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Abstract

We solve two hydrodynamics problems. The first involves a shock

wave, a contact discontinuity, and a rarefaction wave using an uncondi-

tionally stable finite difference scheme. The Courant condition is sat-

isfied everywhere except in one zone behind the shock, where it is vio-

lated by factors of lo snd100. The nonlinear difference equations m

solved by Newton’s mthod. The totxilnumber of Newton iterations to get

to a certain time is apparently independent of the degree to which the

normal stabilLty condition is violated in the one zone.

The second problem involves two rsx’efaction waves moving in oppo-

site directions. One wave moves in a region where the Couz%mt condition

is violated by a factor of approxhately two. The other wave moves in

a region where the Coumnt condition is satisfied. NMerical results

are compared with the analytical solution.

An exsd.nation of several runs indicates one explicit time step is

about five times as fast as one implicit time step. Therefore, use of

the imp~cit method is indicated when the Courant condition is tiolated

by a factor of 5 or more.
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Chapter I

Introduction

Consider a hydrodynamical problem in which a shock wave or dls-

turbsmce of some kind is advancing into a material. Suppose that in

the neighborhood of the disturbance the sound speed is CO and suppose

also that there is a relatively quiescent region behind the disturbance

in which the sound speed is C .
1 Any explicit finite difference method

wild.require

so that if Cl >> CO one will be forced to follow the uninteresting de-

tails of the motion in the gpiescent region. An unconditionally stable

finite difference method would be usefvl in such a problem. We present

such a mthod for the eqyations of nonviscous compressible flow in one-

dimension.alLagrangian coordinates.

The Differential Equations

The Iagrmgian hydrodynamic

independent variables are:

eqyations with time t and mass m as
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val t -*=0 (mass equation)

*+*. O (momentum egyation)

(energy egpation)

The dependent variables

P = density

u = veticity

P = pressure

I . j.n~~ energy

The velocity is defined

are:

by

where x is the coordinate of

freme. Differentiating this

we see ft’omthe mass e~ation that

an element of fluid in the U%boratory

velocity e~ation with respect to mass

The Difference Egpations

To form clifference equations from the diffen?ntial equations we

-~ the f~id ~itioned into cells of mass m where j = 1,2,...,J,
J

J being the total number of cells. Subscripts on field variables denote
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the value of that particular variable at that space point. For example,

‘j+l/2
denotes the right-hand ceU boundary velocity of the jti cell.

Superscripts denote time steps.

ternal energy of the jth cell at tim

We make the foXLowing difference

For example, 71 denotes the in-

t = (n+l)Ate

appzwximations:

(1)
Un+l n
j+l/2 - ‘3+1/2

At

(2) ~n+l n
j+q2 - xj+l/2

At

_ 2e(Pyl - p::)+ 2(@(p; - $+1)

‘j + ‘j+l ‘j + ‘j+l

$ =U

(3)

n+lpj =

(4)

d
~n+l - Xn+l
j+l/2 j-1/2

%

1 ax
;= &ii

au=- Pai

~1 - ~ (3P:l

(/Un+l - Un+l

)

, (1-e)p; n

At=m
J

j-1 2 j+l/2
‘j (/‘j-1 2 )- $+1/2
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This form of the difference e~ations was chosen becsnse it gives

a fairly simple form to the Jacobisa matrix. We expect that the Newton

iterative method would work just as welJ_for other forms of the e~a-

tions●

The polytropic gas egyation of state is used. Also a pseudo-

viscosity term is added to the pressure to spread the shock tint. The

pressure term then takes the form [1]:

(5) Pyl= (7-l)Pyl$+l + * ~1/2 - %/2)

if

(/n+l n+l
‘j-1 2 )- ‘j+l/2 >0

‘+1 = (7.l)pyl$+lPj

if

(vJn-1 - Un+l
J- 2 )j+l/2 ~ 0

Here 7 is a constant characteristic of the gas and A is a constant

whose choice willbe discussed later.

Rewriting Equations (1) and (k) we have:

(6) U;;/2 - ‘;+1/2 - ~-~=o

‘j + ‘j+l ‘j + ‘j+l

-la”



At (1-e )P:

(7) ~+%# -
m~d d

for j = 1,2,.o.,Jo

Assuming that

n, this gives us a

d

we know the values of the dependent variables at tk

system of 2J simultaneous nonlinear eqpations in 2J

unknowns for the values at time n+l.

Newton’s method can be used to solve this system of eqyations. For

a general system of the form

f(y) = o

where f ad y are vectors Newton’s method is a iterative procedure in

which the p+l-st iterative y(p+l) is defined by

where & is the solution of the linear system

(8) Jdy = -f [Y(P)]

e-ated at Y(P)
●

‘)?aking (5) into account we see that (6) and (7)may be written in

the form
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p+l, fl+l
(9) gj ($zi/P “E;p “&$ J

)j+l = 0

In our case we

simple fO- namely

see then that the Jacobiau matrix has a

that it is block tridiagoti.

particularly

J=

c1
‘2

%
.

C2

‘3

.
.

C3,
. .

. .
., ,., ... .

,. ... ..
4

.

,

.

. “ CJ-l
..

)‘AJ” BJ

whe~ the submatrices

(u) (-3s-
j-1./2

*
J-1/2

are 2x2.

ag.

)a+-lj-l
a~.

+’Ij-1
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(3s-
3+1/2

(12) Bj =

ag

)9I.
J

where all differentiationsare with respect to

time n+l.

We use the usual scheme to invert a block

Define 2 x 2 matrices as folluws: ,

-1 -lc
‘1=‘1cl; ‘J =(BS-‘jwj-l) j’

the variables u or

tridiagonal.matrix

-1
‘1=‘1‘1; Gj = (Bj - A.G.- ‘jwj-l)‘l(fj J J-+

2~j~J

If we redefine & and f so that

I at

[21.

then
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The pi-1-st itezxa.’te is obtained by setting

(pi-1) (I?)
‘j+l/2 = ‘j+l/2 + ‘j+l/2

~(p+l) = @ + AIj
3 3

-lf5-



Chapter II

Derivation of MatrLx Elements and Stability Analysis

We now derive the entries of the 2 x 2 submatrices of the Jacobian

matrix. Referring to (6), (7), (IL), (U?), and (13) we have:

-17-



o 0

Here again aXL dL?ferentiationswith respect to u and I are to be taken

at time n-f-1.

To compbte the derivation we need the various pm%isl derivatives

of the pressure terms.

From (2) it follows that

(14)$::/2
- Xn+l + ~At ~n+l

j-1/2 = %+1/2 - x;-1/2 (/j+l 2 - $:/2 )

(/+(1-e)At Un
j+l 2 )- %/2

The pressure term may then be written

n+l
(7-l)rn.&+l

Pj = Xn+l
j+l./2- x:;/2 Y 2!$

+A
~ni-l n+l
j+l/2 - ‘j-l/2

(/Un+l - Un+l
j-1 2 )j-1-l/2

if

“j-~2 - ‘j+l./2> 0
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and

n+l
(7-l)xtl.P+l

‘j = ~n+l n+l
j+l/2 - ‘j-l/2

if

n+l - ~n+l
‘3-1/2 j+l/2 ~ 0

A tabulation of the pressure

apn+l- (y-l)m.eAtI.
~.-
‘j+l/2

(/‘j+l 2 - ‘j-l/2)2

derivatives follows:

where the last two terms do not appear if u
j-1/2 - ‘ji-l/2~ 00

~pyl
(7-l)IU. ap?:’

+
T = (xj+l/2 ‘Jxj.~/2); lil = 0
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[

apn+l

* &(”j-1/2 ](

n-t-l
- uj+l/2) = ‘j-l/2 - “j+@) * - %

[(n+l n+l
+ Pj J+w)]=(“NE-‘$+W)g-Un+l

‘j-l/2

#j$=-&; *=”

[
& &(uj.1/2 - ‘3+1/2)] = ‘j + (“j-1/2 - ‘j+l/2) &

n+l
.

#’J- 0;
j+3/2=

apn+l

+
= o;

lj+l

~=-~

apn;~

#--

(7-l)mj+l

lj+l
‘x

j+3/2 - ‘j+l/2

Thus if we write

K= 9At

K~.—
‘j + ‘j+l

‘j = ‘j-l/2 - ‘j+l/2

-20-



we have:

( apn+lam+. )o0
-21Nn(y-l)m

‘j+l/2 - ‘j-l/2

K#!Yl(y-l)
1-

‘j+l/2
~1
- ‘j-l/2

~(7-l)mj+l

‘3+3/2

1

- ‘j+l/2

o
The method described in Chapter I is used to invert this matrix.

Stability Andy sis

As has been pointed out [31 a rigorous stability snalysis for the

hydro@namicaJ. difference equations has not been carried out. This

_sis Proceeds ~ the S- ~er as that done by l?romm[1].
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We assume that the field variables vary slightly &mm their true

values.

IA:

‘j+l/2 = ‘0(1+ 3j+l/2)~
~<<1

Pj = PO(I+ ~j)$

lJ=10(1+%)’

For simplicity assure that

We substitute

equations of first

E<<l

tj<cl

the ceU masses are eqml; m = m =
3

pobxoo

these vahes in the difference

variation, dropping all higher

equations and

order terms●

get the

.2. ‘08X0. Fjxo 1..;
x:+l/2 - x;-1/2

P;
()

n
p. l+ej ()

Then (14) becomes

Cobt
We define the Courant number u=- where Co is the local sound

o
speed.

Then (15) becomes

-22-



The first variation of the energy equation (7) is

EM n+l
(17)s~ ~-$)=y~j “0($:/2- ~;:/2 )

+- ~:uo &,2. Enl,2)
m j+

For p; we substitute

( ) (
(Y-l)POIO1- ~j+~: +~ouOcO$l/2 - ~:+1/2)

Upon simplification (17) becomes

Finally we get the first variation of the momentum equation by sub-

stitution into (6) and again dropping higher order terms.

+ boco”o

,@!)z
m

[($42- n
E /2jj}$+1/2) - ~+1/2- j+3
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At this point we do the usual thing. We assume that the coeffi-

cients ereconslxzmt ad that the soktion of these three eqyations of

first variation can be written in a Fourier series, If so, then each

term of the series is a solution andwe lcok at a typical term to see

what conditions must be satisfied to make it a solution.

We assume that

$+1/2
= ~eik(j+l/2)n

‘1

. ~eikj n

‘; ‘2

and consider only

Substitution

‘3

the special case =r
‘1 2=r3=r”

of these values into (16)j (1.8), and (19)@elds after

simplification

‘L

[- 12iCoU Sill k/2 (fi+l~ )
E

l-loY
+ [1- 4@ sin2 k/2 (x9+14 )-r]~

[ 12iCoV sin k/2 (N+14)
+- 5=0

U7
0

[ 12i(7-l)UoV Sill k/2 (~+1-e)
~ + (1-r)~ = O

co
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For this system of homogeneous linear equations to have a non-

trivia3 solution it is necessary that its coefficient matrix be singular.

1 -r .

2iCOIA Sill k/2 (fi+l-)

2iLM0 Si?l k/2 (x@+b9)
o

co

2ic M sink/2 (I+I+M3)

U07
L - 4Aw sti2 k/2 (x9+l-e)-r - =0

Uoy

2i(7-l)UoM Sti k/2 (x@+l-e)
o l-r

co

-~ this d@smirmnt we get:

(br)[l~hv sin2 k/2 (ti+l~)] + %2 sin2 k/2 (~+1~)2 = o

For full generality at this point ~ would have to study the roots

of this gyadratic equation for arbitrary f3. This is Somwhat difficult.

The two cases of most inprtance am 6 =1./2 ande = 1. Iet sin2 k/2 2=7.

For e = ~2 the equation re~~s to

2) + (1 - 2hj.LT2+ ~2T2) = o

-25-



Case (l): ~ ~2T2 < 1, then r is complex

Case (2): D? ~2’r2 ~ 1, then r is real.

To have r< 1 we need

2@T2 + ~2T2 > - - or hT+.T>~JP7G.~2T2 ~ 2~T ~ T

- 1, so indeed r < 1. The proof for the case @ = 1

similar.

Notice here that r < 1, independent of p, the Courant n-er.

is

This

shows that we have verified a necessary conddtion for

unconditionally stable, namely, for solutions of the

variation having the form we have prescribed.

this method to be

equations of first

-26-



Hezx!

Chapter III

Discussion of Numerical Results

The first probl.emused to test the scheme is the one used in [2].

we have two

figuration at 40

discontinuity at

wave.

The hitial

Y = 104

constant states separated by a discontinuity. The con-

cycles is a shock moving with speed 1.24, a contact

the point of initial discontinuity, and a rarefaction

conditions for this problem are:

At = 0.337 (the Courant value)

J = 50 (25 cells to the left of the interface and 25 cells to the

right).

M3terial on lef’t Mxterial on right

%
=1

‘s
=1

Pj = 0.5 Pj = 0.4454

Pj = 3.528 Pj = 0.5714

‘j
= 0.698

%
=0

*S
= 19.756 I. = 2.857

J

-27-



Tsbles 1, 2, and 3 give the velocities,densities,md internal

energies for several different calculations.

The Iax-Wendroff figures refer to the values obtained using the

stheme of Reference 4.

Exact xwfers to the analytical values.

E@Licit refers to values obtained using one of the explicit schemes

of Reference 1.

Impl refers to ca3.cuktions done with

To test numerically the’unconditional

ference scheme a thin cell having the ssme

mass and width of the other ceLLs, was put

sll 50 celh having mass one.

stabil.ity of the implicit dif-

density, but only a tenth the

into ce12 20. This mearm

that the Courant condition was violated there by a factor of a~roxi-

mately ten. Imp2 refers to tabulations tine with this thin cell.

ligp3is similar to li?P2,the only difference being that this time

celJ.20 was given mass and width one-hundredth that of

Thus the Coursnt condition was violated by a factor of

one hundred. As can be seen tim the results for -2

the other ceUs.

approximately

andlMp, no
3

instability a~ared in the calculation. When the expMcit method was

run with a thin cell, large fluctuations appeared and eventually two

cell boundaries crossed near the thin cell..

Since Newton*s method involves evaluating the elements of a large

matrtx and then inverting it, another method for solving the system of

simultaneous noxiKnear eqyations was considered, namely, the method of

nonlinear overrelaxation as described in [51. If one has a system of

k &LgebmzLc equations

-28-



f’i(~t ~ ●*0~ ~) = 0) i = l~a>oee>k

each having one continuous derivative, then the generalization of ordi-

nary Overrelaxation suggested by Lieberstein for the nonlinear system

is

[

(n) (n)
p)=$l)-u ‘la ‘X2 ,...,+)]

[
fu +),X5

““””’*)]

&l)

etc., where

Jh
iterate

It ~S

for solving

[

(n+l),x~)

= xy)
‘2 5 ,...,+)1

-u
>000/*)]

f ii = afi/axi. Here superscripts on Variabks denote the

and n+l-st iterate ~d @ is the relaxation parsmeter.

hoped that this method would be faster than Newton*s method

the system of nonlinear equations. As Lieberstein points

out, the rate of convergence of this method depends rather critically on

the choice of U. For our choice of m = 1 the overrelaxation method was

actually slmwer than Newtonts method, but a more careful study of how to

choose o in ~ @iond- manner would probably make the overrelaxation

method faster than Newton*s method.

Figure 1 gives the velocity profile for Impl superimposed on the

exact solution. Figure 2 gives the density profile for Impl superim-

posed on the exact solution.



Figure 3 gives the velocity profile near the shock front for

e = l/2 and three Mfferent ties of A. In generaJ-a large @e of

A gives a smoother profile near the shock front but spreads the shock

over several cells. A smalkr A gives a shsryr shock front but has

mom oscillation. Some intermediate value of A gives the best compro-

mise between these two effects. We have found that for 6 = 1/2 a smaller

h cm be used than for the explicit case. This is clear from Figure 3.

To test the expldcit case we needed to take k = 0.7 and even then some

oscillations a~ared near the shock front, but for the implAcit case

X!= 0.5 gave a fairly sh~ shock front withpracticsll.yno oscillation.

Several trials were run with 6 = 1. The nmst notable differences

in the results are that (1) they are somewhat less accurate than for

6= 1/2 and (2) it was found that the pseudo-viscosity term was un-

necessary and 1 = O gave the sharpest shock front with little oscil-

lation.

The reduced accuracy may be understood when one considers that for

6 = 1/2 all the differences are centered and the truncation errors ~

of order (At)3. For any other choice of O som second-order truncation

error is present. One should then e~ct more accurate results for

e = 1/2 than for my other choice of e.

The result that X = O is the best choice means that the implicit

scheme itse~ contributes an effective viscosity term when 6 = 1.

Table 4 gives the velocity profile for 13= 1, X = O and k = O.~.

-30-



The total number of Newton iterations required to get to t = 13.4.8

is approximately 1.20for Impl, hp2, and Imp3 and for 6 = 0.5 ~d 6 = 10

This number is thus apparently independent of the degree to which the

Courant condition is violated in zone 20.

The convergence criterion used regyired that the msximum percentage

chsmge in any value of v or I be less thm l% on one Newton iteration.

This generaUy reqaired three Newton iterations

When this criterion was relaxed to the point of

percentage change to be less than lo? the fi,nsl

most by a unit or two in the fourth significant

terion only two Newton iterations were required

When the stricter convergence criterion is

for each time cycle.

req@ring the msxiuum

results were changed at

digit. For this cri-

for each time cycle.

used timing experiments

have indicated that the explicit method is approximately five times

faster per time step than the implicit scheme. In this case use of the

implicit scheme is ind.icated when the Cm.urant condition is to be vi.o-

latedby a factor of 5 or more.

With the less stringent convergence criterion the explicit method

is only shut three times as fast as the implicit method. Thus if this

convergence criterion gives sufficient accuracy, and in practice it has,

use of implicit scheme is indicated when the Courant condition is to be

violated by a factor of 3 or mme.

In pmctice the rate of convergence has been approximately quad-

ratic, the maximm percentage change being roughly squared each time.

Also h practice the Jacobian matrix has proved to be diagonally dordnant.
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This partially accounts for the accuracy of the inversion routine and

the rapidity of convergence of Newtonts method.

The second problem involves one gas, hsM of which is initially at

rest, the other haM initially moving with constant velocity. The con-

figuration at 40 cycles is two rarefaction waves moving in opposite

directions at a sound speed which is C = o.316.

The gas tiitiaUy at rest is divided into go celM of mass 0.1.

The gas which is initially moving is divided into 10 cel& of mass 1.0.

Other initial conditions are:

7= 1.4

@ = ().5

Ilnely celled

P-J= 1.0

‘s
= 0.0

e = 005

ho=

gas Coarselycelkd gas

Pj = 1.0

%
= 2*O

Pj = 0.0714 Pj = 0.0714

13
= 0.1786

1s
= 0.17%

Figure4 givesthe plot of the densityat time t

numericalresultsaad also the analyticalvalues. It

= 20 from the

can be seen that

no instabilitieshave appeared in the finely divided mherial. even

though the Courant condition is violated by a factor of approximately

two.
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One difficulty apparent from the graph is that the implicit scheme

seems to lag behind the tzue solution in the finely divided region.

Evidently the scheme does not allow signsls to be propagated at S-d

speed in such a finely

form of the difference

divided materiaA. This may be the fault of

equations, since they are nonconservative ●

the
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Table 1 Velocity

Cell

1

2

3

4

5

6

7

8

9

10

U

12

u

14

15

16

17

18

19

20

Lex
Wendroff

0.’702

0.709

0.725

0.!754

O.aoo

0.866

0.948

1.045

1.150

1.259

1.366

1.463

1.541

1.589

1.596

1.566

1.525

1.508

1.518

1.534

0.698

0.699

0.703

0.71.6

0.752

0.826

0.938

1.075

1.223

1.372

1.512

1.6I.6

1.6I.3

1.588

1.563

L548

1.538

1.533

1.530

1.528

Exact

0.698

0.698

0.698

0.698

0.698

0.822

0.984

1.130

1.342

1.453

L.528

1.528

1.528

1.528

1.528

L528

1.528

1.528

1.528

1.528

ml

0.702

0.707

0.720

0.747

0.794

0.865

0.961

1.075

1.203

1.335

1.463

1.568

1.6IJ.

L586

L 561

1.545

10537

1.533

1.531

1.529

J3P2

---

0.709

0.719

00743

0.788

0..857

0.950

1.063

l.lgo

1.322

1.@j2

1.6u

1.588

1.563

1.546

1.537

1.533

1.531

1.531

1.530
1.52g

m3

---

0.709

0.721

0.746

0.793

0.864

0.960

1.074

1.202

1.334

1.463

1.568

1.612

L587

I. 562

1.546

1.538

1.534

1.532

1.530
1.530
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21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

1.529

1.526

1.528

1.528

1.528

1.528

1.528

1.528

1.528

1.528

1.528

1.527

1.528

1.527

1.527

1.528

1.533

1.526

1.519

1.576

1.546

0.850

0.108

0.006

0.000

1.526

1.525

1.527

1.532

1.52Q

1.526

1.527

1.528

L527

L525

1.529

1.532

1.522

1.530

1.51.2

1.531

1.524

1.529

1.472

1.518

1.298

0.725

0.136

0.018

00002

1.528

1.528

1.528

1.528

L.528

1.528

L528

1.528

1.528

1.528

1.528

1.528

1.528

1.528

1.528

1.528

1.528

1.528

1.528

1.528

1.528

0

0

0

0

1.528

1.527

1.526

1.526

1.526

1.525

1.525

1.525

1.525

1.526

1.526

1.526

1.525

1.526

1.525

1.528

1.524

‘1.528

1.508

1.522

1.432

0.558
0.LL4

0.019

0.003

1.528

1.527

1.526

1.526

1.526

1.526

1.525

1.525

1.526

1.526

1.526

1.526

1.525

1.525

1.525

1.527

1.524

1.529

1.508

1.523

1.432

0.558

0.114

0.019

00003

1.529

1.527

1.527

1.526

1.526

1.526

1.525

1.526

1.527

1.527

1.526

1.526

1.526

1.526

1.526

1.529

1.525

1.528

1.509

1.527

1.423

0.547

0. KU

0.019

0.003
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Cell

1

2

3

4

5

6

7

8

9

10

u

32

u

14

15

16

17

18

19

20

a.

Lax
Wendmf f

0.445

0.444

00442

0.438

0.432

0.423

0..413

0.401

00388

0.376

0.363

0.352

0.343

0.338

0.337

0.341

00345

0.347

0.346

0.344

0.344

Explicit

0.445

00445

0..445

0.444

0.440

0.431

0..4I.8

0.402

0.384

0.367

0.351

0.338

0.334

0.338

0.339

0.341

0.343

0.344

0.345

00345

00345

Table 2

Exact

0.445

0.445

0.445

0.445

0.445

0.M6

0.407

0.388

0.370

00350

0.345

0.345

0.345

00345

0.345

00345

0.345

0.345

0.345

0.345

0.345

Density

ml

00445

0.445

0.444

0.441

0.436

0.428

0.418

0.404

0.389

0.374

0.358

0.345

0.337

0.336

0.339

0.342

0.343

0.344

0.344

0.344

0.344

---

00445

0.444

0.441

0.437

0.429

0.419

0.406

0.391

0.375

0.360

0.347

0.337

0.336

0.339

0.341

0.343

0.344

0.344

0.345
0.345

0.345

Jm3

.-.

0.445

0.444

0.441

0.436

0.429

0.418

0.405

0.390

0.374

0.359

0.346

0.337

0.336

0.339

0.342

0.343

0.344

0.344

0.344
0.345

0.345
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22

23

24

25

26

27

28

2’9

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

00345

0.344

0.344

0.346

1.21.2

1.287

1.295

1.292

1.294

1.295

1. 2g7

1.300

1.302

1.304

1.306

1.307

1.306

1. m

1.335

1.326

0.831

0.540

00503

0.500

0.345

0.345

0.345

0.345

1.170

1.225

1.259

1.284

1.289

1.289

1.2%

1.296

1.294

1.304

1.294

1.292

L286

1.307

1.248

1.194

0.964

0.628

0.518

0.502

0.345

00345

0.345

0.345

1.304

1.304

1.304

1.304

1.304

1.304

1.304

1.304

1.304

1.304

1.304

1.304

1.304

1.304

1.304

1.304

00500

00500

0.500

00500

0.345

0.345

00345

0.345

1.21.3

1.242

1.264

1.280

1.2go

1.2g6

1.301

1.304

1.305

1.306

1.303

1.305

1.294

1.306

1.261

1.313

0.841

0.568

0.511

0.502

0.345

0.345

0.345

0.345

1.218

1.247

1.269

1.283

1.292

1.296

10301

1.303

1.305

1.306

1.303

1.305

1.294

1.3C6

1.261

1.313

0.841

0.568

0051.2

0.502

0.345

0.345

0.345

00345

1.170
1.225

1.259

1.284

1.289

Lf?gg

1.304

1.306

1.306

1.308

1.304

1.306

1.2g6

1.309

1.266

1.31.2

0.834

0.566

0051.1.

0.502
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CeU.

1

2

3

4

5

6

7

8

9

10

u

12

u

14

15

16

17

18

19

20

a

22

‘Lax
Wendroff

19.78

19.77

19.74

19.67

19.55

19.40

19. ZIL

18.98

18.74

18.49

18.25

18.02

17.92

17.73

17.73

17.79

17.89

17.92

17.90

17.86

17.%

17.88

Explicit

19.76

19.76

19.75

19.73

19.68

19.54

19.32

19.02

18.69

18.34

18.01

17.73

17.60

17.65

17.70

17.75

17.79

17.81

17.82

17.82

17.82

17.83

Table 3 Internal Energy

ml

19.76

19.75

19.72

19.68

19.59

19.45

19.26

19.01

18.72

18.42

18. I.2

17.85

1.7.67

17.64

17.72

17.77

17.80

17.82

17.82

17.83

17.83

17.84

m?z

---

19.76

19.73

19.69

19.60

19.47

19.28

19.03

M. 75

18.45

18.15

17.87

17.68

17.65

17.71

17.77

17.80

17.82

17.82

17.83
17.83

17.83

17.83

.-.

19.76

19.73

19.68

19.59

19● 45

19.26

19.01

18.73

18.43

1.8.I.2

17.85

17.67

17.65

17.72

17.77

17.&)

17.81

17.82

17.83
17.83

17.83

17.83

-38-



23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

17.90

17.go

17.78

5.086

4.789

4.763

4.770

4.765

4.757

4*748

4.739

4.734

4.729

4.727

4.729

4.725

4.717

4.769

4.698

3.94/3

2.973

2.%3

2.857

17.83

17.81

17. &

5.266

5.026

4.880

4.803

4.772

4.747

4.730

4.732

4.731

4.733

4.732

4.717

4.73.0

4.715

4.667

4.472

3*W3

3.087

2.887

2.861

17.84

17.84

17.86

5.074

4.954

4.871

4.8u

4.772

4.747

4.730

4.722

4.71.9

4.720

4.71.6

4.722

4.710

4.727

4.663

4.738

3.788

3.030

2.884

2.%1

17.84

17.84

17.86

5.074

4.955

4.871.

4.81.3

4.772

4.747

4.729

4.721

4.718

4.720

4071.6

4.722

4.71cl

4.728

4.664

4.738

3.78a

3.030

2.884

2.861

17.84

17.84

17.85

5.052

4.938

4.852

4.797

4.761

4.738

4.723

40716

4.7U,

4e713

4.707

4.715

4.701

4.723

4.661

4.728

3.770

3.025

2.883

2.861
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Table h Velocity

cell

1

2

3

4

5

6

7.

8

9

lo

IJ.

E

u

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

6%1
k=o

0.780

0.793

0.819

0.858

0.909

0.972

10044

1.125

1.21.O

1.298

1.382

1.456

105U

1.542

1.551

1.546

1.541

1.540

1.539

1.539

1.538

1.538

1.538

1.538

1.538

1.538

1.538

1.538

-40-

().1

X=O.5

00775

0.788

0.813

0.851

0.900

0.961

1.032

1.I.06

1.195

1.282

1.365

1.440

1.498

1.534

1.547

1.546

1.543

1.540

1.538

1.536

1.535

1.534

1.533

1.533

1.532

1.s32

1.532

1.s32



Tdde 4 (Cont.)

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

1.538

1.538

1.538

1.538

1.538

1.538

L 538

1.538

1.538

1.538

1.537

1.552

1.177

0.262

0.029

0.003

0.000

Ooooo

0.000

Ooooo

0.000

O.om

-41-

1.s32

1.532

1.532

1.532

1.532

1.s32

1.532

1.531

1.529

1.522.

1*W

1.382

1.079

0.581

0.21.3

0.064

0.018

o.m5

0.001

0.000

0.000

0.000



EXACT SOLUTION

0,6

r

0,4 —

0,2 —
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CELL NUMBERS
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Fig. 1. Velocity Profile at time t = 13.48for problem1.
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~LL NUMBERS

Fig. 2. Density profih at tim t = 13.48 for pmbh 10
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1.6

1.4

1,2
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:
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Cj
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0,4

0,:

0,(

35

:ACT SOLUTION

A=OC50

I I “n’’”

x=ot70

I
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CELL NUMBERS

—

43 45

Fig. 3. Velocityprofileof the shockfrontat t = 13.48for m.rhM—
choices of h.
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