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ABSTRACT

The theory of effective resonance cross sections for reactor
calculations is reviewed in a general form. In section II, we discuss
homogeneous mixtures and the NR and IM approximations, In section III,
theory for capture in isolated lumps is discussed, IM, NR and canonical
approximations are developed and it is noted how higher accuracy may be
attainable by retention of the spatial heterogeneity in a multigroup cal-
culation, In section IV theory is generalized to dense lattices and a
simple transition between the homogeneous and isolated lump case, It is
shown that quite complex lattices can be treated in canonical form. In
section V we discuss further improvements for lumps with strong IM
scattering.

Appendix A contains a discussion of the mathematical basis for
improvements on the NR and IM theories and Appendix B notes various Breit-
Wigner single level expressions and when they cannot be used.

An intent of this report is to provide a unified and general
picture of effective resonance cross sections which will be used as the
basis of a digital code for computing effective cross sections.

ACKNOWLEDGEMENTS

The author is indebted to Josephine Powers, Laura Stone, and
Bertha Fagan for computation of nearly all the numerical results in this
report, and to W, Rothenstein of BNL for communication of results in
advance of publication,







I. Introduction

Neutron cross sections of most heavy elements exhibit prominent
resonances in the energy region between roughly .l ev and 10 kev. For
reactors in which neutrons are present in the space-energy region of such
resonances, the neutron flux* may be a rapidly varying function of both
energy and position., The problem of taking these rapid variations of
neutron flux into account has long been recognized as a central one in
reactor physics, and its solution has usually been attempted by the intro-
duction of effective cross sections, cross sections which are slowly vary-
ing functions of energy. An effective reaction cross section is generally
defined by the requirement that when it is multiplied by a flux which is
slowly varying in space-energy and the resulting product is integrated
over an appropriate space-energy region, it must yield the correct reac-
tion rate, which is given by the integral of the true rapidly varying cross
section times rapidly verying flux.

The most important example of an effective cross section is the

"effective resonance capture cross section" for the case of heterogeneous

*¥Flux 1s here taken to mean number of neutrons per unit volume times
absolute value of neutron velocity.
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natural uranium reactors. A theory for this difficult case was first
developed by Wigner, et al., [1], [2]. Although the qualitative predic-
tions of the theory were confirmed by experiment in the early 1940's, an
accurate application of Wigner's theory was not possible at that time
because of inadequate information on the U238 resonance parameters,

More recently, three developments have stimulated an advance in
the theory of effective cross sections. First of all, resonance parameters
have been measured fairly accurately for many of the low lying levels of
U238 and other isotopes and are now available for use in calculations.
Secondly, at the 1955 Geneve Conference, a Russian theory of effective
resonance capture was reported [3] which appeared to be quite different
from the Wigner theory. This apparent discrepancy prompted critical re-
examination of both theories. Third, modern electronic computers have
become avallable for performing Monte Carlo and other accurate calcula-
tions of a lengthy nature. These have afforded a number of checks on the
various assumptions invoked in constructing simpler theories. As a result
of these developments and considerable theoretical work, the theory of ef-
fective resonance cross sections 1s on quite firm ground in a number of
practical cases, and difficulties and limitations are better understood.
The status of the theory and comparison with experiment have been reviewed
in a number of recent papers [4] - [10].

In this paper, we present a review and amplification of current
theories in a general form applicable to a variety of multigroup calcula-

tions. We begin with the case of a homogeneous mixture of moderator and




absorber (section II), then discuss the case of isolated lumps of an
absorber imbedded in a moderator (section III). The theory is then gen-
eralized to an array of lumps in a moderator (section IV) - a situation
intermediate between the homogeneous and isolated lump case. A modifica-
tion of the theory to account for broad resonances with much scattering
is made (section V). In Appendix B some of the theoretical expressions
are applied to single Breit-Wigner resonances, which are either unbroadened
or simply Doppler broadened,

An intent of this report is to provide a unified and general
picture of effective cross sections which will be used as the basis of a
digital code for machine computation of effective cross sections. It is
hoped that the theory is general enough to be applicable to such diverse
situations as intermediate homogeneous reactors, heterogeneous reactors
with either widely or closely spaced fuel lumps, resonence absorption in
control elements, and critical assemblies in which fuel is inhomogeneously
disposed.

Before proceeding to speclal cases we note a general principle
which will be employed in constructing all subsequent expressions for ef-
fective resonance cross sections. Consider a resonance at energy EO and

characterized by a practical width rp over which "“the resonance is impor-

tant,”
T T
Let E be an energy within the range EO - 52 <EX< E, + Z?’ and

.let S(E) dE be the source of neutrons being elastically scattered into the

range of dE about E. We shall assume that this source of neutrons is
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primarily due to collisions of neutrons which had energlies before colli-
sion substantially greater than EO + Pp/2. This means that the source of
neutrons at energles near EO will be very little perturbed by the resonance
in question and that S(E) will be a slowly varying function of E near the
resonance., It is usually easy to make a good estimate of the source of
neutrons S(E) by neglecting the resonance. From this assumed source we
then calculate the neutron flux in the space energy region of the reso-
nance and from the calculated neutron flux we obtain the effective cross
sections. The essential point is that in order to obtain a simple S(E),
the resonance in question should be narrow compared to the maximm energy
loss in elastic scattering from the moderator. We then work from known

source to flux to effective cross section.

II. Homogeneous Case

Theory for the homogeneous case has recently been reviewed by
Chernick et al, [4, 5, 6, 10]. We shall employ essentially the NR and
IM approximations.

Consider a homogeneous mixture of J isotopes and suppose that
at energy Eo’ one isotope has a resonance which absorbs and scatters neu-
trons. The other isotopes are assumed to have constant scattering cross
sections and no absorption near Eo' JLet the total macroscoplic scattering
) where ¢ is the

res, j res, J

contribution of the resonance to the total cross section, °j' Let us now

cross section off resonance be 2, =2 N.(o. - o
IR = W A
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define the practical width (pp) of the resonance, first introduced by
Wigner [1], as that energy range about E_ over which the total resonance
cross section ZT exceeds Zb' The practical width of a resonance is thus
that energy interval over which the macroscopic cross section is predom-
inantly due to the resonance. It depends on the ratio of moderator to
absorber densities as well as on the microscopic cross sections.

For an isolated Breit-Wigner resonance and ignoring Doppler
broadening and interference between potential and resonance elastic scat-

tering, we would have

SZ\YQS(E): 20
lE-€, = [}

res

and hence ("r1 - (_,7. z!ff :—Zo

For a low resonance, having Zmax S 2.0, instead of setting I"p =0, it is
more appropriate to replace it with the natural width, I', as a measure of
the width of the energy region over which the resonance is important.

This suggests using a generalized practical width [5]:

L _+2

Pp =T ma.xZI <] (2)
O



For the homogeneous case, at energy E, the neutron flux, @(E),

will be given by the integral equation:

J

J 3 4E*
& Ny 05(B) §(E) = ¥ 7o é Ny og 5(EY) #(E") 55

(3)

A
A= 15“4% where ¢ is the elastic scattering cross section of the jth isotope,
E

) Ssdp -1
Floz -4 J _y2
"y and oz.j = (foi) is one minus the maximum fractional energy loss (AJ =
J

atomic weight)., Equation (3) is exact for the energy range where neutron
scattering is elastic and spherically symmetric in the neutron-nucleus
center of mass system. This energy range (.2 ev S E < 10 kev) is precise-
ly that of greatest interest for resonance reactions.

We now divide all isotopes into two classes depending on whethe;
the maximum energy loss at EO, (1 - aJ) Eo’ is greater than or less than
the practical width:

If (1 - aj) EO >> Pp’ clearly the resonance is narrow compared
to energy losses in scattering from the jth material, For such narrow
resonance (NR) scattering, the dominant contribution to the integral in
equation (3) comes from E' >> Ej + Pp/z where, for a single resonance, we
know @ (E') is proportional to 1/E*, say @(E') = @/E'. Thus if the off
resonance scattering cross sigtion of isotope j is coj’ the j integral in
equation (3) equals NJ Gog g .

If, on the othEr hand, (1 - aj) E, << Pp, the resonance is wide
compared to energy losses in elastic scattering from the jth material.

For such an isotope, a first approxdmation is to neglect the energy loss
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in elastic scattering. For such scatterings we treat the scatterer as if
it had infinite mass (IM approximation) in which case the jth integral on

the right hand side of equation (3) equals N g j(E) Z(E) and thus cancels
2

J
the corresponding term on the left side., This is a particularly good ap-
proximation when applied to a material with a strong resonance since then
GS’J(E) ¢(E) tends to be constant over the resonance.

Let us now treat all terms in equation (3) which have (1 - aj) EO
P Pp by the NR approximation (right hand integral = Zoj 7/E) and all terms
vhich have (1 - aj) E < Pp by the IM approximation (right side cancels

left). We obtain

Zin W, @ + o, @) 9@ - 5, %3 (va)
where
NR NR .
GS’J(E) = GS’J(E); cO’J =9, 3 if (1 - aJ) E 2 Pp (4v)
=0 =0 if (1 - a;) B, <T_

If we now let:

Jd
NR
2123 = 1 N5 9,
J
Iy = ) Ny(0gs(B) + o, () (52)

equation (4a) may be rewritten:
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g (E) ZlgR d (5b)
B ZI:R (E) E

For any reaction cross section, cr(E), which may be a part or
all of the resonance absorption cross section, the reaction ratesis the

product @(E) cr(E). We now define the effective reaction cross section

. corresponding to an encrgy interval E. S E < E, as the integral of the

1 2
reaction rate divided by the integral of the flux, or with the flux from

equation (5b):

O'ré! : E2 \ [rﬁ\_ CV(E\J«Q (6)
L f 1 GE Je, s%%ey T
‘| JE, IR E ' . t )
N -7rl-2> .. (E) -
2//»' g& Pra : Lty

T‘:;‘%}—‘;' &

-~

, 2t E
This is the fundamental rgéult for the homogeneous case. Note that if

cr(E) were a constant, we would obtain E; =0_.
It is easy to see that equation (6) is equivalent to the require-

ments (a) that

c E, o_ (E) E
L=j;2r__§§_/gn_2

NR E
t 1 Ly (B) 1

and (b) that if cr(E) is a constant, then E; = 0. Thus we are essentially
replacing the rapidly varying cr(E)/ZgR(E) by its slowly varying average

over an interval large compared to the resonance practical widih.
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For very narrow resonances (Pp < E2 - El) the denominator of

equation (6) departs from ZgR only over a small interval and we have

z:NR (7)

This is evidently a good approximation whenever the average departure of

the flux from @ is small compared to 3, i.e., whenever

f¢(E) dE ~ g In E2/El (8)

A number of comments are now in order.

(&) Wide Resonances: If the resonance is wide for all scat-

terings, then the above treatment cannot be used. This is because the
source in equation (4a) was given by NR scattering. In fact, only if the
scattering is predominantly of the NR type (so that neutrons will usually
skip over the resonance) can the source in equation (4) be so simply
obtained. Thus it is necessary to have ZgR ~ Zb' For the general case
of broad resonances, equation (3) must be integrated numerically.

(b) NR and IM Accuracy: The accuracy of the separation of the

scatterings into NR and IM types has been investigated by Spinney [10] and
Chernick [5,6]. From the integral equation (3), they derived the next
order corrections to the NR and IM approximations for the source integrals.,

The general basis of these corrections is given in Appendix A, In addition,
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for the particular case of a mixture of U238 and H (equal atomic densities)
results were compared with numerical solutions of the integral equation.

Reaction rates were computed for the resolved resonances and using alter-

natively NR, IM, and exact recipes for the U238

elastic scattering, as
well as improved NR and IM expressions. For this case, equation (7)
glves results correct to within about ten percent for each resonance.

For more dilute systems (higher H/U ratio) the accuracy should be better.

Comparable investigatlions are in progress for other moderators.

(c) Effective Scattering and Transport Cross Sections: Equa-

tion (6) was taken to define an effective reaction or resonant scattering
cross section if such scattering is of the NR type. For such a case we

would obtain an effective total cross section:

E E '

SNR, -1 2 1 dE 2

EN? - [P ot i (9)
E, 2, (E) 1

In the ahsence of IM scattering this is, coincidentally, an appropriate

total cross section for neutron transport in the diffusion approximation.,

If there is also IM scattering, it is appropriate to add the off resonant

SR

n in order to obtain a total cross section for neutron

part of Z%M to
transport. Normally transport and leakage of neutrons in the resonance
region is not very important,

(d) General Practical Width: For Doppler broadened or over-

lapping resonances, the definition of the practical width, equation (2),

needs amplification. The important physical point is that over a practical
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width the probabilities of various reactions per collision should not
change much. Thus if a macroscopic cross section exhibits a rise, R(E),
above a more or less constant background, B, the practical width is either
the interval over which R(E) > B or the width of R(E) at half maximum,
whichever is greater. For more general situations the practical width

is not a very useful concept.

(e) Many Resonances: When more than one resonance is present,

equation (6) still usually represents a good approximation for any energy
interval (El’ E2) over which the slowing down density does not change
much. For widely separated resonances, the reason is that between reso-
nances, the neutron flux will usually recover to its asymptotic form

(~ AE/E) for no absorption in that region. This may be seen by consid-
ering absorption at a resonance energy as a negative source at that
energy and noting that the resulting departures of the flux from its
asymptotic value [11, 21] are generally unimportant. For relatively
closely spaced resonances, the NR scattering source will average over
many resonances and be little influenced by any particular one., We are‘
currently investigating some of these points more quantitatively,

(f) Multigroup Limitations: If a substantial fraction of the

neutrons within an energy group is absorbed, then the competition between
absorption and other processes will not be accurately given by our simple
effective absorption cross section, This is because the spectrum within
the group will be strongly dependent on the absorption and will not be

accurately given by our simple assumptions. The difficulty is common to
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any group which has strong absorption, irrespective of whether it occurs

in resonances., The denominator of T equation (7), will not take this
difficulty into account. In this case we may still frequently replace
the rapidly varying cr/Z% by its slowly varying average over an energy
interval (S;/it) and treat the slowly varying capture cross sections by
any appropriate multigroup means, for example as indicated by Hurwitz in
(14].

Various analytical and numerical results for single Breit-Wigner

resonances are noted in Appendix B.

IIT. Isolated Heterogeneous Case

Let us first consider isolated lumps of absorbing material im-
bedded periodically in a moderator. By isolated we mean that the lumps
are separated by many moderator mean free paths. Since the array is
reriodic we confine our attention to a cell consisting of a single lump
and its surrounding moderator. Let Pi(E) be the probability that a neutron
of energy E which originated in region i will make its next collision in
region i, and let 1 = O denote absorber lump and 1 = 1 denote moderator.
Following Chernick [10] we will express effective cross sections in terms
of PO(E) and Pl(E).

Let us again suppose that we have a single resonance at energy
Eo' For energies well above Eo’ we will have the unperturbed flux 5'%§

throughout the lattice., For energies near Eo’ the flux will depend on

vhether we are dealing with a narrow or broad resonance (NR or IM scattering
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in lump) and to make the distinction we must define the practical width
of a resonance in the heterogeneous case. Let Z be the lump scattering
cross section off resonsnce, L (E) be the lump total cross section and

- (E)

Z A(B) = Z +(B) - z o+ Then the quantity Er——-—-PO(E) represents the

probability that a neutron§ in thellump will make its next collision

"with the resonance," and in the lump. We define the practical width,

T o’ of a resonance to be that energy interval, about E o? Over which
Zo (E)

P (E) > <.

2 (E) o} 2

ot

tical width_for the homogeneous case. For weak resonances or thin lumps,

This represents a logicel generalization of the prac-

for which 295 PO never exceeds 1/2, we may as before let the practical

ot
width equal the full width of the resonance at half maximum,

We will now write down integral equations for the neutron fluxes,

classify scatterings into NR and IM types - according to whether (1 - ) Ej

is greater or less than Pp, and approximately evaluate the integrals for
each type of scattering.

Let ¢i(E) be the space average flux in region i. Let Vi be the

volume of region i, N, , be the density of the jth isotope in reglon i,

iJ

and let ch(E) be the scattering cross section of isotope j. Then, by

definition of Pi(E)’ the following exact integral equations hold¥*:

*Note that these equations are exact for an arbitrary array of absorbing
lumps provided that region O is interpreted to include all lumps and
region 1 all moderator. We assume, of course, s wave scattering.
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E/a

J
1 R ¢y GE!
Zot (B) B,(E) = 7 ®) 2 T [E Moy 05 (B &)
y (10a.)
\'s J E/a
P N R e . o
C AR E) ¢ L MJ[E N oy B By (6 I
J E/oz'j
Z.(E)@ (B) =P 1 (E) Z 1 1-a f N sJ(E') g, (e ) &
(10b)

E/o 4E
+ (1P (E)) 2 lemf RN FRCOE

Equation (10a) says that the collisions per unit volume in the lump

(ZO t ¢O) are equal to the number of neutrons fer unit volume arriving at
energy E 'in :che lump (first sum of integrals) times probability that a
neutrory\ n the lump makes its next collision there (PO(E)) plus number
of neutrons per unit lump volume arriving at energy E in the moderator
(V /V_ times second sum of integrals) times probability that a neutron
'Rin the ﬁoderator makes its next collision in the lump (l-Pl(E)) Equa.-
tion (10b) has a similar interpretation with moderator and lump roles
interchanged.

We now simplify the integrals exactly as for the homogeneous

case. Thus for NR scattering [(l-aj) E, > I‘p] we approximate g(E!') in

the integrand by @/E, to obtain:

E/o aE!
% JJ g (E* —=Njc % : IR (11)
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Here we have assumed o

then o

8J

8J

is the potential scattering cross section.

to be constant; 1f lsotope j has the resonance,

For IM scattering

[(l«zj) EO < Pp], we assume that there is scattering without energy loss

to obtain:

1 Efo

J
1< N5 9

JED BED) SN o @) pE) - W (12)

E

We require that the moderator scattering should be primarily NR.
This insures that g, ~ @/E for all energles and leads us to assume that all
integrals over ¢l may be approximated by the NR expression (equation (11)).

In the lump, some scattering may be NR and some IM, For the NR scattering

we use Zgg, the off resonance scattering cross section, and for IM scat-

tering we use Z%g(E), the full scattering cross section. With this nota-

tion, we substitute equations (11) and (12) in (10) to obtain:

-5 -
f'im,& /\/! 0”3‘ WWW%K
Bl o (B) B(E) = P (E)[Z?‘Ra + IN(E) g (E)]

(13a)

<3

1

V—OZ

1

=S

+ (1-P) (B))

] Vo[ <R 7
Z,,(E) ¢, (E) = P (E) Z, T+ (1-P,(E)) VI[Zoo T (13b)

IM
* Lo ¢O(E)]

Solving (13a) for ¢O(E), ve find

V
1
74
(o]

P_(E) I + (1-P, (E))
g_(x) -

(k=)
Zot(E) E




and substituting this result in (13b), we have

v

P (5) T, 7 v T, Ion 4 (1-p) 2T
g,(E) = -:———l + (1-P_(E)) 79 Zﬂg + 2 g (14b)
t(E) . 1 @ - Po Z%z/zbt) Z'o’c Zit(E)

Ordinarily, for isolated lumps, the second term in the expres-

sion for ¢1(E) is small compared to the first, because (l-PO) VO/Vl is
small, Also Pl = 1.0 so that for a moderator without absorption

g, () ~ 2 (15)

The number of reactions per atom per sec in the lump correspond-

ing to a reaction cross section, o o’ is

r
Eb
j; o_,(E) B (E) &

while the number of scatterings in the moderator is

JFEE o, ¥.(E) aE.
E 171

If we wish to homogenize the cell and use the real moderator scattering

~

cross section and effective absorber cross sections, 0.o0 ¥e mist set

~ [ o, (B) g (E) aB/E

ro- T g, (E) aE (6
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in order to preserve the correct competition between lump reactions and
moderator scatterings. If we now approximate ¢1(E) by equation (15), use

equation (1l4a) for ¢O(E) and denote the resulting effective cross section

by g;o’
NR vy
_ 1 B PoB) Zoo + (1 - P (E)) 7 Xy E) 4
g!' = T = O ZII‘O _E_ (17)
S, 2k, 1-p,(B) ZN(E)/Z_ () ot (F)
1

This is the basic result for the isolated heterogeneous case. It will
evidently hold for an array of resonances as well as & single resonance.
If we use the full expression for ¢1(E) (equation 14b) in

equation (16) we find (assuming no absorption in moderator):

gt
~ ro
cro = &t S IM NR (18)
L., -X -2
1. ot os 00
2V, /9,

When simple approximations for Pi(E) are introduced it will be seen that

equations (17) and (18) are exmctly analagous to equations (7) and (6) for

the homogeneous case. We shall also show (section IV) how to arrange a
simple transition between the isolated heterogeneous and homogeneous cases,
thus treating a large class of homogeneous and heterogeneous problems on a
unified basis.

Before considering expressions for Py (E), let us note how the
effective cross sections should be treated if one does not wish to homo-

genize the cell but wishes to retain the spatial heterogeneity.
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Indeed, in many practical cases one may wish to retain the
heterogeneity in a calculation. For example, in a cell calculation one
can thus compute the fast effect, resonance absorption, and thermal ab-
sorption in a single multigroup calculation., In such a treatment, reson-
ance disadvantage factors appear as a result of the calculation rather
then as somewhat ambiguous assumptions. The geometry will then be treated
realistically and the cross sections simplified to be constant in each
energy group. We seek effective cross sections for the lump: iot, igs,
ioa. For this case, equations (13) will still give the space averaged
fluxes, with all cross sections rgplaced by effective cross sections
independent of energy, and with the distinction between NR and IM now
based on the group width - not resonance . practical width., Thus, for
example ZyR g-will be replaced by the source of neutrons scattered down
from higher groups. This is usually a small contribution which may be
ignored, so that we have iot = ioa + 2%2.

Computing the reaction rate from (13a) with effective cross

sections and equating it to the reaction rate in (17) we have:

v
fPO(E) Zﬁg + (1-P (E)) v—i Zl 23 (E)

v M (&) Lo (E) E
0F) FI & 1-7, —(i(‘;;—) °
Sl ke ot (19)
1-7 zﬁ z°t f%
© i;t

00—




~

Note that P. and P are determined by geometry, z s z » and.ZlI¥ Thus
1 o 1’ ot os

if we use equation (19) with ZJ(E) equal in turn to each reaction cross
section and finally to Zot(E) we may use the results to obtain the cor-
responding effective cross sections. lLater we will see that introduction
of simple forms for Pi(E) will make equation (19) very simple to use.
Note that if the absorber contains considerable good moderator one can
retain §§§ on the left side of (19). More simply one can use just equa-
in

o

o With Zoo being a transfer cross

tion (19) and set i%g = igt - EOa
section computed without resonances.

We must now consider appropriate expressions for Pi(E) for
isolated lumps. It has been found that it is generally a good approxi-
mation to compute Pi(E) as if the source of neutrons at energy E were
uniform in space and isotropic in angle in region i [4, 5, 6]. It is
clear that this is a consistent assumption in the moderator, for we have
assumed that the source of neutrons arriving at energy E in the moderator
is unperturbed by the absorbing resonance, i.e., we have assumed NR mod-
erator scattering. (However if the lump is strongly absorbing over a
large range of energy, the NR scattering source in the moderator and mod-
erator flux will be depleted near the lump and this must be taken into
account. See discussion at the end of this section.) Likewise, if NR
scattering is the primary source of neutrons in the lump, that source is
uniform and isotropic.

However, if streaming from the moderator and IM scattering are

the primary neutron sources in the lump, then for a sufficiently thick
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lump and an energy near the resonance maximum the neutrons will be con-
centrated near the lump surface. In this situation, it would appear that
PO(E) should not be computed for a uniform source. However, it has been
shown. [5] that when one considers the integration over an entire res-
onance, the lump absorptions are surprisingly uniform. The reason is
that most absorptions will occur at energies of the order of the practical
width of the resonance away from the maximum., For these energies the lump
is not very thi<k and the neutron distribution is quite uniform. Thus for
integration over an entire resonance PO(E) may still be reasonably approx-
imated by its value for a uniform source. An additional practical justi-
fication for this approximation is that frequently'Z%g << Zot so that a
good approximation for PO(E) (in equation (17)) is unimportant. In section
V we will consider other and better approximations to PO(E) for the case
of large IM scattering contributions (Z%g ~ Zot)' .
For the remainder of this section we shall assume that PO(E)
and Pl(E) are to be computed for uniform and isotropic sources. Pi(E)

then satisfies the general and exact reciprocity relation:

(1 - P_(E)) Zot(E) v, = (1 - P (E)) Zl(E) A (20)
as may be understood by the following argument. Suppose that everywhere
in the lattice, there exists a flux @(E) which is constant in space and

isotropic. Thus there 1s zero net neutron current everywhere in the

lattice. The total number of neutron collisions in region i is
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Z(E) Zi(E) Vi’ and each collision removes a neutron from energy E. Such
a distribution would be maintained by a source equal to @(E) ZO(E) per

unit volume in the lumps and @ (E) Zl(E) per unit volume in the moderator.

Then the total flow of neutrons from lumps to moderator is
(1 - P (E)) I (E) V, B(E)

and the flow from moderator to lumps is (1 - P, (E)) Zl(E) V, #(E). The
condition of zero net flow is just our reciprocity relation, Equation
(20) is thus valid for any lump configuration - provided that P, and Py

are to be computed for uniform and isotropic sources.

The reciprocity relation may be used to eliminate Pl(E) from

equation (17), obtaining:

ZNR
(oo}
' B, 17 BB (- 52)
g¥° ) lE%\/; i 1M Ot(E) °ro(E) %? (21)
an— l-P(E) oS (E)
' © Z'o’c (E)

PO(E) has been discussed and tabulated by Placzek et al, [12]

for isolated slabs, spheres, and cylinders. For a slab of thickness t

mean free paths,

%=1-%%-E3wn (22)

For a sphere of radius R mean free paths
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N Mliaca. Bk = P =1- ﬁ [2R2 -1+ (L+ 2R) e'zR] (23)
- _3_. ! * ( 3‘ ‘L" '+ o
= 3D -1 +;§D a.aoD+

For cylinders PO is expressed in terms of Bessel functions and tabulated.
[Note that our PO = Pc of reference [12]]. Evidentl; these expressions
can be inserted in equation (21) and effective cross sectioms can be thus
computed,

A simple and useful approximation to PO for isolated lumps was

originally suggested by Wigner [1], namely

th(E) Lump Surface
s + ZOt (E) np  volume

P_(E) =~

Here s-l is the mean chord length of the lump [12]. This approximation,
variously termed the Wigner or canonical approximation has recently been
much used by Chernick et al, [5, 6, 4], not only because of its sim-
plicity but also because its introduction causes the equations for the
isolated heterogeneous case to strongly resemble those for the homogen-
eous case as we show below, Furthermore, the canonical expression for
PO(E) will be shown to be readily generalizable to lumps which are not
isolated (Section IV) and for which more exact expressions for PO can be
extremely complex.

If we introduce the canonical approximation to P (E) in equa-

tion (21) we obtain:
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E S +
~ 1 2 o0 dE
o! = ——=—o0_ (E) = (25)
ro E Jf ro E
) E2 El s + Zgi(E)
1

where Zgi = Zot(E) - Zzz(E). This is identical to equation (7) for the
homogeneous case provided that s is interpreted as an added NR scattering
cross section representing leakage from the lump. It has been shown [5]
that this interpretation of s is more general than would be inferred

from the above. In particular, if one merely makes the NR approximation
for moderator scattering and then inserts the canonical forms for Pi(E)
in the integral equation (10a) one obtains an integral equation identi-
cal to equation (3) for the homogeneous case, with s appearing as an NR
scattering cross section. From there on, any treatment one may wish to
apply to the fuel scattering (NR, IM or improved versions) can be carried
out identically for both homogeneous and heterogeneous cases, Also, from
our discussion at the beginning of this section, we see that in computing
the practical width of a resonance s may be used as a bona fide scattering
cross section. We thus see that the canonical approximation leads to
simple expressions for effective cross sections for isolated fuel lumps
which are analagous to those for the homogeneous case.

Note that the canonical approximation does not make the denom-
inator of equation (18) into a form similar to that for the homogeneous
case, equation (6)., This is clearly correct, for in the homogeneous case
if On is independent of energy E; = 0. However, in the isolated lump

case o., # o, even for constant O
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We note also the apprbpriate canonical expression if one wishes

to retain heterogeneity in the final calculation., Equation (19) becomes

s ¥, E, s+ I8
- [Pt & (26)
s Z'o’c - Z'os £n Eg E; s+ Z'o'c, (E)
1

where all scattering on the left has been assumed of type IM. ij denoctes
a reaction or total cross section in the lump. Evidently if all scatter-
ing on the right is IM and all cross sections are constant, ij = Zj'
Equation (26) is probably more accurate than equation (25) since similar
approximations were made to obtain both sides of equation (26) and errors
in the approximations should cancel to some extent.

It remains to discuss the accuracy of the canonical approxima-
tion for PO(E). For large values of th(E)/s, the canonical P -1 - s/th
which is the correct limiting value [12]. For intermediate values of
Zot/s’ the accuracy of the canonical approximation may be found by compar-
ison with the exact values of PO in Placzek's work [12]. Such a comparison
is given in table I, where it is seen that the Vigner approximation system-
atlically overestimates PO (except for very thin slabs), An obvious
possibility for improving the approximation is to use increased values
of s in the Wigner expression. Numerical calculations for U235 and U238
in some heterogeneous lattices with exact PO suggested increases of s by
about 15% for slabs and 30% for spheres and cylinders. Values of P, with

increased s are also indicated in table I, where it is seen that they are

in substantially better agreement with the exact values over a large range

of s.
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For an important resonance in a typical lattice of not very
thick lumps (s > Zbo)’ it can be shown that the dominant contribution to
the effective cross section comes from the region s 7 Zo which is shown
in table I. If we consider a resonance for which s >> Zb throughout
(thin lump), then there is little flux depression anywhere and the ef-
fective cross sectlions are nearly equal to average cross sections and
insensitive to exact values of s, For a very thick lump, 8 << Zbo
throughout, it is found that the simple Wigner expression (24) is pref-
erable to any modified form. It is thus suggested that an expression of
the form

s(ZOO + as)
8' = ——————— a 1.15 sladb

Z’oo + s (27)
= 1,30 sphere, cylinder

Q
1

is an even better approximetion. It is believed that when such a value

of s' is used to estimate Po(s) with equation (25), the resulting ef-

fective cross sections will deviate from those using exact values of PO
by less than 5% for nearly all practical cases.

Alternative simple improvements on the canonical approximation
to P, have been considered by Rothenstein [13]. His forms are slightly
more complicated than our simple modification of s and appear to give
resulté of roughly comparable accuracy.

The accuracy of the preceding theory has been checked by a

number of authors. Adler, Hinman, and Nordheim [7] have applied equation
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(21) to the computation of effective resonance integrals* for uranium,
uranium oxide, and thorium rods. They used values of PO(E) vhich are
exact for uniform sources in slabs, spheres, and cylinders [12], and
obtained results in good agreement with experiment. Chernick et al.

[6, 5] have applied equation (25) to lattices of uranium and water with
the additional assumptions that all uranium scattering is IM and the
resonances are not Doppler broadened., The results have been compared with
Monte Carlo calculations on lattices for which the lumps are not com-
Pletely isolated. The agreement is fairly good for those resonances and
geometries for which the above additional approximations are good. At
the end of section IV we will make a comparison with the same Monte Carlo
results with allowance for NR scattering, lump interaction, and Doppler
broadening,

For some lattices the neutron flux in the moderator may vary
considerably with position in a cell, This might be the case if the
fuel lumps were so widely separated that the flux between lumps was ap-
preciably lower than the average or if' the lumps were strongly absorbing
and thus depleted the flux nearby. Either effect could be taken into
account by retention of the heterogeneity in the calculation. Alterna-
tively one could attempt to relate, by other calculations, the flux near
the lump surface (which is essentially the assumed average flux:ﬁ'of our
development) to the actual average flux in the moderator. Welnberg and
*Actually, their treatment of IM scattering was not identical with but

closely equivalent to that in equation (17). See section V for further
discussion of the comparison.
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Wigner [21] have given a rather complete discussion of how this can be
done with diffusion theory and the problems which arise. In many cases
the above effect is unimportant. Where it is important, we advocate
retention of heterogeneity.

Note that none of our effective cross sections can give the
detailed spatial distribution of absorptions in a lump, For this a
Monte Carlo calculation or detailed multigroup mock-up of the true res-

onance cross sections would seem necessary.

IV. Extension to Dense Lattices and Transition Between Homogeneous and
Isolated Heterogeneous Case

In the preceding section we assume that 1 - PO represented
the neutron escape probability from a single fuel lump. We consider here
the form of PO vhen the fuel lumps are so spaced that a neutron leaving
a lump has a significant probability of colliding with some other lump,
In such a case the flux depression near a resonance will be even greater
than for isolated fuel lumps and the effective cross sections will be
correspondingly smaller.

For simple slab lattices it is possible to compute PO in de-
tail [13, 15] inasmuch as a neutron's angular coordinate will not change
during flight. For cylindrical fuel lumps, the problem has been analysed
by Dancoff and Ginsburg [2, 16] but the corrections are sometimes tedious
and difficult to generalize., In the following, we shall show how a simple

and logical generalization of the canonical approximation can be used for
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dense lattices and to give a simple transition between isolated hetero-
geneous and homogeneous systems [17]. The approximation is, in addition,
sufficiently accﬁrate for many practical purposes.
Let:
(l-Po)O = Escape probabllity for neutron born in an isoclated
fuel lump.
(l-PO) = Probability that neutron born in identical fuel lump
of a lattice makes next collision in moderator.
Gl = Probability that neutron originating in fuel and in-
cident on moderator from fuel, after i previous
traversals of moderator, will collide in moderator

before re-entering fuel.

| ]

G = Probability that neutron originating in fuel and
incident on fuel lump, after i previous traversals of

fuel lumps, will collide in lump.,

With this notation:
Font v e,M \
fﬁdd~uona
(L?O)=(LP) G +(lﬁiﬂlﬁ-)G (lﬁlﬂlﬁ-ﬂlﬁ-ﬂlﬁ-mz “J (28)
( ‘3 M C)M(m “’e)/ (’Mb (, ol o‘:«’dm'\.\.* PMC*

Let us hext assume that G and Gl are lndependent of i-”xﬁﬁﬁfﬁ

would appear to be reasonable if the G's are small so that the changes

of incident angular distribution with i are slight. Also for (l-GO)

small, only the first two terms are important and other velues of Gi may

be set equal to GO. With this assumption:
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0T - 15T (29)

(1-p,) = (1-p,)
Following the arguments of section III, we now assume that
(l-PO)O is the escape probability for a uniform and isotropic source in
the lump. In order to estimate G, and Gl we assume that the angular dis-
tribution of neutrons crossing the fuel moderator surface is proportional
to | * Q| per unit surface area, where n is a unit normal and § & unit

vector in the direction of neutron motion, For thick fuel lumps, this

is a good approximation for GO

1 which is the only important G. For thin

fuel and moderator it is presumably a good approximation for Gi on the

average., For this assumed anguler distribution:

L\ %@}é
6, = —= (1-B,)_ - (1 -B,), {2’ 29" (30)

S

where S is the area of the fuel moderator interface and Sy = S/hV . This

expression is justified by noting that for a region i with ﬁn&ﬁ isotropic
G,S¢ d

fluxAboth inside and outside, T represents a flow of neutrons into 1

which is just balanced by the flow °f¢2ivi(l'P1l3°ut of 1. A constant

flux gives the required source distribution (uniform in i), for (Pi)o

and the required angular distribution (ﬁ * Q) for Gy

If we now make the Wigner approximation for (l-PO)O,

s

—09
Zo * %

(1-P,), =
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equation (30) gives us ¢ = Zo So 2,
0T ST 2,45, ZotSo
2o
(1G,) = 55 —*Go:—e—;—s (31)
—0 >
Substituting in equation (29) we have
% Gl
(1-P ) = e—r"m (32)
° Zc_)-"' soGl

This approximation has been independently suggested by Rothenstein [13],

who then used exact values of G;. Note that in (32), s, G, takes the same

place as s in the expression for (l-PO)O. The canonical approximation

to Gl is:
z
G, = _1—"1_51 (33)
We obtain:
s, Zy
AP) =Ty eT ver, (3ke)
Similarly

s, L

Lo (34b)

(1-P,) = ==
1 20)_.1 + slzo + sozl

If we introduce the notation,
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we may write

.
1-P =20 1-P, = (36)
o Zb + To 1

Equation (36) for P, 1s our basic result for general lattices.
It can be seen, by comparing equations (2k) and (36),that for dense lat-
tices, T, plays exactly the same role as s(Eso) of the isolated lump
case., This applicability of a canonical approximation to general lattices
is very convenient,

The above expressions for Pi have a number of desirable pro-
perties:

(a) P, and Pl are consistent with the reciprocity relation,
equation (20). This is easily seen by substitution of (34%) in (20).

(b) We approach the correct isolated heterogeneous limit of
section IITI, The quantity Z.l/sl is the average chord length in the mod-
erator measured in mean free paths, so that the fuel lumps are isolated
for Zl S 2> 1, In this limit T, ¥ 85, and 1 - P, reduces to the canonical
expression (equation (24)) for isolated lumps. Note that in this limit
the fuel lumps may be thick or thin.

(c) We approach the correct homogeneous limit for thin fuel

and moderator regions. This will obtain if Zl/sl << 1 and Z.O/sO <1,
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Since so/sl = Vl/vo’ we have in this limit,

-
14
™
o~
-
R
™
I—'<:|O<:

so that, for example

z

[¢]

P ~*£;——--—VI (37)
ot zl V;

as one would expect for a homogeneous limit. Simple substitution of
(37) in the heterogeneous equation (21) 1leads to the homogeneous equa-
tion (7). Moreover, the heterogeneous flux depression factors (denom-
inator in equation (18)) become identical to the homogeneous flux
depression factor (denominator of equation (6)).

(d) The equations for all effective cross sections in the
dense lattice are merely those for the canonical isclated heterogeneous
lattice, with 7, replacing s,. This follows from the form (36) of 1-P_

plus (a). Thus instead of equation (25) we have

NR
E. 7 +2 s 21
~ 1 2 o 00 dE o
1 —_ ettt — o e————
Oro = E ‘jr ZNR Gro(E) E?’ with To T Y.+ S (38)
In 2 El To + ot(E) 1 1
E
1

By comparison with equations (25) and (7), we see that T, maYy be inter-
rreted as a generalized NR pseudo-scattering cross section representing
leakage from the lump, This interpretation may be maintained consis-

tently throughout. Note that even if one wishes to do a multigroup
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calculation for a dense lattice retaining spatial heterogeneity, effec-
tive cross sections should be computed using To instead of LA Thus
equation (26) should be used with T, replacing s.

(e) For all lattices, To < s, and T < Za.Vi/VO. This means
that for all lattices, there is stronger self shielding (lower g) than
for eilther the isolated heterogeneous or homogeneous approximstions.,
This effect is physically correct.

Exact values of P, have been computed for a slab lattice [13]
and by Monte Carlo for a cylindrical lattice [10, Chernick]. By com-
paring values of PO as given by equation (36) with the exact values, we
find that our estimates of PO are somewhat higher than the exact values.
The comparison is given in table II., It is seen that increasing 89 by
15% for slabs and 30% for cylinders (as suggested for isolated lumps)
gives better agreement (to within ~ 5% typically) with exact values.
This increase may be consistently effected by increasing the surface
area of the fuel moderator interface (by 15% for slabs and 30% for
cylinders and spheres).

In addition, Monte Carlo calculetions have been made of cap-
ture probabilities in two uranium-water lattices [6]. The IM approxi-
mation was used for uranium scattering. In table III we give a compari-
son of results based on equation (38) with the Monte Carlo calculations
for those resonances for which the IM approximation is sound., The

capture probability (1-p) was taken to be
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Table II

Collision Probabilities, PO s for Two Lattices, PO = probability that

neutron born uniformly in fuel makes next collision in fuel. With no-

tation of text: 7 /s

_ o
Po(s) = Zo/so + 217(214-81)

A. Cylindrical Uranium Rods (r = .76 cm) in H,0; Volume (U) = volume

(}120 }; [10, Chernick]

Zo/so(.o73 o) P_(Monte Carlo) P_(s) P (1.38)
.73 J16 + .005 515 J71
1.46 625 680 Bl
2.9 .763 809 .781
5.84 B7h 895 BT77
14 .6 S48 T 002 .55 JHT

B. Slab Lattice [13], with le/sl = 140,

Zo/so P_(exact) P_(s) P (1.15 s)
25 28 .300 284
.50 J1 J62 L2
1.00 56 632 613
2.00 T2 JT4 .760
4,00 O 87k 864
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Table III

238
Resonance Capture Probabilities (1-p) for Single U 5 Resonances; Monte
Carlo Results from [6] and Canonical Results from Equation (38) for .25

inch Uranium Rods

Resonance
Energy

6.7
21.0
36.8
66 .3

103

191

Vhéo/Vﬁ =4
Monte Carlo  Canonical
0393 0438
0186 0197
.01 0161
00618 00599
004 %6 00531
00295 .00301

40-

VHQO/ Vy = 10

Monte Carlo

.1100
0551
0475
0171
0132
0087

Canonical

.1310
.0588
o484
0174
0156
.0088
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u o

21

and 'rO/Nu was computed to be 32b and 18.25b (based on s' = 1.3 so) for
the cases V'l/VO = L4 and Vl/VO = 1 respectively. The calculations in-
cluded Doppler broadening, as noted in Appendix B. The Monte Carlo
results are not very accurate so that, with the probable exception of
the 6.7 ev resonance, canonical and Monte Carlo results are in agree-
ment to within about the Monte Carlo accuracy. For these calculations,
s/Nu was 42.5b, so that the dense lattice correction (replacement of s
by TO) is of considerable importance for Vl/vo = 1,0 and much less
significant for Vl/VO = 4,0,

The ldeas of this section can be readily generalized to quite
complicated lattices. Suppose, for example, that the fuel was in clusters
of UO2 rods cooled by D20 and each cluster imbedded in graphite. First
of all, for one rod we compute a To from equation (35) where S, is l/h
the surface to volume ratio of the rod, z&_is the mean free path in D20,
and 81=8, times ratio of rod to D20 volumes, Secondly, this To is added
to 2§§ (the constant NR scattering cross section in rod) and the sum is

then interpreted as the macroscopic NR scattering cross section for the

cluster which appears in equation (38). Another T, 1s now computed for
the cluster with 8, equal to l/h the surface to volume ratio of the clus-

ter, Zl the graphite mean free path, and S1=8, times ratio of cluster to
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graphite volumes. This value of T  also is used in equation (38) to give

the final effective cross section,

V. Refinement for Elastic Scattering in Broad Resonances

For broad resonances which have considerable elastic IM scat-
tering, it is desirable to reconsider our treatment of thick lumps. In
the absence of NR scattering in the lump, all neutrons which are absorbed
at an energy E were assumed to have entered the lump at the same energy E
and, within the practical width, the first collisions of such neutrons
are concentrated near the lump surface. However it will be recalled that
in section III we assumed that all scattered neutrons (including those
first scattered) were uniformly distributed throughout the lump. We thus
overestimated capture probabilities for neutrons incident on thick lumps.
In this section we will examine the magnitude of this overestimate by
considering one velocity capture probabilities.

In this one velocity problem, we consider that IM scattering
leads to no energy change and that NR scattering is equivalent to absorp-
tion. Neutrons are, as usual, assumed incident with an angulsr distribu-
tion proportional to udu. Let Pc be the probability that an ineident
neutron is captured in the lump before leaking out. The value of Pc
vwhich is implied by our development of section III, in particular equa-

tion (1l4a) for g,(E), is
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W, (1-P, (B)) I Zﬁ{‘;(E)

M

P =
A T
2, (E) ~ P_(E) ZOS(E)

c

with A = lump area.., This is exact for the one velocity problem and for
exact Pi(E)' If we assume that P;j(E) are to be computed for uniform

istropic sources, then the reciprocity relation (20) can be used to elim-
inatélPl. To make the results easier to understand we simplify notation

for the remainder of this section, calling

M
Zog(E) = B
Z'o‘t:(E) = Z‘t
T ®) = Z,

Denoting the resulting capture probability by Pc u (uniform), we have
2

L (1-P_(E))
Pc,u = s_a. —-——2——2: (39)
o)
l"PO(E) Z;

where, as before, S, = A/hvo. If, in addition, we use the Wigner form

for PO(E), P = Zt/(sd+2t)’ we obtain Pc,w (Wigner) and find:

Pew =5 5, (+0)

In tables IV, pp. .47 and 48, P, , @nd P are given for various
’ . ’
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spheres and slabs. Values of PO are taken from [12]. It is observed
that in general Pc,w < Pc, o’ which should be expected from the demonstra-
tion in table I that the Wigner approximation is an overestimate of PO.
We note also that both expressions approach unity as Za./ S, = % irres-
pective of the ratio Zs/zt. This is clearly incorrect and the error
increases with increasing Zs/z't' Both Pc,u and Pc,w are too large for
thick lumps and in fact Pc,u (being larger) is even a slightly worse
approximation for such cases,

Before proceeding further, it is interesting to note an alter-
native but similar approach suggested by Wigner [1l] and recently employed
by Adler et al. [7]. In this approximation it is assumed that IM
scattering of a neutron entering the lump will not change the neutronts

escape probability. In other words, neutrons are attenuated as exp(-Zar)

where r is the path length, and thus P, a (Adler) is
2

Pc,a. = Go(za.)

For a pdu incident angular distribution, G, is given by equation (30) and

z“a.
Poa = ;; @ - PO(Za)) (k1)
If Zs =0,P =P . We see from tables IV that unless the lumps are

c,u “c,a

thick and also IM scattering is dominant, P and Pc u &re in close
2

c,a

agreement (with P.a 2> Pc u). Thus it is no surprise that Adler et al,
2 2
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[7] found little difference between IM resonance integrals for U238

based on Pc a and Pc u’

2 2

If the Wigner form for PO is inserted in equation (41) we
obtain Pc v &8 given in equation (40). From tables IV, we see that
2

P 2P . Thus neither Pc,a nor Pc

c,a c,w u are improvements upon the simple

2
Wigner approximation, Pc,w’ for the case of thick lumps with much IM
scattering.

Accurate values of the capture probability are readily com-
puted by numerical solutions of the trensport equation. This has been
done for most of the cases of tables IV by use of the SNG code [18] with
the Sl6 approximation. The accuracy of the solution may be checked by
comparison with exact solutions for jpurely absorbing lumps or infinitely
thick lumps., For purely absorbing lumps, Pc,u and Pc,a are exact, with
PO taken from [12]., For infinitely thick lumps Pc may be computed from
the work of Chandrasekhar [19]. If we let Pc’m(uo,wb) be the capture
probability for a neutron incident ai an angle © with the normal (cos® =
uo) upon a semi-infinite plane wedium (having LA neutrons emerging per

collision or w, = ZS/Z%),then from [19],

Polior ¥o) =i 1 = vy Hlug, w) (42)

H(po,wo) is tabulated [19, table XI]. For an incident source propor-

tional to Hos We have
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=2 VJ_ - WOEO H(uo,wo) duo (43)

This function has been computed by numerical integration and is given

in tables IV, It has alsoc been compared with the Sl6 results, From these
comparisons, we conclude that for spheres the Sl6 results are accurate

to better than .1% and for slabs to about .2%. S,¢ results are included
in tables IV.

Further approximate expressions for the capture probability
are avallable from diffusion theory; see, for example, Glasstone and
Edlund [20]. For a slab of thickness t, the diffusion theory capture
probability, P

c,d’ is

% 2 tanh(% 3L, Z,)
P 4= L (44 )

a

1+% tanh(zf 32@21;)

For very large t this approaches the diffusion theory capture probabil-
ity for a semi-infinite medium, P

c,d :

[+

4 VEE

—v=
‘/— %5)
1+ -2
31

Diffusion theory results are also given in tables IV. It is observed

E’c,d

that, as expected, Pc a is most accurate for lumps where scattering
2
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Capture Probabilities - Slebs of thickness t.

the text as follows:

= » 9 c

Table 1V-a

uniform, P, . - equation (39)
£

diffusion, P - equation (4k)

c,d
Adler, P, . - equation (41)
b4
Wigner, P - equation (40)

e,w

Exact = 8, or see pege 5,

For the verious approximations see equations in

z
Approximetion i tza= ol tza= .3 tza=1.o tzaz 3.0 tza=10.0 tza:.
Exact 1.0 167 RITe's) 781 .98 1.00 1.00
U 1.0 67 100 781 .98 1.00 1.00
D 1.0 18 A5k 8ok 1.07 1.07 1.07
Exact .50 170 ko8 ThT 852 853 853
U .50 170 ALo8 61 .23 976 1.00
D .50 181 RIIT 81k 898 .899 899
Exact .20 2173 Loz 635 658 658 658
U 20 173 406 alt 88 962 1.00
D 20 .180 126 663 681 681 681
Exact .10 173 .38 518 522 522 522
U .10 173 .397 690 R:1a8 K514 1.00
D .10 .178 3% 53 535 535 535
W 167 375 667 857 952 1.00
A 167 100 181 .98 1.00 1.00

* Independent of Za/Zt
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Capture Probabilities - spheres of radius r.

Table IV-b

diffusion theory

= » 9 S

Exact = S, Or see page 5.

uniform, P - equation (39)
c,u

Adler P - equation (41)
c,a

Wigner P - equation (4O)
e,w

For the various approximations see text as follows:

z
Approxime.tion ﬁ L = .1 L o= .3 rl =10 =30 rI =100 r’Z,aL - o
Exact 1.0 Aok .323 .703 Sh6 995 1,00
U 1.0 .12k .323 .703 6 9% 1.00
D 1.0 129 .329 720 965 >0 1.07
Exact 50 12k .319 651 .808 8o .853
U .50 A2k .319 665 878 .63 1,00
D .50 126 .32k 663 L7 819 .899
Exact .20 123 .307 ShT 626 65 658
u 20 Jde3 2311 617 832 3 1.00
D 20 2k 2311 554 641 669 681
Exact .10 Jde2 290 RIS 50 .52 522
U .10 122 .302 5% 816 .937 1.00
D .10 A2k 2% 160 511 528 o535
W .118 286 ST .800 .930 1.00
A 12k .323 <703 6 <995 1.00

* TIndependent of za/zt
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predominates (and slso for thin lumps in general).
From the numbers in tables IV, the following conclusions are

drawn:

(a) Both P and P are quite accurate for thin lumps
c,u c,a

(£./s S 1.0) or highly absorbing lumps (£ /2 > 1.0). P is more ac-
al ®o al “g c,u

curate than Pc a® Both Pc and Pc are too large for finite Zs'

2 2 2

(b) For numerical work, accurate results would be obtained by
always using the smaller of Pc,u and Pc,d'

When considering resonance absorption in pure U238, only three
resonances (at 36.8, 103, and 191 ev) have both IM scattering and.z.a/zs <
1.0. These contribute about 20% to the U238 resonance integral [7].
Errors due to use of Pc,a appear to be of the order of 10% for these
resonances, leading to a net error of only about 2% in the resonance
integral. There are numerous other uncertainties of comparable magnitude
so that this effect does not appear to be of much importance for U238
(or Th?32).

For resonance absorption in a lattice containing normal tungsten,
the considerations of this section are somewhat more significant because

the most important resonance (W186

at 18.8 ev) has I‘n/l‘7 ~ 6.1 and IM
scattering. There are also several overlapping W resonances in this
energy region so that a numerical integration of Gn,y is appropriate and
recipe (b) above could be used. For numerical work on some tungsten lat-
tices, we have used, however, a somewhat different recipe. This follows

the spirit of the canonical approximetion for PO in that details of the
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geometry enter only through the surface to mass ratio. We observe from

tables IV that the smaller of Pc w °F Pc a (diffusion theory result for
’ %%

semi-infinite medium) is always a fair approximation to the capture prob-

ability. A slight improvement upon P is given by

c,d

[> ]

Z, /(3 |/z‘,a/z,C

S0 F Et 1+ v%?-VZh/Z%

where the first factor represents the probability that an incident neutron
makes a collision at all (in canonical approximation) and the second is
the probability of reflection from a semi-infinite medium (from diffusion

theory). Thus for our numerical work we used Pc n (numerical) where
2

o Z Z.t h/!'_ VZ /Z
Pc,n—Mm<s +2‘a s +Z‘t l"‘TW) u6)

Pc,n is compered with exact values of the capture probability in table
Vi We see that it 1s least accurate for strongly absorbing lumps

(zi > 1.0) of moderate thickness (Zt/sO ~1.0). For these cases we have
seen, table I, that increasing 8, increases the accuracy of our approxi-
mation to PO. Equation (27) for Sy would presumably lead to improved
accuracy in effective cross sections obteined from Pc,n'

For several tungsten plane lattices, we have computed effec-

tive cross sections using Pc n and the relation
2
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Table V

Capture Probabilities: values of P, ,, from equation (L6) which was used
for some numerical work, are comparéd with exact values

Plane:
28/2,C tZa= 1 tZa= .3 tZa=1 0 tZa= 3.0 tZa=1o .0 tZa= o

Exact 1.0 JA67 k00 .781 982 1.00 1,00

P 1.0 J67 375 B6T 857 952 1,00
2

Exact 50 .170 408 ST 852 853 853

P, .50 JA67 375 667 830 817 899
2

Exact 20 173 Lo2 635 658 658 658

P, 20 J67 375 619 659 eyt 681
2

Exact .10 173 .382 518 522 522 522

P .10 167 375 509 .526 532 535
c,n

Sghere: >

2‘,8/2‘.,c rZ=.1 r8=.3 rL=1.0 rf =3.0 R, =100 rl =w

Exact 1.0 Jd2h .323 .703 46 995 1.00

P 1.0 .118 286 ST1 .800 .930 1.00
c,n

Exact .50 Jd2k .319 651 .808 B2 853

P, 4 50 118 286 ST1 799 867 .899
2

Exact 20 JA23 .307 ST 626 65 658

P, .20 .118 286 5T 648 Nyl 681
2

Exact .10 J22 290 L5k .50 52 52

P, .10 .118 .307 198 522 530 535
2
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E, s_o(E)
~ 1 2 "o dE
o' = B Js T Ten® E (47)
n o
E
1

These were compared with detailed multigroup Sn slab calculations which
used 12 energy groups between 8 and 23 ev. Effective cross sections
from (47) agreed with the S, values to within better than 10% in all

cagses tested. On the other hand values obtained with Pc W or Pc u instead
2 2

of P,  Were in error by as much as 30%.
2

We conclude that for thick lumps with much IM scattering Pc n
2
is a useful approximation, and that some such approximation is necessary

to obtaln accurate results,
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APPENDIX A

Systematic Improvement of NR and IM Approxdmations

Consider the integral equation for the neutron collision den-

sity, V(E), in an infinite homogeneous medium. Assuming that absorption

and s scattering are the only significant processes, we have:

J Ela, L _(E')
Ly 1 5 %8, ry dE'
vE) -k T [E <y Ve (a1)
We abbreviate this as
me
¥(E) =f K(E,E') V(E') dB' = Ky ™
E

where (A2) defines K,and E_ . is some finite energy sufficlently large
that there is no contribution to the integrals from higher energies.
We are interested in the solution, y(E), to this equation in
the vicinity'of a single resonance at E = Eo' Suppose that for E/EO
sufficiently large, absorption is negligible, scattering cross sections
have a constant ratio, and the solution is known to be wb(E). At all
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energies let wo(E) be a solution of
B oax
¥, (E) =k/; Ko (E,E') v, (E') dB' = K_y, (a3)

where Kb(E,E') is some kernel which is equal to K at high energies.

Then define

K(E,E")

KO(E:E') + Kl(E:E') (Aka)

V(E)

Vo (E) + ¥, (E) (Alb)
Substituting in equation (A2) and using (A3) we find that:
\Vl = K]_WO + K \Vl (A5)

Howvever, Kiwo is a known function, equal in fact to Kwo-wo. Thus equa-
tion (A5) says that ¥y is that collision density which is given by a
source Klwo. Equation (A5) is also an inhomogeneous Votterra integral

equation which may be solved by a Neumann series, i.e., the sequence

v = v,

= Klwb + KKl‘po

<
[
1

(n)
' wl = Kl‘J/o + KKlwo e KpKiW

(e
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converges to the solution of (A5). Thus the solution of (Al) is:
v = Kowb + Klwo + KKle + K?Klwo + oo
or

v = Ky, + KK ¥ +K?K1w6 + eee (A6)

Equation (A6) gives us a systematic procedure for finding the exact solu-
tion, VY, from any approximate solution, Wo‘ Of course, the procedure is
efficient only if Wo is a good approximation to ¥ (usually in the sense
<<
that Ky ¥ << K v ).
Before applying (A6) to the NR and IM approximations, it is

interesting to note that equation (A5) may be written

Weinberg and Wigner [21] have essentially used this equation for the case
of a single scattering material plus absorption. Equation (AT) says that
Wl is that flux, due to a source Klw, and in a medium characterized by
kernel, Ko‘ The solution may be written in terms of the source Klw and
the Placzek function of the kernel, Ko' To make further progress an ap-
proximation was then made for ¥. In equation (AT) the kernel, K, is
simple but the source, K;¥, is unknown. In equation (A5) the source,
Klwo, is known but the kernel K is not simple.

Let us now see how equation (A6) may be used to systematically

improve upon the NR approximation.

Suppose that one has a mixture of isotopes with constant scattering
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cross sections and zero absorption, plus one (call it uranium) with a
resonance, and that for all isotopes (l«zj)Eo is larger than the reso-
nance practical width. For this situation the NR approximation is

appropriate, The integral equation is

Efa X, (E*) Efa L, (E')
oy L 378, 0 dE* u Z8,u \dE
‘V(E) % l-aj E Z‘t(E') ‘V(E l+ l_a f (E') ‘V(E
We know Y(E) = l/E for E sufficiently large, and for the NR approxi-

mation, we assume that in the integrals V¥ = Voo But \]:O satisfies the

integral equation

Efo, 2 Efe, X
-y 1 J_8 gy B 1 u _8o vy GB°
o® T [ e e [ e 5

where Zso is the off resonance scattering cross section. The kernel K

appears in equation (A8) and K, in equation (A9). Thus

Efa 1 1 dE*
Kl‘if ,jl-a J ZSJ(&(E') - ZSO(EI)) W(E') _E'-

+

1 fE/a s u(E') _'ng,u
1< E z’t(E' z:so

'y G
- ) (e

Note that this equation, for v, (E), could have been obtained without

explicit use of Ko’ il.e. for ¥ = \];O, the above equation is simply

= (K-1) ¥ . Introducing 1/E, we find
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3 2; (Zt ” Zso) dE*

E/x
W = - 2 _};_ :)J
K% =7 _/; Tt Too (E')

X %50 (£)°

If we now ignore interference between resonance and potential

scattering, so that Zs,u - Zso,u = Pn/Py Za.’ equation (Al0) may be re-

arranged to read

L.T pEl, T (B .
Kp¥o = - 2 To 5o ’ a(Etj) P
° 'O‘J Yso 'y JE Le(E') (gry

r X r 127/ DY .
+l|:_g_ sozu(l_'_Fn]j; u dE

If we further assume that 2, /Z ~ 0 for E 2> El < E/Ot o’ the upper limits

of all integrals may be set equal to El and we have

-a. L E, L
ot % T % % o] Pt ame
K¥% = - 15 [l ? I-a, T, 1*7]\/; Te B2 (A11)

in agreement with the results of Spinney [10]. \l; + Kl\y furnishes an

improved estimate of \p Note that the integral in (All) is less than or
of the order of —-——f—z— —I,Z with I‘p the practical width so that the correc-
tion, l\l; s 1s srggl compared to v, if (l-a ) E >> I"p. This is just the

condition for valldity of the NR approximation,
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In principle one could continue improving the approximation
by computing K Ki Wo’ etc. Each successive term would caxrry the source,
Klwb, through one additional collision. This would be an inefficient
way of obtaining the asymptotic neutron density. It is interesting tlo

observe that the common approximation,

E
] s d‘E'
y e T
(o]

does give the correct asymptotic flux in the sense that then

E
Jf max
¥y dE =0
Emin Kl °

(Here E.i

the integral of the source for wi is zero so that to a first approxima-

n is some energy well below the resonance.) This means that

tion we have the correct flux at low energies also, i.e., the correct
absorption.
The same technique can be applied to the case where IM scat-

tering is also allowed. Then as a first approximation we would have

Z, (E)
t 1
V (E) = 5 3 (A12)
t
The correction term Kwo - WO could be evaluated directly.
Actually, Chernick et al. ([6,5] improved the IM approxima-
tion in a slightly different sense., They assumed that ithe NR approxims-

tion was exact for moderator scattering and thus had an equation for Y(E)
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of the form:
E/a o)) .
ve) =g e [ ey ven (a13)

For such an inhomogeneous equation, the solution corresponding to (A6)

is:
Ve Ky +KK Y+ KV (ALY)

vhere the kernel, K, is given in (Al3). Chernick computed the term wa,
thus including the correction Klwo.

It has been shown [5,6] that the above first order corrections
to the IM and NR approximations give results which are quite accurate for
(1<) E, = Pp. Either improved approximation is quite accurate - but the
IM usually more accurate,

It would appear that the above technique may have more general

applicability.
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APPENDIX B

Expressions for Single Resonances

1., Unbroadened Resonances

Consider a resonance which is described by the Breit Wigner
single level expressions. Suppose that the target nucleus has zero spin
and zero velocity in the laboratory system and the neutrons have £ = O.
Then the elastic scattering cross section, cel’ and absorption cross

section, o, are (in conventional notation [22])

o = x 42 —— 0 8 (BL)
& (E-E_)° + T°/u

5 ir 2
o = K + 21kR (B2)

i
(E-EO) + 3 ir

That part of the elastic scattering due to resonance scattering, cel,res’
is

- » rﬁ LKRT_ (E-E_)
%elres T %1 TR = [ (E-EO)2 + To/u ' (E-EO)2 + rz/h] =3)
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where the second term is the resuli. of interference between potential
and resonance scattering.

If we assume that the scattering cross sections of all other
isotopes which are present are independent of energy over the range of
the rescnance, then effective cross sections may be computed analytically.
If we choose an energy interval (El-< E< E2) vhich includes all signif-
icant contributions of the resonance, and assume P/E << 1 so that 1/E
may be taken out of the integral and Pn assumed energy independent,
then from equation (7) for the homogeneous case (or equation (38) for

the canonical heterogeneous case):

N E, E, TR o, (E') aE!
5 fn 2 = f (Bha)
a 1 E. TR T (E) 4+ £ &) F
1l "o 8. el,res
N_l_ foo O’a(E‘) "
B Eo - g ZQKE') + T Zel,res(E{S
+
IR
(o]
whence, 1
NR -—
E. no__T fr WR2N_ |72
g 2 ___mx a X o—n____r
3 4o g e |1 " 1- 3 B (Blb)

Here, £ = 1.0 if the resonance scattering is NR, £ = O if the resonance

scattering is IM, and

T

= hnk® B, =N —2o_ 2
Smax r’ max r T max
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with Nr the density of resonance nuclel., For the canonical heterogeneous

case, replace ZgR by Tt Zgg. Similarly from equation (6) we have

r
max ~a

Q.
n
Ol Ol

a ZNR
SR LRELL e -
1 Z, Z, L, E r

In both equations (B4%) and (B5) the factors
T 4rRN
1] 2T
T zyR
o

arise from interference between potential and resonance scattering.
Evidently they are frequently negligible. However, for very concentrated

mixtures and Pn/P ~ 1,0 this interference can be appreciable.

2. Doppler Broadening with Maxwell Distribution

When considering nuclel at finite temperatures, the resonance
will be Doppler broadened by motion of the nuclei, For a solid at tem-
peratures above its Debye temperature, it 1s a resonance approximation
to assume that the nuclei have a Maxwell distribution of velocities [23].

Consider a neutron moving in the -z direction, 3.1.2, having

energy En in the laboratory system and E in the center of mass system,

_EM)
mM’*

Let Vs vb be the components of nuclear velocity parallel and perpendicular

and let m& be the reduced mass of the neutron-nucleus systen, @mr =

to the neutron velocity. Then
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=
I
noJ =

2E 2
vﬁ + <ﬂ’ﬁg'+ v?> (B6)

The cross section in the laboratory system will be for a Maxwell distri-

bution of nuclear velocities:

2+v2)
o

® ® E -2¥T(Vz
7 f dvzf vy dvp = a(E)
L GE ) = —= 2 I
f dv f v dv e 2kT" 'z e
S z o P P

Changing from variables Vp ’ v, to E »Vyo integrating first over Vs and

setting E? = Er_ E, E = A ve obtain:

¥ oo-A ET)°
[ﬁ:—,c(E,em(V_V_’ Jwr(fE + ET

[o[ “EWE - VEDZ -AGE 4 »/ﬁ)j

(B7)

VEq o(2,)

(B8)

dE*

This expression was obtained, for example, by Feshbach and Goertzel [24].
Equation (B8) has been used by J. Devaney [25] together with
single level expressions for g(E') for computing Doppler broadened cross
sections for Pu 39 U23 8, and W over a large range of temperatures (up
to 100 ev). For moderate temperatures it is valid to expand E* and the

exponents about En to obtain the usual expression:
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0 - (E_-E /S
c(E') e dE*

o0 012 /52
f e'(En'E ) /A dE*

o]

o(E,) = (B9)
2
with A" = LkTE /A.
It can be seen that in general, in going from (B8) to B9) we

1l/2
/ which is usually a small

neglect terms of relative order (hkT/AEn)
quantity. It 1s interesting to note that the integral of c(En) is given
more accurately, i.e., the error terms are here of order hkT/AEn. Equa-
tion (B9) is, for common temperatures and resonance energies, a suffi-
clently accurate expression. It is commonly derived, following Bethe
and Placzek [26], by simply neglecting the quadratic dependences of E on
nuclear velocities,

For single level Breit Wigner expressions for o(E!'), equations

(Bl) and (B3);

oo (B) = o, ra/r \V[Q(En-EO)/I‘, 22/
where
o (x-¥) /he
,8) = a B1O
w(x)zr_f e (B10)

¥(x,8) is a tabulated function [27]. Furthermore

I 2(E E) A2 T~ 2(E-E) L2
2 a n n o’ A
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where

o 2
-(x- Lo
X(x,0) =-—%== Jf ——ngE e (x-y)"/ dy (B11)
2\® -0 14+ y
These eXxpressions have been frequently used in computing reso-
nance integrals. In particular if we ignore the interference term
(X(x,0)), and consider the homogeneous case (or canonical heterogeneous

case) we have (from equation (6)):

N E ZNR r ZNR
3, dng = T + o J(g’ T ) (B12)
1 a n r o . a an
“rPmax ™ T
where
T w(x, 1/e)

The function J(¢,B) has been tabulated by Dresner [8] and Nordheim [7].
For the isolated heterogeneous case, non-canonical results are
available from the work of Nordheim [7] for cylinders, spheres, and
slabs. Interference between potential and resonance scattering was
ignored. When only NR scattering is present the tabulations [7] cor-
respond to use of our equation (21) with PO(E) from [12]. Nordheim's
treatment of IM scattering is slightly different from ours, but as noted
in the comparison of equations (39) and (41) the results should not be
much different. For purely IM scattering in the heterogeneous case,

some of Nordheim's tabulations are in error.
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Rothenstein [13] has investigated the effect of interference
between resonance and potential scattering at finite temperatures. He
has expanded the denominator of equation (Bla) for small Zel,res(E')
and has computed the resulting interference term using equation (Bll).

The interference decreases with increasing temperature; thus partially
cancelling the normal temperature broadening effects., As can be seen

from equation (BYb) the effect is important if and only if (a) £ = 1.0,

i.e., the resonance scattering is NR, (b) Pn/F ~ 1,0, and (c) hﬁRer/(16+Z§§)
~ 1,0, If all these conditions are satisfied the temperature coefficient

due to interference may be a moderate fraction (5 20%) of that due to

broadening.

3. Conditions Under Which the Single Level Results Are Inapplicable

Expressions which have been so far derived in this Appendix
have been based on the assumption that the relevant absorption cross
section could be represented by single level expressions, which do not
noticeably overlap. This assumption is invalid under a number of
conditions:

(a) The fission cross sections of the fissile isotopes show
interference between various levels [28],

(b) For a single isotope the absorption cross sections due
to various levels may seriously overlap if the levels are closely spaced.
At sufficiently high temperatures [25] or neutron energies [24], Doppler

broadening will make the overlap very serious.
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(¢) In a mixture of isotopes, overlap of resonances in the
various lsotopes may be serious.

In all the above cases, if the cross sections are known in
detail, the desired integrations may evidently be performed numerically.
An IBM 704 code (SET) was written at Los Alamos by B. Fagan to perform
integrations corresponding to the homogeneous (and thus canonical hetero-
geneous) cases and, less conveniently, to equation (21) for the isolated
heterogeneous case for spheres and slabs. Provision was made for use of
equation (47) for broad scattering resonances. Cross sections were
usually obtained from the work of Devaney [25]., The code does not
decide whether scattering should be treated as IM or NR., The accuracy
of the numerical integration is of the order of 1%.

In case the cross sections are strongly overlapping and known
only statistically. Goertzel et al. [24] have used statistical

considerations to compute effective cross sections,
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