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THE USE OF OPTICAL FIBERS FOR SHOCK PRESSURE
AND TIMING MEASUREMENTS AT HIGH PRESSURES

by

Michael J. George, Ralph Menikoff, and Lynn R. Veeser

ABSTRACT

We have investigated the use of quartz fibers as
arrival-time detectors and as absolute pressure transducers
for shock waves at pressures of 50 GPa and higher. Four
experiments were fired in which a steel flyer plate impacted
an instrumented steel target plate. Arrival times measured
with the fibers are compared with those given by more
conventional electrical pin switches. Additional signal
features are related to hydrodynamic events and compared with
calculations. Calibrated signal voltages are related to
shock temperatures through blackbody radiation theory. The
temperatures are then related to pressures using shock
Hugoniot data, and the results compare favorably with those
of the hydrodynamic calculations.

I. INTRODUCTION

Electrical pins and foil switches work reliably at shock pressures of
100 GPa (1 Mbar) and higher. They are also sensitive to weak precursor shocks
with strengths as low as 1 GPa. To detect the arrival of very high pressure
shock waves without being pre-empted by possible low—pressure disturbances, we
need a detector with an appropriately high threshold. We have investigated
the use of optical fibers for this purpose. When a high-pressure shock wave
enters a fiber from the surrounding medium, a hot, light-emitting shock front
will be produced within the fiber itself. The amount of 1ight that travels
down the fiber will be determined largely by geometrical considerations. A
high shock temperature is needed in the fiber to generate a detectable signal.
Thus, we can have a fiber-optic "pin" that has a high pressure threshold.
Furthermore, if we understand how the temperature in the fiber can be related
to the pressure in the surrounding medium, the fiber has the possibility of
becoming a continuous pressure transducer as the shock propagates along its
length. A series of four experiments, M—-4 Shots H-654, H-655, H-664, and
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H-665, was conducted to test these principles. Hereafter these shots will be
called the first through fourth experiments, respectively.

II. EXPERIMENTAL ARRANGEMENT

The basic experiment was to explosively drive a thin steel plate into a
similar stationary plate at a slight angle, producing a phased collision. The
physical arrangement is shown in Fig. 1. The explosive was estimated to
accelerate the first plate up to 5 km/s, which would then produce a collision
phase velocity of about 40 km/s. The layer of epoxy on the top surface of the
target plate served to protect the instrumentation and to act as a
hydrodynamic cushion.

The target plate was instrumented with four kinds of sensors at each of
ten stations: 1) Cu-on-Kapton electrical foil switches, 2) Al-on-Mylar
electrical foil switches, 3) optical fibers lying on the surface of the steel
with egress to the right along with the electrical leads ('surface fibers"),
and 4) optical fibers through small holes in the target plate with egress to
the bottom through epoxy potting (“through fibers"). The electrical foil
switches, hereafter called Cu and Al pins, were tested in two similar M-4
experiments, Shots H-164 and H-165, which were reported in M-4-1851, July 15,
1983.

II1. FIBERS, FILTERS, AND DETECTORS

In the first two shots we tested two kinds of optical fibers, Raychem
VSC-A1-1X-17, and Polymicro Technology FHP-100-110-135. Each is a radiation
insensitive (low—impurity), 100-um-diam core fiber commonly used by P Division
for experiments in high-radiation environments. Since we saw little or no
difference in the amount of 1ight, we used only the Polymicro fiber, the
easier one to handle, on the third and fourth tests.

The Polymicro fiber has a pure fused silica core with a thin, doped-
glass cladding and a 135-um-diam plastic jacket that is not nearly as fragile
as it appears. We instrumented the shots with 2-m-long pieces having an OFTI
connector on one end. Running from the experiment into the bunker to the
detectors were 15-m cables (8 fibers each) that we protected and reused.

The optical detectors were model 902 APD receivers built by P-14. They
are based on an RCA model C30948 silicon avalanche photodiode with a fast
amplifier following. The sensitivity is 1.1 x 104 V/W, the bandwidth is about




Shots H-654, 655, 664 & 665
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Fig. 1. Physical arrangement for all four experiments.
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450 MHz, noise levels are <1 mV, and the maximum 1inear response occurs around
1 V output (100 uW, input). To help achieve high bandwidth, the receivers
have been AC coupled, and the resulting drop in signal for a constant input is
about 10%/us. The spectral response drops off rapidly for wavelengths 1longer
than 1000 to 1100 nm, and we filtered the inputs with Wratten 89B filters to
absorb wavelengths shorter than 700 nm to reduce background 1ight and help in
the calibrations. For the fourth shot we added neutral density filters to
reduce the signals by factors of 2 for the surface fibers and 7 for the
through fibers.

For the first two shots, when we were unsure of the signals to expect,
we followed the optical receivers with a 100-gain fast amplifier to be sure we
would see some signal and to let us look carefully for any prepulses. We also
removed all filters for these two shots.

The electrical signals from the optical receivers (or amplifiers) were
power—divided, and each signal was sent to two LeCroy TR8828 digitizers; one
recorded at high sensitivity (2 mV/sample bit) and one at low sensitivity (20
mV/bit).

IV.  ARRIVAL-TIME MEASUREMENTS

In the first experiment, the epoxy on the target plate was not
blackened, and sufficient 1ight was received from shocked air in front of the
driven plate to drive the detector amplifiers into saturation. Fast-breaking
pulses were observed only from the Cu and Al electrical pins, and the data
from these are given in Fig. 2. Instrumentation positions 1 and 10 are not
shown because they are subject to severe end effects from the driver system.
The time zero here and in all following data is an arbitrary timing fiducial,
which occurs approximately 30 us after the load-ring pulse that fires the
detonators, and which appears on all of the TR8828 records. To within ones
ability to read the plot, one cannot tell the difference between the two sets
of data.

The epoxy was blackened for the second experiment, and this eliminated
the early signals on the surface fibers so that fast-rising pulses were
obtained. However, the pulses were still sufficiently 1large to drive the
amplifiers well intc saturation. The 1late through fibers still had slow
precursors, which were now attributed to 1ight from shocked air on the back
side of the target plate. (The epoxy potting on the back side was blackened
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for the third and fourth experiments.) Fast-rising breaks were also found on
the through-fiber pulses, corresponding to the times for the associated
instrumentation stations. Therefore, good timing data were obtained on all
four sets of sensors, and there was no evidence of any prepulse from a 1ow-
pressure shock in the epoxy, but the amplitude data were not interpretable
because of the saturation. Figures 3-5 show various combinations of the data.
In these plots and all others that follow in this format, the following symbol
definitions are used consistently: Circle = Cu pins, X = Al pins, Triangle =
surface fibers, and + = through fibers.

In the third experiment the amplifiers were left out, and the visible
light (89B) filters were inserted. The signals were now well within the
recording range, but some of the detectors were driven into the nonlinear
output range. All of the signals now started with a sharp break from the
baseline. However, several fibers were broken during the firing setup,
probably because a severe snowstorm caused us to lose some of our patience and
coordination. Figure 6 shows the data from Stations 2-9. Aluminum pins were
not included in the third and fourth experiments.

The neutral-density optical filters were inserted for the fourth
experiment, and these allowed the recording of signals of nearly optimum
amplitude. Good timing data were obtained from all three sets of sensors,
and these results are presented in Figs. 7-8. Two of the surface fibers
(Stations 4 and 7) had a section of smaller core diameter fused to the front
end, and a second sharp rise occurred in the signal at the diameter
transition. These time-position points are included in the data plots and
appear to lie on the trajectory, so that the possibility of measuring two
arrival times with a single fiber has been realized. About 180 ns after their
initial signal rise, the through fibers show a sharp amplitude reduction,
which 1is attributed to the shock breakout on the back side of the target
plate. These times are also plotted in Fig. 8. In Fig. 9 we plot the time
difference between the initial signal rise and its fall for each of the 10
stations as a function of position. These are direct interval measurements
and have very good precision. The decrease in the transit time with position
is because of the increase in flyer plate velocity with distance of run. This
is compatible with the increasing signal strength in the surface fibers and
one-dimensional hydrodynamic calculations described in Sections VI and VII.
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Distance, from Station 1, vs time for the third experiment, showing data
from Cu wire pins and all fibers, many of which were broken and gave no

signals.







¢l

Position (mm)

Fourth Experiment, Shot H-665

Surface & Through Fibers

170

160 -

150

140

130

/53— |Back side

of plate

70 ]

60

50

40

Fig. 8.

30 ~
20 —‘—v—z/

T T

10.0

T T T

Time (us)

10.5

1.0

1.5

12.0

Distance vs time for the fourth experiment, showing data from both groups
of fibers, including breakout on the back side of the plate.
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Fig. 9. Transit time through the steel plate, from initial pulse rise to sudden
decrease, vs distance from Station 1.




The time differences between the various sets of sensors are so small
that it is hard to read them from the data plots. The average differences
from each experiment, using the Cu pins as a standard, are summarized in Table
I. The surface fibers are later than the electrical pins, and the through
fibers are 1later yet. The slightly increased delay in the later experiments
may be related to the reduced recording sensitivity for the fibers.

V. SIGNAL AMPLITUDES AND SHOCK PRESSURES

To estimate the quartz fiber shock pressure from the amount of 1light
produced, we begin by assuming that the end of the transparent fiber is in
contact with a blackbody radiator (the shock-heated part of the fiber). For
the convenience of the reader, some Planck radiation curves are plotted in
Fig. 10. At wavelength A, the blackbody at temperature T radiates an amount

2y 1 _27x10 o1 3

5 The/nkT To/T . WS m
e -1 e -1

L(A) = 2¢
A

for A = 850 nm and To = 1.7 x 1014 K. We estimate the solid angle of

acceptance from the fiber numerical aperture, NA = 0.25 = sin 8, where 6 is
the half angle of the 1ight that is totally internally reflected in the fiber
core. Then the solid angle is AR/4xr = 0.016. The area of the 100 um diam
core is A=7.8 x 10_9 mz, and the optical bandpass of the system is AN = 300
nm. Multiplying all these factors together gives the 1ight power transmitted
in one direction down the fiber,

1.0 x 1072

P=L()\)AA7\A9/41r=—e'ﬁ7TW

For a 60-GPa shock in the quartz, we expect a temperature of T = 3600 K and a
power of P = 90 uW.

At these temperatures there is not enough 1ight to measure the spectrum
to verify the blackbody assumption. In an earlier experiment we measured the
visible spectrum from a hotter (#2 eV) shock-heated fiber using a spectrometer
and a streak camera; there was no evidence of spectral lines, but for that
case we could not measure the entire spectral shape because most of the 1ight
is in the shorter wavelength region.

14




Experiment
No.

HowN

TABLE I

Average Time Delay from Cu Pins

(nanoseconds)

A Surface
Pins
5 —
3 9
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1
ns Fibers

Through

Fibers

19
22
22
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Fig. 10. Blackbody radiation intensity, power per unit area per steradian per unit
wavelength, as a function of wavelength for selected temperatures.




Figure 11 shows the relationship between quartz pressure and
temperature on the shock Hugoniot; it is taken from the Sesame equation-of-
state tables. A least squares fit to the curve of Fig. 11 gives T = -2000 +
97 p - .044 p2, where the temperature is in K and p is the pressure in GPa.
Figure 12 gives the optical power from a fiber, again as a function of the
shock pressure in the quartz.

We checked the transmission of the system by first inserting an 850-nm
1ight source into the optical detector and then installing the filters and the
15-m cables and remeasuring the signals. Overall transmissions were 0.50 for
the surface fibers and 0.14 for the through fibers for Shot 4, where we used
different amounts of neutral-density filtering for the two cases. For Shot 3,
where we used the same Wratten 89B filters but no neutral-density filters,
transmissions were about 0.8. We estimate the transmission measurements to be
accurate to about +20%.

Presently we are trying to fabricate a 1light-emitting-diode-based
calibration system that will overfill the fiber core to approximate the shot
conditions and allow more accurate transmission measurements. That will be
especially important when we need to use fiber—optic splitters, where the
splitting ratio can depend on the mode structure of the 1light in the fiber
core.

We calibrated the gain of the detectors using a stabilized 1ight-
emitting diode, the output of which was measured with a Tektronix 7F10
receiver. We also checked the gain of the 7F10 and found it to be accurate.
The gain calibrations are estimated to be accurate to about +#10%. Al1 the
gains were set to 11 mV/uW.

Figures 13-14 show results from two surface fibers and two through
fibers on Shot 4, both pairs from Stations 3 and 5. A supplementary scale on
the right-hand side gives the conversion to fiber-optic output powers for the
surface fibers. The light—producing mechanism for the through fibers is
thought to be more complex and less well understood; therefore, we have not
included a similar scale for that measurement.

The surface fiber from Station 1 gave a signal that increased gradually
as the moving plate crushed the fiber. The signal was approximately constant
from 10.0 to 11.7 us, at which time it became very irregular. The other nine
surface fibers all had sharp rises at Jlater times, consistent with their
positions on the plate, and then they agreed with the Station-1 signal quite

17
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Fig. 11. Quartz temperature vs pressure for the shock Hugoniot. The
curve is taken from the Sesame equat{on-of-state tables, and the points
were measured by Lyzenga and Ahrens.
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Fig. 13. Digitizer output data for the surface fibers at Stations 3 and 5 on

Shot 4 with the conversion to fiber-optic output power.
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Fourth Experiment, Shot H-665
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Shot 4.
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than the main signal, perhaps because the weld did not transmit fully. There
is also a small, gradual increase at the start of the second rise, probably
indicating increased 1ight coupling into the fiber when the shock nears the
end of the narrow region. Nevertheless, we consider this test a success, as
it shows the possibility of getting more than one time vs position measurement
from a single fiber, although we will not be able to measure absolute 1ight
outputs and pressures from the fused-on piece.

VI.  HYDRODYNAMIC CALCULATIONS

After the experiment, one-dimensional calculations with the HYDROX code
were used to obtain the velocity of the flyer plate and the pressure in the
target. Figure 17 shows the velocity of the flyer plate as a function of
distance of run. At Station 2, 15 mm of run, the velocity is 4.9 km/s, while
at Station 9, 31 mm of run, the velocity has increased to 5.4 km/s. The flyer
plate sends a weak shock into air, p = 30 MPa. The reflected air shock has a
pressure p = 380 MPa, temperature T = 13000 K, and compression ratio p/po =
55. The high temperature causes the air to radiate 1ight and necessitates the
optical fibers on the surface being coated or otherwise protected.

The air acts as a cushion between the flyer and the target. As the air
is compressed, its pressure rises rapidly, and a shock is generated in the
epoxy layer over the target plate with a pressure p = 45 GPa. This is
approximately the pressure that would result from the impedance match between
the flyer and epoxy neglecting the air. The shock in the epoxy reflects off
the steel target with a pressure p = 105 GPa. A subsequent compression wave
from a reflection in the epoxy catches up to the steel shock and strengthens
it to a pressure p = 170 GPa. This is approximately the pressure that would
result from the impedance match between the flyer and the steel target
neglecting both the epoxy and air. The wave interactions can be seen from the
pressure contours in the distance-time plane shown in Fig. 18. The pressure
profiles in the flyer and target during their collision are shown in Fig. 19.
For 20-mm distance of run of the flyer (approximately Station 4), the
calculation predicts a transit time for the shock in the target of 200 ns,
compared with the measured value of 180 ns seen in Fig. 9. Furthermore, the
compression wave catches up and strengthens the shock in the target after
approximately 95 ns, which is presumed to be the cause of a second signal
increase observed on most of the through fibers. The measured times for this

2

25




9¢

VELOCITY (km/s)

10

Station 2
Station 9

| 1 |

0 10 20 30
DISTANCE (mm)

Fig. 17. Calculated velocity of the flyer plate vs distance
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second signal increase vary from 96 to 136 ns, but because of the nature of
the shock overtake process, very small experimental irregularities may have a
strong effect. The calculated shock velocity in the steel target increases
from 7.2 km/s to 8.4 km/s when the reflected shock catches the initial shock.

For the through fibers the first signal comes from the match of the
epoxy shock into the quartz. Subsequently, the radial implosion of the fiber
by the surrounding shocked steel should strengthen the shock in the fiber and
hence increase the 1light signal. For the surface fibers the 1light is
generated by the quartz shock from the impedance match with the epoxy shock.
The pressure in the fiber subsequently rises to that of the impedance match
between the epoxy shock and the steel target. The reflected wave in the
epoxy, which further raises the pressure, reaches the fiber 0.1 us later and
is too far behind the shock front to affect the light signal.

VII. HYDRODYNAMIC COUPLING OF FIBERS

To use an optic fiber as a pressure transducer, it is necessary to
understand the hydrodynamic coupling of the pressure wave in the surrounding
material into the fiber. The coupling depends on the geometry and is
different for the surface and through fibers. The pressure wave in the
surface fiber is driven by the collision of the plate with a velocity vector
nearly perpendicular to the fiber axis. Because the phase velocity of the
collision is larger than the shock velocity in the fiber, the leading pressure
wave in the fiber is an oblique shock. To a good approximation, it may be
estimated as a radial shock. Neglecting the curvature of the fiber cross
section results in a simple one-dimensional impedance match problem to
determine the shock strength in the fiber. Because the detected 1ight is
radiated by the 1leading shock front and the initial shock 1is oblique,
subsequent reflected shocks may be neglected (see Fig. 20).

The pressure wave in the through fiber is driven by a shock in the
surrounding medium along the fiber axis. To avoid precursor waves, it is
necessary that the shock velocity in the surrounding medium be as 1large or
larger than the shock velocity in the fiber. Due to cylindrical convergence,
the shock configuration in the fiber is similar to Mach reflection (see Fig.
21). This 1is an analogue configuration to the axial shock in a fast shock
tube. The incident shock in the fiber may be approximated by a one-
dimensional Riemann problem in the radial direction starting with pressure in

29
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Fig. 20. Shock configuration for surface fibers.
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the surrounding medium but neglecting its axial velocity. The Mach disc in
the fiber has the same shock velocity as that of the surrounding medium. The
Mach disc is a stronger shock than the incident radial shock and hence,
generates more intense light. The complication in computing the total light
generated in the fiber is determining the fraction of the cross—-sectional area
occupied by the Mach disc. Until simple empirical relations are found, two-
dimensional hydrodynamic calculations of the fiber in the surrounding medium
are needed to relate the measured signal strength from the fiber to the
pressure in the medium. Note, the hydrodyamic codes need only an incomplete
equation of state, pressure as function of density and specific internal
energy, to determine the shock strength. But to determine the 1ight output,
the temperature is needed. This makes it necessary to have a complete
equation of state parameterization for the fiber (i.e., 5102). Also, to avoid
precursors (channel shocks), it is important that air gaps between the fiber
and surrounding medium be filled with blackened epoxy or the equivalent.

VIII. CONCLUSIONS

Optical fibers can be made to operate as high-pressure shock arrival
time detectors, and they give arrival times comparable to or slightly later
than those measured with electrical sensors. With optical to -electrical
conversion, the signals have risetimes that are comparable to those generated
with electrical pins. For fiber runs of a few tens of meters, nanosecond
precision seems to be possible. Signal-level changes at later times can be
interpreted in terms of hydrodynamic events. Calibrated signal levels can be
related to temperatures at the shock front in the fiber, which in turn can be
related to absolute pressures in the fiber and in the surrounding medium. A
number of uncertainties are involved pertaining to the equation of state of
quartz and the details of shock impedance matching into the fiber.
Nevertheless, satisfactory agreement is obtained between pressures calculated
from the fiber signals and those given by the hydrodynamic calculations for
the experiment.
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