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ABSTRACT

A mechanical treatment of atomic recombination reactions is

developed for the case in which the reaction is considered to involve

an intermediate excited molecule which is stabilized on collision

with any third body. An explicit rate calculation is given for the

reaction I + I + A + 12 + A. The results of this are compared with

those obtained by treating other models of recombination. The valid-

ity of the excited intermediate model and the role of electronic

3

degeneracy are discussed.
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INTRODUCTION

The calculation described in this report arises in the study of

atomic recombination rates. The over-all reaction will be written

X+X+M+~+M, (1)

in which M is any gaseous third body. Whenever an attempt is made to

relate the Echanical details of reaction (1) to the observed prop-

1,2erties of recombination rates, the simple mechanism

x+x * X2* (2a)

X2*+M+X2+M (2b)

immediately suggests itself for study. X=* is a “coHision. com~lex”

with a definite lifetime T9 and it is supposed that a net recombi-

nation reaction occurs if this complex collides during its lifethe

with a third object M, transferring to it (with a certain proba- .

bility P) enough energy so that the molecule X2 cannot subsequently

dissociate. The third-order rate constant ~ for recombination is

defined by



Za and ~ are collision numbers for reactions

ent of temperature (for example, taken as the

(3)

(2). If T is independ-

harmonic vibration

period of X2), it is not possible to m~e a consistent set of

assumptions about P which will account for the experimmtal evidence

in terms of reactions (2). This method of estimating T has been

criticized for failing to consider collisions with

momentum and for assuming that energy transfer can

colliding atoms are interacting along the harmonic

potential curve.

x

appreciable angular

occur only when the

part of their

Recently Keck’ has proposed a theory which can be used, in

effect, to calculate an upper limit to the product PK= His treatment

replaces consideration of the mechanical details of collisions with

certain a priori statements (which will be discussed in detail later)

about the statistics of the three-body process. He has applied this

theory to the case X = iodine} M = argon.

This report gives the results of an adequately precise calcula-

tion, based on mechanics, of the product ~K for the s- case” me

~ obtained from this calculation will be compared with that derived

from the Keck theory, and also with predictions ~ising from the

8



1

alternate mechanisms which invoke

comparison allows some discussion

bility of the various theoretical

kinetics.

the reactions X + M * X@.

to be given of the relative

approaches to recombination

THE RADIAL EQUATION OF MOTION

The Lagrangian function for two particles colliding in the

center-of-mass system is

This

plausi-

(4)

w is the reduced mass of the particles, r their separation, and 6 the

angular coordinate about the center of mass; V is an as yet unspeci-

fied central interaction potential which will be defined so that

V = O corresponds to dissociation. The derived differential equation

in r is

(5)

The angular momentum, M . ~~~, is to be expressed in terms of

the familiar impact parameter b .M/p,v, where v is the relative

velocity of the particles at large r. Equation (5) can then be

rewritten in terms of b and of incident kinetic energy E . ~ v-:

I
I

I
I

I

I

I

I

I
I

1

I

(6)

I
I

I

I

I

I



and one integration may be performed at once. The result is

(7)

This equation describes the behavior of the separation coordinate r

during a collision fully specified by values of the two parameters:

E, the kinetic energy at large r; and b, the closest distance at

which the particles would pass if there were no interaction between

them.

We are particularly interested in the time required to cover a

certain range

~~

()
t.2

of r. It is

(8)

b-; THE ROTATION BARRIER

Consider an attractive potential which at large r dies away

according to a power law V = -Ar-n. It is evident that for certain

values of E, b, r, n, arxiA, the integrand in Eq. (8) may be imagi-

nary. As an example for discussion suppose that V= -4eo(u/r)6,

which is the attractive part of a Lennard-Jones potential;

(9)

10



If E is specified

integrand to be always

however small. On the

in (9), a sufficiently small b will allow the

real, and the particles may approach to any r,

other hand, if b is large, there will be a

range of r in which the integrand is imaginary, and the particles

will be unable to cross it. This is the way in which the “rotation

barrier” appears in this formulation. Obviously there is a critical

b, which will be called bma; only

involve a crossing of the rotation

For this potential it is easy

collisions with b < bm= will

barrier.*

to find bnu , by setting the

bracket in (9) and its first derivative simultaneously equal to zero.

The result is

‘max=~o(~)g; bma. =(3)* rma.x”
(lo)

We expect the inverse re potential to be fairly realistic in the

vicinity of rma (the interaction energy there is -V .$E), so a

more elaborate potential function should lead to values of r and
ma.

b- not very different from the above.

We propose to define the duration of the collision as the time

during which the particles are inside the rotation barrier. The r

at which the barrier occurs gradually becomes greater as b is

* —

For other treatments in which the rotation barrier is defined
in this way and in which related integrals arise, see e.g., D. E.

Stogryn and J. O. Hirschfelder, University of Wisconsin Report
WIS-ONR-32, March 15, 1958; and M. A. Eliason, D. E. Stogryn, and
J. O. Hirschfelder, Proc. Nat. Acad. Sci. ~, 54.6(1956).

IL



decreased below b-; it is infinite for b = O. We will therefore at

first assure that V must be cut off at som large value of r in order

to prevent interactions at absurdly great distances; later it will be

shown that this is unnecessary.

The quantity we wish eventually to calctiate is K, the equilib-

rium constant of Eq,.(3). This is given by

J/

a b
max

K= Z(E,b)T(E,b)db m; (U)

o 0

it is an average over suitably weighted and normalized distributions

ofb andE. Z(E,b) = (2b/b~a) Z(b-)n(E). Z(b=) is a colM=3-on

number with the cross section term replaced by ~-; then

(~b/b~a) Z(bmm )db is the absolute rate of collisions with the impact

parameter between b and b + db. n(E)dE, with

Boltzmann distribution, gives the fraction of

between E and E + dE. Equation (11) can, for

rewritten

J
m

K= Z(b-)n(E)T(E)dE ,

0

where, from Eq. (8),

n(E) a normalized

these with ener~

convenience, be

(12)

12



The
f

is to cover the trajecto~

the rotation barrier is crossed,

of the particles between the times

first in the inward and then the

outward direction. T(E) is the average

particular incident kinetic energy. We

if v is known.

collision duration for a

can calculate it, and thus K,

THE POTENTIAL FUNCTION

It is instructive, as a first approximation, to allow V to be

the inverse re potential given

tion at the arbitrary values p

the rotation barrier is at r a

grate first over b.

F

inEq. (9). We

< rnm and p’ >

cut off the integra-

r The location of
max “

It is easiest to inte-

L/
P’ 3

+

max o 1same integrand . (14)

After the b integration is performed
max)’>

, the substitutions u = (r/r

~ = (p/rH) , ~’ = (p’/rE) are made. The resuJ_tis



&& [rCV2

()T(E) = & d ~.

T ‘max u
cl?

The bracket in Eq. (15) was evaluated* as a function of the

limits a and u’. It was found to approach a constant value rapidly

as a became small or a’ large. The

the value obtained for (CX= 0, ~’ =

Thus, it is a fair approximation to

case

points at which it had one-half

rn)were: ~ = 0.85, U’ = 1.24.

adopt the limits (0,~), in which

(16)

The integration over the Boltzmann distribution, Eq. (12), may now be

performed, and the result is

r

e
K=18&3g ● (17)

*This calculation and others which follow were performed with
the aid of an IBM 704 computer. Portions of the problem ceded with
FORTRAN were checked by graphical integration or hand calculation;
portions coded by ordinary means were either made self-checktig or
tested by graphical methods.

14



Thus, in this approximation, the calculated rate constant ~=~

will be independent of temperature. It will also be too large

because the r-e potential is nearly zero over too large a range of r

to be correct in (high energy) cases where rmu is small. It WS

decided, on the basis of this preliminary calculation, that a suffi-

ciently accurate resuLt -- i.e., within a factor of 2 -- could be

obtained by using a “realistic” potential, carrying out the above

integration between the rotation barrier and the turning point, and

*
allowing r + w as before. Because neither the r-e potential nor the

Morse function adequately represents the interaction at intermediate

distances, it was necessary to invent a mathematical representation

which resembles the former at large r and the latter at small r,

with a smooth transition between the two. Since the rotation barrier

(where the largest contribution to T arises) and the transition

region (where the Morse function and the inverse power potential are

equally inaccurate) occur near the same value of r, a fairly refined

potential function is required if the desired precision. in T is to be

obtained.

The potential function used was

*
In practice, the calculation was simplified (with negli-

gible effect on the results) by cutting off the range of r at 9 A and
integrating from the bottom of the potential well to the rotation
barrier.



[

-2f)(r- re)
v =CiDe e

- ::;;:)12,. }+%[(:~-($)1 “8)
e

In this expression, the first term is an ordinary Morse ~ction~

multiplied by a constant (a) and with it? attractive term divided by

a quantity which makes it approach zero more rapidly. The second

term is a modified Lennard-Jones potential. Three conditions are

needed to determine ~~~ a’, and m. In this case these were:

(1) that the modified Lennard-Jones potential be zero when the Morse

function is; thus the resulting potential would also be zero at this

point; (2) that the minima of the first and second terms be at the

same r (= re), so the resulting minimum is not shifted; (3) that the

modified Lennard-Jones potential have the correct coefficient of r-O

at large r; that is, e;a’e = Co+, where E. and a are the potenti~

parameters used in the preliminary, approximate c~c~ation.

The above conditions being met, the constant U iS adjusted until

the minimum of the curve corresponds to the correct dissociation

energy De. This leaves to be determined the quantity n, which is

found to govern the separation at which the transition from Morse to

r-6 behavior occurs. n was determined by a modification of the semi-

4
classical method of Klein and Rydberg. For X2 = 12, the case of

interest, there are know.5 three a.harmonicity constants} referring

16



to the spacing of vibrational levels (so in principle we can know the

potential much better than it is given by the Morse curve, which takes

account of only one anharmonicity term). The energy of the 50th

vibrational level can be calculated from these with fair accuracy.

n is chosen so that

f[ 2V(E50 - v)]*ti = 50.5h, (19)

where the integration extends over one cycle of motion; that is, the

volume of phase space defined by V and the 50th level must be able to

contain just 50$ quantum states.

6 # ‘e and # . axeFor 1=, ifwe take o . G
o

, we may use the

parameters m = 9, n = 1, Cl= 0.784,

closer fit (n = 1.1) was found, but

a’ = 2.29A, and E’ = 0.573 e.v. A

the foregoing are sufficiently

accurate

The

repeated

for this calculation.

integrations over r, b, and E, already described, were

using the potential function given above, for a series of

temperatures. The rate constant ~ = P~K was calculated vs T, using

P = 1, and for the cross section term in 2+, ~(crM+ =-)2, where

F -for E=kT.is the r The results, which are intended to

represent an exact (for kinetics purposes) calculation of ~ if—

P = 1, and the mechanism is given by reactions (2), were obtained in

tabular form and will be discussed in the next section.

17



DISCUSSION

The information obtained from the foregoing calculation is to be

compared with the predictions of the Keck theory.3 We first seek to

establish the relationship between our treatment and tht of Keck.

Keck assumes that a three-body collision is sufficiently compli-

cated that the internal states of the three-body complex become

populated in an equilibrium fashion and the mechanical details of the

formation of the complex may therefore be ignored. In statistical

language, this is to say that the density of representative points

leaving the region of phase space which corresponds to the three-

body complex is uniform. Aside from its other ~ritsj this assump-

tion requires that the transition probabilities for internal-

translational ener~ exchange be lsrge; if this is not entirely true,

Keck’s calculated rate should exceed the rate which is observed. He

also assumes, in applying the theory to the reaction I + I + A + k +

that the I-I interaction is given by a Morse function (cut off at

-V . kT) and that I and A interact as rigid spheres. This has the

effect of a restriction that the recombination shall occur via the

mechanism given in reactions (2).

Keck, then, obtains an expression for ~ which is an upper limit

to the observed rate, and our calculation is in turn an upper limit

to Keck’s. The experimental data should be less than his calculated

results to the etient that the contribution to P arising from

A,

N3



quantum-mechanicaltransition probabilities is less than unity; his

calculation should give smaller answers than ours to the extent that

the purely geometric and mechanical part of P is not unity, since his

theory takes account of this latter and our calculation does not.

It can be seen from Fig. 1, which displays the observed rates,7

our results, and those of Keck (without the electronic degeneracy

factor; see later), that these predictions are correct. Further

support for Keck’s postulates can be obtained from the fact that, for

kT << De (classified by Keck as the condition for applicability of

the so-called “three-body collision” theories), his results reduce to

a form very similar to ours. Thus the assumption that the mechanics

of the three-body collision

least for the case of X = I

operating at reasonably low

diverge at high temperature

may be ignored seems to be verified, at

and M = noble gas, with mechanism,(2)

temperatures. That the three curves

is

factors should decrease as the

A conclusion can be drawn

to be expected, since the probability

temperature is raised.

from our results which has not yet

been obtained from the Keck theory. The value of P for argon is

sufficiently small that, assuming P * 1 for complicated M, it is at

least possible that the mechanism (2) could account for the observed

variation of ~ with M. The simple mechanical treatmnt of this

mechanism, mentioned in the introduction, was open to the fatal

2
objection that it required P * 1 for argon. To account for the

19
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Fig. 1. Log kR (12 mole-2 sec‘1)vslog T(OK)for I+ I+ A+12 +A.
Curve A: Observed rate constant. Curve B: Keck Theory.
Curve C: Mechanical calculation of K. C!urvesB and C do not
contain correction for electronic degeneracy (see text).
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behavior of polyatomic M, it was necessary to take P - 10 in some

cases, which is absurd. This objection is now removed; by suitable

variation of P with the nature (and also the mass) of M, and with

temperature, the ~chanism (2) coulciaccount for most of the observed

features of recombination reactions.

The alternate mechanism,

X+M*XM (20a)

XM+X+X2+M (20b)

has also been shown2 to lead to predictions in substantial accord

with the observations. The requirement for a successful theory based

on this mechanism is that for any M, P - 1 for the process

XM +X+X2+M(whereXM is the equilibrium population of XM ineq eq

bound states) and that P << 1 for all other processes leading to

recombination, including reaction (2b) of this report. Thus, there

exist two independent theoretical approaches, derived from contra-

dictory sets of postulates, each of which is at least capable of

explaining the observed behavior of recombination reactions, and

between which an unequivocal choice cannot at present be made.

There remains one further complication to be discussed. Keck

introduces into P an additional factor of 1./I6,which may be called

the electronic degeneracy factor. It arises because each of the two

ground state (2P ) iodine atoms has its lowest energy level split
s

23.



into four components by interaction with the other. Of the resulting

l.Xground state of 12,16 possible combinations only one leads to the

so that if no electronic transitions occur, only one of 16 collisions

can lead to recombination.

It has, however, been pointed out that there are other known

molecular states of 12 which range from slightly to mrkedly attrac-

tive.

5“ It

report

The total degeneracy of these plus the ground state is at least

might also be added that the calculation described in this

indicates that the largest contribution to recombination

comes from b * b-, so that the “effective” potential for all states

possesses a considerable rotation barrier. It is possible that the

molecule might be deactivated into one of these m?tastable states and

reach the 1X state by

These arguments,

subsequent processes.

for and against the I/I.6electronic degeneracy

factor, appeared in the literature
8

of the late 1930’s, and no new

conclusion about the validity of this factor appears possible at the

present tire?. However, the effect of its inclusion in the theories

discussed above should be noted.

If the electronic degeneracy factor is as snail as about 1/5,

the theory based on mechanisms certainly invalid. A factor of

1./I6brings the Keck theory into reasonable agreement with observa-

tion for the case X = 1, M . A (and other noble gases). However, on

the basis of the calculation described here, if this factor is

22



small, the ability of mechanism (2) to account for the high efficiency

of polyatomic M in promoting recombination is lost because there is

no longer sufficient margin between theory and observation to allow

P to vary in the required way.

SUMMARY

A detailed mechanical calculation of the equilibrium constant K

for the reaction 21(2P’)
s

* 12*(%) has been made. The results, as

applied to recombination reactions, are consistent with the statis-

tical theory of Keck, and with the experimental observations provided

(in the latter case) that the probability factor associated with

electronic degeneracy is not too small. Since the results of this

calculation indicate that no existing theory will completely account

for the known properties of recombination rates unless @lectronic

transitions are allowed (i.e., electronic degeneracy factor >1/16),

a decision cannot at present be made as to the relative mrits of the

two bimolecular mechanisms which have been proposed for recombination

reactions.
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