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TRIANGULAR MESH DIFFERENCE SCHEMES

FOR THE TRANSPORT EQUATION

by

Wm, H. Reed

ABSTRACT

Pregent transport codes require that the physical
system be described by an orthogonal mesh. This restric-
tion leads to the gimplest difference schemes but mey re-
quire that an excegsive number of mesh points be used to
describe adequately a complicated system. Triangular
mesh difference schemes for the transport equation are
discusgsed in this report. These schemes preserve the
simplicity of difference schemes on an orthogonal mesh
yet permit a much finer representation of complicated
geometries, for a given number of mesh cells. Solution
of the triangular mesh difference equations is discussed,
and the truncation error of these equations ig derived,

I. INTRODUCTION

Solutions of the neutron transport equation are
obtained most often by the method of discrete ordi-
nates,’ often referred to as the S, method. This
method represents a direct discretization of the
integrodifferential transport equation, A number
of computer codesz'h have been developed using the
method in one and two space dimensions and in rec-
tangular and curved geometries., All of these codes
have utilized an orthogonal mesh, which we define as
a mesh whose grid lines meet at right angles. The
use of such an orthogonal megh leads to the simplest
difference equations but may require an excessive
number of mesh points to describe complicated geom-
etries adegquately.

Consider the description of a circular region
in x-y geometry as illustrated in Fig. 1. This
is perhaps the simplest of complicated geometries.
We attempt to describe Fig. 1 by using a standard
orthogonal grid where all grid lines run parallel
to the coordinate axes, Restricting to fewer than
50 mesh cells, we obtain the representation of
Fig. 2, which is poor, but is the best that can

Fig. 1. A simple circular region in rectangular
geometry.

be done under the above restriction. To obtain
an adequate representation of the circle, on the
order of 1000 mesh cells are needed., Of course,
most geometries of physical interest are more com-
plicated than Fig. 1, and many thousands of mesh
cells are needed.
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Fig. 2. An attempted description of a circular
region with an orthogonal mesh of 49 mesh
cells,

The source of this difficulty lies in the re-
quirement that mesh lines be parallel to coordinate
axes, or, stated more properly, that the mesh be
orthogonal, If this requirement is abandoned, then
complicated geometries can be drawn easily. If,
however, no regularity is preserved in the mesh
grid, then the description of the mesh becomes a
major problem and the difference equations become
excessively complicated. A triangular mesh is a
good compromise because it is flexible enough to
represent the most complicated geometries and yet
preserves the regularity vital to simplicity of the
implementing code, We illustrate in Fig. 3 the
flexibility of a triangular mesh by drawing with
triangles the circular region shown in Fig. 1. It
is clear that, with fewer mesh cells, triangles
permit a much finer representation of such curved
shapes than does an orthogonal grid.

To establish conclusively the above point, we
present in Fig. 4 a triangular decomposition of a
complicated geometry, which is shown in Fig. 5 with
an attempted orthogonal representation.

We propose to develop a two dimensional dis-
crete ordinates transport theory code based on a
triangular mesh., We intend to incorporate into this
code most features and options of the presently
available two dimensional transport code TWOTRAN,.
Some of thege features are

Fig. 3. An attempted description of a circular
region with a triangular mesh of L6 cells.
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Fig, 4, Triangular representation of a complicated
geometry.
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Fig. 5. Orthogonal representation of a complicated
geometry.



1. (x,y) and (r,z) geometries,

2, Direct or adjoint calculations,

3. General order scattering anisotropy,

4, "Group at a time" solution so that storage
requirements are independent of number of energy
groups,

5. Flexible boundary conditions,

6. Inhomogeneous source or eigenvalue (keff
or time) calculation,

T. Criticality searches on nuclide concentra-
tion or zone thicknesses,

8, Coarse mesh rebalancing of inner and outer
iteration processes,

9. Input of cross sections from cards or disk
file,

10, Builtein Sn constants,

11, Flexible restart procedures,

12, Flexible input for flux guesses and
sources, and

13, Detailed editing capabilities,

In addition, we propose to include as an option &
newly developed method designed to eliminate the ray
effect, The ray effect is a severe spatial distor-
tion of the neutron flux characteristic of the dise
crete ordinate method in two dimensionel geometries,
This effect is eliminated by adding a fictitious
source to the discrete ordinate equations that
forces these equations to yield solutions to the

Pn equations.

A neutron transport.code featuring a triangular
mesh and including the above options offers more
flexibility to the reactor designer than do the pree
sent transport codes.

II. DIFFERENCE METHODS ON TRIANGULAR MESHES

In this report, we consider only the "regular"
triangular meshes, by which we mean that every in-
terior node is the vertex of six adjacent triangles,
No condition is imposed on boundary nodes, A fur-
ther restriction on the mesh is the requirement that
all nodes lie on horizontal lines extending through
the system, The purpoge of these restrictions is to
simplify the description of the mesh without de-
stroying its flexibility. All the examples of tri-
angular meghes presented in the introduction are of
the above type.

Iet us assume, for the moment, that we are
dealing with x-y rectangular geometries, To specify
such a triangular megh we must give the y coordi-
nates of the horizontal lines and the x coordinates
of the nodes along each line, The mesh is then com-
pletely determined by the direction of the first
triangle on each band. Consider a simple example
consisting of a single band with six nodes on each
of the two horizontal lines forming the band. The
two possible triangular arrangements are indicated
in Fig. 6, We refer to a triangular mesh with the
first triangle pointing upward as being Type l. If
the initial triangle points downward, the mesh is
said to be Type 2, Thus, to completely determine a
triangular mesh of the kind being considered, we
must gpecify a type number for each band, in addie
tion to specifying the coordinates of the nodes,

Having defined our mesh, we can now derive a
get of finite difference equations, For simplicity,
thege equations will be derived only for the case
of x-y geometry, although it is intended that the
propoged code will also handle r-z cylindrical geom-
etry. The analytic form of the transport equation
in x-y geometry is given by

Type 1

Type 2

Fig. 6. The two possible arrangements of trian-
gles on a single band,



heendteoras, (1)

vhere ¥ is the neutron flux and p and 1 are the coe-
sines of the angles between the neutron's direction
In the above

equation, the source has been represented simply as

and the x and y axes, respectively.

8, but it must be remembered that this source ine
cludes scattering and fission terms that involve
integrals of the neutron flux ¥ over the angular
The treatment of these terms
of the transport equation is well understood and

variables pu and n,

not particularly dependent upon the form of the
space mesh,

The discrete ordinate approximation to Eq. (1)
consists of the set of equations

L atm
um'a?-"'ﬂmv"'d*mzsm, m=1, 2, ¢eey M, (2)

vhere the continuous variables u and n have been re-
placed by the discrete points B and nm' The funce
tion #m(x,y) is then an approximation to the exact
solution t(x,y,um,nm) in the m'th direction. The M
equations above are coupled only through the source
term S,

A number of difference approximations to Eg,.
A currently popular fi.
nite-element method assumes that the flux tm(x,y)
is linear in each triangle and is determined by the
flux values at the vertices of the triangles. A
difference equation for the unknown flux at each of
these node points is then derived by multiplying by
a weight function and integrating over the hexagonal
region composed of the six adjacent triangles. With
a8 proper choice of weight functions, this procedure
is a Galerkin method and is equivalent to the mini-
mization of a functional over the trial space of
functions of the above form.
tain to give accurate answers and converge to the
exact solution in the limit of an infinitely fine
It is not clear, however, that such methods
preserve neutron balance, in the sengse that the total
leakage plus absorption must equal the total source,
Present difference schemes on orthogonel grids do
preserve such balance, and this fact is utilized
throughout current transport codes., A further dis-
advantage to using the finite-element methods is the
dense coupling present in the equations that must be

(2) nave been suggested,

It is, therefore, cer-

mesh,

solved for the fluxes at the nodes. Each node point
is coupled to the six adjacent nodes. Physically,
the flux is coupled to only two of these nodes, The
increased coupling in the difference equations means
that they cannot be solved in a direct fashion by a
single sweep through the mesh, as can be done with
An iterative procedure must be de-
vised to solve such equations, Although it is not
clear that this iteration will be slower than the
source or inner iteration already presgent in transg-

present schemes,

port codes, such an iterative process requires the
storage of the complete angular flux, Present
transport codes store only the scalar flux and
enough moments of the angular flux to generate the
scattering source, The complete angular flux con-
tains 10 to 100 times as many numbers as the scalar
The additional storage re-
quired for this array exceeds the core or extended
core capabllities of all computers, so that disk
storage must be used. An iterative procedure in-
volving repeated use of disk storage is likely to
consume too much computer time.

For these reasons we abandon the finite-ele-
ment schemes and search for methods similar to

flux for most problems,

those now in use, One such method can be derived
in the following manner. First, we introduce un~-
knowns at the centers of the triangles and on the
faces between triangles, in addition to the un~

knowns at the vertices of the triangles. Such a

mesh arrangement is illustrated in Fig. 7.

¢ b b ®
° o °
< *
° ° °
® ° Py ®
° °
[ ] [ J
Fig. 7. Arrangement of unknowns on a triangular

mesh,



With an even total number of triangles N, the
total number of unknowns in a mesh like that of Fig.
7 is precisely 3N. There are 3N + 1 unknowns for
the m'th ordinate for an odd number of triangles.

We must therefore derive a set of 3N or 3N + 1 equa~-
tiong, depending on whether the mesh is odd or even.
The first N equations are derived by integrating
the discrete ordinate equation [Eq. (2)] over each
of the N triangles.

Writing Eq. (2) as

Ve Q¥ +ov=5,
we have

vl sfids+o Y dr = S ar
I, [y e

where we have used the divergence theorem to ex-
presg the volume integral as a surface integral for
the firgt term, V is the volume of triangle being
considered, and i is an outward pointing vector nor=
mal to the surface of the triangle, We can rewrite
the above equation in the following form where the
surface integral has been expregsed a&s the sum of
contributions from the three faces of the triangle.

vas+f «d, [ ¥ds
82

+40 . v ds + ¢ ¥ ar = S ar,
m " "3 Is ‘rv ‘rv
3
where ﬁl’ 52, and ﬁ3 are unit outward normals. We
make the following definitions

_[‘sl Y ds

‘bl = —-8— ’ (35)

=~ (3v)

by (3¢)

o=—%— (34)

j‘sa-r

S, = —F ’ (3e)
to obtain
(B, « Bis)w + (8, + Aymdvy + (A + Ay80)¥y

+ a¥y = By ()

If we identify the fluxes *1’ t2, and i3 with the
cell-fece unknowns and *0 with cell-centered un-
knowns, we obtain the first N difference equations.
Equation (4) is a balance equation for a single
cell and equates flow in minus flow out plus absgorp-
tion to the cell source Soo

An sdditional N equations can be obtained by
assuming that the cell-centered fluxes ‘i, 3 are
averages of either the cell-face fluxes or the
cell-vertex fluxes, This leaves N or N + 1 eque-
tions needed to solve for the 3N or 3N + 1 unknowns
that we have introduced, To obtain these equa-
tions, we examine the two possible orientations of
a triangle with respect to a single direction, as
illustrated in Fig., 8. Triangles with the first
orientation have only a single face visible from
the specified direction; triangles with the second
orientation have two faces visible, We agsume that
the neutron flux on the faces visible from a speci-
fied direction are known from boundary conditions

™~

Orientation 1

Orientation 2

Fig. 8. The two possible orientations of a trian-
gle with respect to & single direction.



or from previous calculations in adjoining cells.
In this case, there are four unknown fluxes in trie-
angles of Orientation 1 and two unknown fluxes in
triangles of Orientation 2, Because we have alreedy
derived two equations per triangle, the two unknowns
in triangles with the second orientation may be
solved for immediately., If the triangle is of the
first orientation, two additionel equations are
needed. They are obtained by assuming in these
triangles that the two unknown cell-face fluxes are
averages of the appropriate cell-vertex fluxes.

The above assumptions can be shown to yield
precisely the needed number of equations. Further-
more, this set of equations may be solved in a sin-
gle sweep through the mesh, provided the source is
known, The order in which the unknowns are deter-
mined is slightly more complicated than for an or-
thogonal mesh., A simple example will best clarify
this process. Consgider a direction ﬁm such that
B > 0 and nm > 0, The flux at points along the
left and bottom edges of the system are known from
boundary conditions. Using these boundary fluxes,
the unknowns in the bottom-most band of triangles
can be determined, The solution process for the
bottom band can then be repeated successively to
determine the fluxes in higher bands. We therefore
consider only a single band of triangles as shown
in Fig, 9., The first triangle is of Orientation 2,
and the fluxes on the face between the first and
second triangles are needed to solve for the flux
in the first triangle., We must therefore skip the
first triangle and golve for the fluxes in the sgec=
ond triangle, which is of Orientation 1., This de-
termines the fluxes on the face between triangles 1
and 2, so that the fluxes in triangle 1 may now be

Fig. 9. A typical band of triangles with direction
of flow across faces indicated by arrows,

determined, We must now skip the next three trie-
angles to obtain a triangle in which sufficient
boundary conditions are known to permit solution,
The full solution process is illustrated in Fig. 10,

Difference equations derived in the above man-
ner have several attractive features, Equation (L)
guarantees that neutron balance is retained, in the
senge gpecified earlier, The difference equations
may be solved by a direct sweep through the mesh,
if the source is known, and it is not necessary to
store the complete angular flux, Standard cone
vergence acceleration devices, such as coarge megh
rebalancing, can be used for the source iterations
with little modification, These facts make for a
relatively easy introduction of such a difference
scheme into present transport codes.

Let us now consider some of the details of the
scheme we have just proposed., The form of the coef-
ficients ﬁm + fis appearing in Eg. (4) can be de=-
rived in the following manner, Assume that the
projection of the vector Qm onto the x and y axes
is givs.n by By and nm, respectively. The projection
L of Qm on x' is determined as shown in Fig. 1l1.

Step 1 ¢ A
Sstep2 [ ®
[ ]
Step3 ¢ ®
° [ ]
° T —
Step 4 . e ]
[ ] Y [ ]
[ ]
Step5 ¢ ¢ o ¢
) ° )
* o — -
Step 6 | ¢ . ®
° ° [ ] _ [ ]

Fig., 10, A sample solution process on the band of
triangles of Fig. 9. Dots represent known
or determined fluxes.
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x ¥ Fig. 12, Two triangle faces showing rightward
normals fi.
Fig. 11. Geometry for determination of ¥ ,
m
6m o fi = um Ay + Ax .
/Ay2+Ax2 /Ay2+Ax2
We have
cos @ ey m/ fZ T E Let & = JAx°+Ay® be the ares of the face of the
m " triangle. Then we are actually interested in ﬁm .
and fis, which is given by
. /2 2 AL oA
sma:rh/um+nm. Qm nsaumAy+'nmAx.
However, We note that the direction of flow is correctly
. . ﬁ+—§ cos (& - 0) predicted by the above formula in the special cir-
m = Vg T Ty COS G = cumstances indicated in Table I.
=Jp§+7ﬁ(cosacose+sinasm0) TABLE I
DIRECTION OF FLOW IN CERTAIN CIRCUMSTANCES
. cose sin @
f—eng( . ) u n & oW
./pi»—rﬁ N/;ﬁmi 1 + + + +
and 2 - - + -
3 + - - +
Ky = Wy €08 © + n sin O, 4 - + - -
Now consider neutrons streaming in the direc- The situations in Table I are illustrated in
tion Qm. We want to determine whether neutrons Fig. 13.

flow to the left or to the right across a particular
face of a triangle (Fig. 12). We let Ax = Xy = X5
where X, is the x coordinate of the lower point and
x, is the x coordinate of the upper point (see Fig.

12) of the face. If fi is the rightward pointing
normal to the face, then we have
il «f=pcos®+nsine
H i ? i 2 3 a

m

and

Fig. 13. Direction of flows given in Table I.



The coefficients ﬁm + fis appearing in Eq. (4)
can now be written explicitly. We consider both
upward and downwerd pointing triangles illustrated
in Fig. 1k,
these coefficients are given by

For the downward pointing triangle,

ﬁm - Bysy = mty + n(xg - X)) (5a)
Gy * B8, = = dy = m(xg = x,), (5b)
and

ﬁm - figsy = (X = x,). (5¢)

The coefficients for the upward pointing triangles

are

ﬁm . ﬁlsl = u Ay + flm(xl - x3), (54)
(i * Bp8y = -uyby = mp(xy = x3), (5e)
and

ﬁm . ﬁ3s3 = "nm(xl - x2). (5¢)

Let us now consider the solution of the set of
difference equations for a particular triangle. We
will assume initially that the cell-centered flux
is the average of the cell-face fluxes; the other
possibility will be considered later. If the tri-
angle is of the second orientation, as depicted in
Fig. 15, then we need only solve for ﬁo and il in

terms of the boundary fluxes b, « b_. We have the

1 5

following equations,

Aj¥y = Ab, - A, + oV = SV, (6e)
and

¥, + b, + by =34, (6v)
X Vs X

Yo
¥, W
Xy X2 v %

Fig. 14, Mesh definition for upward and downward
pointing triangles.

b,

Fig. 15. A triangle of the second orientation.

where Al’ A2, and A3

nitude to 1 ﬁksk’ k=1, 2, 3, in some order, de-

are positive and equal in mage

pending on the position of the triangle. The solu=-
tion of the above two equations is given by

SV + (A1+A2)b2+ (A1+A)b
37,
¥ = A+ oV @

for the cell-centered flux., The cell-face flux is
then found from

¥, = 34, - b, = by, (8)

We note that the cell-centered flux is always
positive if the boundary fluxes b2
8, are positive, but that Eq. (8) may produce a

and bh and source

negative cell-face flux., A similar problem arises
on an orthogonal grid, where a device known as a
negative flux fixup is used to guarantee positivity.
We propose to uge the same device on the triangular
grid. If a negative *1 is detected, it is set to
zero and the cell-centered flux to is recalculated
from Eq. (6a) to preserve neutron balance,

If the triangle is of the first orientation,
as shown in Fig. 16, more unknowns are involved,
We mist solve for the four unknowns *0’ *1’ ‘!'2, and
i3 in terms of the boundary values bl’ b2, and b3.
The equations are



Qm by
¥
¥,
l’I
Fig. 16, A triangle of the first orientation.
AW, + Aj¥g = A, + oVi = SV, (9a)
3y = ¥, + Uy + by, (9v)
24, = by + ¥y, (9¢)
and
243 = by + 4. (94)

The coefficients Al’ A2, and A3
and equal in magnitude to f} + A &, k=1, 2, 3,
in some order, We solve for the cell-centered flux

]

are again positive

0

¥ - SV * (Az;Al}’l + (;111:1\2)1’3 * (A3 + _gg + 2"1‘)"2 ]

3A,
- ai- e

(10)

Because the coefficient of either b, or b3 is neg-
ative, positivity of the cell-centered flux cannot
be guaranteed for this scheme, It is not known how
gerious this problem would become in practice. When
*0 is determined, the cell-vertex flux tl can be
calculated from

b b
1
¥ = 3 =5 - 5 - by (1)

and the two cell-face fluxes can, in turn, be cal-
culated from

*2 = ] ’ (123')
and

b+ ¥
¥ - _3_3._}. . (12b)

Again, the use of a negative flux fixup is sug-
gested. There are now four fluxes that may be neg-
ative in any combination, therefore such & scheme
is likely to be complicated. The simplest but
least accurate remedy is the replacement of Egs.
(9b) through (9d) by the following relation

Vo =¥y = by = Uy (13)

The above assumption ig similar to that of the
"gtep" scheme on an orthogonal grid. It gives

SV +ADb
o 32 (1)

R Tl SR b wry v
and thus guarantees positivity of all cell fluxes.
In the above analysis, it was assumed that the
cell-centered flux is the average of the cell-face
fluxes., An equally valid assumption is that the
cell-centered flux is the average of the cell-vertex
fluxes, Slightly different results are obtained
with this second assumption. For triengles with
the second orientation, we replace Eg. (6b) with

3y = b3 +by + bs, (15)

which completely determines \bo. The cell-face flux
¥, is then found from Eq. (6a) to be

1 oV
N =-7A; [sov + Ab, + Agby - 3 (b3 +b, + bs](. o
1

A fixup will again be needed because °1 can be
negative.

For triangles of the first orientation, we re-
place Eq. (9b) with

3*0 = *l + bl + b3o (17)

Solving Eqs. (98), (17), (9¢), and (9d) for 4;, we
obtain



SV + b+ﬁb+fg-b
o 273 375 2

*o- 3A1 3A .
2
3tz ro

(18)

In this case, the cell-centered flux is always
positive, but *1 is given by

*l = 3*0 - bl - b3’

and may be negative., The fluxes 02 and t3 are again
given by Egs. (12) and may also be negative, The
fixup scheme of Egs. (13) and (1) can again be
used to ensure positivity of the flux,

We next examine the truncation error of the
above approximations to the discrete ordinate equa~
tions. To determine this truncation error, we sub-
stitute an exact solution of the discrete ordinate
equations in the difference equations, The amount
by which this exact solution fails to satisfy the
difference equations is called truncation error.

Since Eq. (4) was derived by integrating the
discrete ordinate equations over a triangular cell,
an exact solution of the discrete ordinate equa-
tiong satisgfies this equation with no truncation
error, provided the definitions [Eq. (3)] of ¥ -
t3 are used, We therefore need only examine the
suxiliary assumptions we have made, which appear
sbove as Eqs. (6b), (9b) through (94), (15), and
(17). With the notation of Fig. 17 we need only
examine the following three equations, which are
representative of thoge listed above.

¥

¥ ¥

Yo e\ -

v ¥ ) __L

A

Fig. 17. Mesh definition for truncation error
analysis.

10

petpls (190)
o = #, + ¥+ Vg (190)
and

g = ¥y + ¥y + ¥y (19¢)

Recalling the definition [Eq. (3)] of ¥, ¥, and
t3, we have the following expression for the trun-
cation error E, of Eq. (19a)

yds _ y(4) + ¥(5)
Ea:I 8. F) L4
8, 1

where the integral is taken along the face between
points 4 and 5 and ¥(4) and ¥(5) are the exact

fluxes at points 4 and 5. The length of this side
of the triangle is Sy Expanding ¥ about the point
1l we obtain

E a1 |v+ev +-§3t + vee|as
a"slf' B¥s T2 Vgg T vc
2
1 8y 5
'5[('5-*s+'8—*u>

2
[ 8
M (*+'§l*s+'8'l-*u)+"':|

2 2
+ sltss 'liss +
e~ auiih Ay MR

and

2

slt
Ea"T"+ eoe o

Thus, the truncation error of Eq, (19a) is of the
order of the square of the length of the triangle
face,

We next examine the truncation error Eb of
Eq. (19v)

E, = 3¥(0) - ¥(4) - ¥(5) - ¥(6).

Expanding sbout the point O,



By = 30 = [ = &xpix = S oy + o(ax, &%)

2

- T+ dxgrx + 2 gy 4 o, D))

3

- [b + axyix - By + o3, &%)
and

A
B, = (&%) = 8xg - Ax,)ox + (%I-%!+3¥)¢y
v o(ad, wd, md, a0,

Consideration of the triangle in Fig. 17 shows
that

sz + Ax3 = Axl’

so we have
2 2
Eb = O(Axi’ sz’ Axg’ by )-

With some additional algebra, the above error can
be given by

2 2 2
Eb = o 815 8o 53)’
so that again the error is of second order,

The error of Eq. (19¢) can be shown to be of
second order by using previous results. We have

E_ = 3¥(0) - (1) - #(2) - ¥(3).

But we have shown that

w(1) = L LU 4 o(e2),

In a similar fasghion,

o(2) = U2 uO) , o(e2),

and

w(3) = L2 KO, o2,

Substituting,

E, = 3#(0) = #(4) = ¥(5) - W(6) + o(sd, 5, 63)
= Eb + 0(55’ 'g’ 'g) ’
and

2 2 2
E, = 0(s;, 85, 53).

We have shown that all truncation errors are
of gecond order, If the equations are stable
(they have not been shown to be stable), then the
true error, defined as the exact minus approximate
golution, will be second order, Thus, the above
methods should retain the accuracy characteristic
of the diamond difference scheme on an orthogonal
mesh, We note that the fixup routines suggested
to ensure positivity of the flux are not, in gen-
eral, second order, The use of these fixup routines
may lead to a global loss of accuracy.,.
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