
.

:L :.——’-. -’

J
.-.:.-

.. . ,

. .

.-— -..------,.

-.

: ~. .. -., ,,
.,

-.

-8. .,. . . .. ~.. ..-_ . .. .... ... ----- ...=.. ---.. . . . . . . . . . ~..-.’.- .. ---- . . . . . . . . . ,;, ..+.- r

LDS ALAMOS SCIEN’rJFIC .LAB.ORATORY.
OF THE UNIVERSITY OF CALIFORNIAo Los ALAMO$ ~~w MEXICO””“ :
~~” “-””,””””

4 ‘“:’’,””:,, - ‘- “;””L-. -..-, .-..++.-.... ...*..... “--.
Z*.*, .

. . . . .. . .-

,,>LA>- -=”’.=:: ; ‘ ...” ;7 -:,<--..~5- “ pg%:.+::<;:.g-==?--”;::._ —=.. -.
.... ... ..... - - .-. --.:.:

..

. .

.“

.<

..-. .
!

. .. .

.. -.,
,.

—.

.-

.

THEORY

,.

,’

.. .

,:. ”. .,,.....- -

.- -. ,.,~~-,+. s—-... =.

. .. --.
., -+

~. . . . ..
. . .s i>a...,.. :. ..’

—



.
.!.

LEGAL NOTICE

Thisreportwas preparedas an accountofGovern-
ment sponsoredwork. NeithertheUnitedStates,northe
Commission,noranypersonactingon behalfoftheCom-
mission:

A. Makesanywarrantyorrepresentation,expressed
or implied,withrespecttotheaccuracy,completeness,or
usefulnessoftheinformationcontainedinthisreport,or
thattheuseofanyinformation,apparatus,method,or pro-
cess disclosedinthisreportmay notinfringeprivately
ownedrights;or

B. Assumes anyliabilitieswithrespecttotheuse
of,or fordamagesresultingfrom theuseofanyinforma-
tion,apparatus,method,or processdisclosedinthisre-
port.

As usedintheabove,“personactingonbehalfof the
Commission”includesany employeeor contractorofthe
Commission,oremployeeofsuchcontractor,totheextent
thatsuchemployeeor contractoroftheCommission,or
employeeof such contractorprepares,disseminates,or
providesaccessto,anyinformationpursuantto hisem-
ploymentorcontractwiththeCommission,orhisemploy-
mentwithsuchcontractor.

PrintedinUSA. Price$2.00. Availablefrom the

OfficeofTechnicalServices
U. S.DepartmentofCommerce
Washington25,D. C.



1

.

LA-2322
PHYSICSAND MATHEMATICS
(TID-4500,15thed.)

LOS ALAMOS SCIENTIFIC LABORATORY

REPORT WRITTEN June1959

REPORT DISTRIBUTED: October6,1959

THEORY OF EFFECTIVE CROSS SECTIONS

,.

by

GeorgeI.Bell

Thisreportexpressestheopinionsoftheauthoror
authorsanddoesnotnecessarilyreflecttheopinions
orviewsoftheLosAlamosScientificLaboratory.

ContractW-7405-ENG. 36 withtheU. S.AtomicEnergyCommission

-1-

ABOUT THIS REPORT
This official electronic version was created by scanningthe best available paper or microfiche copy of the original report at a 300 dpi resolution.  Original color illustrations appear as black and white images.For additional information or comments, contact: Library Without Walls Project Los Alamos National Laboratory Research LibraryLos Alamos, NM 87544 Phone: (505)667-4448 E-mail: lwwp@lanl.gov



1

f

I
I

(

I



MXYIRACT

The theory of effective resonance cross sections for reactor
calculations is reviewed in a general form. In section II, we discuss
homogeneous mixtures and the NR and IM approximations. In section III,
theory for capture in isolated lumps is discussed. IM, NR and canonical
approximations are developed and it is noted how higher accuracy may be
attainable by retention of the spatial heterogeneity in a multigroup cal-
culation. In section IV theory is generalized to dense lattices and a
simple transition between the homogeneous and isolated lump case. It i,s
shown that quite complex lattices cam be treated in canonical form. In
section V we discuss further improvements for lumps with strong IM
scattering.

Appendix A contains a discussion of the mathematical basis for
improvements on the NR and IM theories and Appendix B notes various Breit-
Wigner single level expressions and when they cannot be used.

An intent of this report is to provide a unified and general
pi.ctm.reof effective resonance cross sections which will be used as the
basis of a digital code for computing effective cross sections.
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I. Introduction

Neutron

resonances in the

reactors in which

cross sections of most heavy elements exhibit prominent

energy region between roughly .1 ev and 10 kev. For

neutrons are present in the space-energy region of such

resonances, the neutron flu@ may be a rapidly varying tiction of both

energy and posi.ti.on.The problem of taking these rapid variations of

neutron flux into account has long been recognized as a central one in

reactor physics, and its solution has usually been attempted by the intro-

duction of effective cross sections, cross sections which are slowly vary-

ing functions of energy. An effective reaction cross section is generally

defined by the requirement that when it is multiplied by

slowly varying in space-energy and the resulting

over an appropriate space-energy region, it must

tion rate, which is given by the integral of the

section times rapidly varying flux.

The most important

“effective resonance capture

product

a flux which is

is integrated

yield the correct reac-

true rapidly varying cross

example of an effective cross section is the

cross section” for the case of heterogeneous

*FIux is here taken to mean number o:~neutrons per unit volume times
absolute value of neutron velocity.
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natural uranium reactors. A theory for this difficult case was first

developed by Wigner, et al., [1], [2]. Although the qualitative predic-

tions of the theory were confirmed by experiment in the early 1940Ss, an

accurate application of Wignerts theory was not possible at that time

because of inadequate info~tion on the &38 re~o~nce parameters.

More recently, three developments have stimulated an advance in

the theory of effective cross sections. First of all, resonance parameters

have been measu”ed fairly accurately for many of the low lying levels of

#38 and other isotopes and are now available for use in calculations.

Secondly, at the 1955 Geneva Conference, a Russian theory of effective

resonance capture was reported [3] which appeared to be quite different

&om the Wigner theory. This apparent discrepancy prompted critical re-

examination of both theories. Third, modern electronic computers have

become available for performing Monte Carlo and other accurate calcula-

tions of a lengthy nature. These have afforded a number of checks on the

various assumptions invoked in constructing simpler theories. As a result

of these developments and considerable theoretical work, the theory of ef-

fective resonance cross sections is on quite firm ground in a number of

practical cases, and difficulties and limitations are better understood.

The status of the theory and comparison with experiment have been reviewed

in a number of recent papers [4] - [10].

In this paper, we present a review and amplification of current

theories in a general form applicable to a variety of multigroup calcula-

tions. We begin with the case of a homogeneous mixture of moderator and

-6-



absorber (section II), then discuss the case of isolated lumps of an

absorber imbedded in a moderator (section III). me theory is then ~en.

eralized to an array of lumps in a moderator (section IV) - a situation

intermediate between the homogeneous and isolated lump case. A modifica-

tion of the theory to account for broad resonances with much scattering

is made (section V). In Appendix B some of the theoretical expressions

are applied to single Breit-Wigner resonances, which are either unbroadened

or simply Doppler broadened.

An intent of this report is to provide a unified and general

picture of effective cross sections which will be used as the basis of a

digital code for machine computation of effective cross sections. It is

hoped that the theory is general enough to be applicable to such diverse

situations as intermediate homogeneous reactors, heterogeneous reactors

with either widely or closely spaced fuel lumps, resonance absorption in

control elements, and critical

disposed.

Before proceeding to

assemblies in

special cases

which fuel is inhomogeneously

we note a general principle

which will be employed in constructing all subsequent expressions for ef-

fective resonance cross sections. Consider a resonance at energy E. and

characterized by a practical

tant.“

Let E be an energy

“letS(E) dE be the source of

width rp over which “the resonance is impor-

r b andP<E<EO+2$within the range E. - ~

neutrons being elastically scattered into the

range of dE about E. We shall assume that -s source of neutrons is

-7-



prj.xmrilydue to collisions of neutrons which had energies before colll-

sion substantially greater than E. + rp/2. This means that the source of

neutrons at energies near E. will be very little perturbed by the resonance

in question and that S(E) will be a slowly varying function of E near the

resonance. It is usually easy to make a good estimate of the source of

neutrons S(E) by neglecting the resonance. From this assumed source we

then calculate the neutron flux in the space energy region of the reso-

nance and from the calcuhted neutron flux we obtain the effective cross

sections. The essential point is that in order to obtain a simple S(E),

the resonance in question should be narrow compared to the maximum energy

loss in elastic scattering from the moderator. We then work from known

source to flux to effective cross section.

II. Homogeneous Case

Theory for the

Chernick et al. [4, 5,

IM approximations.

homogeneous case has recently been reviewed by

6, 10]. We shall employ essentially the NR and

Consider a homogeneous mixture of J isotopes and suppose that

at energy Eoj one isotope has a resonance which absorbs and scatters neu-

trons. The other isotopes are assumed to have constant scattering cross

sections and no absorption near Eo. Let the total macroscopic scattering
J

cross section off resonance be ~. = ~ N.(a - ares ~) where IY
j=lJ j

is the
> res,j

contribution of the resonance to the total cross section, c.. Let us now
J

-8-



define the practical width (rp) of the resonance, first introduced by

Wigner [1], as that energy range abc)utE. over which the total resonance

cross section &
exceeds ~o. The practical width of a resonance is thus

that energy interval over which the macroscopic cross section is predom-

inantly due to the resonance. It depends on the ratio of moderator to

absorber densities as well as on the microscopic cross sections.

For an isolated Breit-Wigner resonance and ignoring Doppler

broadening and interference between potential and resonance elastic scat-

tering, we would have

z
~res(E) = —max

~ (E - EO)2
l+—— r2

and hence

For a low resonance, having >X<

more appropriate to replace it with

the width of the energy region over

o, instead of setting I’ . 0, it is/?.
P

the natural width, r, as a measure of

which the resonance is important.

This suggests using a generalized practical width [5]:

rz-~x + Z.
r
P

=r
.xO

(2)

-9-



For the homogeneous

will be given by the integral

J

case, at energy E, the neutron flux, P(E),

equation:

is the elastic scattering cross section of the jth isotope,where 68,jA -1

and a = (~)2 is one minus the maximum fractional energy loss (Aj =
J.

atomic weigh~). Equation (3) is exact for the energy range where neutron

scattering is elhstic and sphericallysymmetricin the neutron-nucleus

center of mass system. This energy range (.2 ev s E ~ 10 kev) is precise-

ly that of greatest interest for resonance reactions.

the

the

We now divide all isotopes into two cksses depending on whether

maximum energy loss at Eo, (1 - ~a ) Eo, is greater than or less than

practical width:

to energy

resonance

If(l- j~ ) E. >> I’p~clearly the resonance is narrow compared

losses in scattering from the jth material. For such narrow

(NR) scattering,

equation (3) comes from E!

know @(E’) is proportional

resonance scattering cross

the dominant contribution to the

>> E. + I’p/2where, for a single

to l/Et, say @(E’) =~/E’. Thus

section of isotope j is 6.4, the

integral in

resonance, we

if the off

j integral in

N. ao.~
equation (3) equals .

E
If, on the other hand, (1 -aj) E. <<

compared to energy losses in

For such an isotope, a first

elastic scattering

r the resonance is wide
P)

from the jth material.

approximation

-1o-
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in elastic scattering. For such scattering we treat the scatterer as if

it had infinite mass (IM approximation) in which case the jth integral on

the right hand side of equation (3) equals N a~ s,~(E) @ (E) and thus cancels

the corresponding term on the left side. This is a particularly good ap-

proxhnation when applied to a material with a strong resonance since then

as,j(E) 9(E) tends to be constant over the resonance.

Let us now treat all term in equation (3) which have (1 -a~) E.

> r’pby the NR approximation (right hand integral . ~o~ ~/E) and all terms

which have (1 -aj) E. <l’pbythe IM

left). We obtain

approximation (right side cancels

where
L

=0

If we now let:

=0

if (1 - c%) Eo2r
J P

if (1 -aj)Eo<r
P

(4a)

(lb)

(5a)

equation (la) may be rewritten:

-11-



(5b)

For any reaction cross section, ar(E), which may be a part or

pk
all of the resonance absorption cross section, the reaction rate.nssthe

product@(E) ar(E). We now define the effective reaction cross section
Cw

o corresponding to an energy interval El < E < E
r 2

reaction rate divided by the integral of the flux,

equation (Sb):

This is the

as

or

J‘ii 2 “1

+! +Ld’!! (E)

‘;’)*
fun&mental re&ilt fo; the

the integral of the

with the flux from

homogeneous case. Note that

(6)

if

ar(E) were a constant, we would obtain ~ =a
r r“

It is easy to see that equation (6) is equivalent to tie require-

ments (a) that

and (b) that if Ur(E) is a constant, then ;r = ar. Thus we are

replacing the rapidly varying ar(E)fi~(E) by its slowly varying

over an interval large compared to the resom.nce practical width.

essentially

average

-12-



For very narrow resonances (rp << E2 - El) the denominator of

NR
equation (6) departs from ~. only over a small interval and we have

(7)

This is evidently a good approximation whenever the average departure of

the flux tiom~ is small compared to~, i.e.} whenever

(8)J’9(E) dE SZ ~n E2/El

A number of comments are now in order.

(a) Wide Resonances: If the resonance is wide for all scat-

tering, then the above treatment csmnot be used. This is because the

source in equation (la) was given by NR scattering. In fact, only if the

scattering is predominantly of the NR type (so that neutrons will usually

skip over the resonance) can the source in equation (1+)be so simply

obtained. Thus it is necessary to have ~ & Xo. For the general

of broad resonances, equation (3) must be integrated numerically.

(b) NR and Inaccuracy: The accuracy of the separation

case

of the

scattering into NR and IM types has been investigated by Spinney [10] and

Chernick [5,6]. From the integral equation (3)} they derived the next

order corrections to the NR and Illapproximations for the source integrals.

The general basis of these corrections is given in Appendix A. In addition$

-1.3-



for the particular case of a mixture

results were compared with numerical

Reaction rates were computed for the

of#38and H (equal atomic densities)

solutions of the integral equation.

resolved resonances and using alter-

natively NR, IM, and exact recipes ~or the U238
elastic scattering, as

well as improved NR and IM expressions. For this case, equation (7)

gives results correct to within about ten percent for each resonance.

For more dilute systems (higher H/U ratio) the accuracy should be better.

Comparable investigations are in progress for other moderators.

(c) Effective Scattering and Transport Cross Sections: Equa-

tion (6) was taken to define an effective reaction or resonant scattering

cross section if such scattering is of the NR type. For such a case we

would obtain an effective total cross section:

(9)
(E) Q ‘1

.-.

this is, coincidentally, an appropriate

transport in the diffusion approximation.

it is appropriate to add the off resonant

In the absence of IM scattering

total cross section for neutron

If there is also IM scattering,

part ofZ~ to Z~ in order to obtain a total cross section for neutron

transport. Normally transport and leakage of neutrons in the resonance

region is not very important.

(d) General Practical Width: For Doppler broadened or over-

lapping resonances, the definition of the practical width, equation (2),

needs amplification. The important physical point is that over a practical

-14-



width the probabilities of various reactions per collision

change much. Thus if a macroscopic cross section exhibits

above a more or less constant background, B, the practical

should not

a rise, R(E),

width is either

the interval over which R(E) >B or the width ofR(E) at half maximum,

whichever is greater. For more general situations the practical width

is not a very useful concept.

(e) Many Resonances: When more than one resonance is present,

equation (6) still usually represents a good approximation for any energy

interval (El, E2) over which the slowing down density does not change

much. For widely separated resonances, the reason is that between reso-

nances, the neutron flux will usualll.yrecover to its asymptotic form

(N dE/E) for no absorption in that region. This maybe seenby consid-

ering absorption at a resonance energy as a negative source at that

energy and noting that the resulting departures of the flux from its

asymptotic value [n, 21] are generally unimportant. For relatively

closely spaced resonances, the NR scattering source will average over

many resonances and be little influenced by any particular one. We are

currently investigating some of these points more quantitatively.

(f) Multigroup Limitation~: If a substantial fraction of the

neutrons within an energy group is absorbed, then the competition between

absorption and other processes will not be accurately given by our simple

effective absorption cross section. This is because the spectrum within

the group will be strongly dependent on the

accurately given by our simple assumptions.

-15-
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any group which

in resonances.

difficulty into

has

The

strong absorption, irrespective of whether it occurs

denominator of Cr, eqwtion (7), will not take this

account. In this case we may still frequently replace

the rapidly varying arfit by its slowly varying average over an energy

interval (;rflt) and treat the slowly varying capture cross sections by

any appropriate multigroup means, for example as indicated by Hurwitz in

[14],

Various analytical and numerical results for single Breit-Wigner

resonances are noted in Appendix B.

III. Isolated Heterogeneous Case

Let us first consider isolated lumps of absorbing material im-

bedded periodically in a moderator. By isolated we mean that the lumps

are separated by many moderator mean free paths. Since the array is

periodic we confine our attention to a cell consisting of a single lump

and its surrounding moderator. Let Pi(E) be the probability that a neutron

of energy E which originated in region i will make its next collision in

region i, and let i = O denote absorber lump and i = 1 denote moderator.

Following Chernick [10] we will express effective cross sections in terms

of PO(E)

Eo. For

and Pi(E).

Let us again

energies well

throughout the

whether we are

lattice.

suppose that we have a single resonance at energy

above Eo, we will have the unperturbed flux ~~

For energies near Eo, the flux

d~ling with a narrow or broad resonance

-16-
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in lump) and to make the distinction we must define the practical width

of a resonance in the heterogeneous case. Let zoo be the lump scattering

cross section off resonance, ~ot (E) be the ~~E;otal cross section and

~or(E) = ~ot (E) - zoo. Then the quantity ~~ PO(E) represents the

?+probability that a neutron in the lump will %ke its next collision

“with the resonance,” and in the lump. We define the practical width,

r , of a resonance to be that energy interval, about Eo, over which

~~r(E) 1

~ot(E) ‘O(E) > ~o

This represents a logical generalization of the prac-

tical width for the homogeneous case.
z

For weak resonances or thin lumps,

for which ~ P. never exceeds 1/2, we may as before let the practical

width equal ;~e full width of the resonance at half maxhnum.

We will now write down integral equations for the neutron fluxes,

classify scattering into NR and IM types - according to whether (1 - a) E.

is greater or less than I’p,and approxhnately evaluate the integrals for

each type of scattering.

Let @i(E) be the space average flux in region i. Let Vi be the

volume of region i, N be the density of the jth isotope in region i,
ij

and let u (E) be the scattering cross section of isotope j.
Sj Then, by

definition of Pi(E), the following exact integral equations hold*:

*Note that these equations are ~ct for an arbitrary array of absorbin~
lumps provided that region O is interpreted to include all lumps and
region 1 all moderator. We assume, of coufse, s wave scattering.

-17-



‘1
+ (l-PI(E))~

(lOa)
J

1

E/ad

jZl ~ E ‘lj asj(E’) 91(E’) %

(lOa) says that the collisions per unit

are equal to the number of neutrons ~er

volume in the lump

unit volume arriving at

energy E inthe lump (first sum of integrals) times probability that a
,

neutroe n the lump makes its next collision there (PO(E)) plus number

of neutrons per unit lump volume arriving at energy E in the moderator

(Vi/V times second sum of integrals) times probability that a neutron

“4J
~in the ~oderator makes its next collision in the lump (l-PI(E)).Equa-

tion (lOb) has a similar interpretation with moderator and lump roles

interchanged.

We now simpli~ the integrals exactly as for the homogeneous

case. Thus for NR scattering [(laj) E. > rp] we approximate@ in

the integrand by~/E, to obtain:

(11)

I



Here we have assumed a to be constsnt; if isotope j has the resonance,
Sj

then a is the potential scattering cross section. For IM scattering
Sj

< r ], we assume that there iS scattering ti~hout energy 10SS[ (laJ) ?0 p

to obtain:
#

1 J
E/a ~ ~i

laj E
‘j ‘sj(E’) ‘(E’) ~= ‘j ‘sJ(E) ‘(E) : m ‘U)

We require that the moderator scattering should be primarily NR.

This insures that@l : F/E for all energies and leads us to assume that all

integrals over ~lmaybe approxbnated.by theNR expression (equation (Xl)).

In the lump, some scattering may be NR and some IM. For the NR scattering

we use ~~$ the off resonance scattering cross section, and for IM scat-

tering we use ~~(E), the full.scattering cross section. With this nota-

tion, we substitute equations (il.)and (M?) in (10) to obtain:

(1*)

Solving (lsa) for @o(E), we find

‘1PO(E) ~~ + (i-Pi(E))~ ~

@o(E) =
o L

~~(E) ~ot (E) E

(1 - po(E) ~—)
Ot(E)

-19-
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and substituting this result in (lsb), we have

Ordinarily, for isolated lumps, the second term in the expres-

sion for 91(E) is small compared to the first, because (l-PO) Vo/V1 is

small. Also Pl =’1.0 so that for a moderator without absorption

The number of

ing to a reaction cross

reactions per

section, (Jro$

(15)

atom per sec in the lump correspond-

s

J’
E
2 are(E) @o(E) dE

E

while the number of scattering in the moderator is

If we wish to

cross section

homogenize the cell and use the real moderator scattering

.-u

and effective absorber cross sections, aroJ we must set
/

-20-



in order to preserve the correct competition between lump reactions and

moderator scattering. If we now approximate 91(E) by equation (15), use

equation (lJa) for @o(E) and denote the resulting effective cross section

This is the basic result for the isolated heterogeneous case. It will

evidently hold for an array of resonances as well as a single resonance.

If we use the full e~ression for @l(E) (eqwtion lqb) in

equation (16) we find (assuming no absorption in moderator):

.u

(18)

L-
zlvJvo

When simple approximations for Pi(E) are introduced it will be seen that

equations (17) and (18) are exactly analagous to equations (’7)and (6) for

the homogeneous case. We shall also show (section IV) how to arrange a

simple transition between the isolated heterogeneous and homo~eneous cases,

thus treating a large class of homogeneous and heterogeneous problems on a

unified basis.

Before considering expressions for Pi (E)j let us no-k how the

effective cross sections should be treated if one does not wish to homo-

genize the cell but wishes to retain the spatial heterogeneity.

-21-



Indeed, in many practical cases one may wish to retain the

heterogeneity in a calculation. For example, in a cell calculation one

can thus compute the fast effect, resonance absorption, and thermal ab-

sorption in a single multigroup calculation.

ante disadvantage factors ap~ar as a result

than as somewhat ambiguous assumptions. The

In such a treatment, reson-

of the calculation rather

geometry will then be treated

realistically and the cross sections simplified to be constant in each

energy group. We seek effective cross sections for the lump: 2ot, 2
0s’

z For this case, equations (13) will still give the space averagedoa”

fluxes, with all cross sections replaced by effective cross sections

independent of energy, and with the distinction between NR and IM now

based on the group width - not resonance practical width. Thus, for

~~ ~~ be rep~ced by the’’source of neutrons scattered do~example Zoo ~

from higher groups. This is usully a small contribution which may be

ignored,

sections

sothatwehave~ot2~ +~oa 0s“

Computing the reaction rate from (lsa) with effective cross

and equating it to the reaction rate in (17) we have:

‘1(1-FJ ~zl
o

(19)
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.
Note that ~1 and PO are determined by geometry, xl, ~ot, and ~o~ Thus

if we use equation (19) with ~j (E) equal in turn to each reaction cross

section and fina~y to ~ot(E) we may use the results to obtain the cor-

responding effective cross sections. Later we will see that introduction

of simple forms for Pi(E) will make equation (19) very simple to use.

Note that if the absorber contains considerable good moderator one can

retain F
00

on the left side of (19). More simply one can use just equa-

~=sot-:. ~mtith ~~o beingtion (19) and set~
oa - 00

a transfer cross

section computed without resonances.

We must now consider appropriate expressions for Pi(E) for

isolated lumps. It has been found that it is generally a good approxi-

mation to compute Pi(E) as if the source of neutrons at energy E were

uniform in space and isotropic in angle in region i [4, 5, 6]. It is

clear that this is a consistent assumption in the moderator, for we have

assumed that the source of neutrons arriving at energy E in the moderator

is unperturbed by the absorbing resonance, i.e., we have assumed NR mod-

erator scattering. (However if the lump is strongly absorbing over a

large range of energy, the NR scattering source in the moderator -d mod-

erator flux will be depleted near the lump and this must be taken into

account. See discussion at the end of this section.) Likewise, if NR

scattering is the primary source of neutrons in the lump,

uniform and isotropic.

However, if streaming from the moderator and IM

that source is

scattering are

the primary neutron sources in the lump, then for a sufficiently thick

-23-



lump and an energy near the resonance maximum the neutrons will be con-

centrated near the lump surface. In this situation, it would appear that

PO(E) should not be computed for a uniform source. However, it has been

shown. [5] that when one considers the integration over an entire res-

onance, the lump absorption are surprisingly uniform. The reason is

that most absorption will occur at energies of the order of the practical

width of the resonance away from the maximum. For these energies the lump

is not very tkdck and the neutron distribution is quite uniform. Thus for

integration over an entire resonance PO(E) nay still be reasonably approx-

imated by its value for a uniform source. An additional practical justi-

fication for this approximation is that frequently~os*<<E so that a
Ot

good approxiution for PO(E) (in equation (17)) is unimportant. In section

V we will consider other and better approximations to PO(E) for the case

I“*zot).of large IM scattering contributions (~os - .

For the remainder of this sectionwe shall assume that PO(E)

and PI(E) are to be computed for unifom and isotropic sources. Pi(E)

then satisfies the general and exact reciprocity relation:

(l- Po(E))Zot(E) Vo= (I -Pl(E))Xl(E)Vl

o

(20 )

as may be understood by the following argument. Suppose that everywhere

in the lattice, there exLsts a flux j3(E)which is constant in space and

Isotropic. Thus there is zero net neutron current everywhere in the

lattice. The total number of neutron collisions in region i is
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J3(E)Xi(E) vi,

a distribution

unit volume in

Then the total

and each collision removes a neutron from energy E. Such

would be maintained by a source eqwl to 9(E) ~o(E) per

the lumps and @(E) %(E) per unit volume in the moderator.

flow of neutrons from lumps to moderator is

and the flow from

condition of zero

(1 -Po(E))~o(E) Vo @(E)

moderator to lumps is (1 - pl(E))~l(E) V1J3(E). The

net flow is just our reciprocity relation. Equation

(20) is thus valid for any lump configuration - provided that P. andP1

are to be computed for uniform and isotropic sources.

The reciprocity relation may be used to eliminate PI(E) from

equation (17), obtaining:

‘@U?

(21)

PO(E) has

for isolated slabs,

mean free paths,

been discussed and tabulated by Placzek et al. [E]

spheres, and cylinders. For a slab of thickness t

Po=l- $~ -E3 (t)) (22)

For a sphere of radius R mean free paths
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(23)

For cylinders P. is expressed in terms of Bessel functions and tabulated.

[Note that our P. = Pc of reference [12]]. Etidently(these expressions

can be inserted in equation (21) and effective cross ‘secticmscan be thus

computed.

A simple and useful approximation to P. for isolated lumps was

originally suggested by Wigner [1]} ~ely

~ot(E)
PO(E) ‘2

s _ Lump Surface

s + ~ot(E) J Lump Volume (24)

.
Here S-l is the mean chord length of the lump [~]. This approximation,

variously termed the Wigner or canonical approximation has recently been

much used by Chernick et al. [~, G, 41, not ofly~ecauseOfits s~-

plicity but also because its introduction causes the equations for the

isolated heterogeneous case to strongly resemble those for the homogen-

eous case as we show below. Furthermore, the canonical ~ression for

PO(E) till be shown to be readily generalizable to lumps which are not

isolated (Section IV) and for which more exact expressions for P. can be

extremely complex.

If we introduce the canonical

tion (21) we obtain:

approximation to PO(E) in equa-

,
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~ = ~ot(E) -~~(E). This is identical towhere ~

homogeneous case provided that s is interpreted as

cross section representing leakage from the lump.

that this interpretation of s is more general

from the above. In prticular, if one merely

for moderator scattering and then inserts the

in the integral eqmtion (lOa) one obtains an

cal to equation (3) for the homogeneous case,

smttering cross section. I!Yomthere on, any

than

equation (7) for the

an added NR scattering

It has been shown [5]

would be inferred

makes the NR approximation

canonical forms for Pi(E)

integral equation identi-

with s appearing as an NR

treatment one may wish to

apply to the fuel scattering (NR, IM or improved versions) can be carried

out identically for both homogeneous and heterogeneous cases. Also, from

our discussion at the beginning of this section, we see that in computing

the practical width of a resonance s may be used as a bona fide scattering

cross section. We thus see that the canonical approximation leads to

simple expressions for effective cross sections for isolated fuel lumps

which are analagous to those for the homogeneous case.

Note that the canonical approximation does not make the denom-

inator of equation (18) into a form similar to that for the homogeneous

case, equation (6). This is clearly correct, for in the homogeneous case

if Ur is independent of energy ~ = Ur. However, in the isolated lump

‘ + ar even for constant ur.case ~.
r
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We note also the

to retain heterogeneity

i32
j

s+zot- Eos

where all scattering on

in

=-

apprbpriate canonical expression

the final calculation. Equation

1.

the left has

a reaction or total cross section in

ing on the right is IM and all cross

if one wishes

(19) becomes

(26)

been assumed of type IM. ~, denotes
d

the lump. Evidently if all scatter-
.

sections are constant, Z~ = X,.
d J

Equation (26)is probably more accurate than equation (25) since similar

approximations were made to obtain both sides of equation (26)and errors

in the approxixrmtionsshould cancel to some extent.

It remains

tion for PO(E). For

which is the correct

to discuss the accuracy of the canonical approxima-

I.argevalues of~ot(E)/s, the canonical P. +1 - s~ot

limiting value [12]. For intermediate values of

~ot/s, the accuracy of the canonical appro~tion maybe foundby compar.

ison with the exact values of P. in P1.aczek’swork [12]. Such a comparison

is given in table 1, where it is seen that the Wigner approxi~tion system-

atically overestimates Po (except for very thin slabs). An obvious

possibility fbr improving the approximation is to use increased values

of s in the Wigner expression. Numerical calculations

in some heterogeneous lattices with exact P. suggested

about 15* for slabs and 30~ for spheres and cylinders.

increased s are also indicated in

in substantially better agreement

of s.

table 1, where it is

for $35 ad $38

increases of s by

Values of P. with

seen that they are

with the exact values over a large range
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Table I

CollisionProbabilities,Po,forUniformSource

Surface
~= ~ =& forslabwith~ = thicknessinmeanfreepaths

,7 =& fore.p,e.ewithR = radius in meanfreepaths

WlgnerApproximation

.~~ /5

.20

.% .3,0

1.0 115-

2.0 ,75--
5.0 .~o

10.0 ,15-

100.0 .0J5

.99

.833

.667

.500

.333

.169

.091

~& forcylin&erw~thR . radiusinmeanfreepaths

Exact [12]* WignerModified
SlabSphereCylinder

I Ll( \
1PO(5)= 1+ 1.15sno PO(5)= 1+1.3s

.W .gl .w,=.8w ‘ .“5 ‘ 0%

.&36 .807 .807 2.8/ .813 .7s4 ,7YL

.610 .589 .593 l.12s- .635 .606 ,5qo

.443 .393 .la4 .5LI .465 .435 6370

.2 gg .233 .247 ,2gt .303 .277 ,2Z7

.163 .104 ..L1.54II2~ .148 .133 .los-

.Ogg .0% .061 .05L?4 .0%3 .071 ,05s5

, 0D%2 ,bb 585



For an important resonance in a typical lattice of not very

thick lumps (s > zoo), it can be shown that the dominant contribution to

the effective cross section comes from the region s 2 ~. which is shown

in table I. If we consider a resonance for which s >>~o throughout

(thin lump), then there is little flux depression anywhere and the ef-

fective cross sections are nearly equal to average cross sections and

insensitive to exact values of s. For a very thick lump, s <<zoo

throughout, it is found that the simple Wigner expression (24) is pref-

erable to any modified form. It is thus suggested that an expression of

the form

s(zoo + as)
St =

zoo+s

is an even better approximation.

of St is used to estimate Po(s)

a= 1.17 slab
(27 )

a = 1.30 sphere, cylinder

It is believed that

with equation (25),

when such a value

the resulting ef-

fective

by less

cross sections will deviate from those using exact values of P.

than 5$ for nearly all practical cases.

Alternative simple improvements on the

to P. have been considered by Rothenstein [13].

more complicated than our simple modification of

results of roughly comparable accuracy.

canonical approximation

His forms are slightly

s and appear to give

The accuracy of the preceding theory has been checked by a

number of authors. Adler, Hinman, and Nordheim [7] have applied equation
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(21) to the computation of effective resonance integr&ls* for uranium,

uranium oxide, and thorium rods. ‘lhy used values of PO(E) which are

exact for uniform sources in slabs, spheres, and cylinders [M?], and

obtained results in good agrement with experiment. Chernick et al.

[6, 51 have applied equation (25) to lattices of uranium and water with

the additional assumptions that all uranium scattering is IM and the

resonances are not Doppler broadened. The results have been compared with

Monte Carlo calculations on lattices for which the lumps are not com-

pletely isolated. The agreement is fairly good for those resonances and

geometries for which the above additional approximations are good. At

the end of section IV we will make a comparison with the same Monte Carlo

results with allowance for NR scattering, lump interaction, and Doppler

broadening.

For some lattices the neutron flux in the moderator may vary

considerably with position in a cell. This might be the case if the

fuel lumps were so widely separated that the flux between lumps was ap-

preciably lower than the average or if the lumps were strongly absorbing

and thus depleted the flux nearby. Either effect could be taken into

account by retention of the heterogeneity in the calculation. Alterna-

tively one cobld attempt to relate, by other calculations, the flux near

the lump surface (which is

development) to the actual

*Actually, their treatment

essentially the assumed average flux~ of our

average flux in the moderator. Weinberg and

of IM scattering was not identical with but
closely equivalent to that in equation (1~). See section V for further
discussion of the comparison.
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Wigner [21] have given a rather complete discussion of how this can be

done with

the above

retention

diffusion theory and the problems which arise.

effect is unimportant. Where it is important,

of heterogeneity.

Note that none of our effective cross sections

detailed spatial distribution of absorption in a lump.

In many cases

we advocate

can give the

For this a

Monte Carlo calculation or detailed multigroup mock-up of the true res-

onance cross sections would seem necessary.

IV. Extension to Dense Lattices and Transition 13etweenHomogeneous and

Isolated Heterogeneous Case

In the preceding section we

the neutron escape probability from a

assume that 1 - P. represented

single fuel lump. We consider here

the form of P. when the fuel lumps are so spaced that a neutron leaving

a lump has a significant probability of colliding with some other lump.

In such a case the flux depression near a resonance will be even greater

than for isolated fuel lumps and the effective cross sections will be

correspondingly smaller.

For simple slab lattices it is possible to compute P. in de-

tail [13, 15] inasmuch as a neutron~s angular coordinate will not change

during flight. For cylindrical fuel lumps, the problem has been analysed

by Dancoff and Ginsburg [2, 16] but the corrections are sometimes tedious

and difficult to generalize. In the following, we shall show how a simple

and logical generalization of the canonical approximation can be used for
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dense lattices and to give a simple transition between isolated hetero-

geneous and homogeneous systems [17]. The approximation is, in addition,

sufficiently acc&ate for many practical purposes.

Let:

(l-Po)o =

(l-PO) =

i
‘1 =

Gi =o

Escape probability for neutron born in an isolated

fuel lump.

Probability that neutron born in identical fuel lump

of a lattice makes next collision in moderator.

Probability that neutron

cident on moderator from

traversals of moderator,

before recentering fuel.

Probability that

incident on fuel

fuel lumps, will

With this notation:.

neutron

originating in fuel and in-

fuel, after i previous

will.collide in moderator

originating in fuel and

lump, after i previous traversals of

collide in lump.

(l-PO) = (l-Po)o~G:+

Let

(28)

u -1.

would appear to be reasonable if the G.’sare small so that the changes

of incident angular distribution with i are slight. Also for (l-Go)

small, only the first two terms are important and other values of Gi may

be set equal to Go. With this assumption:

\&~LW
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G.
(29)

,.

Following the arguments

(l-Po)o is the escape probability

the lump. In order to estimate Gc

of section III, we now assume that

for a uniform and isotropic source in

)and G1 we assume that the angular dis-

tribution of neutrons crossing the fuel moderator surface is proportional

to la “01 per unit surface area, where ~ is a unit normal ando a unit

vector in the direction of neutron motion. For thick fuel lumps, this

is a good approximation for G; which is the only important G. For thin

fuel and moderator it is presumably a good approximation for Gi on the

average. For this asswed angular distribution:

where S is the area of the

expression is justified by
b

fuel moderator interface and Si = S/4Vi. This

noting that for a region i with ,~t iSOtrOPiC
G<S#

flux~both inside and outside, -&’represents a flow of neutrons into i

which is just balanced by the flow o~~iVi(l-Pi)oout of i. A constant

flux gives the required source distribution (uniform in i), for (Pi)o
I

and the required angular

If we now make

distribution (~ ● Q) for Gi.

the Wigner approximation for (l-PO)O,

(l-Po)o= > :OsO
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,

equation (30) gives us = ZO so Z*
C-?o

—-_ _
~ Fb +5* Zo+so

s z.

‘l-G”) = z% ‘6”=VSD

Substituting in equation (29) we have

This approximation has

so G1
(l-PO) = ~+ S$l

We obtain:

Similarly

(31)

(32)

been independently suggested by Rothenstein [13],

who then used exact values of

place as so in the expression

to G1 iS:

G1. Note that in (32), SOG1 takes the same

for (l-Po)oe The canonical approxi.rma.tion

(33)

(34a)

(34b)

If we introduce the notation,
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(35)

we may write

1 ‘1-p”=Z-% l-pl=k+’l (36)

It can be

tices, To

Equation (36) for Pi is our basic result for general lattices.

seen, by comparing equations (24) and (36),that for dense lat-

plays exactly the same role as S(aso) of the isolated lump

case. This applicability of a canonical approximation to general lattices

is very convenient.

The above expressions for Pi have a number of desirable pro-

perties:

(a) P. and P1 are consistent with the reciprocity relation,

equation (20). This is easily seenby substitution of (34) in (20).

(b) We approach the correct isolated heterogeneous limit of

section III. The quantity~l/sl is the average chord length in the mod-

erator measured in mean free paths, so that the fuel lumps are isolated

for xl/sl >>1. In this limit To % so and 1 - P. reduces to the canonical

expression (equation (24)) for isolated lumps. Note that in this limit

the fuel lumps

(c)

may be thick or thin.

We approach the correct homogeneous limit for thin fuel

and moderator regions. This will obtain if~/sl<<land~o/so Ccl.
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Since so/sl = V1/Vo, we have in this limit,

so that, for example

(37)

as one would expect for a homogeneous limit. Simple substitution of

(37 ) in the heterogeneous equation (21) leads to the homogeneous equa-

tion (7). Moreover, the heterogeneous flux depression factors (denom-

inator in equation (18)) become identical to the homogeneous flux

depression factor (denominatorof equation (6)).

(d) The equations for all effective cross sections in the

dense lattice are merely those for the canonical isolated heterogeneous

lattice, with To replacing S1. This follows from the form (36) of l-PO

plus (a). Thus instead of equation (25) we have ,

E2
NR

1

J

To+~ s
;? . ,— 00

dro (E) .:, with To = ~
ro E

‘fO+ ~~t(E) ~lo+ S1
J?n~ ‘1

‘1

(38)

By comparison with equations (25) and (7), we see that To may be inter-

preted as a generalized NR pseudo-scattering cross section representing

leakage from the lump. This interpretation may be maintained consis-

tently throughout. Note that even if one wishes to do a multigroup

-37”



calculation for a dense lattice retaining spatial heterogeneity, effec-

tive cross sections should be computed using To instead of so. Thus

equation (26) should be used with To replacing s.

(e) For all lattices, To < so

that for all l&ttices2 there is stronger

for either the isolated heterogeneous or

This effect is physically correct.

ad To <xl TJ1/voaThis means

self shielding (lower ~) than

homogeneous approxinntions.

Exact values ofPo have been computed for a slab lattice [13]

and by Monte Carlo for a cylindrical lattice [10, Chernick]. By com-

paring values of P. as given by equation (36) with the exact values, we

find that our estimates of P. are somewhat higher than the exact values.

The comparison is given in table II. It is seen that increasing so, by

15% for slabs and 30~ for cylinders (as suggested for isolated lumps)

gives better agreement (to within - 57$typically) with exact values.

This increase may be consistently effected by increasing the surface

area of the fuel moderator interface (by 15$ for slabs and 30~ for

cylinders and spheres).

In addition, Monte Carlo calculations have been mde of cap-

ture probabilities in two uranium-water lattices [6]. The It4approxi-

mation was used for uranium scattering. In table III we give a compari-

son of results based on equation (38) with the Monte Carlo calculations

for those resonances for which the IM approximation is sound. The

capture probability (l-p) was taken to be
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‘lhbleII

Collision Probabilitiesj Po, for ‘1’wc)LatticesO P. = pro&bility t~t

neutron born uniformly in fuel makes next collision in fuel. With no-

tation of text:

Po(s) =

A. Cylindrical Uranium Rods (r

(~O); [10, Chernick]

= .76cm) in ~O; Volume (U) = Volume

xo/so( .073 q Po(Monte Carlo) Po(s) PO(1*3 so)

●73 .4fi ~ .005 .515 .471
I. .46 .625 .680 .641
2.% .763 .809 .781
5.84 .874 .895 .877

14.6 •8~ .002 .955 .947

B. Slab Lattice [13], with~/sl = 1.40.

ZJso Po(exact) Po(s)

.25 .28 .300

.50 .41 .462
1.00 .56 .632
2.00 .72 .774
4.00 .84 .874

PO(l.15 so)

.284

.442

.613

.760

.%4
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Table III

I

Resonance Capture Probabilities (l-p) for Single U238
Resonances; Monte

Carlo Results from [6] and Canonical Results from Equation (38) for .3
inch Uranium Rods

Resonance
Energy

6.7

21.0

36.8

66.3

103

191

v%o/vu = 4
Monte Carlo Canonical

.0393 .0438

.0186 .ol~

.olg2 .0161

.00618 .00599

.004$% .00531

.00295 .00301

/v
‘H20 U = 1“0

Monte Carlo Canonical

.1100 .1310

.0551 .0588

.0475 .0484

.0171 .0174

.0132 .0156

.0087 .0088

-40-



l-p =

and To/Nu was computed to be 32b and 18.25b (based on s’ = 1.3 so) for

the cases V1/Vo = 4 and V1/Vo = 1 respectively.

eluded Doppler broadening, as noted,in A~endix

results are not very accurate so that, with the

the 6.7 ev resonance, canonical and,Monte Carlo

ment to within about the Monte Carlo accuracy.

The calculations in-

B. The Monte Carlo

probable exception of

results are in agree-

For

s/Nu was 42.5b, so that the dense lattice correction

by T.) is of considerable importance for V./V. = 1.0

these calculations,

(replacement of s

and much less
u

significant for V1/Vo = 4.0.

The ideas of this section

complicated lattices. Suppose, for

Au

can be readily generalized to quite

_le, that the fuel was in clusters

of U02 rods cooled by D20 and each cluster imbedded in

of all, for one rod we compute a To from equation (35)

the surface to volume ratio of the rod, > is the mean

graphite. First

where s
o
is 1/4

free path in D20,

and s =s times ratio of rod to D20 volumes. Secondly, this To is added

to # ~he constant NR scattering cross section in rod) and the sum is

then interpreted as the macroscopic NR scattering cross section for the

cluster which appears in equation (38). Another To is now computed for

the cluster with so equal to 1/1 the surface to volume ratio of the clus-

ter, ~1 the graphite mean fl’eepath, and Sl=so times ratio of cluster to



graphite volumes. ~is value of To also is used in equation (38) to give

the final effective cross section.

v. Refinement for Elastic Scattering in Broad Resonances

For broad resonances which have considerable elastic IM scat-

tering, it is desirable to reconsider our treatment of thick lumps. In

the absence of NR scattering in the lump, all neutrons which are absorbed

at an energy E were assumed to have entered the lump at the same energy E

and, within the practical

are concentrated near the

in section III we assumed

width, the first collisions of such neutrons

lump surface. However it will be recalled that

that all scattered neutrons (includingthose

first scattered) were uniformly distributed throughout the lump. We thus

overestimated capture probabilities for neutrons incident on thick lumps.

In this section we will examine the magnitude of this overestimate by

considering one velocity capture probabilities.

In this one velocity problem, we consider

leads to no energy change and that NR scattering is

tion. Neutrons are,as usual, assumed incident with

that IM scattering

equivalent to absorp-

an angular distribu-

tion proportional to I@A. Let Pc be the probability that an incident

neutron is captured in the lump before leaking out. ‘Thevalue of Pc

which is implied by our development of section 111, in particular equa-

tion (lb) for @o(E), is

.
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4V1 (l-pl(E))~~~(E)
Pc=—

A ~ot(E) -.Po(E)~~(E)

with A = lump area. This is exact for the one velocity problem and for

exact Pi(E). If we assume that Pi(E) are to be computed for uniform

istropic sources, then the reciprocity relation (20) can be used to elim-
\

inate P .1 To make the results easier to understand we simpli~ notation

for the remainder of this section, calling

Denoting the resulting capture probability by P~,u (uniform),we have

~a (l-PO(E))
P =——
C,u s

&0 1-P-(E) ~

(39)

where, as before, so = A/4vo. If, in

for Po(E), Po= ‘t/(so+~t), we obtain

v

u ‘%

addition, we use the Wigner.form

Pc ~ (Wigner) and find:
9

(40)
z-l

P = +~’&
c>%? r o

In tables IV, pp..47 and 48, Pc u qndPc ware given for various
>, 9
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spheres

that in

tion in

We note

pective

and slabs. Values of P. are taken from [u]. It is observed

general Pc,w < P
c,u

, which should be expected from the dernonstra-

table I that the Wigner approximation is an overestimate of Po.

also that both expressions approach unity as ~a/so +w, irres-

of the ratio ~sfit. This is clearly incorrect smd the error

increases with increasing ~sfit. Both Pc,uand P are too large for
C,w

thick lumps and in fact PC,u (being larger) is evena slightly worse

approximation for such cases.

Before proceeding tither, it is interesting to note an alter-

native but similar approach suggested by Wigner [1] and recently employed

by Adler et al. [71. In this approfi~tion it is assumed that R4

scattering of a neutron entering the

escape probability. In other words,

where r is the path length, and thus

lump will.not change the neutron~s

neutrons are attenuated as exp(-~ar)

PC,a (Adler) is

PC,a = Go(~a)

ForaU@ incident angular distribution, Go is given by equation (30) and

z
Pc,a = : (1 - Po(xa))

o
(41)

If ~ =0, P
s =P We see from tables IV that unless the lUMPS are

C,u c,a”

thick and also IM scattering is dominant, P
c,a

and P
c>u are in close

agreement (with P ~ Pc,u). Thus it is no surprise that Adler et al.c,a
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[7] found little difference betieen IM resonance integrals for $38

based on Pc,a and PC,u”

If the Wigner form for P. is inserted in equation (41) we

obtain PC,W as given in equation (40). From tables IV, we see that

P >p Thus neither P
c,a C,w” c,a

nor P
C,u

are improvements upon the simple

Wigner approxlmtion, P for the case of thick lumps with much IM
C,w’

scattering.

Accurate values of the capture probability are readily com-

puted by numerical solutions of the transport equation. This has been

done for most of the cases of tables IVby use of the SNG code [18] with

‘he ’16
approximation. The accuracy of the solution may be checked by

comparison with exact solutions for purely absorbing lumps or infinitely

thick kq?s. For purely absorbing lumps} P and P
C,u c,a

are exact, with

P. taken from [M]. For infinitely thick lumps Pc may be computed from

the work of Chsmdrasekhar [19]. Ifwe let Pc,~(Voswo) be the capture

probability for a neutron incident at an angle 0 with the normal (cosO =

Uo) upon a semi-infinite plane medium (having W. neutrons emerging pew

collision or w. = ~s& ),then from [19],

PC,JIAO,Wo) =~1- W. R(vo, Wo) (42)

H(WO,WO) is tabulated [19, table XI]. For an incident source propor-

tional to Vo, we have
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(43)

This function has been computed by numerical integration and is given

in tables IV. It has also been compared with the S.< res~ts. From these—

comparisons, we conclude that for spheres

to better

in tables

than .1% and for slabs to about

IV.

Further approximate expressions

are available from diffusion theory; see,

JsJ

the S16 results are accurate

.2$. S~6 res~ts are included

for the capture probability

for example, Glasstone and

Edlund [201. For a slab of thickness t, the diffusion theory capture

probability, Pc d, is
>

P=
C, d

(44)

For very large t this approaches the diffusion theory capture probabil-

ity for a semi-infinite

P
c,dm =

medium, P :c,dm

(45)

Diffusion theory results are also given in tables IV. It is observed

that, as expected, Pc ~ is most accurate for lumps where scattering
>
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TableIV-a

CaptureProbabil~ttes-Slabsofthicknesst. l~orthevariousapproximationssee equationsin
the text as follows:

u:

D:

A:

w:

uniform, Pc,u - eqution(39)

diffusion,PC,d -equation(44)

Adler,Pc,a -e~uation(41)

Wlgner,PC,w-eqmtlon(40)

‘Ct = %6 orseepage45.

Za

%

1.0

1.0

1.0

.50

.%

.m

.20

.20

.20

.10

.10

.10

*
*

tza=.l tza. .~ tza = 1.0 tza = 3.0 tza = 10.0 tza. .Approximation

Exact

u
D

Exact
u
D

Exact
u
D

lxact
u
D

1?
A

.167

.I.67

.182

.400

.400

.454

.781

.781

.854

.*

.!?%?
1.07

1.00

1.00

1.07

1.00

1.00

1.07

.170

.170

.181

.408

.408
.747
.761
.814

.852 .853
.976
.899

.853
1.00
.899

.93
.446 .89!3

.173

.173

.s30

.402 .635
.714
.663

.658

.882

.681

.658

.$62

.681

.658
1.00
.681

.406

.426

.382 .5x8
.6P
.532

.173

.173

.178

.522

.8’71

.535

.522

.97

.535

.522
1.00
.535

.397

.396

.167

.I.67
.667
.781

.857

.*
.375 .952

1 .CH3

1.00

1.00.400

* Independentof ~a&
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‘Mble IV-b

Capture Probabilities- spheresof rediue r. For the variousapproximation.seee text as follows:

u: UnifOrm,Pc,u - equation(39)

D: diffusiontheory

A: AdlerPc,a - equat3.on(41)

w: Wigner P
C,w - equation (40)

Exact . 916 or see page 45.

Approximation

Exact

u
D

EXact
u
D

Exact
u
D

Exact
u
D

w
A

1.0
1.0

1.0

.50

.50

.%

.20

.20

.20

.10

.10

.10

*
*

r~a . .1 rZ~I=.3 rZa= 1.0 r.Za= 3.0 rZa= I.O.O rZ~.=

.nk

.12k

.I.29

.124

.I.24

.126

.123

.123

.124

.122

.122

.I.24

.IJ.8

.124

.323

.323

.99

.39

.319

.324

.37

.31.1

.311

.292

.*

.292

.286

.93

.703

.703

.720

.651

.665

.663

.547

.617

.*

.s46

.955

.&8

.878

.&7

.626

.832

.641

.995 1.03

.995 1.al
>1.0 1.07

.& .853

.$3 1.00

.819 .899

.65 . .658

.*3 1.00

.669 .6ti

.454

.595

.460

.571

.’703

.!X

.8I.6

.513.

.800

.s46

.52 .522

.937 1 al

.528 .535

.99 1.00

.995 1.00

* Independentof ~afit
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predominates (and 81Lsofor thin lumps in general).

I?Yomthe numbers In tables IV, the following conclusions are

drawn:

(a) Both Pc ~ and Pc a are quite accurate for thin lumps
$ 9

(~a/so S 1.0) or highly absorbing lumps (~afi8 ~ 1.0). Pc,u is more ac-

curate than P Both P and P
c,a” C,u c,a

are too large for finite Zs.

(b) For numerical work, accurate results would be obtained by

always using the smaller of P and P
c,u c,d”

/3$ onlY *ee
When considering resonance absorption in pure

resonances (at 36.8, 103, and 191 ev) have both IM scattering and~afis <

L+’38resonance integral [71.1.0. These contribute about 2@ to the

Errors due to use of P appear to be of the order of 10$ for these
C,a

resonances, leading to a net error of only about 2X in the resonance

integral. There are numerous other uncertainties of comparable magnitude

so that this effect does

(or Th2=) .

For resonance

the considerations

the most important

scattering. There

not appear tc)be of much importance for U
238

absorption in a lattice containing normal tungsten,

of this section are somewhat more significant because

186
resonance (W at 18.8 ev) has rn/ry 2 6.I. and IM

are also several overlapping W resonances in this

energy region so that a numerical integration of u is appropriate and
n,y

recipe (b) above could be used. For numerical work on some tungsten lat-

tices, we have used, however, a somewhat different recipe. This follows

the spirit of the canonical approdmation

-49-
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geometry enter only through the surface to mass ratio. We observe from

tables IV that the smaller of P or P~,d (diffusion theory result for
C,w m

semi-infinite medium) is always a fair approxinxationto the capture prob-

ability. A slight improvement upon P is given by
C,dm

where the first factor represents the probability that an incident neutron

makes a collision at all (in canonical approximation) and the second is

the probability of reflection from a semi-infinite medium (from diffusion

theory). Thus for our numerical work we used PC,n (numerical)where

(46 )

probability in table

absorbing luhps

values of the capture

accurate for strongly

P is compared with exact
c,n

We see that it is least
‘2

(a
K

2’1.0) of moderate thickness (~t/so : 1.0). For these cases we have

seen, table 1, that increasing so increases the accuracy of our approxi-

mation to Po. Equation (2’7)for so would presumably lead to improved

accuracy in effective cross sections ob~ined from P
c,n”

For several tungsten plane lattices, we have computed effec-

tive cross sections using Pc,n
and the relation
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!LkbleV

Capture Probabilities: values of P= ~, from equation (~) which was used
for some numerical work, are compa%d with exact values

Plane:
za/zt

Exact

Pc,n

Exact

P
c,n

Exact

P
c,n

Exact

P
c,n

5@??x:

Exact

P
c,n

Exact

Pc,n

Exact

P
c,n

Exact

P
c,n

1.0

1.0

.50

.50

.20

.20

.10

.10

za/zt

1.0

1.0

.50

.50

.20

.20

.10

.10

tza. .l tza= .3

.167 .400

.167 .375

.170 .408

.167
● 375

.173 .402

.167 .375

.173 .3&

.167 .375

tza=l .0

.781

.667

.747

.667

.635

.619

.5~8

.509

txa=3 .0 tza=lo .0 &a= ~

.* 1.00 1.00

.857 .552 1.00

.852 .853 .853

.830 .877 .899

.658 .658 .658

.659 .674 .681

.522 .522 .522

.526 .532 ●535

rxa=.l rXa=.3 r~a=l.0 rZa=3.0 $Za=10.0 rXa=~

.).24 ●323

.118 .286

.I.24 .319

.I.I_8 .286

.I.23 .307

.118 .2%

.I.22 .250

.118 .307

,,703 .*6 .995 1.00

“571 .800 .930 1.00

.651 .808 .82 .853

.571 .799 .867 .899

.547 .626 .65 .658

9573. .648 .671 .681

.454 .50 .52 .522

.498 .522 .530 .535
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(47)

These were compared with detailed multigroup Sn slab calculations which

used 1.2energy groups

from (47) agreed with

cases tested. On the

of P were in error
c,n

We conclude

between 8 and 23 ev. Effective cross sections

the Sn values to within better than 10~ in all

other hand values obtained with P or P instead
C,w c,u

byas much as 30~.

that for

is a useful approximation, and

to obtain accurate results.

thick lumps with much IM scattering P
c,n

that some such approxixmtion is necessary
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APPENDIX A

Systems.ticImprovement of NR and IM Approximations

Consider the integral equation for the neutron collision den-

sity, *(E), in an infinite homogeneous medium. Assuming that absorption

and s scattering are the only significant processes, we have:

(Al)

We abbreviate this as

$(E) =~E- K(E,E’) $(E’) all?’=K$ (A2)

E

where (A2) defines K,and Emx is some finite energy sufficiently large

that there is no contribution to the integrals from higher energies.

We are interested in the solution, ~(E), to this equation in

the vicinity of a single resonance at E = Eo. Suppose that for E/E.

sufficiently large, absorption is negligible, scattering cross sections

have a constant ratio, and the solution is known to be VO(E). At ~

-53-



energies let *O(E) be a solution of

u ~E

where KO(E,E’) is some kernel

Then define

K(E,E~) =

$(E) =

Substituting in equation (A2)

*1 =

KO(E,E1) $O(E’) dE’ =Ko$o (A3)

which is equal to K at high energies.

KO(E,E’)+ K1(E,E’)

vo(E) + *l(E)

and using (A3) we find that:

~$o+K$l (A5)

(Ak)

(A4b)

However, %Wo iS a known function, equal in fact to K* -~ TTNJSequa-0 o“

tion (A5) says that ~1 is that co~ision density which is given by a

source Kl~o. Equation (A5) is also an inhomogeneous Votterra integral

equation which may be solved by a Neumann series, i.e., the sequence

(o) . %Qo*1

&
1 = Kl$o+ KKlto

~(n)
1

= Klyo + ~~o +
● ● ● K%lqo
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converges to the solution of (A5). Thus the solution of (Al) is:

v = KOVO+ KIYO+ KKIVC)+%K1~o+ ● 00

or

$ = K~o+ KKl$o+#~$c, + ““” (A6)

Equation (A6) gives us a systematic procedure for finding the exact solu-

tion, *, from any approxhmte solution, $.. Of course, the procedure is

efficient only if ~. is a good approxtmtion to ~ (usually in the sense

that Kl$o<<Ko~o).

Before applying (A6) to the NR and IM approximations, it is

interesting to note that equation (A5) may be written

Y1 = KIV+ KoVl (A7)

Weinberg and Wigner [21] have essentially used this equation for the case

of a single scattering material plus absorption. Equation (A7) says that

$. is that flux, due to a source K,~, and in a medium characterized by
‘J.

kernel, Ko.

the Placzek

proximxtion

-L.

The solution mzybe written in terms of the source ~~and

function of the kernel, Ko. To make tither progress an ap-

was then made for $. In equation (A7) the kernel, Ko~ is

simple but the source, Kllr,is unknown. In equation (A5) the source,

KIWO, Is known but the kernel K is not simple.

Let us now see how equation (A6) may be used to systematically

improve upon the NR approximation.

Suppose that one has a mixture of isotopes with constant scattering
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cross sections and zero absorption, plus one

resonance, and that for all isotopes (l~. )E.

(* it uranium) with a

is larger than the reso-
OJU

nance practical width. For this situation the NR approximation Is

appropriate. !lheintegral equation is

Weknow ~(E) = *O = l/E forE

mation, we assume that in the

integral equation

sufficiently large, and for the NR approxi-

integrals * = *00 But *O satisfies the

where ~so is the off resonance scattering cross section. The kernel K

appears in equation (A8) and K. in equation (A9). Thus

Note that this equation, for *O(E), could have been obtained

explicit use of Koj i.e.$ for $ = $., the above equation is

Ki,$o= (K-1) $0. Introducing ~. = l/E, we find
\

without

simply
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J.

J“‘< ~

If we now ignore

scattering, so that Xs u -
>

arranged to read

(A1O)

interference between resonance and potential

z. rn/r7 ~a, equation (A1O) may be re-So,u

Ifwe further assume that~a~t :0 for E ~E1 <E/au, the upper limits

of all integrals may be set equal to El and we have

(All)

in agreement with the results of Spinney [10]. to+ ~90 furnishes an

improved estimate of ~. Note that the integral in (All) is less than or
rr

of the order of ~ # with r
(E ) P

tion, Kl$o, is smn?l compared to

condition for validity of the NR

the practical width so that the correc-

~. if (l-u) ‘0 >>rpt us is just the

approximation.
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In principle one could continue improving the approximation

by computing K ~ $., etc. Each successive term would carry the source,

Kl$o, through one additional collision.

way of obtaining the asymptotic neutron

observe that the common approxhation,

This would be an inefficient

density. It is interesting to

does give the correct asymptotic flux in the sense that then

rEmax

(Here Etin iS some energy well below

the integral of the source for $1 is

tion we have the correct flux at low

absorption.

the resonance.) This means that

zero so that to a first approxima-

energies also, i.e., the correct

The same technique can be applied to the case where IM scat-

tering is also allowed. Then as a first approximation we would have

The correction term K$o - $0 could be

Actually, Chernick et al.

(A12)

evaluated directly.

[6,51 improved the IMapprotima-

tion in a slightly different sense. They assumed that the NR approxima-

tionwas exact for moderator scattering and thus had an equation for *(E)

->8-



or the form:

For such an inhomogeneous equation, the solu$ion

is:

corresponding

where the kernel, K, is given in (A13). Chernick computed the

thus including the correction Kl$o.

It has been shown [5,6] that the above first

to the IM and NR approximations

(la) E. = rp. Either improved

IM usually more accurate.

give results which are

appro~tion is quite

It would appear that the above technique may

applicability.

(A13 )

to (A6)

(A14)

term K~o,

order corrections

quite accurate

accurate - but

for

the

have more general

.
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APPENDIX B

Expressions for Single Resonances

1. Unbroadened Resonances

Consider a resonance which is

single level expressions. Suppose that

described by the Breit Wigner

the target nucleus has zero spin

and zero velocity in the laboratory system and the neutrons have 1?= O.

Then the elastic scattering cross section, ael, and absorption cross

section, Ua, are (in conventional notation [22])

(Bl)
rn ra

aa=flA2
(E-EO)2+ +/4

I
i rn

I
2

a =fix2
el

+ 2ikR (I?2)

(E-EO)+ ~ i r

mat part of the elastic scattering due to resonance scattering, ael,res’

is

[

? 4kRrn (E-EO)
a a - 411R2= Y’(X2
el,res = el :

(E-EO) + r2/4 + (E-EO)2+ #’/41 (B3)
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where the second term is the result of interference between potential

and resonance scattering.

If we assume that the scattering cross sections of all other

isotopes which are present are independent of energy over the range of

the resonance, then effective cross sections may be computed analytically.

If we choose an energy interval (E3-<E<E2) which includes all signif-

icant contributions of the resonance, and assume I’/E<<1 so that l/E

may be taken out of the integral and rn assumed energy independent,

then from equation (7) for the homc~geneouscase (or equation (38) for

the canonical heterogeneous case):

whence,

Ilm ua(E’)
-—
- E. ~(E’) + f&l ~e9(E1) “

-ml+—’
~:

Here, f = 1.0 if the resonance scattering is NR, f = O if the resonance

scattering is Ill,and
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with Nr the density of resonance nuclei. For the canonical heterogeneous

‘by To+ ~~.case, replace X. Similarly from equation (6) we have

c
max ‘a

; E..
aa = 1

(B5)

[

Zm 1 Xmx(ra+fln)
‘2

in(r) 1 + -
fr 25
n kfi

[ 1

2fl’n47d?Nr

~m(l-~p) -; 1 -—
1 ~~ E. F

o 0 0 r.

In both equations (B4) and (B5) the factors

mn 4Yd#Nr
l-y- .p$

arise from interference between potential

Evidently they are frequently negligible.

mixtures and I’n/r* 1.0 this interference

and resonance scattering.

However, for very concentrated

can be appreciable.

2. Doppler Broadening with Maxwell Distribution

When considering nuclei at finite temperatures, the resonance

will be Doppler broadened by motion of the nuclei. For a solid at tem-

peratures

to assume

above its Debye temperature, it is a resonance approximation

that the nuclei have alhcwell distribution of velocities [23].

Consider a neutron moving in the -z direction, ~~~, having

in the laboratory system and E in the center of mass system,energy En

and let mr be the reduced mass of the neutron-nucleus systen.

Let v=, VP be the components of nuclear velocity parallel and

to the neutron velocity. Then

(mr = *).

perpendicular
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E=*+:+(F+V.)2] (B6)

The cross section in the laboratory system will be for a Maxwell distri-

bution of nuclear velocities:

Changing from variables v , Vz to .,vz,integrating first over Vz, and .
P

setting El = ~E,~= A we obtain:
%

m

Jr

-&(~ - ~)2

Et u(.~) e
-+(E+ ~)’

-e ~?

~ ~(En) - A (B8)
m

J[

-~(~ -F)2 -~(~ + p)
e -e

7

~1

This expression was obtained, for example, by Feshbach and Goertzel [24].

Equation (B8) has been us~kiby J. Devaney [25] together with

single level expressions for cr(.~)for

’39, fjs, ~dw over asections for I%

to 100 ev). For moderate temperatures

exponents about En to obtain the usual

computing Doppler broadened cross

large range of

it is valid to

expression:

temperatures (up

-d Et and the
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f

(n - (En-E~)2/A2
U(ES) e mc

u(En) 2 0
~me-(%-E’ )2/A2 ~,

(B9)

with A’ = 4kTEn/A.

It can be seen that in general, in going from (B8) to @19)we

neglect terms of relative order (4kT/Nn)l’2 which is usually a small

quantity. It is interesting to note that the integral of a(En) is given

more accurately, i.e., the error terms are here of order 4kT/AEn. Equa-

tion (B9) is, for common temperatures and resonance energies, a suffi-

ci.entlyaccurate expression. It is commonly derived, following Bethe

and Placzek [26], by simply neglecting the quadratic dependence of E

nuclear vd.ocities.

on

For single level Breit Wigner expressions for u(E1), equations

(Bl) and (B3);

-ra/rw[2(En-Eo)/r, A2/r2]ua(En) = u

where

J
w e- (x-Y)2/4e

qf(x,e) . ~ dy
2fi -w l+y’

~ (x, Cl) is a tabuhted function [27]. Furthermore

(B1O)
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where

(Bll)

These expressions have been frequently used in computing reso-

nance integrals. In particular if we ignore the interference term

(X(X,Q)), and consider the homogeneous case (or canonical heterogeneous

case) we have (from equation (6)):

where

(B12)

(B13)

‘lhefunction .(~,p) has been tabulated by Dresner [8] and Nordheim [7].

For the isolated heterogeneous case, non-canonical results are

available from the work of Nordheim [7] for cylinders, spheres, and

slabs. Interference between potential and resonance scattering was

ignored. When only NR scattering is present the tabulations [7] cor-

respond to use of our equation (21) with PO(E) from [u?]. Nordheim’s

treatment of IM scattering is slightly different

in the comparison of equations (39) and (41) the

much different. For purely IM scattering in the

some of Nordheim’s tabulations are in error.

from ours, but as noted

results should not be

heterogeneous case,
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Rothenstein [13] has investigated the effect of interference

between resonance and potential scattering at finite temperatures. He

has expanded the denominator of equation (B4a) for small~
el,res(E’)

and has computed the resulting interference term using eq~tion (Bll).

The interference decreases with increasing temperature, thus partially

canceling the normal temperature broadening effects. As can be seen

flromequation (B4b) the effect is important if and only if (a) f = 1.0,

i.e., the resonance scattering is NR, (b) rn/I’- 1.0, and (C) 4fi%#(To+~:)

* 1.0. If all these conditions are satisfied the temperature coefficient

due to interference may be a moderate fraction (~ 20~) of that due to

broadening.

~. Conditions Under Which the Single L&vel Results Are Inapplicable

Expressions which have been so far derived in this Appendix

have been based on the assumption that the relevant absorption cross

section could be represented by single level expressions, which do not

noticeably overlap. This assumption is invalid under a number of

conditions:

(a) The fission cross sections of the fissile isotopes show

interference between various levels [28].

to

At

(b) For a single isotope the absorption cross sections due

various levels may seriously overlap if the levels are closely spaced.

sufficiently

broadening will

high

make

temperatures [25] or neutron energies [24], Doppler

the overlap very serious.
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(c) In a mixture of isotopes, overlap of resonances in the

various isotopes may be serious.

In all the above cases, if the cross sections are known in

detail, the desired integrations may evidently be performed numerically.

An Il?Jl704 code (SET) was written at Los Alamos by B. Fagan to perform

integrations corresponding to the homogeneous (and thus canonical hetero-

geneous) cases and, less conveniently, to equation (21) for the isolated

heterogeneous case for spheres and slabs. Provision was made for use of

equation (47) for broad scattering resonances. Cross sections were

usually obtained from the work of Devaney [25]. The code does not

decide whether scattering should be treated as IM or NR. The accuracy

of the numerical integration is of the order of 1$.

In case the cross sections are strongly overlapping and known

only statistically. Goertzel et al. [241 have used statistical

considerations to compute effective cross sections.
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