increased without bound at nearly a constant rate. This instability
had no effect on‘the rest of the cells, whose equilibrium fluctuation am-
plitudes were nearly at the predicted values. [They were lower than pre-
dicted by about 15% for the two values of cﬁtﬁa8x== 0.5 and 0.2. The
discrepancy 1s probably due to the neglect of phasing differences in the
trial solution (hl), which diagnosis is indicated by the form of the im-
proved trial solution which follows - see (45)].

To explain the instability which the above analysis fails to re-
veal, it is necessary to re-examine the trial solutions, and to find a
more accurate set than those given in (h1). Since the machine calculae-
tion showed good agreement with the predicted u function in (41), it is
reasonable to retain that function and look for a more accurate ¢ func-

tion. To do this, we substitute
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uJ = ccpo sin wt sin Jo

<PJ =@, cos wt cos Jo + q

J

into (39), and look for a solution for q The resulting equation to be

J.

solved is

cos wt cos Jo

2 2
dq! ﬁdqj wp 8t
2

+ -
dt a t2 2

co

0
TS (qj+1 = qj-1) sin wt sin jo

cq>2

+ S_xo sin wt cos wt sin2 jo sin o

We assume that an expansion can be made in powers of cpo

2 2
qJ-qaorcosJa+q>opsin Jo sin o

where .p and r are functions of time only, and are determined by solving

the equations

2
§R+8td—§=%—(~sinwt (r + cos wt)

Thus d.r/dt is of order &5t, as is also d2r/dt2. For consistency, we must

here drop terms of order 81:2; the resulting equation has the solution



2
It is the resulting sin wt term in the p equation which contributes to
the instability we are seeking. Discarding the oscillating terms, we

keep only that part which leads to the solution

P= T °

so that, finally (with = ¢ sin 0/5x),

&:pJ = @ cos jolcos wt + (DT& sin wt]

(45)

2
+ CI%(C 82) t sinzja sinea
L45x

plus oscillating terms of order Cpi.
This solution has Just the behavior necessary to explain the anoma-
lous growth of ¢ in every other cell which occurred in the test with
g = 1(/2. For the cell with J = 1, for example, this result predicts
2 2
Cpo c 6t

o = 0" (46)
1 h 8x2

This consistent growth of ¢ arises from a persistent coupling in the non-
linear term u aq>/ 0x, which became the second term on the right side of

(39). Had (39) been in conservative form, this difficulty would not

have arisen,

In the test problems we used ¢ = 1, dx = 1, For 8t = 0.5, the

n

machine calculations gave cpo 0.60 (theoretical cpo = 0,69); while for

&t = 0.2 the machine gave cpo

]

0.235 (theoretical ®, = 0.278). With the

observed cpo values, d&:p1 /dt was predicted to be, respectively, 0.045
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and 0.0028. Since the initial behavior of wl depends upon initial condi-
tions of the problem, it should be expected that this slope would be
reached only after an initial adjustment. Comparisons between the above
analysis and the machine calculations are shown in Figs. 4 and 5. Scatter
of the machine-calculated points is not followed by the results of analy-
sis because of neglect of oscillating terms in the latter, In both cases,
agreement of the slope prediction is excellent.

A modified procedure, analogous to that in (14%), was tried on the
computing machine to see if the amplitude of oscillations could be de-
creased. In each cycle, the new values of velocity were computed first,
and these new values were used in finding the new values of ¢, The re-
sult was a cut in amplitude by more than a factor of ten, and while the
every-other-cell instability in ¢ was still present, its rate of growth

was greatly reduced,
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Fig. 1: Theoretical (straight line) and observed(points) amplitudes

of y and z for various values of &t/a. In all cases a = 1
except that for which &t = 0.2 is explicitly marked.
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Fig. 2:
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Part of a late-time cycle of y and z showing their amplitude
and phase relationships.,
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Fig. 3: Early-time variation of E as observed (oscillating line) and as
predicted (shown by envelope of oscillations and mean thereof),
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Fig. 4: The value of 97 as a function of time for &t = 0.5. Points are
from machine calculation, solid line is from Eq. (46), dashed
line is that result transposed.



80

Fig. 5 The value of t:p1 as a function of time for &t = 0.2. Points are
from machine calculation, solid line is from Eq. (46), dashed
line is that result transposed.



