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ABSTRACT

The concealment of
ground cavities of a size

nuclear explosions by containing them within under-
sufficient to ensure the elastic behavior of the side

walls has been suggested. In the present report, a number of effects created
by the seismic signal radiated by an explosion in such a cavity are investi-
gated theoretically. The first chapter contains a re’sume’ of a standard calcu-
lation of the Rayleigh waves generated by a source of compressional waves
in a semi-infinite homogeneous elastic medium. The second chapter is con-
cerned with the stress concentration around a spherical cavity excised from
a homogeneous elastic medium acted on by an arbitrary body force. The
results are then specialized to the case of a uniform gravitational field with

vanishing lateral displacement. The third chapter considers the stress dis-
tribution around a prolate spheroidal cavity in a uniform gravitational field
with vanishing lateral displacement. The fourth chapter contains a discussion
of the plastic expansion of a spherical cavity in an infinite elastic medium.
Finally, the fifth chapter discusses the seismic waves generated by an air
burst.
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CHAPTER 1

RAYLEIGH WAVES GENERATED BY AN EXPLOSION IN A CAVITY
EXCISED FROM A HOMOGENEOUS ELASTIC HALF-SPACE

1.1 Introduction

Various aspects of wave propagation in a homogeneous elastic half-
1

space have been considered for many years. In the present treatment, the

seismic Rayleigh wave due to a blast contained within a spherical cavity

excised from a homogeneous elastic half-space is calculated. The results

are used to estimate the detectability of nuclear explosions confined within

such a cavity. Assuming that the cavity is of a size sufficient to ensure

the elastic behavior of the walls (and this is the essence of the proposal to

employ this means of containment), the theory of linear elasticity may be

applied. Furthermore, only the low frequency waves with periods in the

range from 10 to 50 sec are of interest. Since the corresponding wave-

lengths are much larger than the size of the cavity, the source may be

represented as a point source of appropriate strength. Although this sim-

plification reduces a large portion of the problem to a type which has been

analyzed extensively, the solution is presented here in full in order to ex-

hibit the method to be used in other similar but more complicated problems

contemplated for the future.

-7-



1.2 Mathematical Formulation of the Problem

It is required to solve the vector wave equation

P+= (A-1-2p)v(v*%i) -pvxvfi+a(F, t)

Ot

where
-iut

3(F, t) = VQfi6(;-;~)e = the source function for harmonic compres-

(1.1)

u

It is convenient to

shear components.

u
sional waves

z@, t) = elastic displacement

p = density of the elastic medium

A, y = Lam~ constants

decompose the displacement %(F, t) into compressional and

In the present problem having cylindrical symmetry, this

may be accomplished by introducing two scalar potentials q and ~ according

to the definition

E(F, t) = Vq - VXVA* (1.2)

where k is a unit vector along the vertical Z axis (see Fig. 1). Extracting
-iut

a sinusoidal time dependence e , and introducing the compressional and

shear phase velocities c L = (~+21J)/P md c; = ~/p,
L

and CT, respectively, by C2

one obtains two scalar wave equations of the form

&+<$O = -qoti@-Fo)

v2$+&= o

where k
L

‘u/C ,k ‘U/C and
LT T

Introducing longitudinal and

(1.3)

‘o=Qo/PC:

transverse Green’s functions G~ and Gm,
u J.

respectively, which have vanishing normal derivatives on the boundary z = O,

-8-
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Fig. 1 Coordinate system for Rayleigh wave calculation.
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Eqs. (1.3) may be converted into a pair of integral equations.

proves more convenient to deal with ~rp - i3p/ar rather than

the equations

are obtained by means of Green ~s theorem. The functions G
I

Since it

with p itself,

\

(1.4)

and G~ are

given by

G ( )1 eikL’TR+etiL’TR’ , R2 = ~r_r,)2+(z-z,)2
L,T ‘~ R RI 9

R,?2 = (r-r’ )2-!- (z+z’)2 (1.5)

The vanishing of normal and tangential stresses at the surface of the

elastic half-space gives rise to the boundary conditions

()asr asz

T .P =+= = o
zr

as

T = AWE+ 2+ = o
22

(1.6)

where, from Eq. (1.2)

s
_ ap a2$

r ar ‘azar
(1.7)

s _aw+ 24:a2#
z az % ~2

Incorporation of the lxmndary conditions into Eqs. (1.4) results in the follow-

ing pair of coupled integral equations.

-xo -



Since the problem possesses cylindrical symmetry about the Z axis, the

\ solution may be expressed in terms of Fourier-Bessel transforms. Hence,

introducing the integral representations

J~=#)+ ~(()) + ‘KdK@(K)J~Kr)e-igLz
image

o
0

~

-itTz

~ = ~~dK*(~)Jo(Kr)e
o

(1.9)

where q(o)+q(o) the potential for the source plus its image, is given by
image’

~(o) (o)
+ Pbwe = C&L(F/O,-h)

‘d+=+ 2,~;=k;-/(2, one can reduce Eqs. (1.8) to the following pair

of algebraic equations

(1.10)

Confining attention to the case A = p (Poisson~s ratio = 1/4) so that k2
T

= 3k:,

solving Eqs. (1.10) for @ and W and substituting the resulting expressions

into Eqs. (1.9), one finds

-11-



~=:~+~+:(”Kd.~o(Kr):i’L(z

J

co

qo ~ ‘i%z-i’Lh(k;-2K2)
$ =-—

47r
.dKJo(.r)e

F(K)

0

where

‘(K) ‘( ’:-’”2J+4K2’.’T

(1.11)

(1.12)

Employing the second of Eqs. (1.7), the vertical displacement at the surface

of the half-space z = O is found to be

1
w

qo ‘igLh ‘%2’2-’;)
sz(r, O) == .d.Jo(.r)e

F(K)

o

1.3 Determination of the Rayleigh Wave

(1.13)

The total displacement at any point in the solid more than a few wave-

leng& from the source can be thought of as being composed of two parts.

One of these, a disturbance which falls off exponentially with depth beneath

the surface, but only as r
-1/2

with radial distance away from the source,

is the Rayleigh surface wave. The other, the body wave, falls off in all

directions inversely with distance from the source. Hence, at large distances,

the disturbance at the surface will be due primarily to the surface wave.

Since this is the region of interest for seismic

due to the surface wave need be considered.

The above-mentioned decomposition of the

detection, only the disturbance

total displacement has a

natural mathematical counterpart when the integral in Eq. (1.13) is evaluated

by means of the Cauchy integral theorem. Such an evaluation in terms of an

-12-



equivalent integral in a complex K plane gives rise to two contributions, one

from a pole at K = 1.09kT and the other from two branch cuts. The contri-

bution from the pole corresponds to the surface wave, and the contribution

from the branch cuts corresponds to the body wave. Since

wave is being considered, the branch cuts will be ignored.

the Cauchy integral theorems then yields

%
sz(r, O) = 27ri~

/(H(l)o (m)e
‘i’Lhk%K2-k;)

tIF

only the surface

Application of

. JK=l.09k
T

(1.14)

Carrying out the indicated operations, employing the asymptotic representa-

tion for the Hankel function, and setting 1.09kT - ~, the propagation con-

stant for Rayleigh waves,

‘o
-0.84 h

3/2 e % e-i(ut*-n/4)
sz(r, O) = -0.1

3/2rl/2 u
CR

-i(@t*-T/4)
- qoA(u, r)e (1.15)

where t* - t - r/c
R

Eq. (1.15) represents

elastic half-space.

the Rayleigh surface wave due to a point source in an

1.4 Solution for Step-Function Pressure

A solution to the actual problem under consideration

constructed from the above result, namely, a step-function

to the inside of a spherical cavity.

The sinusoidal excitation of the cavity

the result for a step-function excitation will

-13-
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in the vicinity of the cavity the motion should be radial, one may assume a

spherically symmetric displacement potential and write

The radial displacement is then given by

(1.16)

(1.17)

On the surface of the spherical cavity of radius a,

8s(0) s(o)

4
‘% ikR

(7 = -P. = (A+2p)~ +2AT .— e (1.18)

R=a R=a R=a na3

The pressure p. is assumed to be related to the energy E of the gas by the

relation p. = E (y-l)/V.

an explosion throughout a

= (y -l)E

‘o &a3
3

Assuming a uniform

cavity of radius a

distribution of the energy of

(1.19)

Equating Eqs. (1.18) and (1.19), the equivalent source strength is found to be

% 3(7-l)E—=-
41r 16w

(1.20)

The step-function pressure applied to the cavity wall may be written in

terms of its Fourier spectrum according to the relations

(1.21)

-14-



Employing this same prescription to synthesize the displacement correspond-

ing to this source term,

J
w

-i(&A* -7r/4)
sz(r, O) = -Im ~(w)A(u, r)e

-a

From Eqs. (1.18) and (1.21)

P.

t(w) ‘—= -Q3 ?@)
Tu

m

Eq. (1.22) may now be written

3(7- l)E 1

I

-0.84 h

sz(r, O) = -
3/2 ~

duul/2e % d
()

sin ut* -~

207rpCR
o

(1.22)

(1.23)

(1.24)

In order to simulate the attenuation of higher frequencies, an attenuation

factor e-au is introduced into the integrand of Eq. (1.24). Performing the

integration .one finds

(T3-I

3(y - l)E ‘in Z-ztm p )
sz(r, O) =

3’2~ (a+ a)4ofip CR
3/2

(?
l+p

2 /4
(1.25)

where p - t*/(a+ a) with a s O.84h#cR. Frequency components with periods
-1

shorter than 10 sec will be attenuated by at least e with respect to those

of zero frequency by setting a = 10/27r= 1.59 sec. Assuming a burial depth

h = 1 km and employing the value CR = 3.2 km/see, one finds a = 0.26 sec.

The shape &the wave predicted by Eq. (1.25) is shown in Fig. 2. The

maximum value of the time dependent term sin
:-:tin-1pY(l+p2)”4 ‘s ‘een(

from Fig. 2 to be approfi~tely 0.9. Employing the values y = 1.2, p = 20 kb,

the maximum value of sz(r, O) is found to be

-15-
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sz(r, O)
= 1“1 &

(1.26)

max

where II is in M, r in km and Sz in microns. This result predicts a msxi-

mum displacement of 0.35 micron at a distance of 1000 km from a 10 kt

explosion.

From Fig. 2 it is seen that the main disturbance is a single pulse.

The predominant period of this pulse is obtained by finding the maximum in

the spectrum function u
1/2e-0 .84uh/cR

of Eq. (1.24). Setting h = 1 km and

CR
= 3.2 km/see, one finds

T = 3.5 sec

Although displacement amplitudes predicted on the basis of the present

simple theory are not unreasonable, an essential feature of seismograms is

noticeably absent, namely, a periodic

wavelengths.

One caq of course, look at the

above result by integrating Eq. (1.22)

disturbance containing a number of

amplitudes per unit frequent y in the

over a small frequency interval Au

about a central frequency U.. Employing the complex counterpart of Eq. (1.22),

J

coo+@/2

d@(ti)A(uo, r)e
-i(ut*-7r/4)

sz(r, O) =

‘o
-AoJ/2

3/2
3(7 - l)EuO

()

& sinTAu/2 e ‘i(WOtl-m/4) ‘0084uOh/cR=
3/2 U.

e (1.27)
4olrpG OR

rAu/2

The displacement per unit frequency is

sz(r, O)
= 3(Y - l)E

Go -0.84hu /c

Av pGe 0 ‘k?i:7i2)e_iuot1-”’4
R

-17-
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where

t. = t - r/cm
J.

T=

With U = du/dk,

in Eq. (1.28) is

n

t-r/U

the group velocity. The maximum value of the expression

obtained for 7 = O. Again setting -y= 1.2 and p = 20 kb and

considering waves of 20 sec period,

Sz (max)

AU
- 37A

Tr

1
(1.29)

where s- is in microns, E in M and r in km. For a 10 M explosion at
a

1000 lun and a bandwidth AU = v/10 = 5 X 10-3/see,

sz(max) = 58 millimicrons

Such an amplitude is detectable with present-day seismographs,

known noise levels.

(1.30)

but is below

It should be emphasized that this last calculation is particularly ele-

mentary. In particular, the frequency dependence indicates an increase with

increasing frequency, while in the 20 sec range, the opposite is known to be

true. A phenomenological attenuation coefficient could be introduced to simu-

late this effect, but the approximate nature of the calculation does not seem

to warrant it.

-18-



CHAPTER 2

THE STRESS DISTRIBUTION AROUND A SPHERICAL CAVITY

2.1 Introduction

In employing an

sidered essential that

underground cavity to confine

the walls behave elastically.

within the cavity must not be large enough to

walls to deform plastically. It is known that

compressive stress but little tensile stress.

cause

an explosion, it is con-

Therefore the pressure

cracks to open or the

rock can withstand considerable

Consequently the confinement

of the explosion will be due almost entirely to the lithostatic pressure hold-

ing the wall in compression and forming a ~lhoop stress.?! The actual con-

fining stress of a cavity at a depth h may be roughly equal to the lithostatic

pressure pgh but can depend to quite sn extent upon the inhomogeneities in

the stress field. In the present chapter, the stresses around a spherical

cavity excised from a region in which an arbitrary stress distribution is

initially present are calculated. It is shown that the effect of the initial

stress field may be enough to cause the hoop stress acting on the cavity
3

wall to vanish or even become tensile.

2.2 Solution for an Arbitrary Stress Distribution

Ass~ing that prior to construction of the cavity the material is in a

‘hte ‘f ‘tress (ax’uY’uJ ‘m correspond% (’x’’Y’’z)’ ‘e ‘splacement

-19-



‘0) defined bypotential @

q$o)=$[xx2+../zz2)2)

may be introduced. Upon construction of the

will establish itself such that the normal and

on the cavity wall will vanish. This may be

(2.1)

cavity, a new stress system

tangential components of stress

viewed mathematically as the

addition of stresses compatible with the equations of elasticity which cancel

at the cavity wall the stresses obtained from Eq. (2.1).

Such additional stresses are obtained from appropriate solutions of the

basic equation of static elasticity.

(A+g)v(v”a)+jN2; = o (2.2)

Expressing Eq. (2.1) in terms of a spherical coordinate system with origin

at the center of the cavity, and with polar angle measured from the Z axts

as usual,

$0) 2 2 f

= aoor ‘r y (O$P)m=o a2m 2m
(2.3)

where Y Zm are the even spherical harmonics ~(cos6)cosmq. For con-

venience this will be considered as the real part of P~(cosO)e
imq

. The

a ?s are given by

%*Z
aOO= 6

1

()a20 = ~ ‘z+%

a21 = 0

1

()
a22=~ Ux-uy

(2.4)

-20-



( )where 3p = - ax+ Uy+oz
4

From the gradient of @
(o)

one may obtain the components of the displacement

vector =(0)

(0) = f@oor + 2r2a2my2ms
r

(o)
aY2m

‘0 = rZa
2m M?

s(0) r
=—Zma

v sine 2my2m

In spherical coordinates

the displacement by

asr

u = Av “F+2A~
r,

(2 .5)

the relevant stresses are given in terms of

(asr 8s0
T P
rd ‘– —-se+rxr W )

- 2p(?+sr)
a. = AV”S+F

(2.6)

From the first two of Eqs. (2.6) one may obtain the normal and tangential

components of stress on the cavity wall. Solutions of Eq. (2.2) are now

required to cancel these stresses.

The solution of Eq. (2.2) may be expressed in terms of three scalar

harmonic functions4 ~, x and u as follows:

t)n = V*n+ Vx arxn + r2Vun+ anrun3
(2.7)

-21-



where n is an index speci&ing the positive or negative power of r ti the

given harmonic function and

IA+ (3n+l)p
CY=

n ‘2 (n+3)A+ (n+5)p

Since solutions are required which van.lsh at

cavity, the index n is confined to negative integral

(2.8)

large distances from the

values. Also, the purely

shear solutions xn may be neglected. Therefore, the only admissible solu-

tions are

~ = ~-1+ ~-3= AOO:+&A2mY2m

r3

(2.9)

u=(l)
-3

= L ZB2mY2m
r3

(2.10)

These solutions give rise to corresponding displacements of the form

s(l)
A

(

aY2m

= v~ = -:~r+%A2m
im

r4
-3ErY2m +56 86 -5 —

)
p sinO ‘2m

(2.11)

S(2) . r2V~
-3

+ a_3rw
-3

[J( )
aY2m

~XB2m~ a-3 -3 Y2m+~o 86
im= -z —

cp sin6 ‘2m 1 (2.12)
r

From the boundary conditions ar = ~r~ = O in the surface r = a plus the fact

that the spherical harmonics are linearly independent, one obtains the follow-

ing set of three equations for the unknown amplitudes Aoo, A2m and B2m:

-22-



4pA00

O = (6A+ 4fl)aoo +~
a

O = 4pa2m +y,m->~~++xs)]

a4A2m+(a-3-6*O=2aa2m - E

The boundary T =Oonr
r~

= a leads to the

Eqs. (2.13) and may therefore be ignored.

Equations (2.13) yield the amplitudes

3

A=
a aoo

00
- ~ (3A+ 2/l)

6a5a2m(7t+p)

A
2m = 9A+ 14p

(2.13)

same condition as the third of

From Eq. (2.8), a-3 = (3A+ 8p)/p

(2.14)

3

B
loa %JmP

2m = 9A+ 14p

Calculating the hoop stress CO from the third of Eqs. (2.6) and introducing

the amplitudes given in Eqs. (2.14),

= 3aOo(3A + 2P)+
3op(A + 2p)

( )

WJ(A+P)Z a
‘t) 9A+ 14p

+ 6a
a20 22 - 9A+ 14p 2my2m

Also, since ur+a~+ a = (3A+ 2p)V*~ and or = O at r = a,
P

30#(A + ,p)
G

( )

60Ap ~ a
= 3aoo(3~ + 2~) - 9A+ 14w

P a20
+ 6a

22 -9A+ 14p 2my2m

(2.15)

(2.16)

Inserting the values of aoo and a,, from Eqs. (2.4) and introducing explicit

forms for the spherical harmonics,

-23-



‘e ‘-w%H’3P)(?c+”z+”x-”Y )-’’(*)[$,+”Z)(3CO)’’-’)
()+C--CT sin’tl cos2@ 1 (2.17)

x Y

‘P‘-;PZ-:(::2J(’Y+UZ+”X-”Y
)-:(,A;l*)[(PJ+uz)~ cos2e-1)

[)
+ ax - Uy sin20 cos2@ 1 (2.18)

For the case of azimuthal symmetry,

(2.19)

(2.20)

Finally, at the poles of the cavity, O = O,n and COS20= 1. In this instance

‘ H(W+A+P)=0 =-—ae p 2 ‘A?- 9A+ 14jt

2.3 Snecific Stress Distributions

(2.21)

Until now the initial stress system has remained unspecified. Some

specific examples will now be considered. First, for the case of a uniform

gravitational field with vanishing lateral displacement (i.e., az = -pgh, cx - e = O),
Y

one finds the following set of stresses

z = (A+ ’p)ez = -pghrJ

A Apgh
0- ‘CT .~~z=_ -—
x Y A+ ’p=z= A+2p

(2.22)

The pressure is given by
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[

!Z=-HIIZ+2%)=-3WLUZ’ ‘;”z’‘=’
-;CZ, A = ‘p

(2.23)

Hence, the magnitude of the pressure is somewhat less than az. Equation

(2.19) now becomes

‘Opaz
- -~p +

[ 1%+@-3(A+/J) COS26aO– 2 ~ (9X+14p)(A+2p) 2

For the two cases A = p and A = 2~,

‘0—= -1.85(1-0.94 COS26), A = p
pgh

‘e—= -1.78(1 -0.79 COS26), ~ = ‘p
pgh

At the top and bottom of the cavity, COS20= 1 and one obtains

( -0.11, A =p

‘e—=
pgh {

I -0.38, A = 2/t

(2.24)

(2.25)

(2.26)

It is clear from this result that the hoop stress may be only a few tenths

of the lithostatic pressure. Since the cavity will split at its weakest point,

it is this lowest value of the hoop stress which is relevant.

As a second illustration, it is shown that it is possible to find a rea-

sonable stress field for which the hoop stress vanishes. Equation (2.19)

takes the following forms for A = p and A = 2p.

‘e ( )[~p+a 13-4P2 (coSe) , A = #= ‘~P~+ 23 ~ z ‘ (2.27)
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‘0=-~p +E
( )[2 ~ 16 ‘~+uZ 11-3P2 Cose) , A = 2p (2.28)

‘here ?l=-%+20.) ‘tiiw ‘=O ‘d ‘eq”iriw a~=o ““S

{

(7/i7 = 0.28, A=p
Xz

‘0
= O for

d
Uc = 0.33, A = 2p

z

(2.29)

For smaller ratios, the poles would actually be in tension.

Since such ratios are not unreasonable, it is clear that extreme care

would have to be exercised in determining the stress field in the region

where the cavity were to be constructed.

To determine the importance of anisotropy in such considerations,

Eqs. (2.17) and (2.18) may be evaluated at O= O. The result is:

(2.30)

() 3
a 0° = -—p, -

15 [ PY+aJ+@+2%-aY)l2J 2(9h+ 14~) ‘3A + 2P
(2.31)

P

From this result it follows that either a. or a will be increased by any
P

asymmetry about the Z axis.
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CHAPTER 3

THE STRESS DISTRIBUTION AROUIND A PROLATE SPHEROIDAL CAVITY

3.1 Introduction

The analysis contained in the preceding chapter has given some indicat-

ion of the dependence of the hoop stress upon the stress field initially pres-

ent in the medium from which the cavity is excised. It is also desirable to

have some understanding of the dependence of the hoop stress upon the shape

of the cavity itself. The simplest nonspherical shape which admits of ana-

lytical treatment is the spheroidal cavity. Even this case results in con-

siderable analytic complexity, and, as a result, attention has been confined

to the case of a uniform gravitational field with vanishing lateral displace-

ment.

setting

notions

The result for an isotropic pressure field is obtained as before by

Poisson’s ratio equal to 1/2. On the basis of well-known intuitive

of the stability of such cavities (e g., the need for supporting mining

tunnels), the shape is assumed to be that of a prolate spheroid with the major

axis directed vertically (see Fig. 3). On the whole, the results bear out the

intuitive notion that stresses are increased at points where the curvature of

the bounding surface is increased. Comparing the results for the spheroidal

cavity with those for the spherical cavity, it is found that the spheroidal

shape results in a slightly larger compressive stress at the top and bottom

of the cavity and less compressive stress at the sides of the cavity.

●
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R

Fig. 3 Coordinate system for prolate spheroidal cavity.
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3.2 Mathematical Formulation of the Problem

Since the vector equation for the static displacement of an elastic solid

is not separable in prolate spheroidal coordinates, a somewhat more general

technique than that employed in Chapter 2 is required.5 The approach to be

used here is to write a solution for the displacement in rectangular coordi-

nates and then transform this expression to prolate spheroidal coordinates

to calculate the stresses.

The transformation equations are

x=; J(,2-1)(1-,2)cos7 =:smasi@cosy

Y=~/%siny =~sinh.sinl?siny (3.1)

where a is the interfocal distance, and the prolate spheroidal surfaces are

given by $ = cosha = constant. The equation to be solved is again Eq. (2.2)

of the preceding chapter, which may also be written in the form

(A+ 2p)v(vzi) -pvxvxE = o (3.2)

The solution is written in terms of the three scalar harmonic functions @,

Oand Xas

;=vf++vih+ zvy-(3-4CJ)x (3.3)

where ~ is a unit vector along the vertical Z axis and u is Pois son!s ratio

given by a = x/2(A+p). The purely shear solution O may again be discarded.

The procedure followed now is to decompose the displacement given by Eq.

(3.3) into the prolate spheroidal coordinates (a, J?,y), calculate the stresses

T Tcm!’C@ and ‘m
and then express these results in the (~, q, y) system. The

slight computational advsntage in this mixed approach is that two of the
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metric coefficients are identical in the (a, ~, y) system while this is not the

case in the (6, q, y) system (see Appendix A).

As in Chapter 2 it is assumed that the initial stress field is derivable

from the scalar potential

$“)=%X2+’YY2+’.22) (3.4)

The form of this potential in terms of the eigenfunctions for prolate sphe-

roidal coordinates is readily found to be

[ 1[ 1$0)=A P2(~) + P2(q) + B P2(~)P2(q)] + C[+)+?) cos%’+const

where

2
-%7”;

‘–36

a2

(B=— 2CTZ-CTX-CT
72/J Y)

2

c=~ ()72P ‘X-‘y

and the P; are the usual Legendre

Decomposing the displacement

z= ~ ~ ~, the strains are given by (see Appendix A)F +5 +=

functions of the first kind.

in the (a, & -y) system so that

(3.5)

(3.6)

(3.7)

-30-



where h2 - (f2-n2)-1, F2 = $2-1, i2 = l-n2. Since the only case to be

considered possesses azimuthal symmetry, the y dependence may be ignored

throughout.

The relevant tensor components of the generalized Hooke !s law are

given by6

‘w =‘v”=+‘%

It is now necessary to find

calculated from the displacement

face of the cavity those stresses

(3.8)

potentials @ and x such that the stresses

in Eq. (3.3) will exactly cancel at the sur-

obtained from the potential @
(o)

of Eq. (3.4).

From Eq. (3.3) it is seen that the displacements are of two types, those

derivable from a scalar potential @ in the ordinary way and those derived

from the scalar x functions.

For the @ potential, the stresses are found from Eqs. (3.3), (3.7) and

(3.8) to be

(3.9)

where the subscripts $ and q refer to partial differentiation with respect to

these variables.

A similar calculation for the x function shows that the stresses are

given by
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The stresses on the surface of the cavity due to the initial stress dis-

tribution are found by substituting Eq. (3.4) into Eqs. (3.9). For the case
-(o)

in which C = O (sximuthal symmetry), and noting that V w
2 (o)

=v@ = 36 A/a2

one finds

It is now necessary to find those

dependence around the surface of

appropriate linear combination of

(3.11)

functions @ and x which have the same q

the cavity and then to add together the

these solutions in order to cancel out the

stresses ,(0) and ~~~ at the cavity surface. Perhaps the easiest way to
0!0!

determine the proper functions is to calctiate the stress T from the third
@

of Eqs. (3.9) and (3.10). According to the third of Eqs. (3.11), only those

solutions having the dependence qij are admissible. The only solutions hav-

ing such dependence are found to be

@o= Po(q)Qo(~)

@2= P2(q)Q2(~)

xl= P1(TOQ1(H

(3.12)
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where the

The

Eqs. (3.9)

Qq(~) are the Legendre

stresses resulting from

and (3.10) to be

functions of the second kind.

these three functions are found from

@o Solution

@2 Solution

(3.13)

(3.14)

[

( 2-4)= ~ 3QO(2 - 3&2)+3* ~j

[

+h2 ~Q ~2~2+t(3t2-l)k ‘3.j2) +2&h4T@a
a2 t

o
E2 .‘}
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X1 Solution

[

t

[ J= 2 -24(1 - 20) ~2T -—+2Q0 ~2(1-2CT)-(1-CT)
cm a

[(+h2 (1 -W) -2Qoc$2j2+ 243- [3)+$

t,

‘@=~’+1-2”)FQo-2-3(3.15)

{ [

‘P 2 2a-l)(~Q, )
‘pf?=z *(

-1 -2aQo+h2 2~2~2Qo(l- 2@+~(3-2u)

1}+2&3(2u-1) -~3h4

For a uniform field with no lateral displacement (the case considered in

Chapter 2) the constants of Eqs. (3.6) are

2

A=;=- ‘gLa
36(A-I-2y) ‘ C=o

and the initial field is

$=-k-E’2)-i32’2h2

(3.16)

(3.17)

It is now necessary to form a linear superposition of the stresses

T and r
0!0! cYp

given in Eqs. (3.13), (3.14), (3.15) and (3.17) in order to satisfy

the boundary condition of vanishing normal snd tangential stress on the surface
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of the cavity. Rather than attempt to carry this through in general, a series

of numerical calculations were performed7 for various values of & p and &.

These results are shown in Fig. 4 and are discussed below.

3.3 Discussion of Numerical Results

Figure 4 shows in graphical form the results of the numerical deter-

mination of the hoop stress at the top (?I = 1) and side (q = O) of the cavity

for various values of cavity eccentricity. More specifically, the ratio of

hoop stress to lithostatic pressure, 7

minor to major axis.

~~pgL, is plotted vs s, the ratio of

The values for s = 1 agree with the results for the

spherical cavity considered in the previous chapter. The results for a = 1/2

correspond to the solution for an isotropic pressure field. The slight dif -

ference in the results for a = 1/3 and a = 1/4, the region of values applicable

to earth, shows that the calculation is quite insensitive to variation of the

elastic parameters. The results are in agreement with the intuitive notion

of stress cone entration being increased by increasing curvature. In the

present case the ellipsoidal cavity shape tends to equalize the hoop stress

around the cavity surface at the initial field value pgL and thus makes less

likely a splitting of the cavity walls when a pressure is introduced within

the cavity.
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CHAPTER 4

THE PLASTIC EXPANSION OF A SPHERICAL CAVITY

4.1 Introduction

In cases where

pansion, the problem

the cavity is not large enough to ensure elastic ex-

is, of course, extremely complicated. For cavities

not too much smaller than that required for purely elastic deformation,

there appears a region of plastic flow bounded by a spherical surface be-

yond which the expansion is still elastic. For still smaller initial cavity

radii, the temperature of the gas will be high enough to cause melting and

vaporization of the cavity wall. An attempt to follow this process by a

machine computation has been made by Nuckolls.8 The discussion in the

present chapter is far less ambitious and merely summarizes the calcula-

tion of the plastic expansion of a spherical cavity and applies the results

to the problem in question. When numerical values for the parameters in-

volved are substituted into the results, one finds a remarkable agreement

with the published data on the expansion of the cavity formed in the Rainier
9

event. Determination of whether or not this is merely fortuitous must

await the publication of similar

4.2 Mathematical Formulation

When the pressure within

data on other underground events.

the cavity is larger than that allowed for a
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I

purely elastic expansion of the cavity wall, a zone of plastic expansion is

formed. It has been found that this phenomenon can be discussed fairly well
10

in terms of the theory of plasticity, in which it is postulated that when the

difference between any two of the principal stresses reaches a certain criti-

cal value (the yield stress of the material), the material no longer presents

any resistance and flows like a perfect fluid. This flow persists out to a

distance at which the difference in principal stresses has decreased to reach

the yield stress. Beyond this distance the displacement is again elastic.

Since the region of elastic expansion is the easiest to treat, it will be dis-

cussed first.

4.2a Elastic Region

Consider the case of a spherical shell of elastic material as shown in

Fig. 5. In the final result the outer radius b will be allowed to tend to in-

finity while the external pressure PI remains constant. This will result in

an isotropic stress distribution at large distances from the cavity. Assuming

that the pressure PO within the cavity is small enough to ensure only elastic

expansion, a solution to the equation for the static displacement of an elastic

solid

(A+#)v(v*E) -#v2F = o

is again required. Decomposing the displacement ~

32 = r2Vu + onxo,

(4.1)

according to

v2p = V2U = o

as in Chapter 2, one finds that the appropriate displacement potentials are



I
\

\\ ,/
-.

—.- 0

Fig. 5 Plastic region within a spherical elastic shell.
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Hence,

(4.2)

One also finds

V“% = 3B

The stresses are given by

8s
r = Av”z+’p$ =a (3A+ 2/4B+4@

r3

(4 .3)

The boundary conditions are

t7= -Pls r=b
r

In order to satisfy these boundary conditions it is found that the constants

A and B must have the values

A_ (po-pl)b3B (po-plb3/a3)
-4p(l -b3/a3)’ = - (3A+ 2p)(l -b3/a3)

Noting that the La.me’constants A and p are related to

E and Poisson?s ratio a by

(3A+ ‘p) = E/(1 - 2a), ‘p= E/(l+oj

the radial displacement takes the form

(4.4)

the Young’s modulus
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pl(l - 2Cq (P. -Pl )

[

3

1(1+~)~+2(1-2a)rs =-
E

r+
r

(4.5)
2E (b3/a3 - 1) r

Since the pressure pl is to be thought of as being turned on before the

pressure PO is introduced into the cavity, the displacement of interest is

the additional displacement proportional to pO, or

‘o

[

b3
Sr = 1 (4.6)(l+a)~+2(l-2u)r

2E(b3/a3 -1) r

The stresses become

()P. -PI b3
CT= -pl - a s —-1

r
b la -1 r3

()

p. ‘Pl b3

‘e = -P1+ b3,a3 - ~ 2y3 + 1

In the limit b --00 the displacement and stresses are

s =
r

a=
r

o-=
e

‘o 3
fi(l+cr)~

r

‘Pl -(PO - P1)a3/r3

-P1 ‘(PO -%)a3’2r3

At the surface of the cavity (r = a) one finds

a=
r -P.

1

(ae=lipo - 3p1
)

(4.7)

(4.8)

(4.9)

(4.10)

and the well-known condition for the vanishing of the hoop stress
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p. = 3p
1

is obtained.

4 .2b Plastic Region

Employing the yield

that in the elastic region

(4.11)

condition u ~ - crr = Y, and noting from Eqs. (4.10)

the

‘e-ar ()
=: PO-PI

internal pressure necessary

‘o= pl+:Y

(4.12)

to produce plastic yielding is

(4.13)

Comparing Eqs. (4.11) and (4.13), one finds that if PI > ~Y, there will
1* 10

be plastic flow before fracture. For salt’ A and tuff~” both with a density

-2 gm/cm3 and yield stress -108 dynes/cm2, one finds that there will be

plastic yielding before fracture at burial depths greater than about 200 meters.

Turning now to a more detailed snalysis of the plastic expansion of a

spherical cavity, the yield condition

-o- ‘Y
‘6 r

(4.14)

where Y is the yield stress of the material is employed. At the elastic-

plastic interface r = p (see Fig. 5) one can employ the elastic expressions

for Ur, CO and S except that the constant internal pressure p. is replaced
r’

by some effective pressure p? . This effective pressure can be expressed in

terms of Y by introducing Eqs. (4.9) into Eq. (4.14). There results

(4.15)
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Hence,

3
pl . 2Ly

%+3 3
a

(4.16)

Inserting this result into Eqs. (4.9),

(4.17)

1 p3
(70 = -pl+~Y—

r3

From Eq. (4.8), the displacement is seen to be,

(4.18)

where again the initial displacement due to the pressure p~ has been sub-

tracted. For use at a later point, the derivative

(4.19)

is also recorded.

In obtaining the displacements in the plastic region, the Prandtl-Reuss

flow equations which relate the rate of change of the strain tensor to the

rate of change of the stress tensor are assumed to hold. The Prandtl-Reuss

equations are
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(4.20)

Adding Eqs. (4.20)

It

etc., as

i +2i &(l-2 a):
r

has been found convenient

(4.21)

to regard the total time derivatives, ;_,

derivatives with respect to a function which increases monotonic;ly

with time, particularly with respect to the radius of the elastic-plastic inter-

face r=p. Hence, considering all stresses and strains to be functions of r

and p,

d~r a~r a~rdr ac a~

;r(r,p)=— =— ——=
+ 8P

—r+il —r
‘ardp ap r ar

Also,

dsr asr asr
A =—=—
r @ ap ‘Ar=

so that

asr/ap

i=
r 1 -asr/ar

Now, from the definition of ?7,

(4.22)

(4.23)

(4.24)

(4.25)
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The stresses in the plastic region are obtained from the equilibrium equation

‘or +2 (ar-aO)
F ‘=

o (4.26)
r

Setting a~ - ar = Y and integrating,

ar = 2Y lnr+ Const (4.27)

Since the stresses at r = p are just small enough for the elastic equations

(4.15) to be applicable, the constant of integration is readily evaluated, and

the radial stress at all points within the plastic region is given by

war=-p1+2Y ~ -#
P

From this expression one obtains

(4.28)

the important result that the internal pres-

sure p
o

required to produce a plastic zone to a radius p is

-2Y1
<)

~ +;Y
‘o = ‘1 P

(4.29)

Also, from the yield condition,

r2

‘o 4)=Y-p1+2Y –-3Y
P

The derivatives of ar and aO with respect to p may now calculated and one

finds from Eq. (4.29),

From Eq. (4.21)

as i ()
.

6Y(1 -2u) 1 + ‘r
~r+2:= -—

E P F

(4.30)

(4.31)

-45-



This first-order linear differential equation is readily solved to first order

in Y/E. Since this ratio is of the order of 10
-2

for both salt and tuff, it

seems quite reasonable to assume that higher order terms may be neglected.

At the elastic-plastic interface &r is given by Eq. (419). This allows

determination of the integration constant arising in the solution of Eq. (4.31).

The solution to first order in Y/E is

ds

[

2
y 3(1 -&T-2(1 -2a);k = ~=—

rdp E
r 1 (4.32)

The motion of the inner surface of the cavity may be followed by setting

s =a-a o, where a. is the initial cavity radius and a the radius at any
r

later time. Since one may only obtain a‘ solution to the first order 5n Y/E,

the right-hand side of Eq, (4.32) may be rewritten with r = aO so that the

differential equation to be solved is

da=Y
dp ii

2 a.
3(1-(7)% -2(1 -2@~

a. 1
(4.33)

This differential equation for a is solved subject to the ‘~initial!l con-

dition that when the plastic zone is about to form, the displacement of the

inner cavity wall is still given by Eq. (4.18) for elastic deformation, hence,

o ~E(l+@aoP=ao, a=a+l X

Equation (4.33) may be integrated

given by Eq. (4.34) one obtains

(4.34)

immediately. Using the condition

a
3

_=l+(l-&

,()]

-2; (l-2a)hl~ ++

a.
a.

a.
(4.35)
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Considering the limit of small initial cavity radius (aO ‘O)

;=3F
This relation, along with Eq. (4.29), which may be written

(Po-P1/2y)-l/3
Pe-=
a

(4.36)

(4.37)

are the results of interest.

4.3 Numerical Example

It could hardly be expected that the highly idealized calculation out-

lined previously could be of use in a detailed study of the plastic expansion

of a cavity. Furthermore, the exponential dependence of Eq. (4.37) leads

one to expect that this re suit is not insensitive to a more refined treatment

of the problem. The purpose of this section is merely to show that, with

the help of recently published values for the parameters characterizing tuff,
12

an agreement does in fact exist between the energy released in the Rainier

event and the resulting plastic deformation.

Solving Eq. (4.37) for the internal pressure:

(4.38)

From Ref. 9, for the Rainier event, p/a = 130/55 = 2.3, and since the

burial depth was 790 ft, pl = 47 bars. From Appendix B the yield stress is

seen to depend upon overburden. Assuming a linear relationship, Y = 265 bars

for an overburden of 47 bars. Inserting these results in Eq. (4.38),

‘o
= 715 bars.

Assuming that the energy is spread uniformly throughout a cavity of
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55 ft radius, and employing a y of 1.3,

()4ra3/3p0
E= =1.1 M

y-1
(4.39)

The radiochemistry yield for Rainier has been given as 1.7 M. The 35 per

cent of the energy unaccounted for in this result is quite close to the esti-

mated amount (32 per cent) of energy involved in vaporization and melting

of tuff.12

The parameters involved are not accurately enough known to justi& a

great deal of faith in the above results. Whether or not they can be used

as the basis of a phenomenological approach to the problem must await the

publication of data on other underground events.

It is also interesting to note that Eq. (4.36) predicts a ratio of final

cavity radius to radius of plastic zone of 0.25, whereas the experimentally

observed ratio is 0.44.
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CHAPTER 5

RAYLEIGH WAVES GENERATED BY AN AIR BURST OVER A
HOMOGENEOUS ELASTIC HALF-SPACE

5.1 Introduction

The present chapter is an attempt to resolve in a semiquantitative

fashion an apparent paradox in the Latter hole concept, namely, its predic-

tion of seismic wave amplitudes which are even less than those observed

from past air bursts. When it is recognized that the shock wave from a

typical air burst has a velocity parallel to the earth which is comparable

to the velocity of seismic surface waves , it is clear that considerable energy

may be fed into the earth as a result of resonance effects. It is the pur-

pose of this chapter to investigate this possibility in terms of a somewhat

simplified model.

As in the study of the surface waves generated by an explosion in an

underground cavity, the idealization of a homogeneous elastic half-space has

been made the basis of the calculation. After employing data from past test

operations to construct a suitable analytic expression for the pressure dis-

tribution on the surface of the half-space, the result is readily obtained as

a particular case of the gene ml formulation developed in Chapter 1 for solv -

ing the problem of an explosion in a cavity.

It is found that the present calculation does predict a surface wave
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which is larger in amplitude than that obtained from an explosion of the

same energy in an underground cavity. The actual magnitude of the differ-

ence depends upon the value of the attenuation factor used to eliminate high

frequencies. The resonance effect is clearly exhibited in the results of the

analysis.

5.2 Mathematical Formulation

It has been found that a fairly reasonable fit to experimental data
13

(see Fig.

where

The

doubtedly

motivated

6) may be obtained by using the expression

‘(r’t)=10F+~(J/h)212’(:-]
(5 .1)

p(r, t) = pressure

10= impulse at ground zero

h = height of burst

c = shock velocity

shock velocity has been assumed constant (see Fig. 7). This un-

represents the severest idealization in the calculation but was

by the same requirements which led to the choice of Eq. (5.1),

namely, tractability of the integrations required in later phases of the cal-

culation.

The frequency spectrum of the disturbance given by Eq. (5.1) is

r‘=0

.

j$(r, u) - dtelwtp(r,

~-ce

~ eiur/c

‘)=F::@h’212
(5.2)

Introducing similar spectrum functions for the displacement and stresses
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of Chapter 1, these functions must satisfy boundary

Eqs. (1.6), which are:

conditions similar to

~~z(r, z, w)
A
Tzz(r, u) = AV”2+ 2p

82
= -~(r, u)

2=()

(5.3)

The displacements can again be written in terms of

tials having frequency spectra ~(r, z, u) and $(r, z, Q) and

transforms given by

A

now be

rU3

i~ ~z
$(r, z, w) = KdKJo(Kr)@ (K, co)e

o

[

m
iLTz

$(r, z, w) = KdKJo(Kr)V(K, u)e

do

two scalar poten-

Fourier-Bessel

(5 .4)

pair of simultaneous algebraic equations for @(K, u) and lf(K, u) may

obtained by substituting Eqs. (5.4) into Eqs. (5.3). One finds,

where

rccl

F(K, U) = rdrJo (Kr)fi(r, w)
o

The specific form of F(K, u) will be considered subsequently.

solving Eqs. (5.5) for @ and * ~d le~ing ~ = P,

(5.6)
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(5.7)

(%-2’2)
@(/f, f.d) = dK$‘) @(K)

2i~L

W(K, u) = -F(K, w) —
/JF(K)

with F(K) again given by

‘2

()
F(K) = k; -2K + 4CLCTK2 (5.8)

Introducing these results into Eqs. (5.4) and then calculating the ver-

tical displacement from ti

one finds,

s relation

82$+k~(r,O, W)+—
Z=o az’ Z=o

ik’

J

co
tLi% ~)

#z(r, O,u) = ~ Kd/(Jo(/(r)
F(K)

o

As in Chapter 1, the Rayleigh wave contribution to

obtained by evaluating this

only the contribution from

gives

~z(r, O, u) = -$

integral in the complex

(5.9)

(5.10)

the displacement may be

plane and considering

the residue at the zero of F(K).

+Rm%
F? (’w +vRw%”)

This calculation

(5.11)

Introducing F1
(%) = -4”6’&3

and k: = 0.282:, one obtains
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Sz(r, O,u) = 1“14i%I})(kRr)~(%’~) (5.12)

P

Employing the asymptotic form of the Hankel function, the displacement

in the far field is given in the form

I
Ca

.
dUe-i(uT-7r/4)

“(r’ 0’ ‘) = *R
o

At this point it is convenient

Aeiur/c
#(r, u) =

0

22
2

a +r

“Gfi(~, u), T=t-r/c

to rewrite Eq. (5.2) in the form

(5.13)

(5.14)

where

A = 64h410

a2 = 8h2

The calculation of the Fourier-Bessel transform is carried out in Appendix

C, where it is shown that

()m#d =’:~:ce-us/c

[

%

1‘0(%) -ZC ‘J%a) (5.15)

where I ~) a is the Bessel function of imaginary argument.
n

Substituting this result into Eq. (5 .13) and again introducing the phenomenol-

-O!uogical attenuation factor e to eliminate the high frequencies,

I
w

0.23A
sz(r, o,T)= - ~Ue-i(u T-7r/4) e-(a/c+a)u ~3/2

pac GR

o pta-w%il

(5.16)
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It should be noted that without the term e-au, this integral does not con-

verge when c = c
R“

These integrations could be carried out in terms of

generalized hypergeometric functions of two variables and a graph of wave

shape similar to that in Fig. 2. Since the domain of convergence of such

expansions is not adequate to cover the range of 7 values of Merest and

since a consideration of analytic continuation of these solutions is most

likely unwarranted due to the approximate nature of the entire analysis, an

evaluation of Eq. (5.16) at the single point T = O was decided upon. On the

basis of the results of Chapter 1, one can infer that such a result will give

the corre’ct order of magnitude for the displacement. In this special case

the integrations result in well known functions
14

and one obtains

-0 23ei7r/4A CR
sz(r, o,T)

“ (J’~&[Q:l/2@)-:Q:/2@] (5.17)

7=0= pacSR

CR
where p - --(1 + at/a) and the functions &v are the associated Legendre

functions of the second kind.

5.3 Numerical Examde

From Fig. 7 it is seen that a shock velocity c = O.6 km/see has been

chosen from the experimental data. Since the burst height for the event

from which the data has been taken was approximately 500 ft, giving

a = 4.3 x 104 cm, one finds p = 17.1. In obtaining this result, the values

CR
= 3.2 km/see and a = 1.59 sec have again been used. Since the argument

of the associated Legendre functions is so large, one may employ the as-
15

ymptotic formula

epfifi r(~+p+ 1) z-v-l
<(z) =

Zv+l r(v+ 3/2)
(5.18)
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I

as a result one finds

Q:I/z(17.1) = 0.41

Q21,2(17.1) = 0.031

Taking the value of the impulse at ground zero to be 10 =9.5 psi-see one

finally obtains

sz(r, O,t)
l=o=~

(5.19)

where r is in km and Sz in microns. This result predicts a displacement

of 2.2 microns at 1000 km. According to Eq. (1.26) the maximum amplitude

for a similar explosion (15 M) in a cavity is O.5 micron.

As in Chapter 1, the results of the present calculation depend upon the

value chosen for the attenuation coefficient a. For the shock and Rayleigh

wave velocities used, this dependence is about the same in both cases. More

specifically, setting a =

by a factor of about 20,

increases the amplitude

O in the results of Chapter 1 increases the amplitude

and setting a = O in the result of the present chapter

by a factor of about 15.
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APPENDIX A

STRESS-STRAIN RELATIONS IN PROLATE SPHEROIDAL COORDINATES

The development of the equations of elasticity in prolate spheroidal

coordinates is outlined in this appendix. A fuller discussion of the formulas

for an arbitrary system of orthogonal coordinates may be found in Ref. 6.

For the sake of brevity, the rectangular and prolate spheroidal coordi-

nates are redefined as x = xl, y = X2, z = X3; a = Ul, p = U2, y = U3; g = VI,

q=v2, y=v3. Then, Eqs. (3.1) are of the form

x.=
1 ‘i(”l’u2’u3) = ‘i(vl’ ‘2’V3)’ i = 1’2’3

and one may obtain the metric coefficients g from the definition
ij

3 aXK axK

zg..= ‘—
lJ k=l aui auj

For the (a, ~, y) system, the nonvanishing coefficients are

(A-1)

(A-2)
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For the (~, q, y) system, the nonvanishing coefficients are

22
.% t -~2

gl~ = g(( 4 *2_1

22
.~t -V2

’22 = gqq 4
l-q2

a2 -2.2
g33=gw=~t n

The strains are given by

The generalized Hooke’s law is given by

‘T = Av”s6ij+2pE..
ij q

(A-3)

(A-4)

(A-5)

with

A la
‘( )

— ~ SK , g = g11g22g33
‘“s = ~ apK

Inserting the expressions for the metric coefficients given in Eqs. (A-2) and

noting that

(A-6)

the stresses become
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(A-7)

When the @ aud x functions from which = is obtained according to

Eq. (3.3) are substituted into Eqs. (A-7), Eqs. (3.9) and (3.10) result.
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APPENDIX B

ELASTIC PARAMETERS FOR SALT AND TUFF

Parameter Salt* Tuff* *

Natural State under
Natural State Hydrostatic Pressure of 1000 psi

Y (psi) 1500 0.18 X 106 0.37 x 106

E (psi) 0.14 x 106 1200 5.00

0- 0.5 0.11
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APPENDIX C

CALCULATION OF ‘THE TRANSFORM OF THE IMPULSE FUNCTION

From Eqs. (5.6) and (5.14)

/

0a

J.ddc

fi(/c,w) = A rdrJO(m) 2

0 ()

~2 + r2

: k‘(a)=.—

where

/

w
eiur/c

F(a) = rdrJo(Kr) ~

o
a +r

Decomposing the integrand into even and odd functions,

/

a

/

m

F(a) = ~
rdr
z z Jo(Kr) cos~r+i~

rdr
z Jo(fCr) SiII&

o
r +a

o
r2+a

= Fe(a)+ iFe(a)

The second of these integrals may be written

-62-

(C-1)

(C-2)

(C-3)



/[

03

Fe(a) = &i ‘dr2 H$)(m)e
i (u/c) r

2
+H$)(~r)ei(u/c)r

r +a-w

-i(~/c)r _ H~)(~r)e
- H!) (~r)e

-i(u/c)r

1

and the integration carried out by closing the contour in the appropriate half

plane. Since the only singularity in these four integrands is at the pole at

r = +ia, the integrals are readily evaluated by applying the residue theorem.

To obtain convergence for K < u/c, the upper half plane is used for the first

two integrals and the lower half plane for the latter two. The sitwtion is

reversed for K > u/c. One obtains

{

-us/c
~IO(Ka)e ,

Fe(a) =

o,

K < u/c

(c-4)

K > u/C

A similar calculation for F o(a), using only the first and fourth quadrants and

noting that the integration down the positive imaginary axis cancels with one

up the negative imaginary axis, yields

[

o, K < u/C

Fe(a) = (c-5)

cosh u ~ Ko(/ca) , K > @/c

Since the subsequent evaluation of the integrand in Eq. (5.10) requires only a

knowledge of F(K, u) in the vicinity of the singularity at K = kR which is less

than u/c, only the upper expression in Eq. (C-4) is really of any interest.

Inserting this result into Eq. (C-2) yields the result given in Eq. (5.15).
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