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GeneralizedEquationsfor Emittanceand Field Energy
of High–CurrentBeams in Periodic Focusing

by

Ingo Hofmann

ABSTRPICT

We derive a set of ordinary differentialequationsre-
lating the rms emittanceof a beam with its nonllnearfield
energy. The equationsare valid in constantor periodic
focusing and l-D, 2-D, or 3-D and thus provide a general
framework to study emittancegrowth. They allow us to esti-
mate the expected total emittancegrowth, if the change of
nonlinearfield energy can be predictedfrom general princi-
ples, like the homogenizationof charge density in beams
that are space-chargedominated. Structureresonancesin
periodic focusing can be identifiedas a resonancebetween
the envelopemodulationand the oscillatingnonlinearfield-
energy term. The equations lead to estimatesfor the maximum
longitudinal-transverseemittancetransfer in situations
where equipartitioningoccurs. A comparisonwith results
from computer simulationwill be the subject of another
paper In preparation.

I. INTRODUCTION

Recently,an equation has been presentedby Wangler et all relating the

rms emittance growth of a beam to its electricfield energy in the case of an

azimuthallysymmetriccharge distributionand a continuousfocusing force. (A

similarequation has been derived previouslyby Lapostolle.2) The equation by

Wangler has been found useful for interpretingthe change of rms emittance in

numericalsimulationunder extreme space-chargeconditions. In this limiting

case, it has been possible to predict final emittance growth from the field

energy stored in an initiallynonuniformcharge distributional Wangler et al.

also confirm the approximateformula for emittancegrowth, which was previously

derived heuristicallyby Struckmeier,Klabunde,and Reiser3 assuming a balance

betweenfield energy and (transverse)kineticenergy.



Real beams are consideredin periodicquadruple channelsand thus deviate

from azimuthal symmetry. Moreover, they can be bunched longitudinallyand allow

for transferof emittancebetween the transverseand longitudinaldirections,

as was shown previouslyby Jameson4and by Hofmann and Bozsik5 using computer

simulation. The question has been raised whether it is possible to generalize

Wangler’s equation to a realisticmultidimensionalcase with periodic focusing

and thus obtain relativelysimple equationsfor emittancegrowth that can be

useful for practicaldesign and to enhanceour general understandingof emit-

tance growth. Here we show that it is indeed possible to derive such equations

by forming moments of Vlasov’s equation (Sec. II). In Sec. III, we specify the

general equation to beams in one, two, or three dimensions; in Sec. IV, we
present a minimum energy principle;in Sec. V, we derive Debye shielding;and

in Sec. VI, we discuss some practicalapplications.

II. DERIVATIONOF BASIC EQUATION

We assume equationsof motion in x, y, z with linear, time-dependentex-

ternal focusing forces and arbitraryspace-chargeforces, where time

placed by the distance s (= v ● t) and q is the charge of the partic’

X“ + kx(s)x - + EX(X,Y,Z,S)= O
my v

y“ + ky(s)y - a E (X,Y,Z,S)= Omy3v2 y

Z“ + kz(s)z - -+ EZ(X,Y,Z,S)= O .
my v

~ follows from Poisson’sequation

v . E =% n(x,y,z,s) ,—.

where n is the density,which is determ’

6-D phase space into real space:

is re-

es:

(1)

(2)

ned by projectinga distribution n

n = ~Jf f(x,y,z,x’,y’,z’,s)dx’dy’dz’ ,

with f satisfyingVlasov’s equation (y ; d~/ds)

2



+ + OJ” (● ~) f - & -
)

~ E ● Vxlf = O .
~ysvz - —

We define second-ordermoments (with N the total number of particles)

~
= N-’J...f x2f dx...dz’ ,

xx’ = N-’f”oo~ XX’f dx...dz’ , etc.,

and derive from Eq. (3) by computing the respectivemoments:

d 3
Gx -27=0 ,

d— ,2+k -1
Zxx’ - x xx-J%Z- =0,

my3v2 x

d ,2 —+ 2kxxx’ - &~=o ,
%x mY3v2 x

and analogous in y, z.

We define the rms envelope

~ 1/2
()i:x

and rms emittance

(

——

–)
1/2

‘x E 4 X2 X’2 - XX’2 “

We follow the procedure by Sacherer6 and obtain the rms envelope equations

d2 c;(s) q
;+kx(s) ~-—- q

MY3V2 ~ = 0 (similar in y,z)
ds2 16;3

(3)

(4)

(5)

(6)



by el

of Eq

equat

minating x’2—and xx’ and ignoring the third part of Eq. (4) In favor

(5). We observe that neither Eq. (4) nor Eq. (6) is a closed set of

ons because, in general, higher-ordermoments of Vlasov’s equation are
— —

contained in XEX, X’EX, and we obtain an infinite set of coupled moment equa-

tions. Hence, Eq. (6) contains c;(s) as an unknown function,whose derivative

can be readily derived from Eq. (5) (similar in y, z):

d2 _XJl_

(

~~—— \
~ ‘X = my3v2 x - xx’ XEx

)

d2 .*/~~ ––)
z Cy

\ Y - YY’ YEY ,
my v

9

(7)

and

d2 . 32cl i~~ ——
z ‘z my3v2

(
z – ZZ’ ZE

)
z.

The difficultynow lies with the unknown moments involving~. In the fOl10win9,

we attempt to replace these by the electric field energy as a quantity that

promises more physical insight. To this end we require that

~ = N-l J...j x’Exf dx...dz’ = N-’f.fJExn~ dx dy dz , (8)

with n< t ~~f x‘ f dx‘dy’dz’, the local averaged velocityof beam particles

(in the moving frame). With the local current given by

j=qnv~, (9)—

we obtain

-1X’EX = (Nqv) ~~~ Exjx dx dy dz (1o)

and similar for y, z. By integratingEq. (3), we derive the continuity

equation

4



(11)

and write (~ = – ~$):

Jf.fE ● J ‘dxdy dz = .J.J.J4 !?.● J dx dY dZ = - qv Jj.f41;dxdydz . (12)

The integrationis performedover a volume V, which contains the beam in its

interior;hence, we may neglect a surface integral. Using Poisson’sequation,

we obtain

where En is the normal componentof E on the surface S of our integration

volume and

(13)

(14)

is the field energy within V.

Using Eqs. (10) and (13), we can add the three equations,Eq. (7), after
-27 -Zdividing them by x , y , and z , respectively. We thus obtain, with the first

equationof Eq. (4):

ld21d21d 2—— + ——
~dscx ~ds ‘y+E~&Z=

Y 2

We observe that no approximationhas been made so far in deriving Eq. (15),

which relates the coupled change of the three emittancesto the change of

field energy. The remainingterm on the right-handside will be shown below

to give, with some approximations,the field energy of a uniform density

beam.

5



We remark that

for transversebeam

yields the 1-D case

Ey equal to zero).

Eq. (15) immediatelyyields the respective2-D equation

dynamics of a long beam (cz, Ez equal to zero); it also

describingpurely longitudinaldynamics (cx, &y, Ex, and

The right-handside of Eq. (15) has to be evaluated sepa-

rately for each dimension (Sec. III).
It is also useful to derive an energy principlefrom the third equation,

Eq. (4), for x, y, and z. By adding them and using Eqs. (10) and (13), we

obtain

(16)
2+

(
~14+cofJ~~Enda

)
=0.

my3v2N s

For constant focusing,we can write this as total energy conservationlaw

T+Vex+~ W s const
yN

with

2———
T~~ (~t2 +y’2 + z’2)

(kineticenergy in beam frame)

v: (rl+fk~ --2 -z
ex x

+ky
Y

+ kzz
)

(potentialenergy caused by externalfocusing forces)

Here we have neglected the boundary integral,wh

boundary Is far away and thus dEn/ds + O.

(17)

(18)

(19)

ch is justified if the



III. GENERALIZEDEMITTANCEEQUATIONS IN DIFFERENT DIMENSIONS

A. Three-DimensionalEquation

To relate the third term on the right-hand side of Eq. (15) to the field

energy of a uniformlyfilled ellipsoid,we have to calculate its potential and

field energy. In App. A, we derive the potentialof a uniform rotationally

symmetricellipsoidwith semiaxesa (in x, y) and c (in z) and show that the

field energy inside a large sphere of radius R is given by

[
Wu = -# : (1 -f+

o 1$‘)-$‘
where f(c/a) is a geometry factor (= 1/3 for a spherical bunch).

for a and c to vary with s, we can calculate the time derivative

find (App. A)

dWu

[
g &c+ da 1 - f

iX--=- O ds a2 1Z7 “

(20)

By allowing

of 14uand

(21)

To show the relationof dWu/ds with the remaining term in Eq. (15), we define

(

-7 -7 7
1: 1 dx q+~~jT+——

)

1 dz ~:— ——
~ ‘s ~ ds

7‘s z “
(22)

Y

For a uniformlycharged ellipsoid,we calculate I from the potential and find

readily

dWu
Iu=-~— Nqds “ (23)

For a more general ellipsoid, it can be shownG that the averaged quantities— —
XEX, yEy, and ~ depend only weakly on the actual charge distribution if

buncheswith identicalrms dimensions (rms equivalent bunches) and ellipsoidal

symmetryare compared. The latter requires a particle density of the kind

n(x,y,z,s)= n
(

2+2, s
$ + b2 C2

)

(24)



for which one finds6

q = jq= 3Nq71/2
20&lf&oz

and

ZE = 3Nq Zlf>
71/2 ~ “ -3

20&lfEoz

1 -f
2 ‘3

X3 dependingon the profile

uniform

x 1.006 ‘parabol

z 1.051 Gaussian

in Eq. (24):

c

x 1.018 hollow (r2 “ Gaussian)

(25)

(26)

(Note that our X3 correspondsto 5fi X3 in Ref. 6).

Ne thus can generallywrite

dHu
I=- ~A—Nq 3 ds (27)

and obtain from Eq. (15) the 3-D generalizedemittance equation (here actually

proven under the constraintof Cx = s and XL = yz):
Y

ld21d21d 2 32—— + ——
~dscx ~dscy

Y + 2 z ‘z = - my3v2N

dW dWu

z - ‘3 ds . (28)

The integration in N is performed over a large enough volume so that

dEn/ds+ O; hence, we may neglect the surface integrals.

Keeping in mind that the right-hand side vanishes for a uniformly charged

bunch, we have thus shown that the change of emittance is directly related to

8



the change of the nonlinear field energy. We observe that we have on the left-

hand side the weighted sum of the dc2/ds for x, y, and z, as a result of the

coupling introducedby the space–charge force. This equation, therefore,

promisesan estimateof the change of the weighted sum of emittances if the

change in nonlinearfield energy can be estimated from general principles.

It then allows also an estimate of the maximum emittance transfer if “equi-

partitioning”shouldoccur as a result of a coherent instability or single-

particle resonance. The actual dynamicsof coherent instabilitiesrequires

solving equations for higher than second-ordermoments, which is beyond the

frameworkof our derivation. Equation (28) also indicatesthe possibilityof

slowly growing emittance caused by “structureresonances”In a periodic focus-

ing system if W oscillates with a period close to the focusing period. This

can happen for certain values of the phase advance U. and u (see Ref. 7 for

the 2-D analogue).

Me thus suggest that Eq. (28) gives a rather general framework to describe

emittancegrowth. Its practical value depends yet on the possibilityof esti-

mating changes of the nonlinear field energy, without actually calculatingits

time dependence,which is in fact possible in many situations.

Equation (28) is supplementedby the rms envelope equationsderived by

Sacherer.6 With Eqs. (6), (25), and (26), we obtain for the rotationally

symmetricellipsoid

d2 e;(s) ~2
;+kx(s) ;-—-

ds2 16~3 20Aflcomy3v2~;

and

d2 c:(s) Nq2~+kz(s) ~-—-
ds2 16~3 20Amomy3v2;~

with

1/2
Ti:x (= al~ for un

hx
()

~ =0
i

hz

()

~ =0
i

form ellipsoid) ,

form ellipsoid) ,

(29)

(30)

9



and

Note that for a sphericalbunch, we have f = 1/3; hence, hx = hz = X3 x 1.

For a nearly sphericalbunch (0.8 f ~/~ f 5), we have approximately,with

f x l/(3~/~)(seeApp. A),

h 21+;
()

i1-=
x z

and

B. Two-DimensionalEquation

In App. B, we show that for a continuousbeam with un

section,the field energy calculatedwithin a large circle

given by

Wu=
[

$& l+41n~
o )a+b ‘

where a and b are the semiaxes in x and y. Thus, we find

dWu %a + b)

K=- 4wods a+b ‘

(31)

(32)

(33)

(34)

form elliptic cross

of radius R is

(35)

(36)

where we have introduced

(37)

as field energy within the actual beam volume. The 2-D equivalentof I in

Eq. (22) is readily seen to obey again

dWu
Iu=-~— Nqds “

(38)

10



The main differencewith the 3-D case is that ~ and ~ are independentof

the density profile, as long as ellipticalsymmetry is satisfied:

n(x,y,s)= n
()$ +$’ s “

(39)

We then have I = Iu and obtain (again neglectinga surface integral, if R is

sufficientlylarge)

ld21d2 32—— + .— 32 &(W-Nu) .
~ds ‘x ~ds cy=-

Y
myv N

(40)

It is appropriateto introducethe in-beamfield energy W. as the normalization

constantand rewrite the 2-D generalizedemittance equation as

Id ~2 1 2 d H - Wu
—— +—&=-
~ds x ~Y 4 ‘& W. “

Y

~ W has to be replaced by A2 ~ Wu,‘ote ‘hat ds U with X2 a correctionfactor
*

close to unity if Eq. (39) is not satisfied. Here we have introducedthe
generalizedperveancegiven by (followingthe notationof Ref. 1)

~2
Kz

2ficomy3v2

--27For a round beam(x = y and Cx = c ),
Y

we readily obtain

d2
z ‘x

.-2 ~ ~ ~ w - ‘u ,
wo

which agrees with the equation derived in Ref. 1 for continuous
7that x = X2/4, with X the radius of an equivalentuniform beam

Ref. 1).

(41)

(42)

(43)

focusing (note

as used in

*In this case, numericalcalculations(privatecommunication,P. M. LdpOStOlle,
1985) show that X2 differs very little from unity, for instance,a few times
10-3 for a rectangular cross-section beam. In long periodic sy5tem5, variation
of X2 might have a bearingon slow emittancegrowth in the same fashion as the
resonantgrowth from a periodicallyvarying W – Wu as discussed in Sec. VI.3.



Equation (41) is again a promising tool to describe changing emittancesif

the change of the nonlinearfield energy is known or can be estimatedfrom some

general principles. Note that (W - Wu)/wo only depends on the type of non-

uniform density, but not the actual size of the beam. For a parabolicdensity

profile,we show in App. D that it has the value 0.0224, whether the cross sec-

tions are sphericalor elliptic. A Gaussian profile yields 0.154 for a round

beaml (numericalresults indicate the same value for an elliptic cross section).

For completeness, we give the rms envelope equations followingfrom

Eq. (6):

d2 2
‘x KI~+kx(s) ~-—––—= o

ds2 16~3 2;+~

and

(44)

(45)

c. One-DimensionalEquation

For a uniformlycharged sheet (Izl ~ c and infinitelyextended in x,Y),

the field energy within ]zI g L is found as in App. C (N particlesper unit

area in x,y):

and

dWu N2q2 dc—-
K=- 6C0 ds - - NqIu .

In Ref. 6, ZEZ has been evaluated to be slightlydependenton the density
7profile; hence (with z = c2/3 for a uniform sheet),

ZEZ = -Ml_
2fi&o

(46)

(47)

(48)

where Xl is given by (differingby ~ from Ref. 6)

12



1

0.996

0.977

0.987

Ne thus have

dWu
I=- J-i—Nq 1 ds

uniform

parabolic

Gaussian

hollow (Z2 “ Gaussian) .

and the 1-D generalizedemittance equation:

(Id 2=- 32 dW dWu
—. \
P’z

z -Aliii- “my3v2N

‘()

1/2
-TThe correspondingenvelope equation is ~ = z

.

(49)

(50)

(51)

IV. MINIMUM FIELD ENERGY FOR UNIFORM-DENSITYBEAM

Practical evaluationof the generalizedemittance equations requires esti-

mates on the possible change of nonlinearfield energy. Numerical calculations

for a continuous,round beam have indicatedthat a uniform-densityprofile has

lower field energy than a variety of peaked or hollow profiles with the same rms

radius.1’3 Here we show that this is generally true in any dimension. Let us

thus consider a 3-D bunched beam with the field energy W given by Eq. (14). We

require that the variationof

7’-2--2S:W+a,X +a2y +a3Z (52)

be zero, with ai Lagrangemultipliersto keep the rms dimensionsconstant.

Hence,

[
6S = Jff EJ Sk + N-’(cx,x2+ a2y2 )]+CX3Z2 6n dxdydz=O .

v
(53)

I



By partial integrationwe can write th

6s = Jfl- p + N-’(qx2 2 Q 2)1+ a2y +az
v-

The boundary integral can be neglected

s as

tmdx dydz+coJJ$6Endu= O . (54)s

for a large enough integrationvolume

because the total charge is kept constant. The variationof density, tn(x,y,z),

cannot be arbitrary because N must be constant and n + &n j O everywhere. We

thus define it by an arbitrarydisplacement[6x(x,y,z),6y(x,y,z),6z(x,Y,z)I

of the position vector:

6n(x,y,z)= n(x + &x, y + &y, z + 62) - n(x,y,z)= Vn ● &x (55)— —

and obtain

(56)

which Is satisfiedby either $ = - N-’(ct,x2+ u2y2 + a3Z2) (interiorof beam)

or n = const = O (outside)correspondingto a uniformlycharged ellipsoid.

The same proof holds for 2-D and 1-D beams in full space,or with a far-

away boundary.

tributionwith

by a growth of

The importantconclusionfrom this is that relaxationof a dls-

nonuniformdensity toward one of uniform density is accompanied

emittance to compensatefor the reduced nonlinearfield energy.

v. SHIELDINGNEAR THE SPACE-CHARGELIMIT

For a practical evaluationof the generalizedemittanceequations,we will

find it useful to study analyticallythe nonlinearfield energy of stationary

distributionsin high-currentbeams. This will enable us to relate the non-

linear field energy of a matched beam to its tune depressionV/v. (or a/u. in

periodicfocusing),as a dimensionlessparameterdescribingintensity. For

small v/vo, we expect the well-known “plasma-shielding”effect, where the ex-

ternal potential is shieldedfrom the beam interiorby the space-chargepoten-

tial. This collectivebehaviorof an Intensebeam leads to the developmentof

a practicallyuniform density for v/v. + O, regardlessof the shape of the dis-

tributionfunction, provided that the external focusing force is linear. In
computer simulation,the general observationhas been that an intense beam

14



relaxes to a more uniform self-consistentdensity profile if injectedwith a

nonmatchedprofile. The relaxation is accompaniedby a changeof emittance,

which we intend to calculatefrom our theory.

For the sake of simplicity,in the followingdiscussionwe assume round

(sphericalor cylindrical)beams with time-independent(continuous)focusing

force.

A. Three-DimensionalCase

We assume, first, a Gaussian distributionfunction of the single-particle

Hamiltonian(thus automaticallya stationarydistribution):

n(0) X,2 ,2+Z,2
f= exp -

[
+ ~ ~ r2

)/1
+$P $

(21fp)3’2 2 2+ my v

where o follows from Poisson’sequationobtained by calculatingthe density

V2($= - [( )/1~n(0) exp - } r2 + ‘$ P
c. MY3V2

(57)

(58)

---2with n(0) the density on axis, and m = x’ is the average of x’2 as a measure

for the beam temperature. Equation (58) can be solved explicitlyin the low-

current limit, where $ in the density expressionis negligible. Here we are

interestedin the high-currentlimit and assume that the nonlineardependence

on $ can be expanded as a power series:

(59)

where we retain on1y the first-orderterm in the total potential. We make the

substitution

‘=tn(o)[’k+c(:-1‘*$)1

with

~ ~ q2n(0)

comy3v2p

(60)

(61)

15
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and obtain the familiar equation

v2&=c; , (62)

which is solved by the modified sphericalBessel function 0 ; z In+l/2 ‘or
n = O, and assuming z = ~~ r, then

J7_ -1
; z 11/2=z sinhz .

Using Eq. (60), the density follows from Poisson’sequation as

[

r/XD -r/AD a/AD

I/l

-a/AD – a/AD -a/lD

n = n(0) e –e e –e 2-e -e
rlAD - a/AD a/AD 19

where we have introducedthe Debye length according to

and defined a as the beam edge.

Introducingthe plasma frequency (on axis) by

w; = q2n(:)2 ,
cornyv

we can write

,2 V:herma,
i: = l!-. X_ -

W2 w; - w;
P

in agreementwith the usual definitionof Debye length.

Equation (64) reveals the shieldingbehavior,which can be seen more

easily by rewriting the expression,using AD << a (avoidingr = O)

[

(r-a)/AD)

n = n(0) 1 – e ~,a 1

(63)

(64)

(65)

(66)

(67)

(68)

16



The density is thus uniform except for a sheath of thicknessAD, where it drops

to zero. Comparisonof Eq. (68) [more accuratelyEq. (64)1 with Eq. (59) shows

that the solutionfound is consistentwith the series truncationas long as
lr _ al > AD and AD << a. Inside the boundary sheath the truncationis invali-

dated when approachingr = a, where the full solutioncannot have a sharp edge.

For a waterbag (i.e., step-function)distributiondefined as

n(0)

[

X,z ,2+Z,2 k ~
f= + 1_JL@p,

312 e 2 ‘Zr +: ll(3p) my3v2

we readily obtain the nonlinearequaticn

[( )/ 1

312
v2f$ = - ‘n(O) 1- ~r2+~$~p .

‘o myv

(69)

(70)

This can be expanded and, with the leading term, we obtain again Eq. (59);

hence, the same density profiles as In Eqs. (64) and (68). The different

velocity space profile of the waterbag distributionleads to p = 5/3<x’2>r–o

(r = O denoting the local spread of x’ on axis); however,we readily find from

Eq. (69) that for ID << a, the local average of X’2 is constant,except for

the boundary sheath because of the smallnessof the potentialenergy compared

with $ p. We thus replace <x’2>r=oby X12 and obtain

(71)

The Debye length can be related to the more familiar betatron tune depression

Vlvo if we use the harmonic betatronoscillationapproximation. h(ithv~=k

and Eqs. (l), (66), and (A-2), we find for the space-charge-depressedtune,

2
22v =v- ~,

0

----2and with x’ 27ZV , we readily obtain for the Gaussian distribution

(72)

‘D n (73)
—. ——
a- [15(V:– V2)I”2 ‘ k JO

17
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and similarly,for the waterbag distribution,

~=lv -—
a 3 V. “

B. Two-DimensionalCase

For the Gaussian distribution,we obtain in

Poisson equation [as in Eq. (58)1, which after 1:

the same manner as before a

nearizationgives again

Vz(#)= - [( )/1~n(0) 1 - ~r2+~$ p
‘o myv

With a substitutionanalogous to Eq. (60) is replaced by 4, in this

case), we find as solutionsfor ~, the modified Bessel functionsof zero

order 10(W r) and the density

[

Io(r/lD)
n=n

ol- 1Io(a/XD) >

.

(the 6

(74)

(75)

(76)

where AD is again defined as in Eq. (67).

For the waterbag distributionin 2-D, we find that Eq. (75) holds exactly,

a well–knownresult.a Hence, Eq. (76) applies exactly and can be used to

constructan exact stationarydistribution. The Debye length in this case is

given by

,2
x; . ~ ~ 2 X_ (77)W2

P
W2 “
P

For large r/lD, we can use the asymptoticexpansion

Io(z) - L 1
& “+E +”””)

and obtain

[1(r-a)/AD

n=nol -e
m’

(78)

(79)
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which reveals again the uniform profile,except for the boundary sheath of

thicknessAD.

We can express this again in terms of the tune depressionby using

Eq. (B-2) and deriving the 2-D equivalentof Eq. (72):

2
22v =v- >.

0

Similarly,we find for the Gaussian distribution

‘D 1 V——

r ‘ & ‘o ‘

and for the waterbag distribution

‘D 1 V——
— ‘ 2 V. “a

VI. APPLICATIONS

While we intend to eva

(80)

(81)

(82)

uate the practicalusefu ness of our generalized

emittance equations in a subsequentdetailed study based on computer simula–

tion, it will be useful here to outline a few basic relationships. From the

structureof the equations,we attempt a classificationof the following types

of emittance growth:

A. Initial Mismatch EmittanceGrowth

An rms matched beam is (intrinsically)mismatched if the nonlinearfield-

energy term changes rapidly within a coherentoscillationperiod, which is

comparable with the plasma period given by Eq. (66) for a beam close to

the space-charge1imit [in this 1imit, the plasma period is identicalto 1/fi

(3-D case) or l/fi (2-D case) times the zero-currentbetatron period according

to Eq. (72) or (80)1. The conversionof this field energy into emittance growth

can be estimated from Eq. (28) if we assume that the rms envelopesremain nearly

constant, an assumptionthat is certainlyjustified in a space-charge-dominated

beam. We thus obtain for the 3-D case of a rotationallysymmetricellipsoid

77(x =y)
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Ac: Ac:
2—+—Z- :22 A(W-WU) .
~ ~ my v N

(83)

(The change in X3 gives only a small correctionnegligiblehere.) This

expressioncan be rewritten if we use the third equation,Eq. (l), In smooth

approximation, evaluatingEz from Eq. (A-2); hence, we obtain, with
2 ~ kz and v; the correspondingspace-charge-depressedbetatron tune:‘Oz

~2 2 2 a2c.
my3v24fico ‘Oz - ‘z 3f (84)

[ a2 ‘, C2 T=5x 1=5 z and f from Eq. (A-13)or (A-14) .

Using Eq. (5) for the initially upright phase ellipse and the harmonic

betatron-oscination approximation,we find, for the input emittance,

——
2 —2
= 16 X2 X12= 16v; X2 (85)

‘1

and similar in z. bleare thus able to express Eq. (83) in the two following

forms:

22Ac; Vz Z
2——

2+27
‘1 Vx x

and

where we have

;2

(

2vox 1
$z-—- 2
‘z ‘x ()~

1/3
213 — W-wu

A
l-f ~ ‘1

(86)

introducedw, as normalization constant

N2 2
w,=

4olrcoRo
(87)
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which is the field energy calculated inside a uniform sphericalbunch of the

same volume; hence, its rms radius is given by

3 T Z 1/2 a2cRo= x (z ) ‘p” (88)

The equations in Eq. (86), with tunes and rms envelopes evaluatedfrom the

initial conditions,allow us to calculate emittance change from the change of

the nonlinearfield energy. We observe that our equationsdo not indicatehow

the total emittance change is distributed into the transverseand the horizon-

tal planes. If we make the assumption--ina thermodynamicsense--thatexcess

nonlinear field energy increases equally the “temperatures” (given by— —
~12

— —
, Z’2) in each degree of freedom, then the terms Ac~lx2 and Ac~lz2 in

Eq. (83) are approximatelyequal, and we readily find

(89)

To estimate the actual change of nonlinear field energy, we can use the

result of Sec. V, according to which

w - Wu
+0 (90)

‘1

for XD/a + O, i.e., V/Vo + O. Hence, For V/Vo << 1 in the longitudinal and

transverseplane, the stationarynonlinear field energy is smal1; it can be

calCU1ated for a spherical bunch from Eq. (68). The emittance growth resulting

from a strongly mismatched density profile can thus readily be evaluated;a

parabolic profi1e for a sphericalbunch yields, for instance,

()w - Wu
= 0.0368

‘1 1 parabolic
(91)

21



For this sphericallysymmetric case, we can thus immediatelyconcludefrom
Eqs. (86) and (89) that

2
AC2 1

()

>-lA w - Wu
—z--2 32c v ‘1

and

2 2
0.0368

()

‘o
f ~ 3 ‘-’ ‘2v

(92)

(93)

where we have obtained an upper limit by neglectingthe final (positive)non-

linear field energy. For more accuracy,we could do an iterationby using

Eq. (93) to determine a new v/v. and XD/a, according to Eqs. (74) and (85);

thus, we use Eqs. (64) or (68) to calculate the nonlinearfield energy for the

corrected shielded stationarydistributionand use this as the final value in

A[(W- Wu)/w,] of Eq. (92). We note that it is only for v/v << 1 that Eq. (92)

predicts a noticeableemittance growth; therefore,it is appropriateto make

use of the shielding concept in this discussion.

The 2-D analogueof Eq. (86) is derived in similar fashion as

— 1/2 1/2 z
Ae; V2 yz AC2 ~?

‘()

‘ox , A w - Wu
~Llz- +

-2- 2 ~ C2 1/2 2 w
‘x Y T ‘x o

‘x Zy

(or with x,y interchanged).

Emittance increase in each

above thermodynamicargumentof

phase plane can again be calculatedif the

equidistributionis used, yielding

Ac: 71/2 71/2 2
lx+

‘()

‘ox , A w - Wu

2 z—— 2 1/2 2 w
‘x T ‘x 0

Zy

and also for Cy with x,y Interchanged.

The round beam limit yields

“2
AC2

()

‘o w - Wu

T = - ~ 7- ‘ A ‘o ‘

(94)

(95)

(96)
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which is in agreementwith the result of Ref. 1. For a parabolicprofile,we

havel (N - Nu)/wo = 0.0224; hence (ignoringagain the final nonlinearfield

energy),

2
AC2—~ 0.0224

()

‘o - ,
2 2 ~ .
e

(97)

Comparing Eq. (97) with Eq. (93), we see that each degree of freedom gains

about the same emittance increasefrom a parabolicprofile in 2-D or 3-D.

We observe that, for a parabolic nonround beam, (N - Wu)/wo has the same

value independentof the ellipticity,which then can be used in Eq. (95). (See

App. D.) A Gaussian profile (truncatedat four standarddeviations)yieldsl

the much larger value of (W - Wu)/wo = 0.154.

Note that we have made use of the smooth approximationto derive the mis-

match emittance-growthformulae; we expect however, that they are also valid

in periodic focusing if the average envelope is used.

B. EmittanceTransfer

Computer simulation in 2-D and 3-D beams has showns that emittance trans-

fer can happen in intense beams with strong anisotropyof temperature,(diver-

gence). This transferwas accompaniedby nonuniformdensity oscillations(at

about the plasma frequency). Our emittance equations provide a framework to

study this mechanism as well. We observe that emittance transferoccurs at

a much slower

be calculated

transfer.

14hilewe

of individual

time scale than the initialmismatch; hence, the latter has to

first to provide the correct initial conditionfor emittance

cannot obtain from Eqs. (28) or (41) the explicit time dependence

emittances, we can show in the following discussionthat an

approximate invariantexists, which is of a practicalvalue. In App. E, we

show that the left-handside of Eq. (28) can be expressedexplicitlyas a

derivative in s if we use the envelope equations, Eqs. (29) and (30), in

smooth approximation:

[

22
2dC21d2 d ‘~&Z 8

‘=ZCZZ2Z 2=+=+~ds J- 22 X2 22 13 2 ‘u “Nmy v
(98)
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The right-handside of Eq. (28) is oscillatoryand thus yields a negligible

integrated contribution (it is given by the change of W - Wu, which is

negligiblebecause we assume here that the beam has been properly matched

initially). The approximateinvariantis then

22
z ‘1. ‘z 8—+—+

3 2 ‘u z const
~ ~ Nmy v

or, with Eq. (5),

(99)

(100)

A comparisonwith the energy expression in Eq. (17) shows the physicalmeaning

of this invariant: 1/4 of the change of the uniform field energy goes into

the thermal energy of the beam, whereas the remaining3/4 must go into the

potentialenergy (with respect to the external focusingforce).

In the 2-D case, the correspondingexpressionsare (see App. E)

and

— —

A “2 ; “2 z - ; ‘Wu ‘
Nmy3v2

(101)

( 102)

indicatingthat 1/2 of the uniform field–energychange goes into the potential

energy, and the other 1/2 into the thermal energy.

In practice,we expect that, for high-currentbeams, the change in uniform

field energy is small because the envelopes change only a little in a space-

charge-dominatedbeam; hence, we may assume as a first-orderestimate in 3-D

that

2’(3.-’(3 (103)
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and

---22 A x’ z - A Z’2 ;

and in 2-D,

and (104)

---2Ax’ 7z-A y’ .

These estimates imply that the total thermal energy or divergenceremains

roughly constant during an emittance exchange,which agrees well with results

from previous computer simulation.5 We note that the nonlinearfield energy

does not appear in the approximateinvariantsdefined in Eqs. (99) and (101),

yet the nonlinear field energy plays a crucial role as the actual mechanism that

drives the exchange dynamically,either by a coherent Instabilitysor by single-

particle resonance. He also note that, in computer simulation,5the presence

of continuousor periodic focusing does not change the results on emittance

transfer,as long as structureresonancesare avoided (see next section). This

justifies the use of the smooth approximationmodel here. Finally,we observe

that there is actually a sufficientlystrong imbalanceof thermal energy, which

is necessaryfor emittance transfer to occur;5 hence, Eqs. (103) and (104) also

provide an upper limit for the emittancegrowth in the initially“cold” plane.

c. Structure Resonances in Periodic Focusing

777Multiplying Eq. (28) by x , y , or z , we recognize the possibilitythat

the correspondingemittance (possiblyalso the other two) increaseswith time

if, because of some coherent oscillation,the nonlinearfield energy contains
Tthe frequency of oscillationof the envelope x 77(or, respectively,y or z ) as

Inducedby the periodicallyvarying focusing force. In such a case of “struc-

ture resonance,’”we could derive an upper bound for the emittance increasewith

time, if we knew an upper bound to the nonlinearfield energy. Obviously, this

would require us to determine the

Vlasov equation (as in Ref. 7),

eigenmodesof osc

which is beyond

nation from the linearized

the scope of this work.
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Nonetheless,we can derive a relationship,which gives some general insight and

the time scale for the emittancegrowth formed by a structureresonance.

To this end we assume, for simplicity,a round beam in periodic solenoidal

focusing; hence, Eq. (43) applies. The squared rms envelope is assumed to con-

tain as leading harmonic the periodicityof the focusing channel (O = 2m/L, L

focusing period):

(105)

where we ignore all other harmonics. Likewise,we assume the same harmonic

w - 14u
within U = w (phase shifted by 900):

v

u = o + &u Cos ((A)S)

and find a nonoscillatingterm for the emittancechange

In the smooth approximation,we replace K by

and integrate Eq. (107) to yield

(106)

(107)

(108)

(109)

A practical diffiCU1ty 1ies with estimating6U, which can develop exponentially

from an infinitesimalnoise 1evel during the early stage of the resonance. We

recognize,however, that the emittance growth is most significant after 6U has

come close to its maximum 1evel, which is typically of the order of 10-’ (see

Ref. 1 for calCU1ations of U for different profi1es). We then concludefrom

Eq. (109) that the rate of emittance growth during the first doublingof
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2
‘oemittance is about proportionalto ~ - 1 and to the relativeenvelopemodula-

tion, thereafterto the square rootvof these quantities.

Structure resonancesare avoided, in practice,for systemswith u. = 60°.

A general discussionof the conditionsfor structure resonancesis found in

Refs. 7 and 9.

VII. CONCLUSIONS

Wehave shown that the generalizedemittanceequationsderived here are

of basic importanceto understandingemittancegrowth and to evaluating it

quantitativelyon different time scales. These equationsallow us to predict

rapid mismatch emittancegrowth if the concept of Debye shielding in stationary

distributionsis applied. For the slower process of emittance transfer,we

have suggestedan approximateinvariant,which applies regardlessof the actual

coupling process whether coherentor incoherent. A future systematicstudy of

the conditionsfor emittancetransfer by numerical simulationwill be very help-

ful to further deepen our understanding. A further task will be to incorporate

the formulary derived here and that obtained by numerical simulationinto high-

current linac design procedures.
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APPENDIX A

THREE-DIMENSIONALFIELD ENERGY CALCULATION

From Eq. (14), we obtain for the field energy in a volume V by partial

integration,

w ‘o
=~fJf$Pdx dYdz-~-f~$ End~ “

s

Assuming a uniformlycharged ellipsoidwith rotationalsymmetry around

z-axis, we can write for the space-chargepotential inside the beam

(A-1)

the

(A-2)

with f yet to be determinedby the conditionof continuouspotential and field

across the boundaryof the ellipsoid given by

22x+ 2

2 +~=’ “

For an oblate spheroid*(a > c), we introducethe variables u, v, and v

accordingto

x=asin u coshv cos~ ,

y=asin u cosh v sin~ , and

z=acos u sinh v

with a2 = a2 - C2 and the boundary given by v = Vo; that is, a = a cosh V.

and c = a sinh Vo.

Introducing

c= Cos u (Mangular~variable)

and

n= sinhv (“radial”variable) .

(A-3)

(A-4)

*The proof for a prolate spheroid (c < a) is analogousand will be omitted here.
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Laplace’sequation for the exterior solution can be written asl”

Vz($e=
~z(n:+ gz, k[(’ -’2)%1 +%[(1 ‘“2)%11‘0- (A-5)

This allows a separationof variablesfor the angular and the radial part; a

general solution, which is regular and vanishes at infinity,can be expanded

as10

$e = A. + ~ BV PV(~) QV(i~) (A-6)
v

with Pv(~) Legendrepolynomials and Qv(in) Legendre functionsof the second

kind with imaginaryargument. The interior solution can be rewritten in terms

of Legendrepolynomialsin the new variable ~:

Oi = - g[(nz+ 1 -f) Po+(3.2f -, -.2+ f)P2] . (A-7)

Becauseof the orthogonality of Legendre polynomialsand the requirementof

continuityof $ on the boundary,only B. and B2 in the expansionof Eq. (A-6)

are differentfrom zero. We thus obtain, for n. = c/et,two equations for the
continuityof $:

()poa2 z
A. + 60 cot-l ~. = - ~ ~. +1–f

o

and

62[(3,:++@ ,o-,,o]=-&@-,-q:+f) ,

(A-8)

(A-9)

where we have used Qo(irl)= - i cot-’~ and Q2(i~) = i/2[(3n2 + 1) cot–’q – 3rll.
Likewise, we obtain for continuousi3$/an

60 poa2
--—

1 + n: - 3E0 ‘o

and

(A-1O)

(A-n)
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where we have used (see Ref. 10, p. 145)

-1~cot rl=- 1
d~ 1 +r-12 “

(A-12)

Me thus have four equationsfor the unknowns f, Ao, Bo, and B2, which result in

f =(1+ n:)(l - I-l.cot-l no) (A-13)

or, with p s c/a (p < 1), in

f=’ - P -1
2 3/2 Cos p “ (A-14)

1 - P2 (~ -p)

The equivalentexpressionfor p > 1 (prolate spheroid)is found as

.

f=p cosh-[ P 1 (A-15)
(p2 - 1)3’2 p2 - 1

1/21
with cosh-’p = ln[p + (P2 - 1) . In the near sphericallimit

(0.8 f p s 5), one finds the approximateexpression

(A-16)

with f = 1/3 for a sphere.

These expressionsfor f are in agreementwith Ref. 11. The remaining

unknowns are

2poa2

-[( )
2 -1 ‘o 1 - f

1
‘o = - 3s0 ’10 ‘ + ‘o cot ‘0+2--+ 2 ‘

poa2
B. = 1 ~

0“0 ()
1 + n: ,

and

2 3?l:f- 1 -rl:+f

‘2 = i :&
‘a ( )

-1 .
0 3rl: + 1 cot rlo - 3r-lo

(A-17)

(A-18)

(A-19)
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Here we are interestedin the asymptoticexpressionfor Oe at large distances,

noting that

.
With the asymptoticexpansionof cot-l tlderived from Eq. (A-12),

-1 1 1cot q = ; - — — -+
3113 5r15 ““” ‘

(A-21)

we readily find the asymptoticbehaviorQ. - l/~ and Q2 - 1/~3, and thus

+ = A. - iBo cot-l
()
1

ex T’l+o ~

or, with PO=4N; 3
-acre3

‘$=ex ~;$c[qo(l +,:)(: -cot-l ..)- +(,:+ 1 -f)] .

(A-22)

(A-23)

To evaluate W from Eq. (A-1), we need the asymptotic expression for

En = -tl~lar,which results from Eq. (A-23) as

En = ‘q 1+0— .
&TEor2

r4

The leading term of En

origin, as expected.

Using Eqs. (A-2),

the field energy Wu of

(A-24)

is identical with the field of a point charge at the

(A-13), (A-18) and (A-24),we obtain from Eq. (A-1) that

a uniformly charged el1ipsoid calCUIated within a 1arge

sphere of radius R (rl+ R/a) is given as

(A-25)

Assuming that the semiaxes a, c, and thus f(c/a) are functionsof s, we are

able to calCU1ate dWu/ds. To this end, it is convenientto use Eq. (A-13)

and write
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With Eq. (A-12),we find

dNu

[
#~2 dc f da 1 - f

K=-
.—

1~ ds ~2 + ~? “

(A-26)

(A-27)
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APPENCIIXB

TNO-DIMENSIONALFIELD ENERGY CALCULATION

Analogous to Eq. (A-l), we have

‘ow=+JY4dW-~J$ $# ,
s

(B-1)

for the field energy per unit length and within a cross-sectionalarea bounded

by S. For the potential inside a beam with uniform density and semiaxes a,b,

we have the well–knownexpression

‘o bx2 + a 2
$~ = - ~ a , b y $

To derive the exter

x=~coshpcose

Y= ~sinhp sine

(B-2)

y calculate

(B-3)

or solution,we introduceelliptic coordinatesaccording to

s

, and (B-4)

2
(~) = a2 - b2

with a = ~ cosh p. and b = ~ sinh po. With these coordinates,we obtain

poab 2
$1 = -

()[
cosh2p + sinh2v +

(
cosh2

4co(a + b) ? p c0;h2+os2d ~
(B-5)

a b a-

For the exterior solution, we use the Greens function expansion in el1iptic

coordinatesand make the substitution12)

$e = Bop + B1 1n ~ + B2e-2P cos 2e . (B-6)
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Matching potentialand field at the boundarygiven by p = P. results in

poab

[
1 la-b -Z(p-po)

$e = - ~ ~-~o+~+2a+be-— 1
C0s2e . (B-7)

o

At large distancesfrom the beam, the angle-dependentterm can be neglected,

and we have, with p. = N/(abti),

where we have used the asymptoticbehaviorp+ ln(4r/cd. The faraway En

becomes

En = ~ ,
0

which is the field from a line charge.

With Eq. (B-l),we obtain for the uniform-beamfield energy within a

circle of radius R

Wu = ( )# 1 + 4 in *
a+b ‘o

(B-8)

(B-9)

(B-1O)
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APPENDIX C

ONE-DIMENSIONALFIELD ENERGY CALCULATION

The potentialof a uniformlycharged sheet of thickness*C is readily

found as

and we obtain for the field energy within Izl ~ L

(c-1)

(c-2)

(C-3)
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APPENDIX D

TWO-DIMENSIONALPARABOLIC

We assume a parabolicdensity profile

The interiorelectric field iS8

PROFILE BEAM

[

-x x (X2Ex = a(a+b) - a(a+b)2 ~ (2a+b) + #lr&o )1

(D-1)

(D-2)

(Ey with x,y and a,b interchanged),with the respectivepotentialas

‘[ 2
$i = - N

1 2a+b X4~+ $_ 1 2b+a Y4
mco(a+b) a - ~ a+b 1- ab(~+b) ‘2Y2 - ~ ~ “ (D-3)

For the exterior potential, we use the Green’s function expansion in elliptic

coordinateslz(see also App. B):

-2p$e = Bop + B, in ; + B2e cos 2(3+ B4e-4P cos 40 . (D-4)

From the requirementof continuityand continuousderivatives,we find for the

leading term

,e=&[P-(Po -;)] . (D-5)

The terms with cos 2e, cos 4e decrease exponentialIY at 1arge distance because

for 1arge p

2r
P - P. + 1n —a+b “

We thus find for 1arge r

(D-6)

(D-7)
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and the normal component

@&.En =- ~r=
o

With Eq. (B-l), we obtain

[
W=g u.

06 1
41nfi+41n~ ,

x

where we introducethe rms envelope

~=al~ .

Using Eq. (B-10)(witha = 2 ~), we readily find

w - Wu ~ - q ,n & ~ 00224.—
w0 6 2“ “

(D-8)

(D-9)

(D-1O)

(D-11)
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APPENDIX E

INVARIANT EXPRESSIONFOR EMITTANCETRANSFER

The left-handside of Eq. (28) can be rewritten as

(E-1)

2 2
+2&~ d ~ + ‘Z d ~—. ——

72 ‘s 72 ‘s “

To evaluate the second term on the right-hand side, we use the envelope

equations,Eqs. (29) and (30), in smooth approximation(kv, k= constant and

d2~/ds, d2~/ds negligible),obtaining
AL

WI th L = Nq2/(20i5ti~omy3v2)

rapid flutter of ~, z and on’

on a slow time-scale. Using

(E-2)

(E-3)

7 “2 Tand ~2 = x , z = z . We thus have ignored the

y consider slow changes due to E , Cz chang ng

Eqs. (E-2), (E-3), and (A-24), we find:

(E-4)

where we have replacedX3 by 1. The first term on the r.h.s. of this equation

is the derivativeof the potentialenergy, which we can express, by using again

Eqs. (E-2), (E-3), and (A-27), as

( ;2 + k (j -2 (j ‘: ‘$ 16
16 2 kx ~ —z

‘(

2—+—-= z -2 -2
~w

Z ds
)

3 2 ds U “
x Nmy vx

(E-5)
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thus obtain from Eq. (E-l):

d21d2

[

2C; c: ~
2!l———

% ‘1+ — ds ‘Z z ds +—+
~2 ~ ~ 13 2 ‘u “Nmy v

For 2-D beams, we see from Eqs. (44) and (45) that Eq. (E-5) is replaced by

hence, we find

[

22
ld21d2d ‘x ~ 16—— + ——
~ ‘s ‘x ~ds cy’2~ ~+~+X2 32 ‘U

Y
Nmyv

Y

which yield the invariantsin Sec. VI.2.
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