
LAMS-2360

~S ALAMOS SCIENTIFIC LABORATORY
OF THE UNIVERSITY OF CALIFORNIAo LOS ALAMOS NEWMEXICO

COORDINATE TRANSFORMATIONS

IN INTRANUCLEAR CASCADE STUDIES

FOR REFERENCE

NOT TO BE TAKEN FROM THIS ROOM
—

I U.MWWRmU

J—-

... .
-..—.—.—-. .—..- .&2& - --r --”,;~-— — ‘- ”-—---- —-x—.. . . . . ...?:..

F&===
.-w< . -- -! -~3—=”z---— —

. ..=.+.. . .. . , .. ----
.*C? “ . . -,

a---‘“ :.‘-”.fx..’..f ;.. ..” . . .., .’.. . . . . .

-?{ .,

:,, ~=~<+’. , :~.,--
‘-- 7-,.+-. -<”- ‘? ,}”

.
. . . ..,. .A~= .\ f.,. . .. .

--.7 ,..,, . ..

.
-“:s
*,.1- “.’

,-
%..-

.+~ ,,4, ,
,. . ..-
,. -..-=. i-- .._

... ,
,.. :,;-. =.:

., :.. ..>. . . .. . ....

T.--.–. . . . . . .

— -. .—



LEGAL NOTICE

This report was prepared as an account of Govern-
ment sponsored work. Neither the United States, nor the
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The spatial and Lorentz transformations employed in the treat-

ment of the collision of two relativistic particles are presented.

The form chosen is particularly suitable to numericaJ.calculation

and has been used in the intranuclear cascade studies made on

Wniac I and II.





INTRODUCTION

We consider the transformations involved in a collision

between two relativistic particles, labeled 1 and 2, giving rise

to two or more particles 3,J+,5,... Such transformations are of

interest in high energy nuclear phenomena and have been used in

recent calculations on intranuclear cascades,
(1)

Two types of collisions are distinguished (neglecting

polarization effects):

(i)

(ii)

elastic collisions; the incoming pair of particles

identical with the two outgoing particles.

inelastic collisions; either the incoming and the

outgoing pair are different, or there are more than

two emerging particles, i.e., particle production

has occurred in the collision.

The incoming particles 1 and 2 are moving in arbitrary

directions with respect to the laboratory system of coordinates

XYZ, whose origin is conveniently taken at the point of collision,

1. Monte Carlo Calculations on Intranuclear Cascades. Phys.
Rev. no. 185 (1958).
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Let al, ~2 be the relativistic momenta in

incoming particles with rest masses ml, m2 and

?$l,72. ~i (i = 1,2) is the momentum in units

XYZ of the two

relativistic energies

of mic; ‘)’iis the

relativistic energy in units of mic‘, where c is the velocity of

light. The configuration is shown in Fig. 1.

z

x
Fig. 1. Momentum vectors of two colliding particles in

the laboratory frame of reference XYZ.

The over-all objective is to find the Lorentz transformation,

‘2) (~1, 71) and (~, 72), andwhich operates on the two J-vectors

2. For definiteness, we regard all vectors as column vectors,
e.g., (!l~)71) = TIIx .

()

;%

l’~
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yields transformed vectors (T&, Ylc), (~+c~ 72C) in the center-

of-roasssystem of the two particles. The result of the collision

is to produce a new set of l-vectors (TIjc,Yjc) with J = 3~4~52●..;

the particular set depends on the nature of the collision. The new

vectors are then referred to the laboratory system XYZ by means of

a Lorentz transformation, which iS the inverse of the origin~ one.

Alternatively, one may first perform a series of rotations of

the original laboratory system XYZ in such a fashion as to simplify

the Lorentz transformation. As before, after the collision the

inverse Lorentz transformation (also much simpler) is applied; this

is followed by the series of inverse rotations that finally describe

the new vectors in XYZ. We choose to follow this alternative

proposal.

PRELIMINARY

Referring to Fig. 1, one may

the rotation of XYZ such that

(i) the new X-axis is along

ROTATIONS

describe the first objective as

~1,

(ii) the new Z-axis lies in the plane of %, q+.

Indeed it is convenient to regard this first rotation as composed

of two steps that accomplish (i) and (ii) in succession. In the

nuclear cascade studies, it turqs out that the azimuthsl orienta-

tion ofTl+ about the ~l-axis has a uniform distribution and leads

to a (computationally) simple rotation matrix for step (ii).
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Let CYllj~ ~2> ~13 be the direction cosines of 11 with respect

to the X-, Y-, Z-axes,respectively. There is a wide variety of

rotations possible to accomplish step (i). A relatively simple one

is the following: consider Al

latitude angles with respect to

A rotation about the polar axis

being oriented at some longitude and

the X-axis regarded as (0°, OO).

corresponding to the longitudinal

angle of ~1, followed by a rotation about a horizontal axis through

the latitudinal angle, effects step (i). Written explicitly, the

matrix is

[“- %2 au

R— =
1- %32 ‘1- %32

k-ulla13 ‘a12~13

1-%32
d

1-%32

If ~1 represents the msgn.itudeof ~1, then

as expected.

Step (ii) is a simple rotation about

new X-axis, through an angle called 4,

lies in the plane(3) Ofm,’m—1 -2”
In the

(1)

‘—> o

110
(2)

& the direction of the

such that the Z-axis now

intranuclear cascade

3. For ease in keeping track of signs, the choice of the two
possible vslues of @ is such that the Z component (in the new
system) of 12 is non-negative. The range of @ is thus O-+2n.
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studies, # is a random variable uniformlydistributed in the in-

tervsL O-+2n. (In general, if ~+ is some prescribed vector, then

4 would be calculated from the direction cosines of Ql, ~+.)

Hence the appropriate rotation matrix is

.E(: ::A::) (3,

If XIYIZl denote the new coordinate system, the orientation

of yl and T12is as shown in Fig. 2. If p is the cosine of the

z,

Fig. 2. The rotated frame of reference, showing the Xl Z1
plane, which contains both~l and%”
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enclosed angle between l’l’l,a%’
then the components in XlylZl m~

be written

l=[;] %=[:’] ‘4)

Since the transformations are pure rotations, ?l, Y2 remain un-

altered. It is thus seen that the components of the incoming

momenta have a relatively simple form in the new coordinate system;

they represent the starting point in the nuclear cascade calculation,

i.e., the transformations R followed by !$ need not be performed

explicitly. However, after the collision, the vectors (resulting

from

that

the collision) are eventually subjected to @-l and R‘1 in

sequence tc express them in the laboratory system XYZ.

Thus far we have arranged the rotation of XYZ so that the

incoming motion of the colliding particles is contained in the new

XIZ1 plane. However, we are not quite ready for the Lorentz sys-

tem. One more rotation is desired ad this stems from the fact

that the center-of-massmotion is not along the X1-aXiS. The

simplest Lorentz transformation follows whenever that circumstance

does obtain. &we shsd.1see momentarily the desired rotation (of

Fig. 2) is that of the <Zl plane *out the Y1-axis by an angle

cslled (d, where

(5)
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where & is the velocity of the center-of-mass in units of c, and

is givenby

a well-known result from the theory of relativity.

Before developing Eq. (~) further, we first define a few

auxiliary quantities:

r=

A=

8.

g.

using

r iS

frsme

sents

2. N

mY + m2Y2
11

7172 -71~712#f

%2 + .22 + ~m2A

(6)

(7)

the relation Yi2 = 1 + ~i2 (i . 1,2), it can be shown that

the total energy of the two-body system in the laboratory

XYz. A physicsl interpretation for A is that it repre-

the totsl energy of particle 1 in the rest frame of particle

is the total energy in the center-of-mass system, and ~ is

the total momentum in XYZ.

Equation 5 can be written as

and the rotation

the direction of

LVl + m2~21f
Cos(d =

H (9)

about Y1-axis by the angle U puts the X-axis along

the center-of-mass ~. Explicitly,

11



Coscd o sinti

o 1 0

\
-sin@ o Cos(1)

LORENTZ TRANSFORMATION

(lo)

The transformation to the center-of-mass system XCY=ZC in-

volves a Lorentz transformation L, i.e., symbolically,

and

>

1 72
J

XCYCZC

(IL)

As is well known the momenta of particles 1 and 2 are equsl in

msgnitude but

Figure 3 is a

collision, in

opposite in direction, i.e., mlmle = -m&L.2c“

typical exsmple of the state of affairs before the

the center-of-mass frame; ~ is the angle between

(the latter lies along the X-axis in the center-of-
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I

mz772C

\

\

xc (ALSO @c)
18

‘1 21C

Fig. 3. Center-of-mass system. The X-axis is along @ ,
the velocity vector of the center-of-mass fr~.

3i+&$ion to m ~
is equal in magnitude but opposite in

2—2C “
6 is the amgle subtendedby

% “

mass frame). Again from the theory of relativity, one can show

that

( )
r O 0 -H

ONOO
L=;

00N0

-H O 0 r

(12)

with r, H, N as defined in Equation7.
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In view of

process itself,

on the right in

subsequent rotations that may occur in the collision

it is convenient to express the momentum components

Equation I.1in terms of the magnitude of the momentum

and the angle 6. For exsmple, in terms of these quantities filxc

in Equation 11 is given by Tllxc= ‘TIICcos 6 . Furthermore, we can

express these quantities, as well as the totsl energies, in terms of

A, N, H (cf. Equation Y). After some slgebraic manipulation, we

may write for the msgnitude of the momenta in the center-of-mass

frsme: m,~ r
‘m a

mjA-1

lC = N 2C ‘ N

and for the corresponding energies

~ + mAA m. + WA
‘)’

L z
lC= N

and finally,

We point out that 6

slways, i.e.,

One can see that the

& is

region

p is
—c

71(%A + m2) – 72(~+m2A)
Cos6 =

H=

is in the range -fl< ~<o, hence sin

dsin~ = - l-cos2/J

negative sign is appropriate as follows:

(Ii\)

(13)

(15)

~<o

related to the vector sum of ~1, 12; hence it lies in the

included by them. Therefore u, the angle between 11 and

positive (cf. Figure 2). Eiml.uating~lz= in Equation (11),

one finds ?Jlzc = -Yjl sin~ < O; therefore 6 < 0.
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Summarizing, we may rewrite the right hand side of

Ill

a .2GC0. *
lXC

o

‘i m2&.in6
~lzc

YIC ? ‘m2A

Equation 11:

L J L J

1=—
N

1
-L

‘2
+ inlA

-1

(16)

THE COLLISION

The two 4-vectors of Equation 16

in the determination of the nature of

the collision is to produce a new set

are the input data involved

the collision. The effect of

of vectors in the center-of-

nass fraue. In order to express these vectors in the laboratory

system XYZ,
-1 -1

one subjects them to the transformations L , ~ ,

@
-1
, finslly R-l, in that order. As mentioned esrlier, if

particle production occurs the set contains more than two niembers;

in any case the new vectors need not lie in the original plane of

the motion, in

discussion for

collision is a

fact they may not be co-planar. We complete the

the case where the physical process involved in the

simple ela~tic scattering.
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In this instance

the old vectors ~lc,

EIJLSTICSCATTERING

the new vectors of the collision are simply

32C
rotated with two degrees of freedom.

The first of these may be considered as a rotation X in the plane

of XCZC (i.e., the plane of ~ ,_l ~), followed by a second rotation

about the collision axis (along ~lc). This latter angle of rota-

tion is called 6 and (if the particles me not polarized) is un-

iformly distribtitedin the range (O-m). It turns out to be

simpler computationally to restrict ~ to

O<x<fi

and extend 6 to

o<.j<27r

The effect of the rotation through an angle X may be accomplished

by the following substitutions in the expressions for the vector

components of the colliding particles:

Cos (x - 6 )+cosd

sin(X - 6 ) ~sin~

where the absolute value is used to remind one that ~ S O.

The rotation (about ~lc) of the plane n—l} ~ reqtires sev-

eral transformations. In the first place, the center-of-mass frsme

must be rotated so that the new X-axis is along Tl
—lC “

This angle

is, however, precisely the angle 6 (< O). This rotation is

16



succeeded by a rotation of the vectors
(4)

by an angle,

the collision axis (slong Tllc). Finally, in order to

status quo, the inverse of the center-of-mass rotation

This triplet of transformations may be

where

A=

and

e=

and

A-l .

Cos 6

0

-sin 6

1

0

0

COS6

o

A-l(IA

o

1

0

0

Cos o

sin 6

0

1

\ sinil o

written

sin 6

0

Cos 6

0

-sin 0

Cose

-sind

o

INVERSE TRANSFORMATIONS

When the new vectors resulting from the collision

e, aboti

restore the

is made.

(17)

(18)

(19)

process have

been established, we begin to apply a series of transformations that

express the vectors in the origin&1.laborato~ frame XYZ.

4. This is the only occasion where the vectors themselves are
rotated. In sll other transformations, it is the coordinate
system that is rotated.
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The first of the

formation

inverse transformations

(
r
o

0

\
H

This is followed in turn by

/

Cos(LJ

Q-l . 0

\ sin U

then,

[

1

!iJ-l= o

0

and finslly,

(
a11

-1
R= a 12

We have taken the

order to be quite

inverse rotations

have sufficed.

\ a 13

00

NO

ON

00

0

1

0

0

Cos q$

sin ~

H

o

0

r
)

is the Lorentz trans-

-sin (AJ

o

Cos (J) )
o

-sin ~

Cos ~ )

0

(20)

(21)

(22)

(23)

trouble to exhibit the last three matrices in

explicit and complete; the brief statement, that

are transposes of the original.matrices, might



All the matrices are well behaved, except possibly for R and

-1
its inverse R . If al is oriented very nearly parsllel to the

Z-axis in the labora’toqr frsme of reference,

denominator of some of the R matrix elements

may give rise to computational difficulties.

that no formal complications are encountered

well behaved as ~-.
13 “

the radicsl in the

approaches zero and

It should be observed

since the limits are

A reasonable computational procedure for this case is the

following:
‘etemine ‘hether %3

is within some very small region,

say 10-5, of unity.
lf ‘t ‘s’ ‘tie %2 = 0’ l-et%1-0 as

a 13
-1. In the limit R becomes

()
001

R
limit =

010

-1 0 0

(24)

-1
with R

limit
equal to the transpose of

%imit”
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