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ABSTRACT

The cross sections for elastic neutrino and antineutrino scattering
on electrons, and antineutrino absorption on protons (giving a neutron
and a positron), are calculated using the V-A four-fermion interaction.
Recoil electron spectra are presented for the elastic scatterings, and
the angular distribution of positrons is given for the absorption process,
in eddition to total cross sections for all these processes. Results are
given analytically and in graphical forme.

The steps necessary to perform these calculations are explained in
detail,

For the elastic scatterings the results are expected to be valid for
center of mass energies much less than the mass of the intermediate boson
(if it exists), and also for energies too small to probe the structure of
the neutrino and/or electron (if there is any). Therefore the formulae
should be reliable up to at least 50 MeV neutrinos and antineutrinos.

For the absorption process the anomalous magnetic moment of the nucleons
presents the first correction (with increasing energy) to the calculation
presented here which is accurate only below 10 MeV antineutrino energye.

An Appendix reproduces some lecture notes from 1957 on nuclear beta
decay. Although a parity-conserving interaction was used in those notes,
the formulae are still valid for all those results involving initially
unpolarized nuclei and in which all final polarizations are summed over.
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I. Introduction

Calculations of cross sections involving neutrinos have appeared in
the literature, and none of the results presented in this report are new
although we do point out some errors in the literature. It was felt
desirable, however, to collect in a single place the detailed steps in-
volved in performing these caiculations.

We use the four-fermion interaction as given by Feynman and Gell-

ma.nn1

s slightly generalized to allow for unequal vector and axial vector
coupling constants. This interaction does not include 'week magnetism"?
nor an “induced" pseudoscaler® term. The former term for processes in-
volving nucleons becomes increasingly important as the energy increases,
and represents, already at 10 MeV, a correction of ~4% to our calculation
of v + p—~n+ e+. The pseudoscalar term is only significant for processes
involving pu-mesons. A complete cross section formula containing contri-
butions from ali possible Lorentz invariant interactions of the four-
fermion type is given in reference 4o

If there is an intermediate boson, then the calculations presented
here of neutrino and antineutrino scattering on electrons will be valid

only up to center of mass energies which are much smaller than the boson

massSe




After a brief section on notation, Section IIT follows in detail
the calculation of the square of the metrix element, summed over all
polarizetions of all four fermions. The utility of this quantity, with
special reference to the role of neutrinos, is discussed. Sections IV
and V sumarize the needed kinematics and density of states formulae,
and in Section VI all the results are collected in a cross section for-
mulae. Section VII applies these results toV+ev+ e, vte—-vte,

Y +
and v+ p-on-+e

, and numerical cross sections are presented in graph-
ical forme Included in this section is a discussion of the possible role
of neutral symmetric currents on the elastic scattering processese.

Some lecture notes from 1957 on nuclear beta decay are included as
an Appendix since they contain many of the results about projection
operators which are needed for the present calculations. All the results
in the Appendix which refer to initially unpolarized nuclei, and final
states in which all polarizations are summed over, are valid even though
a parity conserving interaction was used since no pseudoscalar quantities

can be formed from just the two lepton momenta.

II. Notation

Greek indices run from zero to three; Roman indices from one to
threes« Three-dimensional vectors are written with arrows, iﬁ four-

dimensional vectors with a wavy underline, D Dot products are defined
3 3 3 3

- =
b Q=2 X . o = - Z
YRl g piqi,‘g 17 P9, igl piqi = B=0 ppqupu = u,§=o puqvgpv’

where the metric tensor gpv has been introduced for later convenience:



The y-matrices ﬁhich shall be used are the following:

(I o) . ( 0 3) (o I)
7, = s 7=\ s ly =iy vy = ’
° 0 ~I < 0 s °'1te’s I 0

where I and 3 are the two-dimensional identity and Pauli spin matrices,

respectively. Some properties of these matrices are that

3 - 9= 5. + = . 4t = . = - . (3 2 =9,
Yo =T U E Y N, YN, =25 VY =Y Y, = -y (i )R =1

The dagger superscript denotes the Hermitean conjugatee.

% and ¢ will often be set equal to unity, but all cross sections
will finelly be expressed in cmP. The symbol v or v without a subscript
refers to the electron's neutrino or antineutrino; the p-meson's neutrino

is designated vu.

III. Interaction

We shall use a slightly generalized version of the Feynman, Gell-
Mann interaction! which allows for unequal vector and axial-vector

strengths. This is not the most general possible lLorentz invariant




interactior* , but is valid at low momentum transferse.

¢ 3 T
H= 2k [$A7p(l -1 7g) wB] [""c’u (f - girg) WD] 8

A and B are leptons, but C and D need not bes The ¥'s are the field
operators (containing spinors) for the corresponding particles, with
¥ = \y’fyo. G = Lokl X 1074° erg-cm® = 1.01 X 10™° (hc)€7<Mpc2)2 with
Mp the mass of the proton.

In first order perturbation theory, the matrix element M of this
Hemiltonian looks just like H except that the ¥'s are now just the

spinors appropriate to the particles,

£ o) ()
M= (WAruaWB) Vo7 0¥y 8y o

where a = 1 - iyg, b= f - giyge Note that al = a, bt = b (assuming f
and g are real), &2 = 2a, bt? = 2cd where c = (2 + ¢&)/2, and

2 - &,

The quantity needed to calculate cross sections is

uj2 = m* = & 3(1? av/)(i? aw)“(v w)(w w)*
2 u,v=0 A7p B A7v B 07p D 07v D gpugvv

- fg
d=1-=21iy,. Also, (f - giyg)(f + gi‘ys)

(§k7va¢$> Wga 7vyo‘yA WBayovaA W§7o7vawA

= Vp7,8¥,

using the properties of the y-matrices listed previouslye.




Define

= ¥ %,

(AB)pv n yAyoypaWB¢B7oyvaYA
= ¥ ¥

(CD)uv N wbyoypbWDwDyoyvbwc ’

Then,
R 3
2 ——
[u[2 = 2 p,zwo(AB)uv(CD)pvguugvv

To evaluate this expression one could insert explicit spinors which
tell whether A is a particle or antiparticle and what its momentum and
polarization are; do the same for B, C, and D; and carry out the matrix
multiplicatione This would be the simplest thing to do if all the particle
polarizations were actually measureds If some of the initial state
particles are unpolarized, then |M|2 must be evaluated separately for each
initial polarization state and an average taken. Similarly, if some of
the polarizations of the final state particles are not measured, then
|M|2 must be calculated separately for each final polarization state and
the sum taken. If |M|2 must be recalculated for several different polar-
izations states, the use of explicit spinors becomes very tedious. An
alternative procedure which could be used even if all the polarizations
were measured, but which is especially useful if they are not (because
it avoids all the work Just mentioned), is the use of projection oper=-
ators which only permit the desired energy states to contribute (positive

for particles, negative for antiparticles). Also, if desired, one can

11



pick out particular polarization states. After inserting these projec-
tion operators one can sum |M|2 over all four spinors of a given momen-
tum (two different energies and two different polarizations), and this
eliminates the spinors via the closure relation®. We shall work out
only the case where the polarizations are not of interest®.

A special word about neutrinos is required. The Feynman, Gell-Mann
interaction which we are using is such that only left-handed neutrinos
(and right-handed antineutrinos) can take part. Neutrinos of the oppo-
site polarization (even if they did exist) would give rise to a zero
value for IMIZ. Any neutrino which is present in the final state will
be completely polarized. There is no harm, however, in formally suming
|M|2 over the final polarization states of this neutrino since the
"wrong" polarization state automatically contributes zero to the sum.
Assuming that any neutrino present in the initiasl state is completely
polarized the "correct' way, there is again no harm in summing over its
polarization states, but now this must be just a sum and not an average.

To sumsarize, we shall sum |M|2 over the polarizations of all four
fermions and insert a factor of 1/2 for each unpolarized particle in the
initial state. The results will be valid provided no final state polar-
izations are measured (except neutrinos) and no initial state particles
are polarized (again excepting neutrinos).

For each particle of momentum.s, mass m, & positive energy projec-
tion operator A+(3) must be used, and for each antiparticle of momentum

5, mass m, a negative energy proJjection operator A_(JE) must be used®.




o Yoy Pt ymtE

- —.o—. - + B
A(p)= y4Y4 PaE Yol ,

where E and 5 are the physical values of the energy and momentum of the

particle (or antiparticle).

%E - 7°p + m 7oE - 7°D - m
M(P)?o = 0 o ; A-('P)7o = o)) .

We shall write

A7 —/Z_.E_m_er

o~ 2E

where the + sign is used for a particle and the - sign for an anti-

particle,
3 - -
) = z = - [ ) [y
IRT wFo NPl T 708 - 7°P

The result of inserting these projection operators and using the

closure relstion isS

G2
Z Mz = = Z Tr(sw)Tr(Tw)gWe;W ’

all HyV
polari-
zations

where Suv = 7anByanA, T = 7ubQD7vbQC’ and Tr denotes the trace. Now

BV




and hereafter sumations over Greek indices are understood to run from
zero to three.

Commuting the b which is to the right in Tpv towards the left via
the following sequence of steps

7. b

+
W= (f+elrdy,

Qp7.b = % [(f - glyg)yepy £ (£ + 3175)"’1)] 7,
bRy, b = % [2c(l - hi?S)z:gD + 2emD] 7,

vo v b= L [2e(1 + L o
= R e
7Py 2B [ ol 7s)7,2Bp emD’u] 7y

finally yields

1
= + o d: L] d:
Tp.v 2R E, {[c(l hiys)'yu 2% Dyu] 7y (Z R mc)} ’

where we have put h = fg/c = 2fg/(f2 + &), and e = (2 - &)/2. Suv
has the same form as Tuv with the following replacements: C — A, D — B,
c—*1, h— 1, and e — O.

Most of the formulas needed for evaluating the trace of Tpv are
given in the Appendix. In addition there are the results which involve
st 75 multiplied by zero, one, two, or three y-matrices has zero trace;
and Tr (75%1787u7v) = =4 quuv’ where € is a completely antisymmetric
tensoire € vanishes if any two subscripts are equal; € = +1; all

0123
even permutations of (0123) have € = +1; if the permutation of the sub-

14




scripts is odd, € a -1,

ECEDTr(Tpv) = -_!:amcuﬁ)eguv

Tec Z pDaPCBgcmgBB (gmng - &8 * gung.)
a,B

-2chi Z pDc_pCB%gBB&:Lﬂ- B s
a,B

where now the plus sign in the first term is to be used if C and D are
both particles or both antiparticles, and the minus sign is to be used
if one is a particle and the other an antiparticle. The summations in

the second term can be simply performed,

ECEDTr(Tw) =

+ + - . - (A °
tomomyeg,, * 2c (PD Pc. " Pp Po - 8§, Pp Pc) 2°hiZPD Pe. & 838~ 1 vB
p v v H .~ A a,B a “B

With the same substitutions as before,

E Tr(S )=2(pp +p. P, -8 p-p)-2i P, D € .
AFg uy B,"A, BA, T “wv BYA Z}\ ‘ B)\Acgugco uA Vo
2

v

Using the definitions of g and €, one gets

15



EAEBECEDE : Ir (Tuv) Ir (Suv) guugvv = ;&ncuﬁ)ezé’oga
K,V

+8c[(;;ﬁ-§s) (fg“PQ) * (f’éqi]?z) (%?«029«)]
(o) (1) - (355 (25|

z [V [ -
where we have used the fact that p,vguugvv bl = 2(§nJgBX gikg&ﬂ
to simplify the last term.

The result of this section can be summarized in the following for-
mula, where ¢ and h have been reexpressed in terms of the coupling con-

stants f and ge

D = s (S (5 ) (omy)
poiiii-

zations
+ E{I.gf_ (%0212) (igogg) ¥ --—-h_——(ie-gz) mCmDPAﬁ:P;%] .

The minus sign in the last term is used if C and D are both particles or
both antiparticles; otherwise, the plus sign is used. Note that the ex-

pression in brackets is a Lorentz invariant quantitye.

IV. Kinematics

Given two particles in the final state, labeled 1 and 2, with total

—)
momentum-energy p, E,

16




p:pl'l-pa E=E1+E2 »

the energy-angle relation for particle 1 can be found by eliminating

Saa.ndEg.

G-PfP=@=5-B=(E-5) - ,
which can be written as

EEl-pplcose=A )

2 2 -,

vhere 28 = & +n§-n§,6EE2-p2=n§+n§+2plo?£v,with6the
—p —p 2 -~

angle between P, and p (the total momentum). (S is the invariant square

of the total energy-momentum four vector. Squaring and rearranging

yields a quadratic equation for El
(Ez-pzcosze)Ef-2AEE1+A2+mipzcosze=0 R

which can be solved to give E, as a function of 6,

5(E w2 a2) £ ploos 0] Y [E7-(as2)]|" - bR (e sta?o)
= (P cos8)

The maximum and minimum values of El can be found from this by putting
sin B = Oo

If the total energy and momentum is due to two particles in the
initial state, labeled 3 and 4, then é = n@ + mi + ,23,??/&.
In the laboratory system, with particle 4 originally at rest,

17



3 = 33: E = Eg + m,, g2 = m§ + ﬁi + 2E;m,« In this case PyeP, = EsEl -
MY MY

Pgep;, = A -m, X

Ve Density of States

Given a system of total momentum's and total energy E which dis-
integrates into two particles (p = 51 + 32; E=E + Ez), one can get
expressions for the number of states per unit total energy in different
forms depending upon what physical variables are chosen. Williams?
gives the derivation for the case in which the density of states p is
expressed in terms of the element of solid angle of one of the particles.

P

Y
R

v

That derivation is poor in that it fails to take account of the fact
that (for fixed values of p and 61) E may decrease as P, increases,
However, the result of that calculation is acceptable provided absolute

values are taken:

3
podQ
1 11
p= 5 BB CRE= .
(2n) | 202 -E, BB,

If one chooses to express p in terms of the element of energy of

one of the particles, then this ambiguity is not present since for fixed

18




P and E , E is a monotonically increasing function of 81 (just because

P, is a monotonically increasing function of 61).

The idea behind the Williams'! derivation, as applied to the vari-
able E,, is to find the total number of states with energy less than
or equal to E, with fixed El and 5 (and wl), and then differentiate
this expression with respect to E to find the number of states per unit

total energy.

p = [(m)sfpz dp, d(-cos 6 )] ’

where the range of integration is from 81 = 0 to that value of 81 which
makes (El + EZ) equal to E, i.e., the physical value of 61 for the vari-

ables p and E.

19




1 d(-cos 8_)
o= Ck plEldEld“ﬁ [ dE

constant El

E=E1+E2=El+\rm:+(5-31)2

= E + ‘[;é + P + pﬁ - 2pp, cos 8

dEe = PPy
d cos‘el E,

L1 B
(2m)® P

dEldcpl .

Of course this result can be obtained directly from the formulas in
terms of solid angle by using the relation (which can be simply derived

from Section IV)

3 d cos el - -
ppl d.E = Epi - P'PlEl e
p R

VI. Cross Sections

The cross section for a reaction induced by neutrinos or antineu-

trinos on an unpolarized target, as explained in Section III, is

= 2"“%‘ E : M[Zep

all
polari-
zations

20




where we have still to insert the necessary factors of # and c. To do
this, observe that |M|2p has the dimension of [ Energyl®.[ Lengthl® with
two powers of energy coming from G® and two powers coming from particle

energies. Multiplying by (hc)=* will give the proper dimensions for the

cross sectione Defining}

_2 o @B 2 sz [(he)(@me2)]” ]
oo=ﬁ<}2élc-v—=ﬁ(1.01><1os) [—E_M;a‘l‘.).a_.] = 8.5, X 1075 a

where m is the electron mass, yields the result

oo s [T (amg) (o)t (o) (3

@w_ .
dEl

- (2-¢7)
+ _T_mCmD PA°PB ’

M A
where all masses are expressed in units of m, all momenta in units of
mc, and all energies in units of mc®, El and E, are the two final par-
ticle energies, and we have chosen to express the cross section per unit
of one of the final particle energies rather than per unit solid anglee.
The minus sign in the last term is used if C and D are both particles

or both antiparticles; the plus sign is used otherwise.

21



VII. Examples

A. Antineutrino-Electron Scattering

If the four-fermion interaction arises from the interaction of a
current with itselfl, ¥ g““qu s where one of the terms in J is due to
an electron-neutrino comblnatlon, W;yp(l - iys)we, then antineutrino -
electron scattering and neutrino-electron scattering will both occure
If there is a charged intermediate boson they must occur. (We are now
talking about the neutrino which is associated with the electron Vor not
the neutrino which is associated with the p-meson.) We first consider

the reaction

where the subscripts are used for identification purposese The first
step is to properly identify the four particles taking part in the re-
action with the four labels A, By C, and D: A = v s B= &2 C= eB

and D =';B. (One could, in this example, simultaneously interchange A
with C and B with De.) This means that the particles are paired as shown

Yote =y, + .

L 4 L

In this reaction the form factors f and g should both be put equal

to unity. From the general result of Section VI,

22




where all masses, energies, and momenta are in units of m, mc® and mc,
respectively.

To facilitate the specialization of this result to the laboratory
system, make use of the labeling system from Section IV: 1 = eB )y 2= Vg,
5=
are the two final particles; particle 3 is the one which is incident in

, and b = §, + We have already made use of the fact that 1 and 2

the laboratory, and particle 4 is initially at rest. From Section IV

P=Ep,=Dp , E =E =m
BTy & *

. .
E mnrP +2mE ,A=m(m+E
Y k1

P, °P, = Pg°p; =mf{m+E -E
Y% &g 3oL ( Yy eB>

P °D = D ep, = mEg =mf{m+E - 5B >
eU. VB M?N\al VB ( va eB>

where conservation of energy gives the last form of the last equation.
Introducing T = Ee - m, the kinetic energy of the recoil electron, and

putting together the results just obtained gives

o T 2
o

where E, = E_, the incident antineutrino energy, and (oo/mca) =
(04

1067 X 10-44 C!na - Mev-lo

25



The next step is to determine the maximum and minimum possible

values of Te From Section IV these are found to be

2FF

v
T e 0, T - . A,
min > "max p2 4 2E ?

with the minimun (meximum) T coming from electrons which go backward

(forward) in the center of mass systeme (%%) is plotted vs T on
LAB

Figure I. The cutoff at T is sharpe. The total cross section is found

by integrating over all recoil energies,

E 2 3
17y m
O = % 3 o= 1 -<mc:2 + 2Ev> °

Note that this result agrees with that obtained in reference 4, but is
exactly twice as large as the value quoted in footnote 17 of reference
l. The total cross section is plotted on Figure II. The departure from
linearity at small energies is hardly visible on this scale.

One point which still has to be discussed is the possibie existence
of neutral symmetric currents, terms such as W;yu(l - iys)wv and
Wéyp(l - iys)we. These terms will certainly be present if there is a
neutral intermediate boson. If they are present, then the scattering

which we have been studying can also proceed via this type of coupling

24




It is shown in footnote 7 of reference 1 that the matrix element for tﬁis
coupling has exactly the same magnitude as the matrix element for the
other coupling scheme (the one we have used), but that the relative
sign is not certain. This sign is positive if the neutrino field oper-
ator and the electron field operator anticommute; it is negative if they
commute. Since the matrix elements must be added together (if both
couplings are present) there is the possibility of obtaining, in the
cross section, a factor of zero or a factor of four. This assumes that
the coupling constant is the same for both types of currents, and there
is no a priori reason for this to be the case.

An example of a reaction which can proceed only if neutral currents
exist is';p + e ﬂ';p + eo The observation of this reaction with the
cross section computed above would be very strong evidence for neutral
currents with the same coupling constant as that for the charged currentse.
In reference 8 it is demonstrated that';p - e scattering can take place
even if there are only charged intermediate bosons, but that the process
is of higher order and is expected to have a cross section very much
smaller than if there were neutral currentse.

Bo Neutrino-Electron Scattering

+
Vo + qx - vB eB °

L J—

The coupling is as shown; i.e., make the identifications A = eB =],

B=va=3,C=vB=2, andD=ea=l+. Again f = g = 1,

25



P, D~ = P_ oD, » Dn*Py =P, °P ’
AP = Py Pyg B°Pp Vo, ey

M M o aan N AN AN ANA

and from Section IV both these products are equal to mEv (1AB)e From
(04
the general result of Section VI

o
o
doI!E = | —w ] 4T

where again T is the kinetic energy of the recoil electron. The kine-
matics is exactly the same as in Example A. The spectrum of recoils is
flat from T = O to T= QEi/(mcz + 2Ev),and is plotted on Figure I. The

total cross section is therefore

o2
0O =0 v
T o méz(mcz+2Ev) ’

which is plotted on Figure II. This result agrees with reference L, but
is again twice as large as the value quoted in reference l.

Just as in Example A, the existence of neutral currents would alter
these resultse.

Ce Antineutrino Absorption on Protons

v+p—-n+t et .

The identification required here is A =';, B ='E, C=n, and D = p. The

coupling constants which fit nuclear beta-decay are f = 1, g = 1.2,

26




(£-g)2 _ ~(£2-¢2)

Li:?-f—= 1020 5 T— 0.01 5 -—E-——-ﬂ Ooll

At energies much smaller than the nucleon rest mass, the recoil energy
of the neutron is negligible, and Ee'; E, - (Mn - Mp) (all energies

are in the laboratory system). Since the center of mass system is iden-
tical with the laboratory system, it is necessary to use the solid angle

form of the density of states

3
p = 1 EeEn.pedQe
\ 5 T 3 *
(2m) Ep2-Eepe Py

The total energy E is approximately the nucleon mass as is En’ so the

second term in the denominator is negligible (above Ev =2 MeV), and

p=E a
(2m)3 Eepe

with
pe= fe-ng .
Pp°Pp = PP, = EM,
PR AAA AAA AR
PP, = P _°p =EM
BT I T R
Pp*Pg = P, °P, = E.E - P p, cos 8
AN AA A AAA
Pp°Pp = PP, = EVMp
AMA AAA AMA - AA
Pg*Po = PPy = EM
AAN A AMA MA

where 0 is the angle between the positron's direction and that of the

27



incoming antineutrino. Using the formula for |M|2 at the end of Section

III gives

o_a&n
o
dgLAB = [l.aoEépe + 0.11pe (Ee - P, cos 6) + 0.01 Eepe ] )

where again the energies and momenta are dimensionless, being referred

to mc® and mce

10320-0(3{) EV EV 2
dgLAB:_——_ZT—— r;(-:z--2053 E-2053 - 1X

[ ' ]
)
;;; - 2653 -1

7 cos B .
v
(I—n-ég - 2053)

- -

Note that there is already an anisotropy of T% with 2.5 MeV antineutrinos.

The cos B term does not contribute to the total cross section, which is

simply

E E 2
- v v
GT - 2.6400 (m—cg- - 2053) J('ﬁ‘]‘? - 2053) - l L]

The threshold is at E_ = (Mn - Mp) + m = 1.805 MeV. The total cross

section is plotted on Figure III.
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APPENDIX

Lectures on Beta-Decay Theory
Los Alamos Scientific Laboratory, Los Alamos, New Mexico
Fall 1957

ITI The Energy-Angle Distribution in Old-Fashioned Beta-Decay

L. Heller
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In the following, the Coulomb effect on the electron will be omitted.
The main modification due to the Coulomb field is to put a factor F(Z,W)
into the spectrum. This factor cuts down on the number of positrons, and
increases the number of electrons, especially at low energies. F(Z,W)
can be found on.p. 280 of the review article by Roseo.*
Using the notation of K. Ford's lectures,** the transition probabil-

ity per unit time is written:
T = —,123 [M|2 (am)-2 dwz-l w(wo-w)2 wan &,

where
M=p C_ <¥f| > Bjoan_Jco:(i'J)Boncov(i'j) |l|10> o
n J

¢o is the initial state of the nucleus, ¢f the final state, and j goes
over all the neutrons (for negative electron decay) in the nucleus. In

the absence of the Coulomb field we can write

0 () = o) F¥
e

CP;(.}-(.) = cps_-a)e-iq.ox b
v

*
M. Eo. Rose 1955, Beta and Gamma-Ray Spectroscopy, ed. Ke Siegbahn,
Cha.p. IXo

*%
Ke Ford 1957, Lectures on Beta-Decay Theory, Los Alemos Scientific
Laboratory, I. '"0ld Fashioned Beta-Decay Theory".

34




since the negative energy state with momentum Ja corresponds to the

emitted neutrino having momentum 43. The functions ¢ on the right-hand

sides of these equations are spinors which are independent of position.
Now the light particle functions can be separated from the nuclear

functionse.

M e; c, Qfl Z; o~1 () oy B0n T _yl¥ i>[cp:_:Gp')Boncp{,(-?:.')] .

We will use the notation~ff(x)80n to represent the nuclear matrix element,

where f(x) is that part of e-i(p+q)°x which is under consideration at the

timeo

M =Zn: C, [ff(x)Bon] [co:(i')sonco;(-i')] .

These matrix elements are to be taken between particular spin states of

the particles involved.

*

*
M|2 =‘L;§ cre, [ff(x)BOn] [ff(x)som] [co:(i)‘)somcp;(-a)] [cp:(i')soncpv(-?i)] o

® represents a one-column, four-row spinor, and w* represents that
one-row, four-column spinor which has as entries the complex conjugates
of the entries of .

By well-known matrix rules,
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vn e

* * +
(cp:BOnc%) = 90 B,

where 0: is the Hermitean conjugate of On. B, in our notation is

Hermitean. Finally

*
M2 "L;‘@:C:Cm[ff(")so n] [ Jf(x)som][cp:(’p')somcpv(-G.')cp;(-ﬁ.')o:&oe(i')] o

Introduce the notation (P, ;a)mn for the quantity in parentheses.

To compute IMIZ, these operators have to be taken two at a time,
(eego, 0m = B, 0n = B; or 0m = 8, 0n = Gx, etc.), put in whatever spinors
one is Interested in, carry out the matrix products, and sum over all
values of m and n. This last step involves the nuclear matrix elements.
A tremendous simplification results if one is not interested in the spin
of the light particles, i.e., if one sums |M|2 over all possible spins
of electron and neutrino. We can do this for each pair (m,n) and then
sun over m and ne To see how this comes about, we can put in the explicit
spinors and carry out the operations. The work can be greatly simplified
by using projection operators. We will make a slight digression onto

this topice

PROJECTION OPERATORS

The reason proJjection operators are useful can be seen from the
closure theorem for complete orthonormal functionse This theorem says

that
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L L
WEw @) =1 e @ =e, |,
g;; p)u” (p ;;;;h plug (p

where u.'j (3) is one of the four independent normalized, orthogonal spinors
of momentum 3 (two have positive energy, and two have negative energy).
The sum goes over the four states of momentum 3. Note that u.'j (3), which
is a column vector comes first, and u‘j*(i), a row vector, followse. The
result of the matrix multiplication for given index j, is a 4 X 4 matrixe
The theorem says that the sum of the four matrices (J = 1,ecol) is the
identity. The proof follows exactly along the lines given by Schiff¥,
and is repeated heree. An arbitrary spinor of momentum P can be written
as &8 linear combination of the four basic spinors u.j (3)

4
¥E) = a,@E) .

¥*
Multiply both sides on the left by ot (p)

b .
HENE) = DA, @ @@ .
J=1

From the orthonormality of the u's, we have

ui*(.:p.)uj(.i) = 613 b4

*
Le I. Schiff 1949, Quantum Mechanics, First Edition, p. 46.
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and therefore
* . P d -
WENE) =A@ -

Put this back into the expression for {(p):

L
1E) = @ ENE .
=

If this is to be true for arbitrary ¥ (), we must have

4 I
2@ () = or 1 W@ 2)g = 8,5
J=1 J=1

Now we have in the middle of the light particle portion of |M|2 the
combination co\_’(-a)co:.:(-a), and we want to sum over the final states of
the neutrino. If this sum had been over all four of the neutrino spin
states having momentum -7:1', we could use the theorem just proven and get
the identity. However, not all four states are available to the neutrino;
it must be in a negative energy state (the way we have set up the
Hamiltonian). Similarly, the electron must be in a positive energy state.

We want to carry out the following sum

D @A,

Pos En Neg En
for el for v
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which involves

—p * —p
co;,(-q)cpv( Q) .
Neg En

for v

Let us look for operators A+(3)a.nd A_(B), with the following properties:

A, (B, (3) = o, (D)
A (B)o_(B) = 0
A @ @) =0 @
A_(Blo, (B) =0

where cp+(3) and ¢_(B) are positive and negative energy states, respec-
tively, of momentum 3

A +(';'p') operating on a positive energy state gives it back, and it
gives zero on a negative energy state (all of the same momentum). A_(P)
has the reverse properties. It is easily seen, using the Dirac equation,

that

-y —
BY.p#8mtE,  H+ E,

A(D) = =
+ oF, 2%

4

and
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BY -p+Bm-E H - E
A_(i) = ——e + = _:..

2E, “oE,

have the desired properties, where E+ is the absolute value of the

energy. (H is the Dirac Hamiltonian: H = BY-p+fm)

We can rewrite our sum ) (3, - as
S 3w,

[cp:(i')soml\-( Doy (-Do (D)0 Boo, (B )] >
Pos En Pos &

for el Neg En
for v

since A_ gives zero on the positive energy states and just gives back
the negative energy states.
Now the closure theorem can be used on the neutrino, since the sum

goes over all four spin states. We get

= = — ¥* ,— -, + —
gi 217? (3,-2),, —§+[Cpe(p)30m/\_(-q)OnBCpe(p)] .

We can do the same trick on the electron by introducing a positive

energy projection operator for it.

2% By, = 3 e @0, (DB, Blo, )]
+ V- +
and

el




By grouping the matrices, this really means

SO EFNEINO] IEXON

2.8

which can be rewritten as

@, (B0t (B),

2,222,

[somA_(-a)o;sA+<3)]

a3

Again, using the closure relation gives

[BomA_(-a)o;BM(i)] 6&:‘ >

2.2
« B

aB

which finally equals

)> [BomA_(-a)o:BM(i)] ;

o ax

which by definition is

r [BomA-(-G.')o:BM(B)]

'l




Putting all this together, we get

*
Z |z = ;Z;c;cm[ f Bonf] [Jsomf] Tr [BomA_(-G.')o:BM(i)] -

Final spins
of electron
and neutrino

ALLOWED TRANSITIONS

This means two things: f(x) = 1, and the non-relativistic operators
must be used.

I. Pure Scalar

= *~ 2
c_=¢C C_=¢C c.C, Icsl .

Since the nucleon is non-relativistic,

* * _
J‘#iﬁ\l’ AV ~I¢iﬂ oV =M, The Fermi matrix element.

We must carry out the trace.

BY-q+E BV-E*ﬁmw)
Tr | B 55 B 7 .

v

Using the properties of the Dirac matrices, and their traces, this becomes

(most of the terms have zero trace)
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1+ qp (O )=l+zj:§:TrYYEqu
JE K
= a°p
=142, Ay
J k
=l_§._q'
v

The complete contribution from the pure scalar term is

—222_928_9_
I Ipure scalar IC | IMFI (l - ) ’

Final
spins
of leptons

where 8 is the angle between the electron and the neutrino. Note that
%-: %-. For this pure scalar case, the electron and neutrino tend to
come off in opposite directions.

II. Pure Vector

Result:

- 2 2 p_cos 8 cos 8
I lpure vector IC I IMFl (l * )

Final spins
of leptons

L3




III. Pure Tensor

There are two types of terms

S & . 1

L

and
JE § U
G%l-o s on =0 ) .
Consider:
= ot _ 1+
0m o) 0n =0 = 0n
-’—o+ —o.—o
oo | g0t By'a+E ot B7 -ptBmt
2Ev W

1= oy 1o o
v

1 14 4m L
l+m;§: Tr(o7y 0y )d P
v m

1 4 my 4L m 1 im im
L-my 12 Tr(y 7")a p + ey 3 iy Ma'p
m m

i i
=1+ 2P _ap
EW EW
LV v
- o i i
=1+3R_.29pP
EW va




This term is multiplied by ICT,ZI f\‘,':BGj\l'ola ~ | _f\lf;oj\‘;ola ICTIZ- The sum

of the three terms of this type (x, y, and z) is

ol | enl (2 + ) - o (| fof 5" [ o] "+ fea )

where the Gamow-Teller matrix element is defined by

2
X X
qQp +

- ¥
Mor = f‘” 7Y

Mo | = (f\‘?;a"od")*' (ﬁf;@ odv)
F

If all the terms in which 0m =0, 0n =09 = O:; are added on, the

2 3 2
D)

i=1

3
-3 | frrte
i=1

complete result for the tensor interaction is

M2
pure
lepton tensor
spins
1 2 2 : -
ool Jlel® (2 88) - 2 3= [ o] [ fos |7+ 7¢)
v V o= 51

In this form, the fact that the angular distribution is independent of

the coordinate system is clearly demonstrated.
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If the initial nucleus is unpolaerized and the final nuclear spin

is summed over, then, since there is no preferred direction in space

2
T

where the bar denotes averaging over initial nuclear polarizations and

2

suming over final nuclear polarizations.

2 = 2 2 + }.3'
:Z;; IMlpure ,CT, ,MGT, (l 3 v )
lepton spins; tensor

final nuclear spin;
average over initial
nuclear spin

#
ol

This result seems to be more generally valid than the unpolarized case
just considered. If the basic nuclear wave functions have definite J®
and Jz, then the off-diagonal terms must be zero*.

IV. Pure Axial Vector

Similar to tensor

*
See Jackson, Treiman, and Wyld, Phys. Rev. 106, 517 (1957) for more on

polarization.




lMl2 =
pure

lepton  axial
spins vector

Pl [l (- 88) e S 2 [ ] e+ )

i=1 j=1
2 = 2 2 _1 7-q
IMlpure ,CA, ,MGT, (l 3 va>
lepton spins; axial
final nuclear spin; vector
average over initial
nuclear spin
INTERFERENCE

V. Scalar-Vector

0 =1I 0 =8=o0"

m n n

B7-q+Ev By -piBmrt 0
Tr |B o, 7 =

Adding the case where I and B are interchanged gives another similar

term.

2 = [ 0% * 2
Z lMlsca.lar- (CSCV+CVCS) IMFI w]-'- ’

lepton vector
spins

since W is measured in units of mc2.
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VI. Scalar-Tensor Interference

m

87 -Q+E,, BY - pHBmHY
T\ )\

v

0O =1 On=0L=O

12(7-3)o, (7-5)
4E W
v

1 r&s)rs
S I ZZTr(7°7 P
r s

Jyky,? cyelic

= Hﬁfﬁy 2; ZS: Tr (7r7"7k7 ) qQ'p° ()

i
= _w z: Z (gr,jgks_grkg,js ) qrps
T

S

1 kK k
= A ( 09p¥-q p'j) 3,k, cyclic

<td

This complete term is

e SC%[ f ] EESE)

After summing over the three components of spin, we obtain

L8




Ew SC;MFUJ @xB .

If we include the case when 0m and 0n are interchanged, the result

is

lepton tensor
spins

If there is no polarization, and final nuclear spins are sumed over,

this term will be zero. If time reversal is satisfied, this term will
be zero. The Vector-Axial Vector Interference term is the negative of
the Scalar-Tensor term. The other Fermi-Gemow-Teller interferences are

identically zero.

VII. Tensor-Axial-Vector Interference

B‘;.a_'.E —_ —
v By cpHBmtW _m
Tr Bci (-.2_E_> c)"j (__g_w__._.__) = w. bi,j .

v

Adding together all terms of this type, as well as the ones in which the

role of tensor and axiasl-vector is interchanged, gives

EE; *
I 'tensor (CTCA * C ¢ ) , I %

lepton axial
spins vector

k9



Adding together all terms considered produces the formula given on
pages 279-280 of the Rose article and reproduced below. The probability
rer unit time that an electron and neutrino are emitted into the relative
solid angle & = 2 sin 8 @9, with the electron having energy between W

and W + &, is (for the allowed transitions)

N (W,0)awdl = (n;ﬁ) # F(£2,0) \W2-1 W(wW_-W)Z X

(sl * 1esl) el + (Jeaf® * Jesf?) el | %

x<1+EP%.e_ + %)dWsine a .

The original coupling constants (unprimed) have the dimensions energy X
volume. The primed coupling constants in this expression are dimension-
less numbers equal to the unprimed constants divided by the natural units
of energy and volume, e.g., CS' = CS/(mc2)<r:—E)3' Now drop the primes.
The upper and lower signs refer to negative and positive (charge)
electrons, respectively. The main Coulomb effect, the factor F(+Z,W)
has been written in, even though it hasn't been considered explicitly
thus far. All energies are measured in units of mc®. One factor of 2m
has come in from the 7'22 in the perturbation theory formula. Another

factor of 27 comes from & = 2 sin 6 d9, and a factor of T comes from



integrating over the electron's directions (only the relative electron-

neutrino angle remains).

oo 30l = 1ol ) Pl - (el - ouf?) [
(Ioal® * [2a*) Pronf® * (|es® * [ovf® ) picf®
e cyog) el (o oyt o o ) Pl

+

(fesf « levl?) oef? (ICTIZ ¥ ICAI ) Mor|?

y = \Jl - (@z)2 .

The term & b/W is the Fierz interference term. It does not appear
in a theory which treats electrons and positrons symmetrically (in the
absence of coulomb effects). All terms arising from Fermi-Gamow-Teller
interference have been omitted from the above expression. The Gamow-
Teller part of the coefficient (a), has been written for the no-polariz-
ation case.

If one integrates the energy-angle transition probability over the
electron-neutrino relative angle, the term in cos 6 contributes nothing,

and the result is the allowed spectrum
mc® 1
Ne(W)aw = —— p— F(£Z,W)W \sz-l (v )2

(los[* * Jov[?) e+ (lozf * Jeaf ) Pocf? ]( £ 2 ar .

X

. |
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Except for the interference term b/w , the spectrum shape is independent

of the coupling.

FORBIDDEN TRANSITIONS

Two effects were neglected in the allowed transitions: The rel-
ativistic operators o ) a;.., s and Byg; and retardation, i.e., the higher
-1(PH) -7,

terms in the expansion of e This latter expansion can be

written

e-i(io'ﬁ).}' =i _rﬁ_ (-1)" [(Bﬁ);]n .

n=o

The nth term in this expansion has angular momentum components n, n-2,

n-ll~,. . (é‘) . The reason every other angular momentum occurs is that
the nth term has definite parity (-l)n- The general selection rules for
an arbitrary transition can be obtained by combining these facts with
the intrinsic properties of the operators. 3 and a , being vectors,
carry one unit of angular momentum along with them; 8, I, and 75 have
no angular momentum. 3, B, and I do not change the parity of a wave
function, whereas & and 7s do. For the allowed transitions, the result
is no parity change for Fermi and Gemow-Teller, AJ = O for Fermi, and
AJ = + 1,0 for Gemow-Teller (no O - 0, however).

The first forbidden transitions arise from' two types of terms:
the non-relativistic operators multiplied by [-1(3 +7q) - 'i"] and the

relativistic operators multiplied by unity. All first forbidden transi-

tions have the selection rule that the parity must change; in fact,
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for the nth forbidden transitions the parity change is (-l)n. The
angular momentum selection rules follow directly from the above remarks
except in that part of the tensor and axial vector interactions which

with a position component x

involves a product of a spin component O

i J

These nine terms oixJ form a tensor which can be broken down into
three parts: (1) a scalar, 0.r (one component); (2) a vector O X T
(three components); and (3) a symmetric traceless tensor (five inde-
pendent components).» The scalar produces no change in angular momentum;
the vector has the selection rule AJ =+ 1,0 (no 0 -~ O); and the sym-
metric, traceless tensor, which carries two units of angular momentum,
has the rule AJ = +2, +1, 0 (no 0 = 0, 3 ~ %, 0  1). The exceptions
follow directly from the vector model rule for the addition of angular
momenta.

In each order of forbiddenness n, there will be a tensor coming
from the Gamow-Teller coupling, which carries ntl units of angular momentum
This is the meximum possible angular momentum change in an nth forbidden
transition. This is called the "unique" forbidden transition.

One calculates the electron-neutrino energy-angle distribution in
the same way as for allowed transitions. In the absence of coulomb

effects, the lepton portion of the matrix element separates from the

nuclear part. The sum over lepton spins proceeds as before; there are

*
E. Konopinski 1955, Beta and Gamme Ray Spectroscopy, ed. K. Siegbhan,
Chap. X, p. 29k.
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some new traces to be evaluated, however, coming from the relativistic
operators o s 7s° The traces involving a are similar to those involving
3, and the traces involving 75 are similar to those which contain the
identity. Additional angular dependencies arise from the factors of
P+a

For the n-times forbidden spectrum integrated over all angles, one
writes

N(w)dw=(¥) # F(Z,W) dwz-l w(wo-w)zsn(w)dw ’

where sn(w) is called the shape factor. The shape factors are quite

involved and depend upon the coulomb effect rather strongly.

o) = [ (eof * [ P+ (Il = o) Pl | (223) -

EXPERIMENTAL STITUATION IN BETA DECAY (before parity)

Experimental spectra are generally displayed in the form of Kurie

plots:

3
N(w)
( F(Z,W) W\Iwz-l ) versus W.

For the most carefully measured allowed spectra, Cu?“, Nla, Sss’ this
plot is a straight line, which indicates that the Fierz interference term
is negligible. A conservative upper limit on the coefficient "' is

b < 0.2. Since b involves products of the two Fermi coupling constants,
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and products of the two Gamow-Teller constants, the assumption was made
that only one of the Fermi couplings and only one of the Gamow-Teller
couplings is present.*

The conclusion that Fermi and Gamow-Teller couplings are both nec-
essary followed from the existence of allowed transitions such as HeS-Lif
which has AJ = 1. This is allowed under Gamow-Teller, but forbidden by
Fermi selection rules. Similarly c13%53% is an allowed O - O transition
which can take place under Fermi, but is forbidden under Gamow-Teller
selection rules. From a study of several decays (with some reasonable
approximations for the nuclear matrix elements) the conclusion was reached
that the Fermi and Gamow-Teller couplings are approximetely equal in
strength.

The decision that the correct Gamow-Teller coupling is the tensor,
and not the axial-vector, resulted from the electron-nuclear recoil angular
correlation experiment in the decay of He®. Using conservation of linear
momegtum, one can convert the expressions above, which are written in
terms of the electron-neutrino angle, to expressions involving the electron-
nucleus angle. The results of this difficult experiment agree rather well
with the prediction of the tensor coupling, and disagree with axial-
vector coupling. The shapes of once forbidden spectra give information

about the proper choice of Fermi coupling. These are more difficult to

*
C. S. Wu 1955, Beta and Gamma Ray Spectroscopy, ed. K. Siegbhan, Chap. XI.
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unravel than allowed spectra and indicated that the scalar coupling is
the correct one.

There seems to be some evidence that the pseudoscalar coupling con-
stant is not zero.

An approximate value for the Ferml coupling constant is CF = 1.41 X
1074® ergs-cm®. This means that the dimensionless Fermi coupling con-
stant is Cﬁ > 3,00 X 1072, This shows how week the B-decay coupling
is. Using the proton-mass instead of the electron as the unit of mass

1 = 1. X ..5.
gives CF(Mf) 1.01 X 10
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SOME ADDITIONAL PROPERTIES OF THE GAMMA MATRICES

(same definitions as in K. Ford's lectures)

Greek indices u, v,-.- go from zero to three, and Roman indices J,k,.--

go from one to three (x to z)

v v v (o) ot k k kt+ +
Pyl + M = 2 P=p=y yoo=Ba = -y P =1

g’ =

01
7 = -i( ) = yorty°

10

I. Relation between y's and o's

73 = ok
k k
757 = 18¢
J k g .
Py = =10 (j,k,4 cyclic permutation of x,y,z)

o = p%® (34w

o7




oYy = ifb (J,k,t cyclic)
II. Traces'

Tr(A)==z:App = sum of the diagonal elements of A. The trace of
V) .
the product of an odd number of y matrices vanishes.

In particular:
Tr(y") = 0
Tr(okyp) = 0 (a 0 is made up of two 7's)
Tr(y"7") = Te(y"") = & Te(H7¥ + ") = &Vre(1) = WY

Tr(7P7V+) = LMY

In particular:

Tr(g%) = L

Tr(')’ka) = b

Tr(#7") =0 (0 #v)
Tr(c®) = 0

*
Schweber, Bethe, and de Hoffmann 1955, Mesons and Fields I, Chapter I,
section 7d.
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Tr(y*yV7Py°) = b Ve - 4P’ + 4 WP

Tr(y,) =0
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