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A GENERALIZED, FINITE-DIFFERENCRD, DIFFUSION EQUATION

FOR NEUTRON-TRANSPORT COMPUTATIONS

by

R. E. Alcouffe

ABSTRACT

A generalization of the neutron diffusion equation is derived
which improves the results obtainable by conventional diffusion
theory for multidimensional systems. The technique employs one-
dimensional trial solutions to reduce the two-dimensional transport
equation to the form of the neutron diffusion equation, thereby al-
lowing the leakage terms to more closely approximate those appropri-
ate for transport theory. A brief theoretical analysis shows that the
accuracy of the generalized diffusion solution is linearly proportional
to the difference between the trial solutions used and the exact trans-
port solution. Four exemplea demonstrate the utility of the method for
realistic systems for which a two-dimensional transport theory analysia
is required. These reaulta indicate tha~even with an unsophisticated
use of the tr%al solutions, the errors in integrated parameters are
reduced to the order of a percent or less with the same cor.putation
time for the conventional diffusion calculation plus that required for
the trial. solution generation. It is also demonstrated that an ac-

curate one-dimensional trial solution for every region of the system
leada to a generalized diffusion equation that almost reproduces the
tranaport theory resulta, consistent with the conclusions of the
theoretical analysis.

. .

I. INTRODUCTION

The neutronic characteristics of a nuclear re-

actor system are mathematically described by the

linear Boltzmam tranaport equation. In this work,

the reference numerical approximation to this equa-

tion is characterized as a multigroup, spatially

finite-differenced equation with the angular varia-

ble approximated by using the discrete Sn method.
1,2

It can be ahown that this numerical equation approx-

imates the continuous equation to order

&

A~~ where

A~i is the mesh interval for the independent varia-

ble ~i. However, for multidimensional systems the

solution to the numerical transport equation is rel-

atively time consuming so that the computation is

too expensive to perform routinely. An alternative

description of the neutronics of a reactor system

can be derived by assuming that the neutron tranaport

is a diffusion process. The resulting neutron dif-

fusion equation is in fact an approximation to the

Boltzmann equation; its derivation therefrom is

given in the Appendix. In general, the diffusion

equation yields an accurate approximation to the

transport solution if all of the following condi-

tions are satisfied:

(1)

(2)

(3)

(4)

the region of interest is far (greater than V2

mfp) from any strong absorbera or any extraneous

source,

vacuum boundaries are far (> 2 mfp) from the

region of intereat,

the transport croaa section is used to define

the diffusion coefficient and extrapolation

length in regions of nonisotropic scatter, and

Za/Xs << 1 for the entire system.

These restrictions apply when the diffusion co-

efficient is defined in the conventional manner.

1



However, as is shown in the Appendix, one can derive

the diffusion equation so that its solution exactly

reproduces the angle-integrated flux of the trans-

port equation. Unfortunately, one must know the

transport flux and current in order to derive the

exact diffusion coefficient. An intermediate approx-

imation to the multidimensional tranaport equation,

analogous to the exact procedure abov,e but using

approximate transport solutions of the system of in-

terest, is derived in this work.

The motivation for basing a wmeric?d transport

approximation upon the diffusion equation is thst

considerable experience has been gaiued in obtaining

efficient methods for computing solutions to the

numerical diffusion equation. Also, because diffu-

sion theory has been extensively used in nuclear

reactor analysis, highly optimized computer codes to

solve the multidimensional diffusion equation exist

at almost all installations. The “generalized” dif-

fusion equation, which is the result of using trans-

port trial solutions of the system, retains all of

the properties of the conventional form in Lhat the

matrix of the coefficients is symmetric and diago-

nally dominant. Therefore, to use this approximate

method one need only alter the diffusion theory code

to compute improved diffusion coefficients from giv-

en, but approximate, transport solutions while leav-

ing the code logic and iteration schemes the same.

These results are developed explicitly in the next

section.

II. DERIVATION ANU PROPERTIES OF THE GENERALIZED
DIFFUSION EQUATION

In this section the generalized one-dimensional

and two-dimensional numerical diffusion equation is

derived to illustrate the important features and

consequences of the method. Basically, the deriva-

tion precedes from the numerical form of the trans-

port equation using the discrete Sn approach to

account for the angle variables. Suitable trial

functions for the flux are constructed which lead to

reduced equations of the form of the numerical dif-

fusion equation. To account for the transport ef-

fects not normally treated in diffusion theory, an

Sn trial solution of the system is used in the trial

function. From this generalized numerical diffusion

equation, certain properties of its solution can be

deduced based on the nature of the trial solutions

To demonstrate this the one-dimensional, one-

group, Sn equation is written as

- Wmvisti = o , (1)

m=l,. ... NM, i= l,...,I .

A general boundary condition is @~~,m = \ for m

such that p < 0, and I designates the rightmost, or
m

outer, boundary of the system. The quantities in

Eq. (1) are taken directly from Ref. 2 where they

are appropriately defined for the specific geometry

involved. Reduced equations that yield the diffu-

sion equation form may be deduced by assuing, for

both the boundary flux @iM,m and the spatial ~sh-

averaged flux $im, trial functions of the form

(2)

(3)

for m-l,..”, MM, and i= l,..., I,

where ~oi =
!5 Wm4Jim~ and ai is the unknown quantity.

m.1

The form of the boundary fluxes is chosen so as to

obtain a leakage term compatible with that of the

numerical diffusion equation. It is assumed that

the boundary flux and mesh-averaged flux, $im, are

independent and that definitions (2) and (3) can be

made consistently.

When Eqs. (2) and (3) are substituted into Eq.

(1) and the summation over m Is performed, the fol-

lowing equation for ai

‘[ail=‘i(a,+l-
+aTivial -

for 1=1,- ”., I,

where

results.

ai) - Li(ai - ai-l)

asoiViai – ViSoi = O (4)

.

,

\

.

used.
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4

‘i = ‘i-1 ‘

(5)

(6)

(7)

The leakage coefficient, Ri, at the rightmost bound-

ary is defined to allow boundary conditions for ai

which are compatible with existing diffusion-theory

codes; the trial solution is also assumed to satisfy

the Sn transport boundary condition. For example,

the vacuum boundary condition at the outside bound-

ary in diffusion theory is al+l = O; therefore,

401+1 in Eq. (5) must be set to zero for consisten-

cy, i.e., in order to compute the right-hand leakage

obtained from the transport equation solution. For

reflecting boundary conditions, RI = O and therefore

is consistent with the diffusion equation. The pe-

riodic boundary condition can be written a
1 = aI+l

and a = al. A boundary source is treated using ano
appropriate source term

ditions.

Equation (4) is an

sion theory in that the

suiting from Fick’s law

Eq. (5) is obtained for

with zero-flux boundary con-

obvious extension of diffu-

diffusion coefficient re-

can be generalized so that

the leakage coefficient.

However, derivation of Eq. (4) from Eq. (1) has the

advantage that one gains some ineight about the be-

havior of the solution to Eq. (4). For example, if

Eqs. (5) and (6) are taken as prescriptions for the

leakage coefficient, then one need use only the iso-

tropic component of the scattering matrix without

any so-called “transport corrections.” This is true

even for the multigroup case, as can easily be

shown . Further, one can also reduce the number of

both spatial and energy-mesh intervals by using the

trial solutions consistently to increase the effici-

ency of the final computation (see Eqs. (17) to

(21)).

At this point, it is fruitful to explore some

of the consequences of using tbe trial solution $ to

derive the generalized diffusion equation. Assume

that the trial solution is represented as

(8)

where $ti is the exact solution of

is an error function. The leakage

Eq. (5) may now be evaluated as

Eq. (1) and Eim

coefficient of

~mpmAi-Jf’$i,-4,m XwmpmAf-%’i*,m
.

~wm($i+l,m -

+m --

-’ire) ~m (Yi+l ,m - ‘ire)
m

ZRoi+~i. (9)

If the solution to Eq. (4) found using the trial

solution @im is expressed as ai = aoi + aEi where

aol=~wm$im, then the equation maybe rewritten as
m.1

(Roi + %i) (aoi+l - aoi) + ‘f(aEi+l - aEi)

- (Loi + LEi) (aoi - aoi-~) - ‘i(aEi - aEi-~)

+ ‘Tivi(aoi + aEi) - ‘aoivi(aoi + aEi) - ‘j.sOI = 0“

(lo)

From the definition of Roi from Eq. (9), it is evi-

dent that

‘Oi(aoi+I - aoi) - ‘oi(aoi - aoi-l) + ‘Tiviaoi

-u soiViaoi - V S = O .
i Oi

(11)

Equation (11) is a statement that when the exact so-

lution is used as the trial solution
(w~ = ‘i~) ‘

then

a,= ~wm$ti
m

ia a solution Of Eq. (4). TherefOre, the equation

for the error function from Eq. (10) becomes

3



‘i(%.+1 - ad - ‘i(aEi - ~i-l)+‘TiviaEi

- ‘soiviaEi = - [%(i aoi+l-aoi) 1-‘Ei(aoi-aoi-l) “

(12)

Equation (12) has precisely the same form as Eq. (4)

with a source term that reflects the difference be-

tween the exact solution to Eq. (1) and the trial

solution used. The nature of this error source can

be determined if we assume that the trial solution

obeys the relationship

MM
—

2JJJm$i*,. FiDi
._— ,

E Ya(vi+l,m - Lull

‘i

(13)

m=l

where hi is the spatial mesh length, Di is the con-

ventional diffusion coefficient [Di
- 1/3 E

tri)’ and

I?i is a positive, finite function neceaaary to make

the equality true. We may then write the source

term as

s
Ei =

where

E=
Oi

[
*(coi+l - ‘oi) ‘Ai-@i’li~*

Fi-lDi-lAi-~

‘i-1

%n%n‘
m=l

Equation (13) ia crucial

(14)

for determining the valid-

ity of the generalized diffusion method in that the

function Fi is asaumed to be positive and finite

for the entire range of i. If this is true, then

the matrix of the coefficients of Eqs. (4) and (12)

is symmetric and diagonally dominant. This, in

turn, guarantees a unique solution to both equations

since this is the type of property possessed by the

conventional numerical diffusion equation. At dis-

tances greater than ‘2 mean free paths from mate-

rial interface and sources, Fi should be a S1OW1Y

varying function of the index i. The error source

is proportional to Eoi and Eli, and, if these

quantities vanish, then the only solution to Eq.

4

(12) is aEi = O

solution is the

unique solution

,MM

zai = ‘m$i.mm=

for all i. Hence, if the trial

exact solution of the system, the

to Eq. (4) iS

for all i.

The source term can be rewritten if we assume

that the exact transport solution $ti also obeys

Eq. (13) with a proportionally function Gi. Thus

G.D A
s

liii%
Ei =

‘i
(Eoi+l - ‘oi)

_ ‘i-lDi-lAi-+
(Eoi-Ec.i-l) ‘

(15) “
‘i-1

and, consequently, the source is proportional to the

difference quantities, Eof+l - c Because of the
Oi”

properties of the matrix of coefficient of Eq. (12),

the inverse exists. This inverse is positive, and,

therefore, the error quantity aE is also proportion-

al to co. This property implies tha~ as the trial

solutions approach the exact solution, the solution

to the generalized diffusion equation likewise ap-

proaches the angle-averaged exact solution to the

same order. This may be used to theoretically us-

sess the usefulness of the trial solutions for cer-

tain classes of problems.

The extension of the generalized diffusion-

equation approach from the one-dimensional deriva-

tion to two or three dimensions 1s straightforward.

The development of the two-dimensional equation is

presented here to demonstrate the uae of the trial

solutions to simultaneously collapse both the spa-

tial and energy-mesh description of the two-dimen-

sional system from that used to compute the trial

solution. Also, one must consider the possibility

of using several one-dimensional trial eolutions of

the system consistently to obtain an appropriate

generalized diffusion equation.

The derivation follows from the two-dimensional,

Sn transport equation written as follows. 2

[
k

B ‘!i+l,j,m’@i,j4j,m “h]
.-‘ml’m(Ai*,j4;*,j ,fn- ‘f-&, j4~-4sj m)

+ ‘mkBij (’$!,j*,m - M,j-+,m )

+ (Ai+4,j - ‘i-%,j) (amti$!, j,ti+- am-%$~,j,m-+]

.

..

*

,
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,,

+

v., s:._ = o (16)
J-J LJIU

for m=l,-s-,MM, i=l,””-,l, j=l,”””,J, k=l,”””,K;

m is the sngle index, i and j are spatial-mesh in-

dices, and k is the energy-group index.

The trial functions are to be designed (1) to

obtain the numerical-diffusion-equation form from

the transport equation, (2) to allow the collapse of

both the spatial mesh and the energy mesh used to

compute the trial solutions to some coarse-mesh de-

scription, and (3) to utilize a two-dimensional

trial solution. The practicality of the last point,

ueing a trial solution with the same number of spa-

tial dimensions as the problem to be solved, arises

from the computation of perturbations of the system

from some reference configuration. Examples are

time-dependent analyses and survey type problems in

which a specified deeign objective is to be attained

by selected perturbations of the system.
4-6

The

following trial functions for the boundary fluxes

and mesh-averaged flux incorporate the above crite-

ria.

‘ip*,j,m =

‘!+??,j,m (a~+l,V-afiv)

(17)
@,v_ ~;v

for jsv, ksg, m=l, ....llll;

ti,j.,+,m (a~,v+l - a~vl,.

for iEp, keg, .=l,... ,MM ;

for icp, jsv, keg, m=l,. ..,MM ;

where p and v indicate a coarse-mesh

the i and j directions, respectively;

(19)

description in

each coarse-

mesh interval contains an integral number of fine

mesh intervals; and g is a broad-group description.

Typical fine- and broad-mesh arrangements in one

spatial direction are shown in Fig. 1A. Note that

the boundary-flux expressions are defined for the

coarse-mesh boundaries only; otherwise Eq. (19) is

used. ,The average trial-solution flux used in Eqs.
.

(17) to (19) is defined as

If trial functions (17) to (19) are substituted

for the relevant quantities in Eq. (16) and the in-

dicated summations are carried out, the following

two-dimensional numerical-diffusion equation re-

sults.

[1Bag .Rgag
VW [pv p+l,v

Liz aE
- fnl) - IN( pv - ah)

(21)

where

~g .
pv

Tg .
pv

J3 .
pv

@
p-l,v ‘

Tg
p,v-1 ‘

~pv

v
W’:V=E x x ~“” Skm ij ijm “

(22)

m-l keg icp jcv

5
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j,+,+ l/2--

j,+lw--

J“.1+7/2_

j,s~ I I I I I I 1 I I I

I t
I ~-l~p~ JL+l ,I

jl-x+l/2 Ip-!+llz lp+l/2 iwl+v2

B

1 0

n=3 1 MATERIAL3
t 0

n=2 MAT2’RIAL2
8 I I

n.1

I

MATSRIALI
I

Z=l 492 4=s ●tt.

Fig. 1. Some geometrical considerations useful to
the generalized diffusion equatton method.

Equation (21) has the same property as that outlined

for the one-dl.mensional, generalized diffusion equs-

tion; if the exact solution of the system ia used as

the trial solution, the generalized equation yields

the solution

regardless of how the mesh intervals in space or en-

ergy are partitioned. This result is very important

in that for a series of calculations on variations

of the system, the fine-mesh, fine-group computation

need be performed only once. The broad-mesh de-

scription can then be chosen to concentrate upon the

area where the perturbation most affects the flux in

order to obtain an accurate calculation of the per-

turbation of the system. The same type of result

carriea over when one-dimensional trial solutions

are used to compute two-dimensional systems.

The generalized diffusion equation method is

more useful if one-dimensional trial solutions of

the two-dimensional system of interest are used to

derive the two-dimensional equation whose solution

givea an accurate estimate of the true two-dimen-

sional equation transport flux. The prescription

for computing such trial solutions is not fixed,

but, basically, the aim is to obtain one-dimensional

estimates of the leakage in each spatial direction

through the ragions of the system where transport

effects are assumed to be important. If such trial

solutions are available, the following procedure for

defining the trial functions is ueed.

(1)

(2)

Assqme that the trial solutions are generated

from a series of runs through relevant regions

of the system in each of the transverse direc-

tions (the R and Z directions).* These can be

ordered as $~,n=l,- --, K, implying a sequence

of radial calculation for each axial elevation

n. Similarly, the axial trial solutions are

$;jn, 9.=1,..., L for each radial interval k.

Define the trial functions as

=$Ri-@i,m (ai+l,j
‘i#+,j ,m

- aij)

@Roi+l - @Roi

for jcn, n=l,... ,k ;

$;j#f,m (ai,j+l-aij)
‘i,j-@l,m -

‘+Zoj+l - $Zoj

(23)

●

(24)

for id., P.=l,”-”,L ; and

‘$ijm = aij
for all i and j. (25)

These trial functions can be further generalized to

include the possibility of both apace and energy

collapse in the manner used in Eqs. (17) to (19).

If the above strategy is pursued, the problem

is in obtaining one-dimensional trial solutions that

accurately represent the two-dimensional. flux

through each of the regions at each elevation. This

problem is solvable with existing one-dimensional Sn

codes if for each traverse through the system of

interest: (1) a predominant source is available, (2)

an asymptotic transport solution** is obtained in

each region including the transverse-leakage be-

haviour, and (3) a simple buckling approach is suf-

ficient to account for the transverse leakage. Con-

dition (1) can be relaxed if the region of interest

can be adequately described by diffusion theory.

Thi.a gives rise to some important applications of

the method, one of which ia given by Example 3 in

Section III. Condition (3) also can be relaxed if

*See Fig. lB.

**~ aspptotic transport solution ia one in which

the ratios j (x,Y) & and jy(x, y) ~become con-
X

stant in a region.

,

,

.
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some consistent scheme for estimating the transverse

leakage by introducing a source from a previous two-

dimensions.1 computation is possible. This is fur-

ther discussed in Section IV.

Three-dimensional problems can be similarly

solved by an analogous choice of trial functions and

and trial solutions. Although the method can be

formulated using two-dimensional trial solutions, it

would be much more economical to use one-dimensional

trial solutions in each of the three space direc-

tions. If this is done, the logic used for comput-

ing trial solutions doee not change from the two-

dimeneional case, which facilitates conversion from

a two-dimensional to a three-dimensional analysia.

III. SELECTED NUMERICAL RESULTS

A variety of eystems that exhibit two-dimen-

sional transport effects have been computed to as-

seas the applicability of the generalized diffusion

method that usea one-dimensional tranaport trial

solutione to compute the two-dimensional systems.

When an exact two-dimensional transport solution is

given, it hae been computed using the TW@TRAN code.

All time comparisons using the CDC 6600 are itera-

tion times unless otherwise noted. The generalized

diffusion results were obtained with an experimental

code TW@DS which computes the trial solutions, per-

forms the necessary calculations to compute the

space- snd energy-collapsed leakage coefficient,

and then executes the two-dimensional diffusion cal-

culation. The time required for solution by the

generalized approach includes the computation time

for the trial solutions and the leakage coefficients.

Example 1.

The first example is a small, fact system with

a core of 95% Pu-239 and 5% Pu-2f40 fully reflected

by natural uranium. The geometry ia cylindrical

with a core radius of 3 in. and a height of 1.55 in.

The reflector is 3 in. thick. The analysia was done

with nine energy groups (consisting of the first

nine Hansen-Hoach groups); the spatial mesh for a

quadrant of the system is 15 by 15 mesh intervala,

5 by 5 of them in the core region. Table I is a

summary of relevant computations, and Fig. 2 is a

schematic of the system. The reference La a ‘IW@TRAN

S-12 computation of the system, and all numbers

quoted are percent deviationa from those resulte.

In this particular system, the average mean

free path is 1.5 in. (3.9 cm); therefore it is

TASLS I

EVALUATIONOF SXANPLE 1 USING 2’SSGaWIz~
D2PFOSIONEQUATIONAFP80Acs

Percentof DeviationPromS-12

S-22 S-6 S-4 CDEO GDEI DE
—. _

%ff 1.0423 0.29 ,0.78 0.07 0.35 -15..$

Core absorption 0.29562 0.46 1.23 -0.71 — -21.62

Reflector
Sbsoxptions 0.17922 -0.29 -0.69 3.52 — 8.81

Sadial leaksse 0.255S7 -0.43 1.15 -3.19 -0.30 8.06

Axial leakage 0.26930 0.10 -1.99 1.56 -0.04 10.25

Tot62 leskase 0.52517 -0.16 -0.46 -0.76 -0.18 9.16

Iteration
tfme (see) 405~ 173~ 210 28.7 — 11

a
A flux guess providedfrom tbe lowerordercalculation.

neutronically small, and the main transport effect

is leakage. Also, for this system ray effects seem

to be important for the computation of detailed

leakage rates; therefore, a high-order Sn computa-

tion is necessary for the reference. The GDEO col-

umn in Table I is a generalized diffueion calcula-

tion using one set of trial solutions through the

core region radially and axially. In these one-

df.mensional calculations, a single buckling correc-

tion was used to account for the transverse leakage.

Reflector region 4 was treated with the diffusion

approximation, as were region 2 in the axial direc-

tion and region 3 in the radial direction. This fS

illustrated in Fig. 2 where the abbreviation GD

indicates leakages computed from trial solutiona and

i
1
I

L
GD D

I
I

~
I
I
1

3
~

I
L

D:
I

~
I
1

w I

a
I

=
:

1.55 .- - - - -—-——— —

d
z

‘bL’” Dti

e I CORE 2

0 3.0 6.0

RADIAL DIRECTION (IN)

Fig. 2. Schematic representation of the systems
for Examples 1 through 3.

7



D is the conventional diffus’fon leakage term. As

can be seen, the two-dimensional generalized diffu-

sion calculation gives about the same accuracy as

the s-6 computation in the core region but ia Worse

than the S-4 computation in the reflector region.

To determine the effect of good trial solutions

through the core and the reflector, the two-dtien-

sional s-12 fluxes were averaged over the core and

reflector regions to give one-dimensional trial so-

lutions for each region (one radial trial solution

through regiona 1 and 2, one through regions 3 and

4, and anslogoua functions in the axial direction~).

The results are presented in the column headed GDEI

in Table I and show greatly improved accuracy, par-

ticularly in the reflector regions. That conven-

tional diffusion theory doea not apply in this case

ia ahown by the result column headed DE.

Figure 3 shows the trial solutions used for the

generalized diffusion equation and group 4, the

dominant group. The S-12 trial solution is derived

from the two-dimensional reference transport compu-

tation. We see that the trial solution computed

from the one-dimensional paas with the transverse

leakage accounted for by a simple buckling under-

estimates the flux in the reflector region. How-

ever, the generalized diffusion flux in the radial

direction through the core derived using the above

trial solution appeara to be quite’accurate. The

10~ , III I I 1 1 1 I I I I 1
n I I

a

A

8
●

❑

;.

x O*
3
J ❑ o
k
*

00

g 0.1 —
a.

o
a.

c
o ● TWOTRAN S-12 CORE TRIAL SOLUTION o 3

*

t

0 TRIAL SOLUTION FROM ONE
DIMENSIONAL COMPUTATION

O TWODS FLUX THROUGH CORE
1

oo,~
“ 0.0 5.0 10.0 15.0

RADIUS (cm)

Fig. 3. Trial solution plus exact and GDE solution
through core region of Example 1.

chief error is in approximating the reflector region

by the conventional diffusion coefficient. This is

demonstrated in Fig. 4 which givea the radial fis-

sion dfnsity through the core (regiom 1 and 2) and

through the axial reflector (regions 3 and 4). The

fission density computed using the generalized dif-

fusion approach approximate the S-12 results very

well through the core. However, in the axial re-

flector the results are high. The TW(bTRAN S-4 re-

sults are also included as a point of reference for

the errors incurred for few-angle Sn and to demon-

strate the presence of ray effects in the reflector.

The generalized diffusion solution with trial solu-

tions from the S-12 TW@TRAW computation is much bet-

ter than the results presented in Fig. 3, particul-

arly in the reflector regiona. Therefore, if one

could devise a method to generate improved trial so-

lutions in the nonsource reflector regions, the gen-

eralized diffusion solution would probably show a

corresponding improvement. At present, no method

for generating nonsource-region trial solutions haa

been found satisfactory for multigroup problems.

10 ❑ b 1 1 I r 1 1 1
0

I● TWOTRAN S-12 SOLUTION

aTWODS SOLUTION

oTWOTRAN S-4 SOLUTION

I

9Q

8

/
REFLECTOR

8 /cORE

0

.

o.ol~
o... . . . .

RADIUS (cm)

Fig. 4. Radial fission density through core and
axial reflector of Example 1.
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Example 2.

The second example is a core of fully enriched

(93% u-235) uranium witha 4-in.2 cross section. The

reflector is 9-in.-thick natural uranium. The same

cross-section set was used as for Exsmple 1. The

spatial mesh for a quadrant of the system was 5 by 5

in the core and 15 by 15 total. The mean free path

for the system is 1.3 in. for the core and 0.95 in.

in the reflector; therefore, the core is neutroni-

cally small and the reflector is large. Again, be-

cauae of the ray effect in the reflector region an

S-12 calculation was necessary for the reference.

Table II shows some calculations results for the

Systm.

In the column headed S-4 are TW@!iRAN S-4 re-

sults showing the magnitudes of errors incurred in

that approximation. In the GDE column are general-

ized diffusion results obtained using trial solu-

tions through the core region only, the transverse

leakage being estimated using the simple buckling

approach. The reflector, as in Example 1, is treat-

ed by the conventional diffusion approximation. In

Fig. 5 the trial solution for group 3 is presented

along with the averaged S-12 flux through the core.

Table II column GDE2 presents results of a general-

ized diffusion solution with trial solutions comput-

ed as described above except that group- and zone-

dependent buckling was used. The appropriate buck-

lings were computed from the generalized diffusion

solution of GDE1. The results show an Improvement

in the core region, in particular, and slight im-

provement in the reflector. This trial solution is

also shown in Fig. 5. The generalized diffusion

fission density results are presented with S-12 and

s-4 fission density results in Fig. 6. Ae in

TABLE II

EVALUATIONOF FXAKPLE 2 US2NG THE GSNEMLIZEO
DIFPuSIONEQUATIOXAPPROACH

Percent of DeviationProm S-12

S-12

k
eff 1.3913

Care absorptioas 0.5248

Reflector
abs.arpti.ms 0.3927

Leakage 0.08250

Core fissions 0.4884

Rsflectorfissions 0.08416

S-4 CDEI GD& DE
—. ._

0.39 0.69 0.07 -4.03

0.56 0.88 0.04 -5.75

-0.79 -0.05 -0.03 6.77

0.17 -5.21 -2.62 4.34

1)59 0.69 0.50 -6.35

G 77 0.73 0.61 9.48

%

cTWOTRAN S-12 THROUGHTHE CORE

OONED WITH A SIMPLE BUCKLING
APPROACH

00NEDWITH GROUP ANOZONE
DEPENDENT BUCKLING

9
0

9

0

e

o

I
X DIRECTION(cm)

Fig. 5. Trial solutions plus exact solution through
core region of Example 2.

Example 1, the results through the core are accurate

but there are some deviations in the reflector. The

chief source of leakage error is in the reflector

region because of the diffusion approximation;

therefore, a valid reflector trial solution should

improve the results still mOre. The conventional

diffusion solution results are presented in Table II

column DE.

These two examples represent a severe test of

the method because the multidimensional transport

effects are large. That the simple use of core

trial solutions only is so much better than a con-

ventional diffusion theory calculation is remarkable.

Example 1 also demonstrates that the accuracy can be

further.i.mproved by using additional trial eolutions

which are an improvement over the diffusion approxi-

mation. This, therefore, suggesta an interaction

procedure whereby trial solutions are rederived from

information supplied by the two-dimensional results

to obtain more accurate results. One scheme for

doing this is discussed in section IV and is alluded

to in the Improved results of Example 2 obtained by

ueing group- and zone-dependent bucklings.
Time (eec) 232 30.0 46.8 22.4
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Fig. 6. X-Direction fission density through core
and reflector region of Example 2.

&ample 3.

The third example ia a deep-penetration problem

like that encountered in shielding applications.

The system geometry can again be repreaented by Fig.

2 where the core contains a spatially flat source in

a rectangular area bounded by the axes, x = 65 cm,

and y = 60 cm. The entire model is 133 by 140 cm

long, with an average mean free path of 20 cm. The

system is homogeneous, with two-group cross sections

given in Table III, and the boundary conditions are

reflective on the bottom, left, and top boundaries

and vacuum on the right. No TN@TSAN computation was

done for the problem, but an essentially exact

(P-19, 133 by 140 mesh) solution from which flux

comparisons may be made haa been computed for the

fully reflective system. Also, because of the

boundary conditions a one-dimensional computation

through the source region and to the vacuum boundary

yields a leakage that the two-dimensional computa-

tion must reproduce when the two-dimensional leakage

la integrated over the length of the vacuum bound-

ary. This is true for each group, assuming that the

energy-integrated source ia normalized to unity for

each calculation.

TAELE 111

PARM4ETESS FOR COMMUTATION OF EXAMPLE 3

Group 1 Group 2

Za a 0.061723 0.096027

zf 0.0 0.0

XT 0.092L04 0.100877

~p 0.006947 0.004850

~g-l+g
s

0.0 0.023434

Source density 0.006546 0.017701

A generalized diffusion computation of the

system waa made using one-dimensional, S-8 trial

solutions through the source region in both the x

and y directions. The trial solutions were computed

with one mesh point per centimeter and were used to

space collapse the description to 40 by 40 mesh in-

tervals. The reflector was treated using the asymp-

totic tranaport value to determine the quantity

E ‘m”m$i+%,m
m=l

Fi =-~ ‘i.
q’

(26)

Xwm($i+l,m - ‘in)
m-1

1
where Di = — is a constant taken from Table III.

3zTr

The trial solution used to evaluate Eq. (26) is

either of those described above and is far from the

source and vacuum boundary. It was found that Fi

approached a constant value of 2.0 probably because

of the large value of Es/XT. As evidenced from the

large errors in conventional diffusion theory (Table

IV), a value of Fi = 1 contributes to the inaccuracy

of that solution.

Some calculational results are shown in Table

IV and in Figs. 7 and 8. The ONSD column of Table

IV gives the one-dimensional S-8 results through the

sdurce and vacuum boundary (regions 1 and 2) with

the requlta normalized to a total source of 1

neutronlcm=lsec. The entries labeled Absorption 1

and Absorption 2 are the absorption in the source

and nonsource regions which the two-dimensional cal-

culation should alao reproduce if the absorption

reaction rate is integrated over y for each region.

In the GDE column are the generalized diffusion re-

sults obtained using the above described trial so-

lutions, and in column DE are the conv~tional

,

.

,

.
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TASLE IV

CALCULATIONAL RESULTS FOR F.XAl@LE 3

Percent of Deviation
From ON2D

ONED GDE DE

Leakage

Group 1 5.517 x 10-6 -1.69 -92.88

Group 2 8.814 X 10-b -0.44 -92.55

Absorption 1

Group 1 0.1879 -0.02 -0.49

Group 2 0.7704 -0,03 -0.44

Absorption 2

Group 1 0.008640 0.84 11.04

Group 2 0.03386 0.75 10.19

Time (see) 1.9 13.9 7.2

diffusion results. The execution times are for the

CDC 7600; the 6600 would require about a factor of

four longer. The results presented in Figs. 7 and

8 are the group-1 fluxes aa a function of x (through

the vacuum boundary) for two y elevations, 1 mfp

from the source and at the top reflecting boundary.

10-= 1

— P-19 SOLUTION

● GDE SOLUTION
I p

~ O*1 —

d
a

●

t ● -!

I . I
01 1 1 1 1 I 1 1

0 20.0 40.0 60.0 So.o Ioo.o 120.O 140.0

X DIMENSION (cm)

Fig. 7. Group-1 flux as a function of x at one mean

free path from source region of Example 3.

I \

— P-19 SOLUTION
● GDE SOLUTION

.
.
.

0.,0-
100 120 1

X DlfENSIO~(cm)

Fig. 8. Group-1 flux ae a function of x at top
boundary of Example 3.

The discrepancies around x ~ 120 cm are due to the

use of a reflecting boundary for the reference com–

putation. It should be noted that the conventional

diffusion flux at the vacuum boundary ie low by a

factor of from 10 to 100. The good accuracy of the

generalized diffusion approach in this particular

example shows that the method is useful in deep–

penetration or shielding-type problems that require

more than one dimension for their analysis.

Example 4.

This example is presented to demonstrate the

utility of the generalized diffusion equation in

analyzing real reactor eyatems. The TREAT reactor

ia to be used by LASL for transient testing of mixed

carbide and mixed nitride fuels to assesa their use-

fulness for fast breeder reactor systems. To SilllU-

late a fast flux environment, the thermal flux from

TREAT is to be shielded from the experimental pin by

a gadolinium filter. The primary objectives of a

neutronic analysis of the experiment are to deter-

mine (1) the radial and axial distributions of fis-

sions in the pin and (2) the ratio of the power den-

a~ty in the experimental pin to the power produced

in the reactor. Adequate representation of the

11



reactor and the experiment requires that the neutron

thermalization be treated explicitly with neutron

upscatteri.ng, and, because of the filter, the epi-

thermal region muet also be accounted for in detail.

To thla end 5 thermal and 17 epithermal (from 3 kev

to 0.8 eV) groups, with a total of 29 groups for the

entire energy range, were used. The anisotropic

scatter of the graphite medium was also accounted

for explicitly.

A TW@TRAN solution of this system was not at-

tempted because the cost would be prohibitive owing

to the large number of energy groups, the upscatter,

and the many spatial mesh points. However, some in-

dication of the accuracy of the solution computed

using the two-dimensional generalized diffusion ap-

proach can be gained from the one-dimensional re-

sults and the two-dimensional conventional diffusion

computation of the reactor. The generalized diffu-

sion analysis was performed using a trial solution

10

0.1

1 I 8 I
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o

o&’
on

@

8“

o
0

8

0

0

“a

radially through the experimental pin and center of

the reactor core. The reactor core and reflectors

are adequately treated by diffusion theory so trial

aolutiona through these regions are unnecessary. An

axial’ trial solution through the pin region ia de-

sirable, hut, becauae of the difficulty in obtain-

ing a realistic formulation for a source in that

region, such a computation is not yet possible.

The trial solution was used to collapae the

radial spatial mesh from 89 to 41 mesh points, and

the thermal groups from 5 to 1. That such a col-

lapse givea accurate results is verified in Fig. 9

where the mesh-averaged, one-dimensional thermal

flux is shown along with that obtained from the two-

dimensional generalized diffusion computation at the

mldplane of the system.* The errora are well within

‘In this particular case, the filter was not pre-
sent, but its inclusion does not affect the general
results.

I
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Fig. 9. Radial. thermal neutron
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flux through core and experimental pin of Example 4.
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&5z . Also shown for comparison are the results of

a conventional two-dimensional diffusion computa-

tion. Figure 10 shows the radial distributions of

fissions in the pin for the three computations. The

difference between the one-dimensional and general-

ized diffusion results is due to an error in the

spectrum at the center of the pin; this error is

thought to be caused by a defect in the one-dimen-

sional trial solution where for the high-energy

groups the relationship of Eq. (13) does not hold

because Fi changes sign in the central region of the

pin due to numerical difficulties.

Some further results on the figure of merit

(ratio of power density in the pin to the power in

the reactor) and on system leakages and reaction

rates are given in Table V.

It is felt that the generalized diffusion meth-

od has been a great help because the one-dimensional

computations, which were necessary anyway for scop-

ing, were used to obtain two-dimensional estimates

of the quantities of interest for the system. The

elimination of the need for two-dimensional upscat-

tering calculations ia especially beneficial in this

10 I 1 I I 1 D

9 -
0

8 - ● I-D TRANSPORT 5 THERMALGROUPSoo

7 -
0 GENERALUED DIFFUSION, o .’

ITHERMAL GROUP o

6 - 0 CONVENTIONAL OIFFUSION, &
I THERMAL GROUP o

0

0

0

‘o .05 0.1 0.15 0.2 0.25 0.30 0.35

RADIUS (cm)

Fig. 10. Radial fission density through experimen-

tal pin of Example 4.

CALCULATIONAL

TARLE V

RESULTS FROM EXAMPLE 4

Total leakage

Total fissions

experimental

Reactor

DTF-29 Group

0.03558

in
pin 0.004586

0.99541

Figure of merit
watt/cm3Jreactor
watts -.

Percent of Deviation
from DTF-29 Group

GDE DE

-0.42 -1.85

-2.37 33.48

0.01 -0.15

1.024x10-4 1.339x10-+

case because they are inordinately time consuming.

As is seen from the results of an equivalent conven-

tional diffusion calculation, significant errors in

the figure of merit have been eliminated and this

would not have been possible otherwise.

Iv. CONCLUSIONS AND RECOMMENDATIONS

Both the analysis and the realistic examples

presented here show that the generalized diffusion

equatinn method ia a valuable approximation for mul-

tidimensional neutron-transport computations. It

has been shown both analytically and empirically

(Rxsmple 1) that if accurate trial solutions are

available for the system of interest, the method

will yield an accurate approximation to the two-

dimensional, angle-averaged flux throughout the sys-

tem. The following are important attributes and

consequences of the method.

(1)

(2)

(3)

The form and properties of the numerical gener-

alized diffusion equation are the same as those

of the diffusion equation; therefore, the itera-

tion and acceleration techniques used to solve

the latter are valid for the former.

No extensive code development is necessary to

solve the generalized diffusion equation. Modi-

fications are needed only to provide for reading

in the leakage coefficients and possibly for in-

terfacing with codes that generate the trial

solutions.

The trial solutions are useful not only to ac-

count for strictly transport effects but also to

reduce the spatial mesh and number of energy

groups to a minimum, depending on the nature of

the problem.

13



(4)

(5)

(6)

One can develop theoretical analysea of the in-

fluence of the trial solutLons upon the accuracy

and validity of the solution of the generalized

diffusion equation. It has been ahown that the

error in the solution is in some way proportion-

al to the difference between the trial solution

and the exact solution of the problem.

The fact that the approximation method is based

upon the diffusion equation ensures confidence

that the solution is not unphysical or anome-

10US. This arises from the fact that a reason-

able trial-solution calculational strategy can

be automated and hence is not as user-dependent

as the synthesis methods. Where accurate trial

solutions cannot be computed, the conventional

diffusion approximation is made, thereby ensur-

ing a result at leaat as valid as diffusion

theory.

There is a significant time savings over the de-

tailed two-dimensional tranaport solution, in

the neighborhood of a factor of 10 for large

problems. This also makes some three-dimension-

al analysis feasible.

These points demonstrate that the generalized

diffusion-equation approach is theoretically very

attractive and is useful for many practical reactor

physics problems. When questions as to the accuracy

of the solution to the equation ariae, the crucial

consideration is the ability of the one-dimensional

trial aolutiona to represent the leakage (more ex-

actly, the quantity Fi of Eq. (13)) for the two-

di.mensional system in each spatial direction and

through each region. This suggests that the repre-

sentation of two-dimensional systems by one-dimen-

sional computations, particularly for nonsource

regions, should be studied. In the examples pre-

sented, only trial solutions through source regions

were computed because such a computation is straight-

forward with the Sn code available. Transverse-

leakage effects were accounted for by a single buck-

ling approximation (i.e., leakagei = - D~B~ = L’~riX~2

gwhere Xi = T/[.&(x~ri h + 1.42)], and h iS the

height). These trial solutions may be improved, and

some estimate of the trial solutions for nonsource

regions also may be obtained by generalizing the

above approach. It is proposed that the information

on the two-dimensional leakage developed in the

generalized diffusion solution be used to recompute

the trial solutions, thereby gfvfng a presumably

more accurate trial solution. To demonstrate the

feasibility, consider the angle-integrated two-

dimena+onal transport equation,

ajx(x,y) j (X,y)

ax +~ + xT(x,y)$o(x,Y) - SO(X>Y) - 0.ay

(27)

Integrate this over a region along the y axis

k+’yj+d“
d~x (X) j (xsYj+lJ - j (%Y1~

dx+ AYh + ‘Tj(x)Oo(x)

-Fe(x) = o ,

where

‘j’%(X,y)$ (x, y)dy/$ (x)AY ,
f

ETj(x) =
T 0 0 j

Yj -+

‘~*1$(x,y)dy/&_r@o(x) = o j’

(28)

(29)

Yj-~

Define a quantity Q(x) such that

Q(x)@o(x) =

The leakage

side of Eq.

dimensional

(30)
Ay

j

as a function of x on the rfght-hand

(30) is asaumed to come from the two-

computation and thus ia known. The ad-

vantage of expressing it as a product of a function

and the flux is that this term ia automatically

scaled while the Sn code is iterating for the flux,

so the correct transverse leakage is maintained.

This requires that this term be placed within the

source of Eq. (28), and the problem reduces to the

conventional source iteration. This method thereby

offers a possibility of iterating the generalized

diffusion technique to improve the final solution

J

.

?

.
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without extensive code modifications.

Another attractive possibility for obtaining

accurate trial solutions ia to use Cobb’s synthesis
7

approach. Briefly, the method is to assume av ex-

pansion of the angular flux as

+(xsY>P>n) = ‘fvk(x)e@lm),
k=l

(31)

where ~k(x) ia a trial solution through the kth re-

gion and a(y,p,rl) is the unknown. The equation de-

veloped for ~ is a transport equation in one dimen–

sion and two angles. This modal approach has the

advantage of using a self-contained iteration to ob-

tain a transport estimate of the flux for the entire

system. Together with Eq. (31), this yields a two-

dlmensional approximation to the transport flux.

However, this expression can also be integrated over

selected regions and used as trial solutions for the

generalized diffusion equation method to attain in-

creased accuracy snd reliability of solution. If

this and other appropriate methods are used to iJS-

prove the trial solution computation, versatility

and increaeed applicability of the method for com-

puting the multidimensional neutron flux of a given

systm result.

The theoretical analysis of the generalized

diffusion method should be pursued to gain further

insight on tiprovementa in adapting it to realistic

problems in particle transport. For example, if

methods could be developed for one-dimensional Sn

transport to choose a mesh to ensure that the

quantity Fi of Eq. (13) remains positive for the

trial solution, then some of the practical diffi-

culties in using the method would be avoided. Also ,

a more exact statement of the effect of the trial

solution on the accuracy of the generalized diffu-

sion solution is desirable. It is particularly

important to be able to show under what conditions

the generalized diffusion solution liea between the

transport and conventional diffusion solution.

The generalized diffusion method is presently

useful for analysis of a large variety of reactOr-

type systems including shields, and it should be

experimented with more widely. The method promises

more versatility than existing methods that couple

multidimensional diffusion theory with selected

transport “fixes” of cross sections to account for

regions where diffusion theory is inapplicable.

REFERENCES

1.

2.

3.

4.

5.

6.

7.

K. D. Lathrop and F. W. Brinkley, “Theory and
Use of the General-Geometry TW@TRAN Program,”
I.ASL report LA-4432 (1970).

Bengt G. Carlson and Kaye D. Lathrop, “Transport
Theory, The Method of Discrete Ordinates,” LASL
report IA-3251-MS (1965).

Raymond E. Alcouffe, “A Study of Two-Dimensional
Sn Transport Synthesis Via ‘Angle Collapse’,”
Trans. Amer. Nucl. Sot. ~, 217 (1971).

M. Natelson, “A Strategy for the Application of
Space-Angle Synthesis to Practical Problems in
Neutron Transport,” Nucl. Sci. Eng. ~, 325-336
(1968) .

Raymond E. Alcouffe, Thomas J. Hirons, and R.
Douglas O’Dell, “Effect of Collapsing Cross Sec-

tion Data or Fast Breeder Physics Parameters,”
Nucl. Sci. Eng. ~, 173-185 (1971).

Raymond E. Alcouffe and Thomas J. Hirons, “The
Effect of Condensing the Spatial Mesh on the
Accuracy of Fast Breeder Fuel-Cycle Analysis,”

Nucl. Sci. Eng. 4&, (1971).

William Ronald Cobb, “Application of Variational

Synthesis to Solutions of Multidimensional Neu-
tron Transport Problems,” (Thesis), Oak Ridge
National Laboratory report ORNL-TM-3200 (1971).

1

15



APPENDIX

DERIVATION OF THE DIFFUSION EQUATION FROM

THE NEU’illON-TRANSPORT EQUATION

The stationary linear Boltzmann equation for

neutron tranaport is written aa

l.r- (MJ’ dE’ X8@ Po, E’+E)

“ 41(r,f2’sE’) - sf&f2,E)- 0 , (AL)

where p = fl”~’ and the other terms have their con-
0 —-

ventional interpretation. Integrate Eq. (Al.)over

~ to obtain

V-J@,E) + ZT@E)$o&,E)

w

-J
Zso(r,E’+E)@o@,E’)dE’

0

-rZso~,E’+E) = d~Z~~,Po,E’+E) .

If the first moment of Eq. (Al) with respect to y ia

also taken,

=0,

/
= UP1(UO) Z~(r,po,E’+E) .

(A3)

The diffusion approximation results if Eq. (A3) is

used to define the current .T@,E). To do this, the

follo~ng approximation is made in Eq. (A3).

@@&E) = $o(r_,E) +~J~,E),

“ the quantity ~~,E) = $ ~ $o@,E) where ~ is the..

unit died. Also asssume that

Zsl@,E’+E) = Eal(r,E’) 6(E’+E) . (A3.b)

With these assumptions, Eq. (A3) becomes

or

~(r,E) =

1

31ZT(r,E) - Z~l@E)] [ 1V$o@, E) - ~l@E) . (A4)

Equation (A4) is a statement of Fick’s law relating

the gradient of the flux to the current, with the

proportional quantity; the diffusion coefficient,

given by D(~,E) = ~X ~r,E) with the transport cross
Tr-

section ET (r,E) = ZT&E) - Esl(r,E). Substituting

Eq. (A4) into Eq. (A2) gives the conventional diffu-

sion equation

- V.D@E)V@o(Z,E) + XTQ,E)410(Z,E)

/
. dE’,Zso~,E’*E)$o(r,E’)

0

+ So@E) - V.D&E) ~l(r, E) . (AS)

The assumption that P(r,E)a ~ $o(r,E) is the moat=-

severe”of those necessary to derive the diffusion

equation. One is essentially ignoring the higher

order moments of the flux and hence assuming that

the flux is a slowly varying function of angle

through space end energy. This is generally true if

the flux is evaluated far from the boundaries of

strong absorbers or sources and far from vacuum

boundaries.
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The applicability of the diffusion equation -v . I)~,E) . V@o@, E) + ZT(Z,E) $O(X, E)

form can be generalized by making, instead of the as-

sumption of Eq. (A3.b), the assumption that

~@,E) = - I)@, E) . V@o(~, E)

where the diad ~ is defined by

=Oforf+j.

In this case Eq. (2) becomes

for i=j=l,2,3

.

-r~so(z>E’+E)@o(z,E’) dE’

o

= So(~,E) (A7)

(A6) For boundary conditions consistent with the trans-

port equation, the solution to Eq. (A7) will repro-

duce the angle integrated transport flux. The nu-

merical analog to this procedure is used to derive

the generalized diffusion equation of Section II.

KT/dw: 299 (50)


