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THE REDUCTION OF MESH TANGLING IN TWO-DIMENSIONAL LAGRANGIAN HYDRODYNAMICS CODES BY THE

USE OF VISCOSITY, ARTIFICIAL VISCOSITY, AND TTS (TEMPORARY TRIANGULAR SUBZONING FOR LONG,

THIN ZONES).

by

Philip L. Browne and Karl B. Wallick

ABSTRACT

Severel related studies of compressible, two-dimensional Legrangian
hydrodynamics are described. Reduction of mesh tangling, particularly in
problems that have long thin zones is emphasized. The topics discussed are:
a general method of deriving the momentum equation in difference form, in-
corporation of the viscosity-stress tensor into this method, use of the vis-
cous-stress tensors to add a two-dimensional form of the Richtmyer von-Neu-
mann artificial viscosity, and a device called “temporary triangular subzon-
ing” (TTS) to delay the transmittal of artificial signals that lead to oscil-
lations and tangling in long, thin zones. The last two methods have not
been tested thoroughly, but have certainly eliminated & great deal of the
twisting and tangling in several test problems. These methods also retain
spherical, cylindrical, and plane symmetry in problems of that type. The
last proposal, the TTS, may introduce some stiffness into the mesh, but we
hope that with further experimentation this can be reduced. Our basic pur-
pose is not to propose these concepts as polished cure-alls for mesh tan-
gling, but to present the basic ideas which, to us, seem sound and worth

consideration.

INTRODUCTION

During the past 10 years, we have devoted con-
siderable time to the study of numerical calcula-
tions in two-dimensional (r,z) Lagrangian hydrody-
namics for compressible flow. Lagrangian calcula-
tions have many advantages, but in two dimensions
one great disadventage is the tendency for the mesh
to become tangled. In many cases this is caused by
the real, physical motion of the fluid, but we have
noticed many situations in which we believe this
twisting to be nonphysical. Small perturbations of
one kind or another become magnified in both time
and space. This seems to be especially true when
long, thin zones (large aspect ratios) are present
in the mesh. The ideal solution would be to avoid
meshes that have large aspect ratios, but sometimes
other physical requirements of the problem or the
related calculations prevent this. For this report,

we assume that long thin zones are sometimes neces-~
sary, and attempt to suggest methods for getting
along with them. V

This report consists of four parts, all related
and necessary to each other. It would be preferable
to issue each part as a separate report, giving more
detall, and we may try to do so in the future. How-
ever, as a temporary expediency to present the basic
ideas, we include all these related topics here, and
consequently present meny results and concepts with-
out proof or detailed explanations. Because some
of the celculations in which these methods have been
used involve items unrelated to the problem of tan-
gled meshes, no results or examples are given in de-
tail. All numerical work was done with a code named
JANUS, parts of which have been described elsewhere.

The first section of the report describes the
model and method used to difference the equetion of
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conservaetion of momentum. This method, called Inte-
grated Qradients, was developed about eight years
ago.j The basic idea is to derive the difference
equations by using surface integrals of the pressure
to calculate the momentum transfer, rather than to
difference the differential equation. Others have
We feel
that these integrel methods are generally superior

to differencing the differentiel equation directly,
as they go back to the basic physicel ideas used in
deriving the differential equation, and this approach

often clarifies the assumptions that must be made

used similar arguments in other codes.u’s

(for example in boundary cases).

The second section describes a way to add the
viscous~stress tensor to the hydrodynamic calcula-
tions.” This, again, is done with surface integrals,
and for the same reasons. The viscosity celculations
were added primarily in the hope of using them to
damp out oscillations in the mesh. This worked
The viscosity coeffi-

cients required were larger than those that would

quite well in many problems.

arise owing to any physical effects, and they ap~
peared to depend on such things as density and mesh
spacing. However, with some experimenting, we could
often use this method to run problems that would
have become very tangled otherwise. In other words,
it was used as a velocity smoothing egent rather
than a real viscosity effect. Of course, the way in
which it was set up would enable it to be used di-
rectly for real viscosity calculations.

The third section describes a method for set-
ting up a two-dimensional artificial viscosity.7
This method was based on the model chosen for the
viscosity celculation described in the previous par-
agraph, and, indeed, the artificiel viscosity was
incorporated into the viscous stress tensor. We
found that this type of artificiel viscosity was
very necessary, particularly in problems with large
aspect ratios.

The last section introduces a concept that
also seems to be needed in problems with large as-
This is the necessity to isolate the

two ends of long, thin zones temporarily in order

pect ratios.

to delay or prevent an unphysical, numerical effect
from being transmitted from one end of the zone to
The method we devised
amounts to treating & zone as if it has triangular

the other end in one cycle.

subzones temporarily, and then allowing the energy

2

to be smeared over the whole zone. This, egain, was
an outgrowth of the model derived for the viscosity
calculations.

The last two concepts were developed only with-
in the last year, and have not been thoroughly test-
ed. However, they seem to prevent mesh tangling in
some very difficult situations. Moreover, they make
sense, at least to the authors, who have felt the
need for something like this for several years. We
have done little or no work on such things as the
stability conditions required to go along with these
calculations. We have done quite a bit of work to
ensure that some simple problems (planes, cylinders,

and spheres) retain their symmetry.

I. INTEGRATED GRADIENTS
A. The Integral Form of the Momentum Equation

Using integrals, one can write the equation of
momentum conservetion for a blob of fluid contained
in a volume, U, in the Lagrangian form

Podv =

J oadlh:-fpds. (1-1)
U S
If we assume that all the material in U has the same
acceleration, d;/dt, (i.e., use the mean-vslue the-
orem), then because fde gives the mass, M, enclosed
by S, we can write

av =

M = [ pasS . (1-2)
§

at

B. Zone Quantities and Point Quantities

Consider a section of typical Lagrangian mesh
(Fig. 1) in en (r,z) coordinate system. Usually
each zone (i+§,3+§) has associated with it such
things as mass, pressure, density or specific vol-
ume, temperature, artificial viscosity, and specific
internal energy, which we denote by

(M!P!plTlqu!E)i_’,é,J_’,é . (1-3)
All of these are the quantities needed or evaluated
by the equation of conservation of internal energy,
which we write as

dE ar

3 = -(Pra)zg - (T-4)
Ususlly each point (or vertex) has associated with
it such things as coordinates, velocities, and ac-
celersations, which we denote by




(r,z,r,i,’f,k’)i,d .

All of these are the quantities needed or evaluated
by the equation of motion, Eq. (I-2). However, we
note that Eq. (I-2), for complete definition requires
a mass, M, to be associated with the point, and a
surface, S, enclosing that mass. Many codes define
the masses used in some arbitrary manner, but we
attempt to be more esthetic about it, enabling us to

better visualize what we are doing.

Ny

Fig. 1.

C. Evaluation of [PdS.

Recell that this is a figure of revolution a-
bout the z axis, and that each zone represents an
element of volume in which the scalar quantities
are- constant. Vector quantities will be constant
in magnitude but will vary direction with 8. For
our purposes we cannot consider a revolution of 2
about the axis, for then the integrals of all forces
in the r direction will venish. Hence, we consider
a revolution of small angle, @, about the z axis.
This means that the volume considered is wedge-
shaped, and the forces on the sides of the wedge
must be considered.

Suppose we are working with point (1,3) and con-
sider any surfece S’ in zone (i+%,J+%), Fig. la, en-
closing the part of the mass from that zone to be
associated with (i,J) in the momentum equation. One
can prove (proof omitted due to length) that if one
adds the forces caused by integration of the pressure
over the front and rear faces of the wedge to the
forces caused by integrating P over S', the result
is independent of the path from { to {+l. We indi-
cate this by the notation

§t+l dg - Iﬁ+l d§' + g d§ is independent of
the path S’ from &, 441, (1-5)

and, in more detail,

b’- End End
e =T % ['ZL’L"(zz,'zbu)'z(’mf’c)

+zb+1rl,+1] + ¥ g(’i"iﬂ) ’

where T ana K are unit vectors in the r and z di-

(1-6)

o(i,j)

A sample point and e sample zone in a Lagrangian mesh.

rections at & = 0.
For this particular mass there are ealso forces
along the surfaces formed by lines (0,L) and (0,4+1).

If we denote the pressures along these sides by
Pt+§, PL+1’ then the totel force on the mass being

considered in Fig. lb is given by
By - (e, - - f @it} @)
L+E Lk L 22 )
+1
- pu_#d; &'+ é &)
(Frap=13 [(P?é 'Pwyz'zz,)(”’z)(l’g%'l’u@
X (zul'z)(’ul”)]

+X g [(Pi"’t-Pu_Q(rL-r)(r+rL)(Pg%-PMQ
(1-7)

| X (r-rL+1)(r+rL+1)] .

This is the general force acting on the mass in zone

(1+%,J+E) = L+% defined by any path S’ Joining ¢ to
441,

It might be well to add a word about conserva-



tion of momentum. Because deg is a momentum flux
term, if one desires to conserve momentum exchange
between two adjacent mamsses when using this method,

he must require that

I P€+k ds = -I Pi'* as .

Because we assume the P's to be constant along (0,4),
L L-d
B =P, "=P, . (1-8)

We have found that a good definition of PL is given
by
P, = l(p +P, 1) (I1-8a)
L7 Ve

D. Defining the Masses for the Momentum Equation

As previously mentioned, once the positions of
{4 and {+1 have been selected along the lines Jjoining
0 to the adjacent points, the value of §¢+# is inde-
pendent of the path s’ chosen in the zone. The path
S’ can be considered as defining the mass from zone
14+} to be associated with O for the momentum equa-
tion.
sen for the set of zones about point O.
tion that comes to mind is to choose S’ (Fig. la) so
that O is at the center of mass of the material en-
closed by s’.
ways.

After much thought, analytic work and numeri-

cal experimentation, the best method we found was

There are many ways in which 8’ could be cho-
One condi-

But even this could be done in many

the MAC-0 (midpoint, average-centroid at time zero)
method. In this method, at the start of a problem,
the points 4 are chosen as the midpoints of the
sides, and these are joined by straight lines to a
point, 8, that is the average of the four corners
(Fig. 2).
There are thus four magses around point O

This gives four subzone masses in each
zone.
which are associated with it for momentum calcula-
tions.

Fig. 2. Defrinition of the MAC-O masses.

Although the MAC-0O method of defining mmsses
does require more storage than some other methods
(such as using a given fraction, like %, of the
mass of each zone), it has a number of advantages.
First, conceptually, the masses used with one point,
0, do not overlap the masses used with adjacent
points. Second, when one performs the momentum
transfer by celculating deg, momentum is conserved;
i.e., momentum taken from O is transferred to the
adjacent points because the integrations can be vis-
ualized as being performed in opposite directions
along a common side. This idea of conserving quanti-
ties, usually fluxes, is very important in physics,
and it seems thet it should be used, if possible,
Third, in a series of
test runs on some simple plane problems with a
small initial distortion of the mesh, the MAC-O meth-
od enabled the problems to run about twice as far

before the distortions become severe.9 Fourth, this

in numerical computations.8

model enabled us to develop the method of rezoning2
which conserved mass, momentum, and total energy of
the model exactly.
E. Combining Forces and Masses to Obtain Accelera-
tions.
To calculate the acceleration of point O, all
that remains is to decide how to coumbine the masses

and forces from the various subzones about O to rep-
resent Eq. (I-2).

1. IOT (Integral Gradient Total). The most
straightforward method, represented pictorielly in
Fig. 3a, is to integrate around the four subzone
masses associated with the point O, which gives

av <: by 4

- P Q/( LM ). (1-9)
LT s vt
Unfortunately, in spherical problems with equal angu-
lar spacing, this method does not give uniform spher-
This
has been verified analyticelly as well as numerical-
ly. The method works well in planes and cylinders
Using Eq. (I-T), the general
works out quite simply, owing to

ical motion, a very desirable feature to have.

with uniform spacing.
formula for T F&*&

cancellationbof terms, as

“ - - u
Z e 18 5 Lo ympaeny)]
(1-10)
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2. IGA (Integral Gradient-Average!. A less
straightforward method is to calculate an accelera-

tion for each subzone, Fig. 3b, and then average

these accelerations. This glves
- 4y (F
dv 1
®T-F z ﬁ , (1-11)

=1 \ Mk
which cannot be simplified much by substituting
from Eq. (I-T).
which seems more logical from many points of view,
gives IGT, Eq. (I-9).] Unlike IGT, IGA can be
shown, numerically and enelytically, to glive spheri-

[Note that a mass-weighted average,

cal motion in & sphericel problem with uniform
angular spacing. It gives exactly the same results
After

several years of working with both IGT, and IGA wve

tend to prefer the latter.

as IGT in cylindricel and plene problems.

- o -.-1

2
b. IGA-MAC-0

¢
.
4 K}
L" Q‘L
N '1
“ V.
z
d. WAT

Fig. 3.

Representations of various gradients
(dashed lines show paths of integration
for each element of mass).

3. PFGI-q (Force Gradient I-q Mass). We could ob-
tain the acceleration used in MAGEE,lo from Eq.

(1-7), by an averaging and integration method il-

lustrated in Fig. 3>c. The genersl form is

~ b [F, +F
dv 1 L~
T-F P . (1-12)

=1 \ M3
where the M's are one quarter of the zone masses.
This type of acceleration calculation also gives

spherical motion in a spherical problem with uni-

form angular spacing.

4. WAT. The acceleration calculation used in WAmll

can be obtained, using Eq. (I-7), by integrating
around & dismond-shaped surface (Fig. 3d), where
the points on the sides lie 2/3 of the way out to
the next vertex. We have done no numerical or ana-
lytic work with this method on spherical or other

special problems.

). Boundary Cases.

Setting up proper boundary calculations is of-
ten more difficult than the general case. However,
study of the boundaries often leads to clues as to
how the general case should be handled. Our general
criterion for boundary cases has been that in plane,
cylindrical, and sphericel problems they should give
the same acceleration as the general case (i.e.,
corresponding interior points).

For sliding boundaries (Fig. %), whether at
constant r, constant z, or at some angle to the exes,
the generel procedure is the same.

ing only IGA-MACO).

(We are consider-
In Eq. (I-T), let

Pt:% = PL-% for zone {-% ,

Pt:% =Py for zone i+% . (1-13a)
Then, in Eq. (I-1l1),

- F,, F

d_z-.]z; _l'_"t-;-_‘ﬁ . (1-13b)

The final operation is to keep only the compo-

nent of the acceleration tangent to the sur-
face defined by the boundary. (1-13c)

This is equivalent to the often used method of re-
flecting the two zones across the boundary and using
the general case. For a slanting boundary, this re-
quires considerable care.

For a free surface the procedure is the same,

except that along the free surface we assume that

Ppy =P =0- (1-14a)
Then use Eq. (I-13b), but not (I-13c). All these
methods approach the proper limits, as the spacing
is made smaller.

For other types of special points, such as cor-
ner points in a mesh, the situation dictates the

necessary assumptions. Proper combinations of assump-
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Fig. 4. A sliding boundary or free surface.

tions for a sliding boundary and a free surface have

worked properly as far as we can tell.

G. Conclusion.

All the statements made in this section have
been verified either by analytic anelysis or by nu-
merical celculations with the JANUS code. We defin-
itely prefer the MAC-O method of defining the masses
associated with points. We prefer the IGA model of
deriving accelerations, mainly because it gives
spherical symmetry in a spherical problem with equel
The IGT method
does seem to slow the growth of distortions slightly,

more so than does IGA. However, in any problem in

angular zoning, whereas IGT does not.

which the mesh already has some distortions, we are
convinced that some additional devices, such as those
to be described in the next sections, are needed.

II. VISCOSITY
A. The Viscous-Stress Tensor.

To include a viscosity calculation, one must
add extra terms to the equations of conservation of
momentum and energy. After looking into this at con-
siderable length, we decided to use the integrel
form of the equation of motion, as we did for the
pressure gradient. This is somewhat more complicat-
ed, because the true incorporstion of viscosity re-
quires a tensor, called the viscous-stress tensor.

We represent the viscous-stress tensorlz’13 by

G— >+bxw3). (11-1)

In any coordinate system, O, , represents the flux of

i3
i momentum transferred across an area perpendicular
to the j direction owing to viscous forces (i.e.,
with no corresponding mass transfer).

In an r,z coordinate system (Ref. 12, p. 181),

the nine-component tensor is

. -», . .
crr-u(arr)+m(v-f) 0.g=0 crz-u(rz+zr)
r -
°1J = 0y =0 ceo-u(a;)+x(v.v) Tgp= © (11-2)

Ozr-u(rz+zr) c_.=0 czz-u(zzz)+x(v-v)

z9

- L] L] L]
vwhere V.v = r_ + r/r + z,.

B. The Momentum Equations.

Let us write the momentum equation in terms of
a volume of fluid, V.

ik -

dv,
i-o
IU P~ & U= -IU(Vp)iei dv + IU e, dv ,

(11-3)

where Zi are the unit vectors, ;1, 61, and ;1, as
shown in Fig. 1. Repeated subscripts indicate a
summation. Using the same arguments proposed in
Sec. I, and in Aris,la p. 179, ve can write this in
terms of surface integrals

M- -f PdS + f e

dt (II-4)

%1 J
Eveluation of -] PdS has been discussed in Sec. I.
For the viscous terms, as one integrates over the

surface, the P changes direction, and this must be

i
allowed for. If we substitute for the e

1) in terms of I, 3, and k,

(see Fig.

—

& " Lin in ’
or
ry = (cos @) + (sin 0)J + (o)? ,
9, = (-sin Q)T + (cos @)J + (0)k ,
z) = ()1 + (0)] + Kk, (11-5)

we have unit vectors that do not change direction with
the position of the element on the surface. These

can be removed from the integral. Thus, substituting
Eq. (II-5) in Bq. (II-4), we have

nd - -fpds +1 [ &, - (11-4s)

in %1k




C. Evaluation of Surface Integrals.

Carrying through all the manipulations for the
surfaces of a volume formed by roteting a triangle
OAB (Fig. 5) through a small angle ¢ about the z
exis, we get a contribution for the last term in Eq.
(II-bka).

-4

[

-
[

Fig. 5.

- "

1nd byp gy 98y = 1o (i OprFd% = i CJrrz”"")

=¥ f
+ ko \‘i czr rdz - . czzrdr )

- 10§, Fgpdrdz ,

A % (11-6)

vwhere ;, indicates integration over the surface
formedéby rotating AB, and IA denotes integration
over the triangular faces of the wedge formed by the
rotation. The integrals over the surfaces formed by
rotating OA and OB have not been ingluded, but would
be written in the same form as the ? if needed.

If the sik are constant over tﬁe range of inte-

gration, Eq. (II-6) becomes exactly

= ABTA )(’ B'TA
i;{crr(zB-zA)\ 2 > - crz(rB-rA 2 )]
+r +r
- ) B A) ; ; )(’ B A)]
+ k"["zr( g ZA)<: 2 9,(Tg-Ta X3

- T i(zn'zo)(’f’o) - (ZA'zo)(’n"o)] .

(11-6a)

This expression cannot, of course, be substitut-

ed directly into Eq. (II-%a), because it applies
only to a triangle, whereas for the momentum equa-
tion it is necessary to perform the surface inte-
gration over all the material considered to be asso-
ciated with the point.
made .

is what kind of model to use for the complete surface

Severel decisions must be

One is how to eveluate the G's, and another

integration of all the masses associated with the

point in question. These two decisions are related.

After considerable thought and experimentation, and
draving from previous experience in developing the
pressure integrals, we settled on the following
methods.

D. Calculsting the o's.
Eveluation of the 0's, see Eq. (II-2), requires

evaluation of velocity derivatives, ;r’ ;z, L and

iz. The most straightforwerd spproach is to use
Specifically, if r is known at three
points, 0, ¢, and {+1, assume that r is defined by
a plane passing through the three known values r

triangles.

o!
Tys and Tor” Then the derivetives are constant

over that triangle, and we can write

Ty = T ¥ rlrgerg) +r(zz)

Tpp1 = T, t rr(rul-ro) + rz(zlﬁ-l-zo) . (1II-T)
These two equations can then be solved for the two
Similar equations hold for ir
and iz. The velue of r/r is obtained by

. L]
unknowns r_ and r_.
r z

r
- =
r

(11-8)

E. The Viscous Triangles.

In view of our experience with deg (sec. I),
it occurred to us that we could set &p the corre-
sponding viscous calculation in the following man-
ner. Consider a set of zones sbout a point (Fig. 6).

Fig. 6.

The viscous triangles.

For each zone, we define2 & point, 8, that has as
coordinates and velocities the average of those
for the four corners of the zone. These points,
vhen connected to the four corners, define four
As described
in the previous paragraph, the G's cen then be

evaluated for each of these triangles.

"viscous triangles' in each zone.

Using the viscous triangles, it is now possible



to propose a method for celculating the viscous
terms in the momentum equations by properly defining
the surfaces over which the'integrations are to be
performed. Referring to Fig. 3, we can choose, pref-
erably, either an IGT-MACO or an IGA-MACO method.

We have tried both. The IGI'-MACO method is simpler,
but does not give spherical symmetry in a spherical
problem with equal angular spacing (the same as our
The IGAR-MACO
method is longer, but seems to give proper spherical

experience with the pressure integral).

motion (as was true for the pressure integral). It
is represented by the dashed lines in Fig. 6. This
method has not been verified anelytically, as it was
for the pressure integrals.

Note that because the viscous-stress tensor
represents a momentum transfer, this scheme gives
conservation of momentum between adjacent points in
the mesh, as was discussed for the pressure integrals
in Sec. I. We feel that this is desirable.
0's are required along a boundery between two vis-

Where

cous triangles, as in IGA-MACO, we use the average
of the 0's on both sides, similar to the pressure
argument in Eq. (I-8). Along boundaries, we use the
assumptions analogous to Eqs. (I-13a) and (I-lia)

for the pressure gradients.

F. Putting It All Together for the Momentum Equa-
tion.

Owing mainly to complexities of notation, it
seems unwise to try to write down the equations for
the viscous code. It appears more logical to out-
line the steps, which are highly repetitive, and let
it go et that.

We have not made a deteiled study of the time
centering of the viscous acceleration, but have made
it fit our code as it stands. Given the coordinates
at n and velocities at n-%, the first step is to
celculate the o's by using Eqs. (II-7), (II-8) and
(II-2). The second step is to calculate the FL+§
for each subzone by adding together the contribu-
tions from Eq. (II-6a) for ell sides and the faces
Then, as with
the pressure, we get a viscous acceleration by using
Eq. (I-11).

of the triangles for that subzone.

G. The Energy Equation.

The viscosity makes a contribution to the en-
ergy equation which corresponds to the effects in

the momentum equation. For each viscous triangle,

this energy change per unit volume is given byl5

avi . R :
S= 04y Sxk = 0T Y 0pte * 90 ¥
+0,r +0 .2 . (11-9)

For each zone, these energy changes are summed to

find the energy change for the whole zone due to the
viscous effects. The fact that the energy change is
applied to the whole zone is an important point, and

the section on the TTS will reconsider this procedure.

H. Conclusion.

The viscosity method described above has helped
prevent mesh tangling for & number of problems in
JANUS .
large enough to prevent tangling, yet not so large

The coefficients, u and A, must be chosen
as to change the physics of the problem. Reasoning
and experience have shown that the coefficients

should be proportional to the density, p.
has indicated that perhaps the coefficients should
depend on the mesh spacing.

Experience

However, we were never
able to make the viscosity a general panacea for pre-
vention of mesh tangling. It acts as & velocity-
smoothing device, whereas sometimes one needs a co-
ordinate-smoothing code. This need led to the devel-
opment of rezoning.2

The action of the viscosity code can be illus-
trated by a simple example. Suppose one has a mesh,
vhich, owing to some perturbation, develops a veloc-
ity pattern as shown in Fig. 7. Because the calcula-
tion is essentially a momentum transfer, any large
velocities of alternating direction are partly trans-
ferred to adjacent points, and the oscillations are

reduced on the next cycle.

III. A TWO-DIMENSIONAL ARTIFICIAL VISCOSITY
A. One-Dimensional Artificial Viscosities.

In the one-dimensional planeucase, the Richtmyer-
14,15

von Neumann artificial viscosity for epproximat-

ing shocks can be written in two equivalent forms

dv
q = 2o(ax)? 2 (P 12 <o, (III-1a)
and
q = b2p(Ax)> (}:)2 1t g% <o. (III-1b)

In this case, the two forms are equivelent because
the changes in volume, U, are directly related to
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the velocity gradients by the equation of continuity,

3t dv
P03t = 5% ° (111-2)
In Eq. (III-1), Ax is the original zone spacing. By
including it in the coefficient, one is essentially
adjusting the size of q so that the shock will be

spread over a desired number of zones. One could
also write Eq. (III-1b) in the form
2 2 3V 2
Q=" O(AX) 3X P (III-J)

where (AX) is the spacing at the time q is calculat-
ed.

B. The Difficulties with Artificiel Viscosities in
Two Dimensions.

In two dimensions, for a quadratic mesh in
which there are essentially two "directions" in
which the zone may be squeezed; i.e., a shock may
come in from either of or & combination of two di-
rections, it is not so easy to decide what (Ax)2 or
(Ax)2 should be, and in the case of Eq. (III-3), it
is not clear what to use for dv/3X. MAGEE,lo
ed the form of Eq. (III-la) with the assumption that
(Ax)2 could be replaced by the original area of the

adopt-~

zone, which is, in a way, a measure of the spacing.
This has worked well in MAGEE because in that code
the aspect ratios are always kept relatively small.
We have used this same form in JANUS, but for lerge
aspect ratios (which give large areas), the shock
term becomes very large, spreads the shock over too
many zones, and also forces the problem to run at
very fine time intervals.

However, this is not the only difficulty. Even

worse is the fact that, for large aspect ratios, a

b. AFTER
VISCOSITY
CALCULATION

Velocity smoothing with a viscosity celculation.

small motion approximately perpendicular to the
length of the zone (Fig. 8) cen produce large
volume changes in one cycle. This, in turn, pro-
duces large entropy and pressure changes for the

whole zZones. These inordinately large or small

pressures are used in the momentum equation on the

next cycle, which tends to make the points at the
other end of the zone move upward, long before any

real physical signal should reach them. This leads
to oscillations in the mesh. We have traced this
16

effect in & number of problems, and Schulz™ has
called attention to it.

\
]

e

Fig. 8. Large volume changes due to small motion.

Schulz devised a very neat method of dealing
with this difficulty.
directions, EL and -R, , associated with each zone
(corresponding roughly to the length and width of
the zone).

He, essentially, defines two

He then derives a separate q term for
each of the four sides of the zone, by taking the
projections of the appropriate velocity differences
along the appropriate direction. Thus, for a long,
thin zone, different q terms are obtained at each
end of the zone, and are used in calculating the
momentum equation for the points at their respective

ends of the zone. This seems highly desirable.

c. Use of the Viscous Code as the Basis for & Two-
Dimensional q Term.

When faced with the necessity for deriving a
two-dimensional artificial viscosity, especielly
one for zones with large aspect ratios, which to us

9



means getting a q term at each end of the zone as
Schulz did, it occurred to us that our viscosity
code essentially separates the ends of the zone by
It would
be appropriate to try to develop a two-dimensional

q term for each triangle and include it in the vis-

the use of the viscous triangles (Fig. 6).

cous-stress tensor. Then the viscous code could be
a framework for using the 0's properly in the momen-

tum and energy equations.

D. Selecting Two Directions.
For a two-dimensionel q term in a triangle, two

directions are needed, because the triangle might
be squeezed from one direction and expanding in an-
other. We have tried several methods, including
Schulz's, for the whole zone, but have found that
for peculiarly shaped zones, our method requires
Judicious selection of directions for each triangle.
The method we used defines the directions in two
ways, and then weights the two choices depending on
the "length™ and "width" of the triangle.

Consider any viscous triangle as shown in
Fig. 9, where 02 is the side of the zone, with the
midpoint at 1. Define one set of directions related
to the "altitude,”

ﬁi = unit vector along 18 = raI + zaf, (II1-4)

vhere r_ = (re-rl)/L )y 2y = (z8-z1)/418, g™

[("8"'1)2 + (28'21)2]é ’

and
Be = unit vector perpendicular to Ra (rotated
clockwise) = -zaI + raf . (II1-ka)
B A
4

k

Fig. 9. Specifying directions for a viscous triengle.

10

Define a second set of directions related to the
"base” of the triangle,

=] - -
Rb = unit vector along line 10 = rbi + zbk

(111-5)
vwhere r, = (ro-rl)/LOI, z, = (zo-zl)/LOI, 4y, =
[("o"’l)2 M (20_21)2]b ’
and

g; = unit vector perpendicular to ﬁé (roteted

counterclockwise) = z. 1 - r K .

b b (I11-58)

We now average these unit vectors, weighted by
lengths.

Ry = (Lig Ry + Loy R/ (tyg + 4y) »  (T111-6)
- =] =] ’
Ry = (41g Ry + 4o) R/ (g + 2) -

Thus, the directions emphasized are those related
to the long, thin aspect of the triangle. They are

also perpendicular unit vectors.

E. The q Term for a Viscous Triangle.

If one wishes to take into account shocks from
either of two, or a combination of both, direciions,
it seems apparent that the velocity gradient form,
Eq. (III-1b), of the one-dimensional Richtmyer-von
Neumann artificial viscosity should be used as a
basis. As we have said before, the volume form,
Eq. (III-la), mekes no distinction about direction.

What we have done, then, is to add two terms
of the form of Eq. (III-1b), one for each of the
directions a and b defined in the previous section.

We represent this as

2 2
DR (R e

(11I-T)

The negative sign arises because we are transferring
q from the second (pressure) term to the third term
in Eq. (II-3).

To celculete Eq. (III-7), consider a viscous
triangle (Fig. 10). We know the velocities at




Fig. 10. Finding A’ in e viscous triangle.

points O, 2, and 8 and assume that each velocity
component is defined by a plane function over the
triangle, as described in Sec. II. Then for each
of the directions ﬁa and ib’ a corresponding (Av/AL)a
or (Av/AL)b is found for the triangle as follows.
Consider Ra'

Using the direction Ra’ one finds where & line
drawn from point 1 intersects one of the other
sides of the triangle. Suppose it is at A’. The
coordinates will be given by

ra(rezz-rzze) + (r8-r2)(rlza-zlra)

Tpl® ra(zz-zgj’+ z;(ie-rz) ’
and (111-8)
2 = (2g-2,)(ry2,-27,) + 2,(xg2;-Ty2g) )

r (25-2g) + 2,(rg-rp)

The velocities at points 1 and A’ are now known.

— o = « = . ;-O+l.-2 . ;'o+;'2
vp=nl gk, ny=—F=, 3=~
gy . - . - .
vp=Tyl b ziik, T=T, b (rA,-rz)

+ rz(zAr z,) 2je =2, ¥ zr(rA,-rz)

The next step is to find the relative velocities a-
long direction §a; i.e.,

(Av)a = Rao(vAr-vl) = ra(rA,-rl) + za(zA,-zl) .

(I11-10)

Becsuse we want a q term only in case of squeezing,
we set
(I11-108)

(Av)a = 0 if (Av)a >0 .

From Eq. (III-8) one can get

1Tyl = [(rAI-rl)2 + (zAr-zl)e]% ,  (1II-11)
and, hence,
(%%) = (av) /17,0 - (11I-12)

a

A shorter way of calculating this same result,
which eliminates some of the required testing (not
mentioned above) can be derived from Eqs. (III-9)
and (III-10).

@) . (Frr)eR,  {TUTE)F, 1RIT)F R,
B BN

{I[V}).ﬁa] + I[(vi).ﬁa}.ﬁa

A « 2 . . « 2
- =rr +{r +z 2 + 2 2 .
a ra z2 r/aa8a z8a

This also is set equal to zero if it is positive

(111-13)

(indicating expension). This form is interesting,
as it shows the value of (Av/AL)a to be independent
of the choice of points 1 and A’. This is logical
because the velocities have been assumed to be plane
functions over the triangle. For (Av/AL)b, there
would be a similar expression involving rE and Zy-
To find the values of (AL)E and (AL)b needed,
we used the average dimension of the zone in that

direction (Fig. 11). Namely,

6

2
e 4
k
Fig. 11. Finding (AL)E and (AL)i.
2 -~
(aL), = {Rales]z = {ra(rs-r1)+za(zs-zl)]2 ,

(aL)2 = (RoRy )

o Rypd” = {rb(rT-r5)+zb(z7-z5)]2 .

(III-1%)

11



It is found unwise to use dimensions from the tri-
angle here, because, in some cases, these dimensions
become small (points squeezing together) Just when
one wants the q term to remeain large.

F. Incorporation of the q Term into the Viscous-
Stress Tensor.

The previous section shows how to evaluate Egq.
(III-7) for a viscous triangle, except for the factor
p. At first, we used the p of that zone, but later
we found that using the actual density of the vis-
cous triangle helped problems run much further with-
out tangling. This necessitates calculating these
triangular masses at the start of the problem, and
carrying them in storage, which requires more stor-
age. However, we were concentrating on finding
something to prevent mesh tangling, rather than on
code efficiency. Code efficiency can be achieved
later if one finds a good method.

Having evaluated Tqii for each viscous triangle,
we then added this term to the diagonal terms of the

viscous~stress tensor

avi ov -
cij = u('aTJ' + &i') + biJ(VOV) + siJquii ’ (III-IS)

and removed the one-dimensional q term from the pres-
sure. In this way, we could use our regular viscous
code to try out the two-dimensional artificiel vis-
cosity. Analysis of a simple plane problem showed
that the same Yy had to be used in each of the di-

agonel terms, to preserve uniform motion.

G. Conclusions and Results.

The method presented here has been tested in
some plane, cylindrical, and spherical problems
with A = 4 = O and b> = 1.44. A1l retained their
symmetry, and agreed closely with corresponding prob-
lems in which a true one-dimensional q term [q =
bzp(AR/V)z(AV/At)z] vas used. This method was also
used in several slightly nonspherical problems with
long thin zones which developed mesh tangling with
the volume form, Eq. (III-la) of the q term, &nd it
enabled these problems to run much further than be-
fore. However, at later times, even with the two-
dimensional q term, these problems developed diffi-
We tried a number of devices to eliminate
these difficulties, such as using small velues for

culties.

A, 1 along with the T term, adding a linear term to

the quadratic term as suggested by Meyer,l7 and us-
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ing smaller time intervals. None of these devices
appeared to do & great deal of good, but the trials
vere limited.

problems showed that the tangling was not a one-di-

Study of movies of some of these

mensional type of oscillation, but more the type of
situation described in Fig. 8. This led us to look
for further means of isolating the ends of long,
thin zones from each other, and the energy equation
seemed to be the place to look.

IV. TTS (TEMPORARY TRIANGULAR SUBZONING)

A. Isolating the Ends of a Zone for Energy Calcu-
lations.

In Sec. III, we described a method for isolating
the ends of long, thin zones from eech other as far
as the artificial viscosities are concerned. How-
ever, the separate internal energies calculated for
each viscous triangle are eall lumped together and
dispersed through the whole zone.

that Schulz16

It appears to us
elso does this in his method.
Because the artificial viscosities are applied

to the points at one end of & zone, it seems a logi-

cel next step to confine the energy change erising

from these q terms, temporarily, to the end of the
Using different en-

zone where they are produced.

ergies in different viscous triangles, one cen tlen
get different pressures for the triangles of the
zone. These could then be used in the momentum

equation, along with the different q terms.

B. Putting the TTS into JANUS.

The sequence of calculations for one cycle of

JANUS can be represented as follows.

[t s e ] . v

Each bracket represents a pass through the mesh.

On the first pass, the accelerations at times n-1
n-l are calculated from the coordinates, Rn-l,

end pressures, Pn-l, both known from the last cycle.

and a

Immediately, the velocities at n-3 are calculated,

-b and Rn-l.

made on the third pass.

using vn The viscous calculations are
From the G's, one can get
the viscous accelerations, 33’ vwhich are saved to

add in with the acceleration from the pressures on
the first pass of the next cycle.
internal energy due to viscosity, AEs-
be calculated from the G's.

the new volumes, Tn, are evaluated. Also the AES-

The change in
, can also

On the fourth pass,



1

are added to the E°" to give an En-l. Then the

conservation of internal energy,

En - En-l _ %<Pn+Pn-1)(Tn_Tn-l) , (Iv-2)
and the equation of state,
P" = p(r"E") , (1v-3)

are solved together, simultaneously or by iteration,
to get P", E°, and T".

Using the TTS method, the calculation is simi-
lar.

nN= n Ne- n_n._n nan.n_n n
(_:V k:R ><'\EV %; TLP,E; 7T,P,E,T; aV"‘P) .
A A zone

We omit the calculation of 8" ! in the first pass and

combine the velocity and coordinate calculations in-
to a single pass. As will be explained, an-l has
already been calculated on the last pass of the pre-
In the third pass, the 0's and the
/_\Es'é from them are eveluated. At the same time,
for each triangle, a new T is calculated (an old
Tn-l is also calculated by deadvancing the coordi-
nates from n to n-1). The Azs-é 1s added to E°T to
gl The old E"~* ana p*~}
the whole zone (the same for all triangles), as

these are the only guantities saved.

vious cycle.

give as before. are for
Then for each
triangle, we use Eqs. (IV-2) and (IV-3) to get new
E” end p".

At this point, for each triangle, the P" are
added to the viscosity-stress tensor, as is often

done in the literature (Ref. 13, Ch. II).

Av v
I S| QX )
Iy = ¢ 5, MR T AN P (1v-4)

Now if we use the IGA-MACO method for integrating the
tensor, as described in Sec. II, we are at the same
time using an IGA-MACO method for evaluating -deg,
as described in Sec. I, except that we are using
different pressures in different viscous triangles

of the same zone. This is what we want to do.
This integration leads to an acceleration,

which we shall call

a$+P = acceleration due to viscosity and pressure.

(IV-S)‘

This quantity is stored for use on the first pass
of the next cycle.

After using the triangular pressures to get
53+P’ we sum the energies of the viscous triangles
of each zone, and, from Eqs. (IV-2) and (IV-3),
calculate new Tn, Pn, En, and T" for the whole zone.
This amounts to smearing out the energies of the
triangles over the zone.

n-1 and En-l

These velues are then used

as P on the next cycle.

C. General Observations.

Quadrilateral meshes with large aspect retios
are notorious for tangling or developing ripples un-
less auxiliary devices, such as rezoning, are used.
Many of these motions are not physically real. On
the other hand, triangular meshes tend to prevent
tangling, becAuse as points try to cross over oppo-
site sides, the volumes quickly become small and the
pressures grow very large, tending to oppose the un-
desirable motion.
to be stiff.

However, triangular meshes tend
The method described above is an at-
tempt at a compromise, to use the good feature of a
triangular celculation to help solve the weakness
in a quadrilateral mesh. We hope that because the
triangular calculation is used only temporarily for
the acceleration celculation, after which the energy
is redistributed over the whole zone, the tendency

to stiffness will be diminished.

We have used this method in JANUS on some of
the problems that had experienced difficulties, and
they ran without oscillations or tangling until very
late times. These problems are described in Sec. V.
Time has not allowed a detailed study of the sepa-
rated or individual effects of the gradients, the
viscosity calculation, the two-dimensional artificial
viscosity, and the temporary triangular subzoning in
these problems, but using ell of them together great-
ly reduced the mesh tangling. There may be some
stiffening, due probably to the TTS, but we have not
had time to investigate this thoroughly. Also, a-
side from the usuel plane, cylindrical, and spherical
problems, it is difficult to find problems to really
test two-dimensional hydrodynamic celculations.

Our main purpose has been to present some
promising ideas we have tried, some of which appear
to have been overlooked by workers in this field.
Some of the descriptions are brief and vague, be-

cause the equations and notations are cumbersome and

13



complicated, and we feel that presenting the basic
ideas is more important.

V. EXAMPLES

The figures in this section show an example
problem with zones of large aspect ratios. The fig-
ures show only those parts of the mesh which 1llus-
trate the results. The problem is “almost" planar,
being slightly thinner at the top than at the bot-
tom. It is subjected to two "elmost" planar shock
waves passing from left to right.

Figures 12 through 15 show the behavior of this
system when a one-dimensional q term of the bulk
type, Eq. (III-1), namely

2 (B

2
q= 1l.4% p(Az) Py \FT/ °

(v-1)
was used. This q was added to the pressure in both
the momentum and energy equations as described in
Ref. 1. We used the integrated gradients (IGA-MACO)
of Sec. I, but none of the other devices described
in the later sections of this report. Note the
twisting of the mesh at the later times (Figs. 14
and 15).

Figures 16 through 19 show the behavior of ex-
actly the same problem at exactly the same times,
but using the rest of the methods described in this
report, an approach we have dubbed the 1CVAEA (One
Cycle Viscous Triangle Energy, Acceleration) Method.
Note that the mesh is considerably less twisted at
the corresponding times.

These two methods have also been compared in
similar problems for perfect planes, cylinders, etc.
The plane problems agreed at late times to within
0.3%, and the cylindrical problems agreed within
about 1.5%. The problems run using the one-dimen-
sional q term lagged the problem run using the
1CVAEA calculations. This could indicate that the
latter method imparts some stiffness to the mesh.
However, we were pleased that the method retains
symmetry in symmetrical problems.

We have run some other test problems, but muich
further work and analysis of problems and methods
needs to be done. However, we think the results

thus far are encouraging.
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Fig. 12. Initial configuration, t=0.0000000.

L

Fig. 13. Configuration at an early time, t=0.0450000,
as first shock is passing through.

4

Fig. 14. Configurstion at later time, £=0.5000000,

after first shock has passed by.
the distortions of the mesh.

Note

Fig. 15. Very late time, t= 1.0000000, in problem

when mesh is badly twisted.
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16. Initial configuration, t=0.0000000.

Fig. 18. Configuration st later time (same time as
Fig. 14).

Fig. 17.
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Configuration at an early time, t=0.0450000.

Fig. 19. Configuration at very late time (same time
as Fig. 15).
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