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AWI!RACT

Iterative numerical methods for solving independent, simultaneous,

i.nhonmgeneouslinear equations are surveyed. Application of the methods

to elliptic difference equations as arise in neutron diffusion, heat con-

duction, and potentisd.problems is discussed. .
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1.” INTRODUCTION

This paper presents a survey of the methods of solving independent,

simultaneous, inhomogeneous linear equations. Here we are concerned

with systems too extensive to be handled conveniently with a desk cal-

culator; therefore we restrict the discussion to iterative-type methods

performable upon high speed digital computers.

We assume that we have a system of equations of the form

N

I a Xj +
ij

j=l

where the x. are the
J

s = o i=l,2, .... N
i

(1.1)

unknowns, and the coefficients a.. and the inhomoge-
lJ

neous term S4 are given. In matrix notation (1.1) is
J.

Ax+s=o--

where A is tie N x N non-singular matrix

the N-dimensional vector of unknowns Xj,

vector of the inhomogeneous term.

(1.2)

of the coefficients a.., x is
lJ —

and s is the N-dimensionsJ.

We assume a correspondencebetween unknowns and equations, i.e.,

the ith equation will be used to solve for the ith unknown. ‘Iheorder

-7-



of improving the unknowns in an iterative procedure may vary according

to a particular method, but a given equation will slways be solved for

the same unknown.

We assume that the mati disgonsl elements of A are dominant.* Thus,

the solutions of Eq. (1.1) are not altered if each equation is multiplied

by a nozmd.ization constant l/aii. The matrix A then takes the form

A= I+L+U (1.3)

where I is the identity matrix, and L and U are lower and upper trian.

gular matrices, respectively.

The methods for solving Eq. (1.1) are direct, iterative, and com-

binations thereof. Direct methods, such as Gauss elimination are those

for which the exact solution i.sobtained (assuming no round-off errors)

in a finite number of steps. For a general system of N equations} these

3methods require the order of N operations.
*

They can be used for any

set of independent equations (in contrast to iterative-type methods),

but they suffer from the occurrence of round-off errors which, in some

instances, can be large.

“iterative methods canbe used if the matrix A is posi.ti.vedefinite
(Sections 2, 3, and 6), it has real eigenvalues (Section 4), or if
the main diagoruil.elements dominate the off+iiagonal elements (Sec-
tions 2 andj).

%-X-
For a multidisgonal matrix, the number of operations approximately
equsls the number of equations tties the maximum row width between
non-zero row entries times the maximum column width between non-zero
colunn entries.

-8-



On the other hand, iterative methods (Sections 2 and 3) generate

only an approximate solution in a finite number of steps: the exact

solution would usually be obtained only in the limit of

*
number of steps. They are iterative in the sense that

solution is successively improved in a stepwise manner.

rors are generally small, do not tend to propagate, and

succeeding

methods in

the effort

an infinite

an approximate

Round-off er-

are reduced by

iterations. Iterative methods have an advantage over direct

that if a reasonable approximation is available initislly,

involved in obtaining a “solution” will be reduced. Although

the exact solution cannot be obtained generaKly, a convergent solution

can be made to approximate the true solution of the equations as accu-

rately as desired. However, the iterative methods are applicable only

under certain circumstances, as discussed below.

If the system of equations is very nearly dependent, the number of

iterations required to reduce an initial error of the approximate solu-

tion can, in some instances, involve more numericsl operations than if

the system were solved by a direct method.

The inclusion in the iterative method of a dependence of an extrap-

olation parsmeter, a, on the iteration cycle number is discussed in

Section 4. In Section s, the application of iterative methods to blocks

of unknowns is considered. Some variational methods are discussed in

*!Themethods of conjugate gradients and conjugate directions (Section6)
are exceptions. These methods obtain the exact solution in N steps by
an iterative-directmethod.

-9-



Section 6. And finslly, the particular exsmple of a system of difference

equations originating from a second order linear elliptic differential

operator, such as arises in neutron diffusion, heat conduction, and po-

tential problems, is considered in Section 7.

We generally state results without proof, referring to the literature

for the details. The bibliography at the end is meant to be only repre-

sentative, not exhaustive. References to extensive bibliographies are

listed.

-1o-



2. BASIC ITERATIVE MEI!HODS

Consider the system of N independent, simultaneous, inhomogeneous

linear equations given by Eq. (1.1). We assume a matrix equation of the

form

Ax+s=o--

where

A= I+L+U

(2.1)

. (2.2)

as in Section 1. The independence assumption guarantees that A is non-

singular.

The fundamental equation for the basic iterative methods is obtained

by rewriting Eq. (2.1)

x= -(L+ U)X- S-- (2.3)

EEhnultaneousIteration

Gauss was the first to develop Eq. (2.3) into an iteration scheme

by forming

-11-



where the

Jptl) .
-(L+ U)~(p) -

superscript denotes the

s (2.4)

iteration cycle number. This equation

defines Simultaneous Iteration.

The newest estimate of the solution, ~
(p+l)

, is obtained from all

the components of ~(p), connected and weighted through -(L + U), and the

inhomogeneous term. All iterates of ~ are advanced simultaneously and

are entirely dependent on the previous iterate.

This procedure has various designations in the literature. Although

frequently called Gauss Iteration, such a term is misleading because Gauss——

did.not solve the equations in a fixed order as

Schmidt, who used the method extensively, often

ciated with it. When it has been used to solve

equations, the label Richardson Method has been

authors refer to it as Method I. In this paper,—.

indicated in Eq. (2.4).

has had his name asso-

elliptic difference

applied. Many later

, we shall refer to it

by its descriptive title: Simultaneous Iteration.

It seems reasonable that the Simultaneous Iteration would converge

more rapidly if a component of x
(p+l)

, when determined, were used in

determining a component of x
(ml)

still unknown. Such is indeed the

case, and this defines the next procedure.

-12-



Successive Iteration

or

Solving Eq. (2.1) in the order 1, 2, .... N, we define

X(P+-l) = -L&l) - I&’) - ~

X(p+l) . -(I+ L)-l UX(P) - (I+ L)-l s

(2.5)

(2.6)

One notices from the form of Eq. (2.5) that the formation of the ith

component of x
(p+l)

~
1

involves the components ,k<i, and *),

k! > i. Thus, $+’) depends upon the advanced iterates already com-

puted snd the previous iterates yet unadvanced. Thus Eq. (2.6) defines

a Successive Iteration procedure.

There are many different designations for this method in the lit-

erature. The most frequent are Seidel!s Method and Gauss-Seidel Method.

This is misleading, for Seidel did not use the equations in a fixed

*
order. Liebmann, who used it extensively as applied to Laplace’s equa-

tion, has had his name associated with it. The term llethodII is

popular among many later authors. We shall adopt the descriptive title,

Successive Iteration.

*
Seidel’s Method is essentially identical to Southwell’s Relaxation
Method of 50 years later.

-13-



Convergence Properties

‘lMeconvergence rates

uated for a general matrix

of

A;

the above procedures are

however, some conditions

not easily eval-

guarsxrteeing

convergence and relative convergence rates can be given.

Consider an error vector E(P), defined by

E(P) =x-x (P)
--

giving the difference of the pth

solution, ~, which satisfies

Ax+s=o--

Substituting Eq. (2.7) into the

Successive Iteration, we obtain

“(2.7)

approximation, x(P), from the true

(2.8)

iefining equations for Simultaneous aud

the error equations

Simultaneous Iteration: ~(??+l)= -(L + U)~(p) (2.9)

Successive

If the matrices

Iteration: E(~l) = -(l+ L)-l ~(P) (2.10)

on the right-hand sides of Eqs. (2.9) and (2.10)

(ptl)have eigenvalues Ikil <1, then the iterated error vector, ~ , will

tend to a null vector as p am. In that instance the Simultaneous and

Successive Iteration methods are said to be convergent. The character-

istic detenninantal equations for the eigenvcilues

-14-
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Simultaneous Iteration: detl L+ U+ AI =0

Successive Iteration: detl U+ A(I+L)l=O

or, in terms of the coefficients of Eq. (2.1):

Simultaneous Iteration:

A.
%.2

a21 L

31 a32

. .

● .

. .

anl. an2

Successive Iteration:

.

33

a23

L

.

53

a23

h

.

.

●

✎

●

✎

✎

.

.

●

✎

✎

✎

.

.

.

.

.

.

%n

a2n

●

●

.

.

A.

%n

a2n

.

.

●

●

k

(2.11)

(2.12)

(2.13)

(2.14)
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The order of solving the Simultaneous Iteration equations, Eq. (2.4),

has no effect upon the convergence rate. However, the order of solving

the Successive Iteration equations, Eq. (2.5), does affect the conver-

gence rate.

In general, the eigenval.uesof the matrix A are not known in advance.

We now consider theorems determining

procedures, which depend only upon a

Proofs of the theorems are sketched,

can be found is given.

the convergence of these elementary

knowledge of the coefficients of A.

and a reference in which the details

~eoremI (Ref. 30, p. 141, andRef. 1)

Given a non-singular matrix

A= I+L+U

we methods of Simultaneous and Successive Iteration both converge for an

arbitrary starting point and for any order of solving the equations if the

following conditions*
%-X

are satisfied

.

Simultaneous Iteration:

Successive Iteration:

where the a.. are the coefficients
lJ

’11 I
<1

i aij -
J

f

~111 I<1aij

‘J

of the matrix A.

(2.15)

*
The prime indicates the absence of i = j in the sum.

That is, the diagonal elements of A are dominant.

-16-



The proof of this

a theorem of Hadsmard,

values of a matrix lie

theorem for Simultaneous Iteration relies upon

concerning eigenvalues, that states: all eigen-

in or on circles centered at a<< and of radius
AL

Z’/ aijl. Here we are concezmed with the matrix -(L + U), which has zeros
j
along the main di~onsl. Hence, all the eigenvalues will lie within

circles of radius ~’ a. . centered at

j lJ
anteed if the radius is less than 1.

values equsl to 1 since then we would

forbidden, stice A is non-singular by

the origin. Convergence is guar-

Now -(L + U) cannot have eigen-

have A = I+L-I-U = O, which is

definition.

The proof of this theorem for Successive Iteration follows from

observing the error at each step and showing that it decreases to zero.

Note that in Theorem 1, convergence is obtained if the disgonsl of

the original matrix A (in our case I) is greater than the sum of the

off-diagonsl terms in a row. In

if the diagonal te?nndominates.

not have 1’s along the diagonal,

other words, convergence is obtained

If the original set of equations does

the matrix A can be obtained by di-

viding each equation by its diagonal term (if non-zero). me sums of

the resultant off-di~onal terms will be less than 1 if the originsl

disgonal terms were dominant.

Theorem II (Ref. 30, p. 141)

Given a matrix

A= I+L+U



the method of

is

Simultaneous Iteration converges,

II-(L+ U)ll

‘F

The proof of this theorem follows from Theorem I

of -(L + U) lie inside a circle of unit radius].

A matrix is defined to be positive definite

I a
ijxixj>o

i,3

for all~+ O. This brings us to Theorem III.

Theorem III (Ref. 30, p. 142)

Given a resl symmetric matrix

A= I+L+U

the xnetiodof Successive Iteration converges if,

itive definite.

if the nom of -(L + U)

(2.16)

[since all eigenvelues

if

(2.17)

and Otiy if, A iS POS-

‘Theproof of this theorem follows by foming the quadratic function

(2.18)

-18-



and noting that the solution to the system of equations

Ax+s=o--

minimizes Eq. (2.18). The

diminished at ewh step of

proof then amounts to showing that F(a) is

the iteration, if and only if, A is positive

definite.

Stein and Rosenberg

orems related to the two

(Ref. 23) have pzmved some

methods under discussion.

very valuable the-

One of tie most

useful, whose proof relies upon the properties of non-negative matrices,

is the following.

Theorem IV (Ref. 23)

Given a matrti A with coefficients

a = 1
ii

and

aij <o
foralli+j

then the methods of Simultaneous and Successive Iteration converge and

diverge simultaneously. In the case of convergence (A positive definite),

Successive Iteration is more rapid.

-19-



3* EXTRAPOLATED ITEWUTVE METHODS

The Simultaneous and Successive Iteration convergence rates can be

increased in various ways by extrapolation (US- iterates at previous

cycles).

Assume tiat the matrix A has resl eigenvalues, Vi, and a complete

* H
set of eigenvectors, vi> such Mat

(3.1)

where Vi= 1 - xi. lhe Li are the eigenvalues of the matrix -(L + U) of

Section 2. Throughout this section, we assume that Simultaneous Iteration

converges; i.e., Ai < 1.

Extrapolated Simultaneous Iteration

In a straightforwardmanner, Simultaneous Iteration, Eq. (2.4), can

be extrapolated by

*
That is, each eigenvalue is of index 1 or simple.

-x+
It is not implied that extrapolation procedures will not follow with-
out these assumptions; however, the choice of extrapolation parameters
mightbe more difficult.

-20-



JPQ) =$) - [
(J) ~(P)+~ -1

where ~ is the extrapolation parameter.

The error vector, .(p), of Eq. (3.2) is transformed by

E(W1) = (I - ti)~(p)

Expanding the error in the eigenvectors of A, ~i, we have

~(p)‘i- ‘b)
i=l i=l

where each mode is transformedby

(3.2)

(3.3)

(3.4)

(3.!5)

(P)Any individual error mode ~i can be eliminated by the parameter choice

1
cD=— 1 - Li

(3.6)

Thus, if all the eigenvalues were known, we could eliminate all error

modes and obtain an exact solution in N iterations by choosing o dif-

ferently for each iteration. Unfortunately, the eigenvalues are not

known ih general.

-21-



For a fixed constant a, we must choose it so that ~ modes wild.be

decreased simultaneously; i.e.,

where ho md Am

If’s~tmeous

0<0

(3*7)

are the minimum and maximm eigenvslues, respectively.

Iteration converges (Iki I< 1), then u is in the range

<1

‘lbselect an u that will minimize Eq. (3.7) requires knowledge of

ho and Lm. However, if we assume ho = -Xm, then the opt- ~ iS

u)= 1
>

Thus, the optimum Extrapolated Simultaneous Iteration becomes simply

Simultaneous Iteration and nothing has been gained.

On the other hand, hprovement might be expected by forming a second

order extrapolation scheme

Jp+l) = y
[ 1[

+ o! &’) -p) - UJ &(p)+~.
1

(3.8)

‘@l), -dependsupon the two previous iterates,where the new estimate, ~

JP) ~d ~(p-l). me form of tie

the equality to hold in the limit

equation is determined by requirhg

of convergence. Two parameters, a and

-22-



(ml)
a, must be chosen. As before, consider each error mode, lZi , where

$?+1) =
[
l+a - U.)(1- 1.,) f)-ap) (3.9)

Assuming the relation%

~(lxl) =Q ~(p) =Q2E(p-1)
-i i -i i -i

we have

or

(3.10)

(3.11)

which has

~2
i-(l+ c%.

the solution

U.)+uxi)c)i+ceo

1 1
($i=* (ii. a-u+ flxi): (l+cY - 0+mi)2 - k (3.12)

If a and ~ are chosen so that the expression under the square root is

negative for sll ii, then all Qi wild be complex and, more importantly,

all Cli will be identical.

*We are assuming that the second order procedure of (3.9) is equivalent
to applying some matrix with eigenvslues Qi to only the previous iter-
ate. We then choose the parameters such that this is true.

-23-



In particular, the choices

1+0! -CD+ (.UX.=
m

2*

1+0! -U)+(DX =
o -2fi

give c%and a

(2=

u.)=

(3.13)

\

(3.14)

This choice of parameters} which makes tie square root of (3.12) negative, ‘

or zero, yields

\

(3.15)

The eigenvalues Qi are complex, but all have the ssme absolute value.

~US, all. error modes are decreased at the same rate. Note that Qi isII
alwayssmaller than the maximum of Lo and IXml. Consequently, the pro-11
cedure is always more rapidly convergent than the Simultaneous Iteration.

-24-



If estimates of the minimum and maximum eigenvalues (xo, Am) for Eq. (3.14)

are not exact, it is best to estimate Lo lower and Am higher to assure the

Qi being complex and therefore all modes decaying at the same rate.

Actually, the

totically) because

E(o) but require a

situation of Eq. (3.10) is never achieved (except asymp-

of the first mesh sweep. We estimate the initial error

second iterate E
(-1)

in Eq. (3.9) differing from E
(o) by

Eq. (3010). As only the norm of Cliis known, the initial iterates cannot

be picked appropriately. Thus the convergence rate indicated by Eq. (3.15)

is approached asymptotically only as p ~cm .

In the literature, this method has generally been called Second Order——

Richardson. We will refer to it here as Second Order Simultaneous ItersA——

tion.

(The authors were unable to find an advsntage in third order extrapola-

tion. The optimum scheme would seem to have been obtained using a second

order efirapolation.)

Extrapolated Successive Iteration

The

the same

extension of Successive Iteration, Eq. (2.5), can be achieved in

way as for the

X(pl.l)
= &’)

Simultaneous Iteration, by

- t

X(P) + LX(P+l) + ~x(p) + s “-1 (3.16)t

where u is the extrapolation parameter. As for the

(3.16) is obtained when the latest estimates of the

basic iteration, Eq.

unlmowns are used in

-25-



the Extrapolated Shmil.taneousIteration, Eq. (3.2). Successive Iteration

is obtained whenever o = 1, and the terms Under- or Over-relaxation apply

as u is less than or greater than 1. Equation (3.16) can be rewritten as

[ 1X(W1) = (I+u& (l-U) I-KIIJX(P)- (l+@ -lUJ~ (3.17)

For the error we have

*(P++) = (I +&)-l
[ )
(1 - u)I - (NJE(p) (3.18)

\

There seems to be no clear procedure for writing (3.18) in terns of the

eigenvalues hi. Consequently, it is almost impossible to optimize the

iteration procedure in the general case. However, for an important par-

ticular case, when the matrix A results from using a five-point difference

equation, the matrix of (3.18) is such that o can be optimized. In that

instance, Extrapolated Successive Iteration becomes a powerful method, as

will be seen in Section 7.

-26-



4. ‘BE METHOD OF TSCHEBYSCHEFF POLYNOMIALS

In Simultaneous Iteration, the repeated application of a matrix M to

an error vector results in the application of Mp to the initial error vec-

tor.

find

We now consider the application of a general polynoms.1GP(M) and

that Tschebyscheff Polynomialsare optimum for convergence.

In Simultmeous Iteration, the iteration matrix M . -(L + U) is ap-

plied to each iterate

(4.1)

The true solution, ~, satisfies Eq. (4.1) exactly; i.e.,

x= Mx-s-— -

As in Section 2, the error, E(P), associated with the iterate, x(P), is

defined by

and satisfies

-27-



E(P) = *(P-l)

Writing x(p) and E(p) in terms of the initisl

~(o) - -
gives

approximation

X(P) = Mp x(0) - (l+ M+#+ . ..+ MP-l)s. ,-

.
and

E(P) = Mp ~(o)

For convergence, all eigenvalues of M must be less than 1.

(4.2)

~(o) ~d

(4.3)

(4.4)

Consider the case

applied to the initial

qf Eq,.(4.4). Then we

E(p) = GP(M)*

where the pth

error, rather

would have

E(o)

degree polynomial in M, GP(M), is

than the particular polynomial, Mp

(4.5)

This will give an improvement in convergence rate if the polynomial GP(M)

reduces the slowly decaying modes of M more rapidly than does Mp. It iS

rather well known that such a polynomial exists and is given in terms of

Tschebyscheff’s polynomieil.s(Refs. 5 and 7). First, however, we discuss

methods whereby a genersl polynomial can be applied.

-28-



Methods

A semi-iterativeprocedure for applying a polynomial to an initial

approximation consists of generating the Simultaneous Iteration iterates

and forming a polynomial as a linear combination of them. Considering

only the error, denote the Simultaneous Iteration iterates by#p), and

(P)ethe resultant approximation by~ We have

and

1?
E(P) =

I-
-(i) = pai E

I

a MiE(0)
i—

i=O i=l

=GP(M) E(o)
.

(4.6)

(4.7)

(4.8)

where the ai are real coefficients. The polynomial obtained depends

upon the choice of coefficients a..
1

A second procedure for generating the polynomial is purely iter-

ative in nature; namely,

-29-



E(P) = ~(P-l) +U

[

~(P-1) - ~(P-1)
P- 1

P
= ~T’ (l-u)i M-ai) E(o)

=

=GP(M) E(o)

&ah, the Gp(M) is

‘i “

In both of the

erty

GP(I) =1

(4*9)

(4.10)

(4.11)

(4.12)

completely dependent upon the choice of parameters

above cases, the generating polynomial has the prop-

(4.13)

ln actusl computation we do not work with the errorj but with the

function itself. Using similar notation, the semi-iterative method has

the form

;(P) = &(P-l) -s

~(P)=pa #i)

I i-
i=o

(4.14)

(4.15) I
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*
and the iterative procedure

X(P)

[

=x(p-l) +U ~(p-l) - ~(p.l) - ~
P- 1 (4.16)

There are other similar iterative procedures which lead to a polynomial.

in M operating on an initial error.

Tschebyscheff Polynomials

Flanders and Shortley (Ref. 5) prove the following theorem:

Theorem: The pth

maximum absolute value

degree polynomial in u, Sp(u), having the minimum-

for u real and in the range -1 <a <+1, and nor-

malized such that Sp(mo) = 1 for some @o > 1 is given by

Tp(d

‘P(”) = ~ (4.17)

where TP(0) is the Tschebyscheff Polynomial. ‘I!hedenominator of Eq. (4.17)

is constant and achieves the desired normalization.

The Tschebyscheff Polynomials, Tp(m), are definedby (Ref. 10)

Tp(a) = -1
Cos (p Cos u) lo] c1

(4.18)
Tp(u) -1

= cosh (p cosh O) lull>1

*
Essentially Extrapolated Simultaneous Iteration, Eq. (3.4) with var-
iable u.
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Tp(u) can he expressed as

()- gU.P(l -

or,

i-w

a polynomial

()(D2)+ ; (J-4(1 -.2)2
23

a)

using simple trigonometric

recursion relation!

+ ● *O (4.19)

identities, can be written in the follow-

From (4.18) we have

Tp(-l) =+-1 p even

Tp(-l) = -1 p odd

Tp(l) =+1 p even or odd

(4.20)

(4.21)
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optimum Polynomia

Using the previous theorem, the optimum polynomial cam be deter-

mined. The matrix M has eigenvslues bounded absolutely by 1 (otierwise

the Simultaneous Iteration would diverge).

If, further, the assumption is made that &l-lthe eigenvalues of M

are real, then

-l<b~k<a<l (4.22)

for all A. Thus the conditions of the theorem can be obtainedby shift-

ing the range of the interval (ajb) to (-1,1), using the transformation

(4.23)

ll(A)=2k;:;b

where V(A) are the eigenvalues of the matrix U(M)

M. From Eq. (4.23) one notes that

~(a) = +1

~(b) = -1

corresponding tohof

(4.24)

y(l)=p+’p >1
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Using the theorem and the

ynomial to be determined is

nomslization of

[

~ 2M - (a + b)I
TP[U(M)] P a - b

GP(M) =
1

TPIU(I)] =

‘?[2 ~ ~~ b]

Eq. (4.13), the pol-

and the error for the pth iterate, from Eq. (4.5), is

The maximum absolute value of the numerator

convergence is

E(P)

In comparison,

E(p)

D. Young (Ref.

least a factor

much better.

governed by the denominator,

Simultaneous Iteration gives

< # E(o)
. . .

(4.25)

(4.’6)

Of Eq. (4.26) iS 1. ~US,

and

(4.27)

(4.’8)

6) established that the convergence rate of (4.27) is at
—

&better than tiat of (4.28). Actually, it might be
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!lhepolynomial method, on the other hand, requires more work be.

cause the coefficients, as well as the iterates, must be calculated.

This is not very significant. Shortley (Ref. 7) estimates that the

computing time is of the order of #2 were N is the number of equa-9

tions of the system. This tends to be optimistic, but is somewhat

more qualitative.

If the matrix A, Eq. (2.2), is symmetric (or can be made so by pre-

multiplication by a positive definite matrix), then the M obtained for

Simultaneous Iteration (2.4) has real eigenvslues. If the Successive

Iteration matrix has real eigenvalues, the application of Tschebyscheff

Polynomials results in an increased convergence rate. In general, how-

ever, it is not clear that the eigenvalues of the Successive Iteration

matrix are real.

Choice of Parameters

In order to generate the Tschebyscheff Polynomials, the iteration

parameters of Eq. (4.7) and Eq. (4.9) must be determined.

The coefficients of the semi-iterative procedure are obtained by

expressing the Tschebyscheff Polynomials in polynomial form and matching

coefficients.

For the iterative procedure, Eq. (4.9), the roots of the Tschebyscheff

Polynomial and the generating polynomial, Eq. (4.11),are matched.

The roots of TP(v), IvI < 1, are

k = o, 1, 2, .... P-1 (4.29)
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Thus, for the transformed roots, Eq. (4.25), we have

2A -a- b~= a-b 211+1*= Cos —
2p

k= o, 1, 2, .... p-l (4.30)

or

A=;
[ 1

2k+lfla+ b+(a-b)cos —
2P

k =o, 1,2, .... l-l (4.31)

Similarly$ the roots of the general polynomial, Eq. (A.11), occur when.

ever

(4.32)

or

ak-l~.— (4.33)
‘k

Matching Eq. (4.31) and Eq. (4.33) gives

{[

1 z?k+l -1

‘k= l-Z 11a+ b+(a. b)cos —
2P

k =0, 1, 2, ..,.,p- 1

-36-
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Both procedures have different coefficients for different orders p

of the polynomial. The usual procedure is to estimate in advance &e”re.

quired p snd then calculate the appropriate

that the estimated is not large enough to

tion, then the cycle can be repeated. This

generating the larger polynomial initially,

of the method.

coefficients. If it turns out

give the required error reduc-

is not, however, as good as

and is clearly a disadvantage

A second disadvantage is the susceptibility of the method to large

round-off error (Ref. 7). This occurs because the coefficients u< and

ai may be very

One means

inates both of

(Ref. 4, p. 9,

A

large.

of generathg the Tschebyscheff Polynomials which elim-

Iiheseproblems is to use a second order iteration scheme

and Ref. 24), such as

X(P) = X(P-l)

[
+a Mx(p-1)-&-’)

P-

Such a form is plausible because of

-1[.s +@ ~(P-1)-x(P-2)
P- 1 (4.35)

the known recursion relation Tp(~),

Eq. (4.20). Again the error reduction is taken as in Eq. (4.26)

TP[U(M)1 E(o)
E(P) =

TPIU(I)1-
(4.36)

which, when substituted into the error equation restit~ fromEq. (4.35),

yields, upon rearranging,
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TP[U(M)] = (l+apM-c$+~p)

Equating the coefficients of

tion gives

and

TPIU(I)]

TP-2[U(I)1

TPIU(I)]
TP-l[U(M)1

Tp-l[u(d 1

TP-2[U(M)] (4.37)

L

Eq. (4.37) with those of the recursion rela-

@p =
TP-2[U(I)]

TPIU(I) ]

(4.38)

(4.39)

The first two values of the Tschebyscheff Polynomials (4.2o) are satisfied

if the following choices are made

2
%=2-a-b

(4.40)

Pl=o
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Us@g the values of ap and f3pgiven by Eqs. (4.38), (4.39), md

(4.40), a set of iterates ~
(P) is generated in Eq. (4.35) s~h fiat

Eq. (4.36) is obtained at each step. Round-off clifficulties are

greatly reduced, as the coefficients are order 1=

-39-



5. I!LOCKOR IMPLICIT ME’IHODS

It is sometimes advantageous to advance a set or block of unknowns

simultaneously. The equations are implicit if each of the unknowns.of

the block depends upon the other unknowns of the block. !Ihemethod of

solving these implicit equations depends, of course, upon the structure

of the matrix. Usually they must be solved simultaneously. In that

case, the blocks should be chosen so that the solution is simple and

the round-off errors are small.

The ideal procedure would be to obtain the exact solution by solving

all the equations simultaneously as a single block. However, this is im-

practical for a general system of # non-zero coefficients because of

round-off errors. On the other hand, if there are of the order of only

N non-zero coefficients, such a procedure might prove feasible if round-

off is not large.

If each block consists of just one u@mown, then the procedure is

identical to the “point” methods of the previous sections. Also, if the

equations of a block are uncoupled (i.e., each unknown does not depend

won the other unknowns in the block), then each unknown can be ~itten

e~licitly in tezms of previous iterates and the method is identical to

the corresponding point method (Ref. 17).
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One can have simultaneous and successive block methods as discussed

in Section 2, as well as extrapolation of these basic procedures as in

Section 3.

As an example,,

Eq. (2.1) such that

knowns of the first

assume that each block involves k unknowns.

the first k equations have the coefficients

-x-
block on the main diagonal, and the second

Order

of k un-

set of k

equations has the coefficients of the k

the main diagonal, etc. Then Eq. (2.2)

unknowns of the second block on

can be written (Ref. 17) as

(5.1)

where the matrix D is formed from the (k x k) matrices of coefficients of

unknowns in the blocks. The matrices fland~ are the remaining lower and

upper triangular matrices which couple unknowns within a block to unknowns

outside the block.

Corresponding to Eq. (2.3) for the basic fozm, we have fromEq. (5.1)

(5.2)

Analogous to Eq. (2.4) for Simultaneous Iteration, we have Simultaneous

Block Iteration

-x-
As discussed in Section 1, each equation
coefficient of which appears on the main
Eq. (2.2).

distinguishes

(5.3)

an unknown,the
disgon~ of the matrix A-of
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or

Jp+l) =
-D-l(~+ti)&p) - D-l S “(5.4)

Similarly, from Eq..(2.5) for Successive Iteration, we have for Succes-

sive Block Iteration

or

(5.5)

(5.6)

As before, the error obeys these same equations with the source term

absent. The characteristic equations for the error matrices become

Simultaneous Block Iteration: detl~+~+hDl=O (5*7)

Successive Block Iteration: detl~+X(D+~) =0 (5.8)

with arrays corresponding to Eqs. (2.13) and (2.14). In particular, if

k= 2 (still assuming aii= 1)
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Simultaneous Block Iteration:

A. %2 33 a14 “ “ “

a23 a24 “ “ “

a31 a32 %
ka34 . ● ●

a41 a42 ‘a43 h

● ✎

● ●

ad. an2

Successive Block Iteration:

%2

h

32

‘a42

.

.

Aa
n2

%3 %4 “

a23 a24 “

L %4

ka43

‘Ihebasic block methods csn be

point methods. Thus for

have

.

●

●

aln

a2n

.

.

).

ha
n, n-1

I

(5.9)

= o (5.10)

extrapolated as in Section 3 for the

Extrapolated Simultaneous Block Iteration, we
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or

Jp+l) .

and for the Second

[-

X(P) -@-l ~(P)

Order Simultaneous

+s-1
Block Iteration

(5.11)

(5.12)

Jp+l) =&) [+a y-+-
l-oD-1[*(p)+4 ‘5013)

,
SinrC1.arly,for Extrapolated Successive Block Iteration

Jp+l) =&) - CDD-’
[-
~b) +~xh?+l)+fyx(p)+ s1 (5.14)

The parameters and eigenvalues and the

Section 3 were dependent on the eigenvslues

-1 ‘- -

extrapolated procedures of

of the Simultaneous Iteration

matrix equation (2.13). Similarly, the parameters of the extrapolated

in@icit methods are dependent on the eigenval.uesof the Simultaneous

Block Iteration matrix equation (5.9). In fact, the parameters and

eigenval.uesare the same functions of the Simultaneous Block Iteration

eigenvalues as tie corresponding parameters snd eigenvalues of the

point extrapolations are of the Simultaneous Iteration eigenvslues.
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The extension to Polynomial Implicit Methods is immediate if

Eqs. (5.1) and (5.2) are used, rather than Eq. (4.1). The parameters

obtained are those of Section 4 with the Simultaneous B1OC1CIteration

eigenvalues replacing those of the Simultaneous Iteration.
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6. VARIATIONAL METHODS

In considering the variational methods for solving the system given

byEq. (2.1)

A2J+s=o (6.1)

we assume that the matrix A is real, symmetric, and positive definite;

i.e.,

a z.
ij = Ij = aji

andforanyx#O

I aij ‘i ‘j>0
i,j

(6.2)

where the bar denotes complex conjugation. An arbitrary vector, x (P),

will.not, in general, be an exact solution of (6.1) but will generate a

residue, r(P), defined as

(6.3)
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If A is symmetric, the system of Eq.

clientof a quadratic function

F(X)=~ZO&+~eZ

solving Eq. (6.1) is equivalent

for an arbitrary trial vector, ~ (P),

(6.1) can be written as the gra-

(6.4)

to min.imizingF(~). In particular,

the residue is

(6.5)r(P) = ~(P) + ~ .
[1

()GradF x p—.

ByEq. (6.5), the residue, r(P), is normal to the surface of the ellip-

soid defined by Eq. (6.4) in the N-di.mensionslspace of the elements of

x.

(IfQp) is some arbitrary direction andu some arbitrary constant

p (P+l)dependent upon p, then the iteration scheme for x can be defined as

Jp+l)
= y +0 m(p)

P–
(6.6)

Equation (6.6) states that the new iterate is given by the old iterate

plus some “correction”vector.

me variation&L methods amount to choosing an up such that the quad-

[1
ratic function F x

(ml)
~ given by Eq. (6.4), will be a minimum for a

given direction ~p) . Consider Fig. 6.1, which represents the intersec-

tion of a plane definedby~ (P) and r(p) =d the surface F(=) = constant.-.
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The

F(x) =C,

Fig. 6.1

tip of the vector ~(p) “appears as a point in this plane.

[1

(1
The minimum F x w ) is tangent to tie direction ~ (P) and the new

residue, &’) ,isthusnormalto~ (P)● We have

,(p+l)
- y = A&@‘E- [~(p)‘4 ‘I=(W1) -~(p)l

or by Eq. (6.6)

r(p+l) = r(P) + (DPA&)

Choosing ~(wl) and ~(p) as above implies

(6.7)

J?’@ . ~(P) = r(P) . ~(P) + U)PAm(p) . ~(p)=, (6.8)
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which determines

$P)
● X@

(D. .—
3? m(p) .L(PJ

This choice of am systematically
z

convergent for any

The choice of

now be discussed.

given ~(p).

(6.9)

[1reduces F X(B’) , and the method is

m(P) differentiates the methods; a few of them wi.11

Southwell’s Relaxation Method

If the direction m(p) is chosen as one of the coordinates of the

space (ei) on which the matrix A defines a linear transformation, then

X(P+l)
= J’) —

a-.-. ‘i
(6.10)

1..1.

Thus, the residue of the ith unknown is eliminated and other values are

undisturbed. Usually, the ei with the largest residue is chosen, but

the choice depends upon the individual perfoming the computation.

When the coordinates (ei) are all used in a fixed order, the method

is identioal to Successive Iteration of Eq. (2.5). Successive Iteration

is, thus, just systematic relaxation, snd is suitable for high speed com-

puters, whereas ordinary relaxation is more appropriate for hand computa-

tion.
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.

Method of Steepest Descent

Let direction q(p) be chosen equal to < (P). Bis is normal

ellipsoid at the point ~(P) and, as such, is in the direction of

to the

steepest

Hchange of the function ~ (P) = constant. A useful diagrsm is obtained

by passing a two-dimensionalplane through the residue, r(P)c A manifold

of e~ipses with a common center is formed by the intersection of the plane

and the surfaces F(x) = constant (see Fig. 6.2).
(p)

( +1)~P

Fig, 6.2

From Eqs. (6.6), (6.7), and (6.9), we have

Jpbl)
= # +s) I@

P-

=(P) . r(p)
u =- -
P Jl?) , &(P)

(6.11)

(6.12)

r(p+l)=r(p)+w ~(p)

P
(6.13)

-%-



This choice of $’) defines the Simultaneous

of Section 3, with the parsmeter o here variable
P

Method of Conjugate Gradients (C-G)

Extrapolated procedure

rather tian constant.

(’) is a(p),A better choice of the direction m _

on the ellipse towards the center of the ellipses.

directed from a point

()Then ~ p and a vec-

~r t(’) (P), tangent to the ellipse at ~ , define conjugate directions-

(Ref. 23); that is,

a(’) , At(’) = () (6.14)

They are orthogonal with respect to the matrix A. A useful diagram i.s

obtained by passing a plane through ~(P) and _&, @elding

[1ellipses wherein the mkhnum F ~ (P) occurs at the center

in the plane. ~(p)

(p)
~

a manifold of

of the ellipses

Fig. 6.3
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[1The minimum 1?&+’) occurs for snap given from Eq. (6.9)

JP)
● Jp)

‘p = - a(p) . Aa(p~

where, as before, the residue is given iteratively

r(p+l)=r(p)+a ~(p)

P-

and the iteration scheme is

JP+l) = .JP) +~ JP)
P-

(6.15)

(6.16)

(6.17)

Thus, the new residue r(~1)
‘s ‘“-‘0 @’-)l=cat‘epoint

Jp+l)
L -1

, the center of the plane at which point F(z) is minims3. Since

the plane is tangent to the surface at this point, the residue ~ (p+l) is

orthogonal to this plane and to the vectors a(P), r(P) ()
>~d~p which

\

lie in the plane.
,.

()!lke,vector E p is easily

determined by the vectors r(P)

choice

a(P) = JP) + up t(P)

found using Eq. (6.14). !lkieplane is

and ~(p) . Thus, one could make the

(6.18)
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Picking the parameter v to satisfy Eq. (6.14), wc have
P

#?)of# =r(P) . ()At(p) + up A& p = O

or, solving for Q ,
P

~(P) . J@

‘P = - t(P) . At(PJ-

(6.19)

(6.20)

(1The resulting equations are simplified by realizing that t P ‘, the new

7tangent vector, lies somewhere in the plane of r(p) and t ‘). ZWs, one

might choose

+x-l) = M

with the result

‘P=-

r(P) , Aa(p-l)

a(p.l) ● Aa(p-l)

(6.21)

(6.22a)

and the residue
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#H.1) = ,(P) + ~ JP)
P-

(6.22b)

JP)
● a(p)

(D ----
P JP) . AJP)

The iteration scheme is defined

(6.22c)

Equations (6.22a), (6.22b), and (6.22c) inply the orihogonality relations

r(p+l) . $??) = ~ (6.2ja)

r(til) . .&) = ~ (6.23b)

r(pkl) . a(p-l) = ~ (6.23c)

(6.23d)

Likewise, it cmbe sho~* that all ~(p) are mutually orthogonal and sll

a(P) are mutually conjugate; i.e.—

P) ~d a(p-l) ~d then show that ~*
Assume Eq. (6.24) holds through~{

(P)

(and r ~1) as defined by Eq. (6.22) satisfy (6.24) for each previous
itez%te.
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I

Q =

~(p) . As(j)

In performing the iteration defined

arbitra~ vector x(o) (o)
and computes r ,

hold for all <(P[ the assignment .;O) =

(6.2?)

by Eq. (6.22), one picks an

but in order that Eq. (6.24)

r(o)
must be made; i.e.,

P. = O* The method is exact in N steps and at each step

(6.25)

The procedure amounts ta passing Nmutuslly orthogonal planes &rough

the ellipsoid F(x) and finding the center of the resultant manifold of

ellipses in each plane.

With some simple algebraic manipulation, the relations of Eq. (6.22)

can be rewritten as second order recursion formulas. We have

r(p+l) .(. +-)<(p) . ~&)~(p-l) +.Pfi(p) (6.26a)
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(6.26c)

We must still require, of course, that ~. = O.

Note that Eq. (6.26b) is of the same form as the

taneous Iteration, Eq. (3.8), except coefficients are

Second Order Simul-

here variable. Also,

it is of the same form as the second order procedure for generating the

Tschebyscheff Polynomials, Eq. (4.35), where the coefficients are picked

to generate the polynomial. Here they are picked to minimize the quad-

ratic function F(3).

Methodof Conjugate Directions (C-D)

The method of Conjugate Directions is similar to the conjugategra.-

dit?ntmethod. It also gives the exact solution in N steps. The direction

vectors are chosen just as before

a(p) .Aa(j)=o P+3

However, Eq. (6.27) is the only restriction upon

vectors may be calculated at any time during the

iteration is begun), which may often prove to be

(6.27)

them. The direction

iteration (even before

a convenience that the

C-G method lacks. On the other hand, if fewer than N steps are used,

the C-G method will probably give a more accurate result than the C-D

-!%-



method, even though both schemes improve the solution with each step and

give the exact answer after N steps.

Although both the C-G and C-D methods theoretically give an exact

answer in N steps, round-off errors prevent the residues from being

truly orthogonal in actusl practice. Thus, we will have r‘P-l) + O, but

one might expect it to be very close. If round-off is significant enough

to cause tie solution to become too inaccurate, then it is not clear what

procedure shouldbe followed. Iteration could be continued until r(P) is

sufficiently small or could be restarted with x(ml) as an initial guess.

For large systems of equations, the variational methods may not be

best, This is because the scslar products needed for the calculation of

the parameters require considerable time to form and may be severely in

error due to round-off. Some computational experience should be acquired

in order to make a fairer appraisal of the methods.
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7= APPLICATIONS K) ELLIPTIC DIFFERENCE EQUATIONS

Elliptic difference equations result from differencing an elliptic

differential equation at points of a mesh imposed upon the domain of the

differential equation, associated with tie tiosed bo~~ry conditions”

A set of independent, simultaneous, inhomogeneous linear eq~tions cofid

result, one for each mesh point. The numerical solution of these equa-

tiOns represents a solution of the differential equation to the approx-

imations inherent in the differenctig used, and the imposed boundary

conditions. The equations can be written in the form

N

I aij ‘j + ‘i =
o

j=l

i=l, 2, .... N (7.1)

where N is the number of mesh points, S.ndthe somce term, Si~ depends

upon external sources in the problem as well as fixed non-zero boundary

conditions. The coefficients aij are assumed to be resl and to give the

contribution of the point j to the point i in the differencing scheme.

In addition to whatever physical conditions are imposed upon the aij,

they must satisfy the following general conditions (Ref. 13):
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N
v’

(a) aii 21 laijj~
and for some i strict inequality holds.

j=l

(b) The matrix A = (aij) is irreducible, i.e., given any two

non-empty, disjoint subsets S and T of the first N integers, W, such that

S+T = W, then there exists some a.. #Osuchthat ieSandj~ T.*
lJ

(c) aii # O and for each equation canbe chosen such that

a >0.
ii

It is easily shown (Ref. 1) that conditions (a)

non-singularity of the matrix A, i.e., non-vanishing

and (b) imply the

determinant. Sim-

ilarly) the matrix A must be positive definite. For, if h is a negative

real number, the matrix A - AI also satisfies conditions (a) and (b)

above, and thus has non-zero determinant (Ref. 13). Hence, all eigen-

values of A are positive, anclwe have the additional property (assuming

A is symmetric):%+

(d) A is non-singular and positive definite.

As a simple

domain with zero

u

example,

boundary

consider Poissonts equation in a rectangular

conditions along the edges

*
This means that lZqs.(7.1) are coupled such that each unknown depends,
perhaps indirectly, upon all others.

**
The matrix A is symmetric if the coefficient in the difference equation,
giving the contribution from the point i to the point j, is the ssme as
the coefficient from the point j to the point i.

-59-



a2w%Y)

i3x2
+

A mesh of k vertical
n

= S(x,y) (7.2)

lines and 1 horizons lines is const~cted ad

Eq. (7.2) is difference at each intersection (Fig. 7.1).

. .
I 23450°0 ● ● ● ● ‘ae ● ● 0 ● “ “K

Fig. 7.1

Assuming equal spacing in both directions, defi.ne(LX X)2= (LY)2 = h,

and for each interior mesh point we have
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or, in terms of general coefficients

- (% ‘k-i-l1 + bkl ‘k-l t + Ckl ‘k,.4+1+

+ ekl ~kl + Skz = O (7.5)

where, for Eq. (7.4) the coefficients satisfy

% = bkl = ckl ‘%=; ’l, l=: (7.6)

for the y = (k - 2)(1 - 2) internal points.

Labeling these points in some msnner, 1, 2, .... y, and writing

Eq. (7.4) for each point, we would obtain an equation like Eq. (7.1).

Condition (a) is satisfied, since the inequality holds for interior

points adjacent to

coupled to all the

true fmm the form

the boundaries. Since each equation is ultimately

others, condition (b) is satisfied. Condition (c) is

of Eq. (7.4).

For illustrative puqposes, let us consider now a very small mesh

(k =6, 1=5) andwrite the equations in detail. !lherearetwelveti.

terior points, which could be labeled as in Fig. 7.2.
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9

5 %--K
2 3 4
I

Fig. 7.2

Using this ordering of the points, the following matrix equation

results

(7.7)

Writing Eq. (7.7) in detafl for Eq. (7.4), = have Eq. (’7=8)(- m-

rate page) or, in terms of Eq. (7.5), we have Eq. (7.9) (see separate

page), where the coefficients satisfy Eq. (7.6). me form of Eq. (7.9)

is typical of that obtatied for the given ordering whenever a five-point

differencing of an elliptic differential“equationis made. There are

two diagona2s spaced k - 1 (interior points) to the right snd left of

the main diagonsl, giving the effect of the points above and belowy re-

spectively, of the point considered in the difference equation. The

matrix is symmetric, in the notation of Eq. (7.9), whenever
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(7.10)and

Or, in

one of

words, the coefficient of a point to a neighbor

the four surrounding points) is the same as the

(in this case,

coefficient of

the neighbor to the point. The effect of the fixed boundary condition

is reflected in the absence of the terms ~,, b,, in tie matrix. Hence,
ALA

again, condition (a) is satisfied.

In some instances, in other geometries,

achieved, for instance, by premultiplication

symmetry can be easily

of the ith equation by the

ith cell volume, but, of course, this depends upon the particular form

chosen for the difference equations.

Young has shown that the matrix obtained by differencing an ellip-

tic differential equation with a five-point differencing scheme possesses

Property (A), which is defined (Ref. 13):

Definition: A matrix possesses Property (A) if there exist two

disjoint subsets S and T of the first N integers

and if a.. #O, theneither i=joric Sand
lJ

With these properties of the matrix A, we

methods described in the previous sections for

= o.

WsuchthatS+T=W,

~TorieTandjeS.

consider the various

solving the system Ax + s--
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Basic Iterative Metiods

Young (Ref. .13)has shown two very

matrti possessing Property (A). First,

important consequences of any

the eigenvalues of Simultaneous

Iteration as applied to such

imum and minimum eigenvslues

are

the

are

certati orderings of the

a matrix occur in ~ pairs. Thus, the max-

have the ssme absolute vslue. Second, there

points, called consistent orderings, in which

eigenvalues of the matrices

related in a simple manner.

of Simultaneous and Successive Iteration

More precisely, the characteristic deter-

minants of Simultaneous and Successive Itemtion [Eqs. (2.13) ~d (2-14)1

can be written, for a consistently ordered matrix A, as follows.

Simultaneous Iteration:

f(k) =

% c1

‘2 ‘B2 C2

‘3 ‘3 C3

●

●

.
Ck-l

Dk XBk

(7.11)
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Successive Iteration:

f(h) =

c1
XB2 C2

733
3 C3

.

.
Ck-l

~Dk fik

= o (7.12)

where B,, Be, .... B,=are sqyare matrices and X and ~ are the eigenvalues
-1. c a —

of the respective methods.

For the example, Eq. (7.8), we can order the equations along the di-

agonals of the mesh (without altering the vslue of the determinant) and

obtain Eq. (7.13) (see separate page). Likewise, forEq. (7.9) we would

have Eq. (7.14) (see separate page). In Eqs. (7.13) and (7.14), the square

matrices of Eqs. (7.11) and (7.12) have been blocked off. Clearly, the

characteristic equations of Simultaneous and Successive Iteration applied

to Eq. (7.13) or, to the more general form ofEq. (7.14),

of Eq. (7.11) and (7.12)0 This is an indication that the

Eqs. (7.8) and (7.9) is a consistent ordering.

are of the forms

ordering used in

The convergence rate of Simultaneous Iteration is independent of the

ordering of the points. For Successive Iteration, however, this is not

generally true. Young has proved that the convergence rate of Successive
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Iteration is the same for all.consistent orderings of the points. More-

over, the eigenvalues of Successive Iteration are the squares of those

for Simultaneous Iteration. Thus the convergence rate of Successive

Iteration is twice that of Simultaneous Iteration.

This last statement is demonstrated easily (Ref. 17). Consider any

diagonal non-singul.armatrix Q. !lhenfor anon-singular square matrixM

det (Q-lMQ) = det (Q-l) det M det (Q) = det M (7.15)

IfM is the matrix ofEqs. (7.12) and (7.15) and Q is defined as

●

.

(7.16)

then fmmEq. (7.15)
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-1/2c
XBlhl

~1/2D -1/2c
2 XB2h2

~1/2D
~B

~1/2c
3 3 3

det(Q-%Q) =
. ● .

. .

~1/2D
k

@ f(~llz) = o=

WhenEq. (7.17) is compared withEq. (7.11)

~1/2 . ~

(7.17)

(7.18)

and the statement is proved. If the Simultaneous Iteration eigenvalues

are real (e.g., the matrix A is symmetric), then the eigenvalues of Suc-

cessive Iteration are also real.

When applied to difference equations, Simultaneous and Successive

Iteration are often cslled Richardson’s Method and LielxnanntsMethod,

respectively.

Remarks on Consistent Orderings

Given a set of five-point difference equations on a mesh [i.e., a

matrix with Property (A)], the consistent orderings for Successive Iter-

ation are easily determined (Ref. 13). They are just those orderings for
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which the Successive Iteration equations can be solved in a consistent

way, nsmely, those

Let us assign

~= (al,

retaining the feature of Successive Iteration.

an ordering vector a to the mesh

a2, .... aN ) (7.19)

where the subscripts on the components ai refer to the ith equation in

the ordering, and the ai are

I Iai-aj ‘1

if aid ~ Oand i# j. Under

following definition to test

for

integers such that

(7.20)

these circumstances, one can then use the

for

Definition: An orQering is

a-.z =Oandcza >cz:, theith

consistent orderings:

consistent for Successive Iteration if,

equation in the ordering is solved for

after the jth equation; and if, for a<: +Oanda:>cx., the Jth equation
J-J eJ .L

in the ordering is solved for after the ith.

Given an ordering vectors, with the properties of Eq. (7.20), one

form of consistent ordering is to arrange the component ai inan in.

creasing or decreasing sequence, corresponding to ‘lforwardl’or ‘tbackwardft

mesh sweeping.

Now consider

indicated in Fig.

the example

7.2 already

with twelve interior points. The ordering

has been established as consistent; however,

-72-



for illustrativepurposes

Eq. (7.19) with N= 12.

we demonstrate it using the ordering vector of

If we assign the components* ofaasa
1
=l,a2=2,a=3, and

3

a4
= 4, then the choicea~ = 2, c%= 3, a7= 4, anda8= 5; sndu = 3,

9

%0 = 4, all = 5, and %2 = 6 will satisfy the definitions of the order-

ing vector. Thus, of the many possibilities, we have chosen

a = (U~)a2,~~>~4>a5,a6,a7,a8Ya~,a~~,al~,a~2)

= (L, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6) (7.21)

Equation (7.21) satisfies the consistency conditions, as can been seen

easily. For i = 3, we have a3 > CX2(since 3 > 2), and the jrd equation

must be solved for, or follow, the 2nd equation. For i = 4, a4>a3, and

we should have the 4th equation following the 3rd equation. Now for i = 5,

cx4> a5 (since 4> 2), and we should have the 4th equation following the

5th equation except that the aij between these points is zero. Therefore,

o!- aj # 1> and We CO~d have ~he 5tJIequation folloting the 4th equationi

and

and

see

still satisfy the consistency conditions. Again, for i = 6, ~6>~5,

the 6th equation should follow the 5th equation. In this way, we can

how the a of Eq. (7.21) satisfies the consistency conditions with the

ordering of the subscripts (of Ui) i = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, Xl, 12.

*This ordering corresponds to sweeping along the elements of a row (k = 1,
2, .... K) for all rows (A!= 1, 2, .... L).
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The inverse ordering of subscripts i = 12, 11, 10, 9, 8, 7) 69 5> 4> 3>

2, 1 is also consistent. These two exsmples correspond to a “forward”

and “backward” mesh sweeping, respectively.

One could also have swept “up” or “down” by the ordering of the sub-

scripts i = 4, 8, 12, 3, 7, 11, 2, 6, I-O,I, 5, 9 or i = 12~ 8> 4) 11> 7>

3, 10, 6, 2, 9, 5, I, giv- the

g = (6, 5, 4, 5, 4, 3,

for sweeping up (left or right),

~ = (4, 5, 6, 3, 4~ 5>

ordering vector

4, 3, 2, 3, 2,

or

2, 3, 4, 1, 2,

forsweeping dmn (right to left).

Likewise, disgonsl sweeping is consistent,

1)

3)

corresponding

.
q= oftheai ofEq.. (7.21) in the

g = (1, 2, 2, 3, 3, 3) 4> 4>

increasing order

4, 5, 5, 6)

(7.22)

(7.23)

to the ar-

(7.24)

with the subscript ordering i = 1~ 2) 5> 3j 6> 9> 4> 7> 10j 8, 11, 12.

Extrapolation Methods

For the particular case of finite elliptic difference equations,

Extrapolated Simultaneous Iteration carries over directly from the dis-

cussion of Section 3. The only alteration we could make is to utilize
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the fact that the eigenvalues occur in ~ pairs, i.e., AO = -An, where AO

and Am are the minimum and maximum eigenvslues of the Simultaneous Itera-

tion matrix (assumed resl). The Second Order Extrapolated Simultaneous

Iteration parameters, for this case, become

l-m
o!=

l+m=”-l
t

(7.25)

J
where @i are the eigenvslues of the procedure. We can then write the

iteration procedure

This procedure, as

(7.26)

applied to difference equations, is usually called

Second Order Richardson. Remember that the 0, as given above, are ap-

proached asymptotically as n ~co, i.e., the error due to the first sweep

(Section 3) becomes insignificant.
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Extrapolated Successive Iteration is treated much as the basic

Successive Iteration. For any matrix possessing Propetiy (A), the

characteristic detemminantal equation becomes

(l-u)-~)B1 -Wl

-U)D2 (1-u-~)B2 -w2

-u)D
3“

. .

.

-UIDk

.

.

. -(DCk-l

(l-u-~)Bl

= O (7.27)

where ~ represents the eigenvalues of the procedure. Factor@ out the

iteration parszneteru and using the diagonsl Qmatrix equation (7.16), we

obtain the relation

(7.28)

where h is the basic Simultaneous Iteration eigenvalue equation (7.11).

Solving Eq. (7.28), we have

~=[~t-j’
(7.29)
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Since the convergence rate of the process depends upon the magni-

tude of its eigenvalues, we wish to minimize ~. This is accomplished by

forcing the square root to be zero for the largest eigenvalue, Xm. Thus

or

and Eq. (7.29) becomes

(7.30)

(7.31)

(7.32)

for SJ.1eigenvalues.

form for Second Order

These eigenvalues are the square of the asymptotic

Extrapolated Iteration. One would expect that

Extrapolated Successive Iteration would

number of iterations reqyired by Second

converge in, at most, half the

Order Extrapolated Simultaneous

Iteration. Such is not the case! The iteration matrix definedby 12x-

trapolated Successive Iteration does not have a complete set of eigen-

vectors. The Jordan normal form has one off-diagonel element, and thus

the

the

matrix lacks one eigenvector (Ref. 13, p. 103). Thus, instead of

ernn? decaying as (a - l)P, we have

~(P) ~)P @=p(m- _ (7*33)
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The parameter u, defined by Eq. (7.31), is greater than 1. This proce-

dure is generally referred to as Successive Over-Relaxation (SOR). It

is also often called Extrapolated Liebmann.

Tschebyscheff Polynomial Methods

*
Usually the matrix of the difference equtions is symmetric, ud,

in that case, all the eigenvalues of the Simultaneous and Successive

Iteration are real. Then, Tschebyscheff Polynomials can be applied to

either of these two basic techniques. Since

Simnil-taneousIteration occur in ~ pairs, the

der Simultaneous Polynomial method are

the eigenvalues of the basic

panmeters of the Second Or-

a = -b = Lm

al=l

$1=0

(7.34)

+(-
The differential equations usuXlly can be difference so that a point
has the same effect on its neighbors in the difference equations as
the neighbors have on the point. This will yield a symmetric matrix.
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where Am is the maximum

The error reduction is

eigenvslue of the Simultaneous Iteration matrix.

(7*35)

The eigenvalues of Successive Iteration are the squares of the ShniLta-

neous Iteration, and thus the replacement of Am by k: in Eqs. (7.34) and

(7.35) gives we appropriate v~ues for Me Second Order Successive pol-

ynomial method.

‘lheExtrapolated Successive Iteration for difference equations does

not have resl eigenvalues; therefore the convergence rate cannot be ac.

celerated with Tschebyscheff Polynomials. Sheldon (Ref. 31) has shown,

however, that if the mesh is swept first in one direction and then back

in the other direction, using Extrapolated Successive Iteration for each

sweep, then the two-step process has real eigenvalues. The eigenvalues

are all positive, and the maximum is approximately the usu&L Extrapolated

Successive Iteration eigenvalue. Accelerating this two-step process gives

a gain

sweeps

Second

in over-aU convergence rate. Each iteration requires two mesh

and the associated arithmetic of the polynomial generation. The

Order Extrapolated Forward-Backward Successive Polynomial p-

rsmeters are
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-a’l+&-
.

1 =c2- 1

()3-cXT—
4

p-l a-l
a =x
P

()

T3-a
pa-l

T &-)3-U

P-~-l
$P =

()

~3-cX
pa-l

2
al ‘2 -a-l

and the error reduction is

E(P)< 1 ~(o)
=.

()~3. cX -
pl-a

(7936)

(7.37)

If my eigenvslues exist that give a larger vslue of a than that esti-

mated in Eq. (7.35), they must be damped out by some other procedure.

Steifel (Ref. 4) suggests using a method essentially equivalent to

Conjugate Gradients. Extrapolated Successive Iteration would probably
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be sufficient. We can, of course, apply the Tschebyscheff Polynomial

method to Simultaneous or Successive line methods or even to a Forward.

Backward Extrapolated line

Block or Implicit Methods

Because the equations

method (Ref. 25).

of this section arise from differencing an

elliptic differential equation on a rectangular mesh, a logical block to.

be advanced simultaneously (Section 5) consists of all points on a row

or column. Each such block is, in itself, a tridiagonal matrix which

can be easily solved

Assume that the

row as a block, then

*
by Gauss Elimination (e.g., Ref. 18).

mesh has k rows and 1 columns. If we advance each

the diagonal matrix of Eq. (5.1) consists of k

square matrices of size 1 x 1. Similarly, if we advsnce

a block, the matrix D consists of 1 matrices of size k x

Call the maximum eigenvalue of the Simultaneous Row

each column as

k.

Iteration am,

replacing X . Thus, for the Second Order Extrapolated simultaneous Row
m

Iteration, we have

(7.38)

(3= (D-1

“’Noteadded in proof: A particular form stable against round-off, ap-
parently due to J. von Neumann, is discussed by J. Douglas (Ref. 20).
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. . -.. - --- ,,.
and

one

for

the

for the Extrapolated Successive How Lzerauon

u)= 1+* (7.39)

Since Property (A) holds for the five-point difference equations,

could take the logicsl block of unlaowns to be the entire mesh, solve

the unknowns by direct inversion, and iterate tie res~t wi~ one of

methods discussed to reduce round-off effects. The matrix wouldbe

e

‘1

‘2

A=

c1

‘2

.

C2

. .

. . .

● ● ✎

. . c
n-1

Dn Bn

(7.40)

where for orderings along rows or columns Bn is the 1 x 1 or k x k tri-

disgonal matrix appearing in the row or column iteration, and Cn and Dn

are 1 x 1 or k x k diagonal matrices representing the aij
tezms for col-

umns or rows. For orderings slong mesh diagonsls Bn is an 1 x 1 or k x k
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diagonal matrix representing the aii terms of Eq. (7.1) and Cn and Dn

are rectangular matrices, as in Eq. (7.14), representing the a.. termslJ

of Eq. (7.1)

In either case, direct

analogous to ordina~ Gauss

using matrix multiplication

inversion could be accomplished in a manner

Elimination for tridiagonal matrices, only

for products and matrix inversion for inverses.

Either K 1 x 1 orL k x k inverses are involved in perfoming the direct

inversion. If either K or L is small, then it should determine the max-

imum matrix size since round-off can be large in many instances. If the

round-off does not render the answer ridiculous, the application of Si-

multaneous or Successive Iteration, as well as their generalizations,

could be made to the solutions
%“

Recently, Nobel and Timlake (Ref. 26) applied a procedure of this

type to nine-point difference equations [possessing Block Property (A)]

and, for the test cases considered, found no appreciable round-off.

Oliphant and Baker (Ref. 29) have exhibited a factorization of the nine-

point difference equations for the Heat

proposed a factorization of the general

equations using a Lagrangian multiplier

of the equations.

Equation. Oliphant (Ref. 27) has

case for nine-point difference

technique to obtain consistency

Peaceman and Rachford (Ref. 18) have introduced an alternating di-

rection implicit method where first rows are swept as a block and then

columns. Each sweep is similar to a Simultaneous Row (or Column) Itera-

tion in that previous iterates of adjacent rows (or columns) are used.
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However, the new WiLues in

row (or column). A single

first in one direction and

each sweep also depend on old iterates of the

iteration of this method consists of sweeping

then in another. Thus, the amount of work

involved per iteration is equivalent to about two Simultaneous Row

(Column) Iterations.

Peacemsm and Rachford split the matrix A into the sum of two ma-

trices H andV, where H results from differenc~ in one direction and

V fzmm differencing in the other direction. Referring to our exsmple of

Poisson’s equation (7.2), we have

(7.41)

The iteration procedure canbe written (with ~ = ~)

(H+ppI) ~*=-(V-ppI) ~-l- s

(7.42)

(V+ PPI) ~(p) = -(H - PPI) Z* - ~

where pp are parameters

see that we sweep first

to be chosen for optimum convergence rate. We

to improve the terms corresponding to the H
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matrix and then

terms. If x is

sweep in the other direction to improve the V matrix

the unique solution, i.e.,

(7.43)(H+ V)~+~=O

them the error, ~(p) = x - x(p), satisfies Eq. (7.43) without the source--

terms. Combining the

E(P) =(V+

two equations of Eq. (7.42), we have

ppI)-l (H - ppI)(H + ppI)-l (V - ppI) &p-1) (7aW)

If H and V have a common set of eigenvectors,

in these eigenvalues. Thus,

n
Jp-1) = ~ ~

I i -i
i=l

CXi,we can expand ~ (p-1)

(7.45)

where

Inxi=uicti

(7.46)

Vgi=yicxi

and ai and 7i are eigenvslues of H and V, respectively. Then from

Eq. (7.44)
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~(p)‘zc%+’y-)ci~ii
In terms of the initial error we have

Jo)

(7.47)

(7.48)

.

The matrices H and V for our example (Poisson’s equation) do in fact have

a common basis of eigenvectors. They are Just the

tions. In general, sny two matrices have a common

if they commute, i●., if

. for

and

and

HV=VH

sine or cosine func-

set of eigenvectors

(7.49)

Keller (Ref. 16) has shown conditions under which H and V commute

elliptic difference equations. If the mesh region is rectangular,

H is derived from

K(x,Y)
a2ir(x,y) a (x Y)+L(x, Y) .+-+ p(x}Y) ~(x)Y)
ax2

V is derived from

~2V(x,Y) + s(x,y) ~- -I-Q(x,Y) I$(X)Y)
R(x, Y)

ay2

(7.50)

(7.51)

-86-



by a three-point

found that H md

the differential

approximation for H and V, respectively, then Keller

V will commute whenever the variable coefficients iii

oPeratirs of Eqs. (7.51) and (7.52) are functions of

x only when multiplying x derivatives and functions of y only when mul-

tiplying y derivatives.

A physical application of some interest is the steady state diffusion

equation with absorption and an external source

~ ● D(@ F@(~) - Z(z) ~(~) + S(x) = O (7.52)

where r is the position vector. Defining H and V as for Laplace*s e~

tion, the coefficients must now include the diffusion constant D. We

also have the vector 2(3) entering into Eqs. (7.42). With these addi-

tions, H and V will not, in general, commute. Moreover, if Z # 0, then

to expand as in Eq. (7.47), we must further require that Z commute with

bothH andV. Varga and Birkhoff (Ref. 19) proved that when Z and D are

constant and the domain is rectangular, all the conditions are satisfied.

Wachspress (Ref. 24) has shown that expansions such as Eq. (7.47)

can be carried out if a diagonal matrix F can be found such that FH, FV,

and I satisfy the commuting requirements. Such an F will exist if Z is

constant and the coefficients of D vary in one direction only.

These two results are special cases of Keller’s more recent results.

Assuming conditions are satisfied for the expansion of Eq. (7.47),

we have yet to choose the parameters pi. But usually the problem is so
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simple that the eigenvalues are known and the p~ can be picked to elti-

inate successively each erxxw made. If the matrix is very large and

there are many eigenvslues close together, one pi can be chosen to re-

duce a group of eigenmdes to

Wachspress (Ref. 24) has

the maximum absolute value of

that if

an insignificant contribution (Ref. 18).

obtained a set of parameters by minimizing

the polynomial in Eq. (7.48). He concludes

(a) a<yi andai<b

(b) pi= bxi-l i=l, 2, .... P

(c) pp<aandO<x<l

then

[ 1-

#2/(1-x) 4E(o)E(P) = ~ e-

(7.53)

(7.54)

where x is chosen to give the desired error reduction.

The Peaceman-Rachford iteration has been used to solve the genersl

diffusion equation (7.52) even though convergence cannot be guaranteed

(Ref. 24). When D and Z are slowly varying functions in space, the com-

muting requirements are nearly satisfied and the error reduction of

Eq. (7.54) is approximately correct.
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(7.53’)

If we choose

Pf =p>o

then convergence is guaranteed in the genersl case.

Variational Methods

The methods of Section 6 can clearlybe applied to elliptic dif-

ference equations whenever the matrix is positive definite. Though the

method of Conjugate Gradients is exact in N steps, N may be so large for

a reasonable mesh that N steps are too many. We how that for p < N we

have improved the initial approximation, but we have no accurate the-

orems for estimating the smount of this improvement. Hence, the varia-

tional methods have not been used a great deal.for large systems.

In addition to the above drawbacks, round-off errors for large N

“can be very serious.

Convergence Properties

are

the

To compare the convergence rates of the various methods, assume we

SOIV&g Poisson’s equation (-&@ = S) on a rect-ar mesh. Then

scheme of Peaceman and Rachford can be rigorously applied. Moreover,

we can easily calculate the eigenvalues for this simple problem and get

estimates of the maximum number of iterations required to reduce the

error by some given amount. -
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Assume the largest eigenvslue of the Simultaneous Iteration method.

is Am; then generdd.y

If we further assume

e<<l (7955)

that the mesh spacing is constant and the same in

the x and y directions, then the maximum eigenvalue of the Simultaneous

Line Iteration, am, is given by

~1-2e
“am

We can say notiing

(7.56)

about the required iterations for the variational

methods except tiat if round-off errors are insignificant, the conjugate

direction methods* will converge to the exact solution in N steys, N

being the number of mesh points and equations.

For the remaining methods, we can construct Table 7.1 (partly taken

from Ref. 25). The quantity R is the error reduction

E(P) =M(o) (7.57)

The simultaneous and successive iterations sll require about the

same smount of cslcflation per mesh Sweep per point. If appropriate

*
Conjugate Gradients is a method of conjugate directions.
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coefficients are calculated in advance, the line methods require about

the same effort as the point methods. The Tschebyscheff Polynomial

method requires only slightly more calculation.

The alternating direction implicit method of Peaceman and Rachford

requires about 50 per cent more calculation per point than the above

methods. The variational methods require tie calculation of three

scalar products to get the necessary parameters, or approximately a

100 per cent increase in calculation per point.
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ApproximateNumberor
toR ofI’tsInit~aJ.

simultaneousIteration

SuccessiveIteration

S~muJ.taneousLineIteration

SuccessiveLimel%eration

Table7.1

SweepsRequired
Value for Given

SecondOrderSimultaneousIteration*

SecondOrderSimultaneousLine
Iteration*

ExtrapolatedSuccessiveIteration

ExtrapolatedSuccessiveLine Iteration

SimultaneousTschebyscheffPolynomials

Succe$iiveTschebyscheffPolynomials

SimultaneousLine Tschebyscheff
Polynomials

SuccessiveLine Tschebyscheff
Polynomials

Forward-BackwardExtrapolated
TschebyscheffPolynomialsw

l?orward-BaclcwardExtrapolatedLine
TschebyscheffPolynomials

.X*
Peaceman-Rachford

Approximate
Numberof
Sweeps

In R-—
e

lnR
-r

lnR-—
2C

-%+

in R-—
a

*
Assumesasymptoticeigenvalues.

**Assumesa= 2/(1+~).

‘x is relatedto RbyEq. (7.54).

to Reducethe InitialError
c [Eqs.(7.55)and(7.56)1

R= 0.02

6 = 1o-2

390

195

195

98

28

20

26

17

33

24

24

17

12

8

8

-4C=lo

39,000

19,500

19,500

9,750

280

350

210

330

24o

24o

170

27

20

14

,

R= 0.002

-2E=lo

620

310

310

155

44

31

35

24

49

35

35

25

15

10

10

-4C=lo

62,000

31,000

31,000

15>500

440

310

430

300

490

350

350

250

46

32

18
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8. SUMNARY

Several of

of simultaneous

the rather well known methods for solving large systems

equations have been presented. Both the general case

and a specific application -- elliptic difference equations -- have been

discussed.

It has been noted that simple restrictions on the coefficients of a

given matrix are sufficient to guarantee convergence of the various meth-

ods. The Simultaneous Iteration end Second Order Simultaneous Iteration

require that the

diagonsl tezms.

will converge if

diagonal terms of the matrix dominate or equal the off-

The Successive or Successive Extrapolated Iterations

the diagonal terms dominate the off-diagonal terms.

Successive Iteration, Extrapolated Successive Iteration, and Variational

Methods require that the matrix be positive definite. The Tschebyscheff

Polynomial method requires that the matrix used in the polynomial have

real eigenvalues.

The basic iterations are usually very slowly convergent. Second

Order Simultaneous Iteration gives an order of magnitude improvement

while the Successive Extrapolated Iteration cannot be used optimslly in

the general case. The Tschebyscheff Polynomial method, when applicable,

is generally the most rapidly convergent. Variational methods are rapid,
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but restricted to small matrices of less than a few hundred

They have the advantage of yroducing an exact solution in a

ber of steps.

equations.

finite num-

The iteration and polynomial methods can be extended to implicit

methods where blocks of unknowns are improved simultaneously. If the

matrix of tie block can be easily inverted, this procedure can save a

great deal of computation time. The effort involved in solving for the

unknowns in the block must be balanced against the improved convergence

rate. This latter is tifficult to estimate for a general matrix.

In the particular case of five-point finite difference equations,

[more generally, when the matrix possesses Property (A)] more can be

said about the iteration methods. It c= be shown that the Successive

Iteration converges twice as fast as the Simultaneous Iteration. The

Successive Extrapolated Iteration is an order of magnitude improvement

over the Successive Iteration and converges more rapidly than the Second

Order Simultaneous Iteration. Moreover, both Successive and Simultaneous

Iteration matrices have real eigenvalues snd canbe acceleratedby

Tschebyscheff Polynomials. Also, a Forward-Backward Successive Extra-

polated Iteration (due to Sheldon, Ref. 31) which has real eigenvalues

and can be accelerated with Tschebyscheff Polynomis3.scan be used.

The entire mesh can be inverted simultaneously in block form where

the blocks are diagonels of the mesh if convergence is slow md round-off

low. The resultant solution can then be iterated as described in Section

7*
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A logica3 block of unknowns for implicit methods consists of all

the points along a’row or columu of tie mesh. It is not always clear
1

in which direction it is best to sweep. If the coefficients of the

clifferential equation are constant over the mesh, the implicit equations

should be obtained in the direction of fewest mesh points. Usually, no

preferred direction can be determined and, in any case, the gain in con-

vergence rate is often small.

The alternating direction @licit method of Peaceman and Rachford

can be proved applicable only for the case in which the operator plus .

its domain is separable.

The convergence rate for this problem is so rapid, however, that

the method has been used for more genersl problems with good success.

It sometimes appears applicable if the operator is almost separable.

We ulose by proposing that for a general non-symmetric matrix, the

Second Order Extrapolated Simultaneous Iteration is most applicable.

If the matrix is symmetric (real eigenvalues), then the Tschebyscheff
,

Polynomial applied to the Simultaneous Iteration is best. For a matrix

pOSses&3~ Property (A), the Extrapolated Successive Iteration is suf.

ficient for problems having inherently rapid convergence rates (diagonal

terms dominant), and the Forward-Backward Successive Extrapolation ac-

celerated with Tschebyscheff Polynomials is best for poorly converging

problems.
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