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I

I
ABSIRACT

A method is presented for determining heat transfer rates and

thermal stresses from the gam m a-ray energy absorption of nuclear

reactor shells for plane, cylindrical, and spherical geometries. Cri-

teria for minimizing therm al stresses are developed, along with the

corresponding external cooling rates necessary to minimize the thermal

stress. Design charts are presented for rapid determination of ap-

proximate thermal stresses and heat transfer rates, along with a

numerical example illustrating the use of the charts.

.

-3-

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE



1. Introduction

The problem of gamma-ray heating must be considered in the design of many nuclear

reactors. It is especially important in cases’ where the gamma heating may cause thermal

stresses in the external shell of the reactor if this shell is a structural member and subject

to internal pressures which also result in stresses of large magnitude, Thus, while thermal

stresses are relieved by local yielding or creep under high temperatures, severe yielding may

cause structural failure under repeated cyclic operation. From the standpoint of reactor de-

sign it is desirable to know the magnitudes of these thermal stresses and to minimize them to

an acceptable level.

TO arrive at values of thermal stresses resulting from gamma-ray heating requires the

solution of three separate, but related, problems. The first of these problems is the deter-

mination of the magnitude and distribution of the energy associated with the absorption of

gamma-rays. The second related problem is the determination of the heat transfer rates and

temperature distributions based on the physical properties of the material and the manner in

which heat is being removed from the material. The third related problem is the determ ina-

tion of thermal stresses resulting from the temperature distribution obtained from the heat

transfer solution.

The purpose of

with emphasis on the

a.

A=

b=

c=

c=

E=

F(r) =

F(x) =

G(r) =

h=

I(r) =

I(x) =

Inside radius

Area

this paper is to integrate these problems for several simple geometries

heat transfer and thermal stress aspects from the standpoint of design.

2. Notation

of sphere or cylinder

Outside radius of sphere or cylinder

Thickness of slab

Constant

Modulus of elasticity

i

r
Function defined by 1( r )rdr

a

J

x
Function defined by I(x)dx

o

J

r
Function defined by S(r)r2dr

a
Corivective heat transfer coefficient

Total gamma heating per unit volume cylinder

Total gamma heating per unit volume in slab
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k=

K1 =

%=

K3 =

L=

q(r) =

q(x) =

r=

S(r) =

t=

t= =

tb =

17hermal conductivity

Gamma-ray source strength per unit area for plane geometry

Constant related to gamma-ray source strength for cylinder by Eq. (3)

Constant related to gamma-ray source strength for cylinder by Eq. (5)

Length

Rate of heat flow by conduction in sphere or cylinder

Rate of heat flow by conduction in slab

Radius

Total gamma heating per unit volume in sphere

Temperature

Temperature at inner face of wall

Temperature at outer face of wall

tm . Mean temperature
I

x=

w=

0!.

e=

em =

(7=
t

Distance from face of slab

Total gamma-ray enerb~ rate at any location

Thermal coefficient of expansion

Temperature difference, t - ta

Temperature difference, Trn - ta

Gamma-ray absorption coefficient

Thermal stress, tensile when positive

3. Gamma-Ray Energy Absorption

“The problem of gamma-ray energy absorption is complex and depends on the source

energy, geometry, and its angular and spatial distribution, as well as on the geometry and

physical properties of the absorbing medium. For a reactor shell the problem can be broken

down into several parts:

1. 17he self-shielding characteristics of the fuel and moderator in the reactor cope, and

the resulting emergent radiation from prompt and delayed fission gamma-rays and from gamma-

rays resulting from neutron capture in the fuel and moderator.

2. The

3. The

4. The

wall.

5. The

absorption of this gamma energy in the vessel wall.

neutron leakage from the reactor core, both fast and thermal.

absorption of gamma energy emitted from thermal neutron capture in the vessel

absorption of gamma energy emitted from inelastic scattering of fast neutrons

in the vessel wall.

-5-
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6. If the vessel wall is very thick or if the wall material is a good moderator, the

energy absorbed by elastic scattering of fast neutrons must also be considered, along with the

gamma energy emitted by capture of the fast neutrons that have been thermalized.

The total gamma-ray heating is then obtained as the sum of the contributions from the

individual parts as functions of the source strength or intensity) gamma- raY energy sPectrum >

and the spatial coordinates involved.

In general it is necessary to consider several gamma-ray energy levels since a single

energy level will not adequately represent the emitted energy. The different energy levels

have different absorption probabilities in a given material, thus complicating the problem fur-

ther. As a result of the large number of variables involved, even the most complicated ana-

lytical solutions must be based on certain simplifying assumptions, and the errors resulting

from these assumptions may be of considerable magnitude when compared to experimental results.

For the purposes of this paper it will be sufficient

m ation to the solution of the gam m a-ray heating problem

tion.

For a

where

For a

where

For a

where

plane geometry this is:

I(x) = K1pe-W

1(x) is the gamma heating rate per unit volume

K1 is the total effective source strength per unit

to assume that a first order approxi-

is that of simple exponential absorp-

(1)

area

u is the mean absorption coefficient for the gamma-ray energy levels involved.

cylindrical geometry, Eq. ( 1 ) becomes

I(r) is

~ is

*-W
I(r) = K27 (2)

the gamma-heating rate per unit volume

a constant related to the source strength per unit area at the surface r = a by

Source
e-pa

m=%?

spherical geometry, Eq. ( 1 ) becomes

S(r) = K3 c
r2

S(r) is the gamma-heating rate per unit volume

~ is a constant related to the source strength

-6-
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Source
Area ‘%3

~-pa

a’
(5)

4. Steady-State Heat I’ransfer

Solutions for one -dimensional, steady-state heat transfer can be made with relative

simplicity for plane, cylindrical, and spherical geometries. These solutions require the knowl-

edge of the magnitude and distribution of the gamma-ray energy absorption. In this section

it will be assumed that the functions describing the magnitude and distribution of this energy

are known.

Case 1: Heat Transfer in a Slab of Finite Thickness and Infinite Extent.

The steady-state heat conduction equation in one-dimension is

q(x) . -kA=
dx

(6)

For an

face at

element of the slab of thickness dx the difference between the heat flow through the

x and the heat flow through the face at x + dx is

dq(x)dx . ~Ad?_ ~
dx dx’

(7)

where the thermal conductivity is taken as the mean value for the temperature range to be

covered.

The gamma heating generated in the element of the slab of thickness dx is

* dx = Ar(x)dx (8)

where 1(x) is the gamma heating from all sources per unit volume and Adx is the volume of

the element.

For steady-state operation the energy balance on the element is

Heat conducted through face at x - Heat conducted through face at x + dx .

Heat generated in width dx.

From Eqs. ( 7 ) and (8) this may be written as

(9)

Integrating this expression with respect to x gives

-7-
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(lo)

where Cl is a constant to be determined. A second integration gives an expression for the

temperature distribution

J
x

t=+ F(x)dx + Clx + C2
o

.
(11)

.

J

x
where F(x) . 1(x)dx and C2 is a constant.

o
At the face where x = O, t = ta, and C2 is found to be

C2 . ta (12)

If the slab is cooled on both sides there will be some intermediate location X. where

the heat transfer by conduction is zero and hence the temperature gradient dt/dx is zero.

For this condition from Fq. (10) and the definition of F(x)

Cl =+ F(xo) (13)

H the slab is insulated on one side, that is, at x = C, then X. in Eq. ( 13) becomes c.

Now let a temperature difference be defined by 0 = t - ta. (14)

Combining Eqs. (11) - (14) results in

J

xe=-+- F(x)dx + ~ F(XO)X
o

This form for the temperature distribution is

stresses since temperature differences, rather than

stress solutions.

(15)

It will be shown later that for minimum thermal

should be zero at the face x = c. (By definition 19is

X. for this optimum case can be determined from Eq.

relation

rc
F(x)dx

HXom) =tio~

convenient in the determination of thermal

temperatures, are necessary in thermal

stresses the temperature difference

zero at the face x = O.) The value

(15 ) as the value that satisfies the

(16)

9

of

where x
om

is the value of X. for minimum thermal stress.

-8-
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The arbitrary choice of a distance X. from which the heat flows in opposite directions

is also desirable in determining the external cooling required to minimize thermal stresses.

The location of X. automatically determines the cooling rates at both faces of the slab. At

the face x = O the rate of heat transfer is, from Eqs. ( 6),( 10) and ( 13),

q(o) = AF(xO) (17)

While at the face x = c, the rate of heat transfer is

q(c) = A[F(c) - F(xo)] (18)

The surface temperatures at these faces may be determined from Eqs. (17) and (18) and

Newtonts law of cooling, which at x = o is

q(0) = haA( ta - tfa)

andatx. cis

q(c) = hcA(t - tfc)
c

(19)

(20)

where ha and hc are the combined heat transfer coefficients and tfa and tfc are the external

medium temperatures at the slab faces.

Combining Eqs. ( 17) and ( 19) and Eqs. ( 18) and (20),

F(xo)
ta= h

+ ‘fa
a

F(c) - F(xO)
tc =

hc + ‘fc

(21)

(22)

Case 2: Heat Transfer in a Hollow Cylinder of Infinite Extent.

The steady- state heat conduction equation in one-dimension is

q(r) . - 2rkLr~ (23)

For an element of the cylinder of thickness dr the difference between the heat flow

through the cylinder at r and the heat flow through the cylinder at r + dr is

d2tdq(r) dr . 2mkL(r —
dr

+ ~) dr
dr2

The gamma heating generated in the element of the cylinder of thickness dr is

“-9-
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-.

dw~dr . 2rLI(r)rdr (25)

where 1( r ) is the total gamma heating per unit volume and 2n Lrdr is the volume of the element.

For steady-state operation the heat balance on the element is, from Eqs. (24) and ( 25),

2
- k(r~+

dr
~) = I(r)r (26)

Integration of this expression gives

dt

/

lr c1
Z=-%a

I(r)rdr +~ (27)

where C, is a constant to be determined. A second integration between the limits of a and r
1

gives directly

Ja

J

L

where F(r) = 1( r)rdr.
a

As before, a location

temperature gradient dt/dr

r o is chosen where the heat transfer by conduction

is zero. From Eq. (22) and the definition of F(r)

Cl =~F(ro)

When Cl in Eq. (28) is replaced

~r

by the above value,

J‘(r) dr +~F(ro)ln~g=. + —
r

a

(28)

is zero and the

(29)

(30)

The optimum value of r. for minimum thermal stresses will be that which gives 0 equal

zero at the boundary r . b. This optimum value can be found from Eq. (30) as that which

satisfies the relation

J
b
F(r) dr

F( rom ) = ay~ b/a

uhere r is tie value of r. for minimum thermal stress.
om

-1o-
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I

As before, the location of r. automatically determines the cooling rates for both surfaces

of the cylinder. At the surface r . a the rate

(29)

q(a) = - 2TLF( ro)

At the surface r = b, the rate of heat transfer

q(b) = 2rL [F(b) + F(ro)]

The surf ace temperatures may .be found in the

are
F( ro)

ta= * + ‘fa
a

F(b) - F(rfi)

1 tb =
u

bhb + ‘fb

of heat transfer is, from Eqs. ( 23), ( 27), and

(32)

is

(33)

same manner as in the previous section and

(34)

(35)

Case 3: Heat Transfer in a Hollow Sphere.

I The steady-state heat conduction equation

I 2 dt
q(r) . - 4rkr ~

For an element of the sphere of thickness dr the difference between the heat flow through

the cylinder at r and the heat flow through the cylinder at r + dr is

2
dq(r) dr . - 4nk(r2 ~ dt

dr
+ 2r —)

dr
dr

in one-dimension is

(36)

The gamma heating generated in the element of the cylinder of thickness dr is

dw
~ dr = %S( r)r2dr

I

(37)

(38)

where S(r) is the total gamma heating per unit volume and %r2dr is the volume of the element.

For steady-state operation, the heat balance on the element is, from Eqs. (37) and (39),

2 d2t
-k( r — + 2r $-) = S(r)r2 (39)

dr2

Integration of this expression gives

d J
lr c1—= -—

dr kr2
S(r)r2dr + ~

r
a

(40)

-11-
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where Cl is a constant to be determined. A second integration between the limits of a and r

gives the temperature difference

~

r
1 G(;) dr0 =-% -cl (+.+)

r
a

1

r
where G(r) = S(r)r2dr

a

(41)

As before, a location r. is chosen where the heat transfer is zero and, from Eq. (40),

cl=+ G( ro)

The final solution is then

J
r

‘(r) dr +~G(ro)(~-~)/3 =-; —r2
a

(42)

(43)

The optimum value of r. for minimum thermal stress, determined as before, is that
,

which satisfies the relation

!
b

G(rom) =&a m dr
r2

a

where r is the value of r. for minimum
om

At the surface r . a the rate of heat

q(a) = - 4nG( ro)

(44)

therm al stress.

transfer is, from Eqs. ( 36), (40), and (42),

(45)

and at the surface r = b the rate of heat transfer is

q(b) = 4Tr[G(b) - G(ro)] (46)

The corresponding surface temperatures are

F( ro)
ta. —

+ ‘fa\ a2h
a

(47)

G(b) - G(ro)
tb =

+ ‘fb (48)
b2hb

-12-
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5. Thermal Stresses

‘The therm al stresses of interest in vessel walls can,

the simple equation

.=qtm. t)
‘th l-v

where E is

a is

v is

tm is

t is

The equation

the modulus of elasticity

the linear coefficient of thermal expansion

Poisson’s ratio

the mean temperature of the material

the temperature at the point in question.

states that the thermal stress at any point is

in general, be determined from

(49)

proportional to the difference be-

tween the mean temperature of the material and the temperature at the point. This may be

visualized as follows: The product atm gives the average or mean expansion of the bulk of

the material. The product at gives the expansion that would have taken place in the vicinity

of t if there were no restraint from the surrounding bulk of the material. The quantity

a(tm - t) then gives the amount of restraint at the point t, since the material is continuous

and planes are assumed to remain plane. The factor ( 1 - v) is introduced to account for the

effect of restraint in one direction transverse to the direction of the calculated stress.

The equation assumes that the material is stressed below the elastic limit throughout.

If the elastic limit is slightly exceeded, or if creep takes place, the thermal stresses are re-

lieved in these regions and reduced to a much lower value than that calculated from Eq. (49).

In cases where temperature cycling takes place, plastic cyclic flow will not be appreciable if

the stress as calculated by Eq. (49) does not exceed twice the yield strength for a ductile

material whose yield strength in compression is equal to the yield strength in tension. A

comprehensive discussion of the limitations imposed by thermal stresses is given in References

1 and 2.

The difference between the maximum and minimum temperature of the material will be

a minimum for a given energy absorption when the material is cooled in such a way that the

temperatures on both surfaces are equal. Since the mean temperature, tm, lies between the

maximum and minimum temperature in the material, the magnitude of the largest thermal

stress existing in the material for a given energy absorption will also be a minimum when the

temperatures at both surfaces are equal.

by

no

For the purposes of

the appropriate values

loss in generality,

this paper, it is convenient to replace the temperatures in Eq. (44)

of the temperature difference 0. The equation then becomes, with

-13-

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE



----- (em-e)
‘th -l-v

(50)

The mean temperature tm depends upon the geometry of the material. The three geom -

etries of interest here are the infinite slab, infinite hollow cylinder, and hollow sphere.

Case 1. Slab of Finite Thickness and Infinite Extent.

The mean temperature for this case is simply

J

c
tdx

tm=oc

or, in terms of the temperature difference 6,

r

c
edx

‘o
em. c

Case 2. Infinite Hollow Cylinder.

(51) ●

(52)

The mean temperature for circumferential stress in this case is itself a function of the

radius r and as given in Reference 1 is

tm = ‘2+22 ~trdr+~[trdr (53)
r2(b2 - a ) a

Since the maximum thermal stresses occur at the surfaces r . a and r = b, some simplif~ca-

tion of Eq. ( 53) can be obtained by evaluating the equation at these limits. When this is done

and written in terms of the temperature difference, the result is

J
b

em =
b2 ~ a2 ‘rdr

a

(54)

, While the above equation applies rigorously only at the surfaces r . a and r . b, it may be

used for approximate determination of internal stresses.

Case 3: Hollow S~here.

The mean temperature in this case is a function of the radius r and is given in Reference

3as

tm = 2r3+a33~tr2dr+>~tr2dr

r3(b3 - a ) a

-14-
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As in the case of the cylinder the maximum thermal stresses of interest occur at the surfaces

r.aandr. b. When Eq. ( 55) is evaluated at these limits and the results are expressed

in terms of the temperature difference 0,

em. 3 1b r2dr

b3 - a3
a

6. Application of Theory

Because of the complex nature of rigorouS gamma-heating

involved in the heat transfer and thermal stress equations must

ical or graphical means. However, a simple analytical solution

(56)

solutions, the integral fUnttions

be solved in general by numer-

for a plane geometry is pos-

sible, based on the assumption of exponential gamma-ray absorption given by Eq. ( 1). This

equation will be used to illustrate the method of determining the heat transfer rates and ther-

m al stresses, followed by a numerical example.

For a plane geometry with exponential absorption given by Eq. ( 1), the heating function

F(x) in Eq. (11) becomes

F(x) = Kl( 1 - e-w) (57)

The related functions necessary for the temperature distribution function of Eq. (15) are

F(xo) = Kl(l - e -1%, (58)

J

x ~-w
F(xo)dx = K1(x + —-*)

o
P

Eq. ( 15) then becomes

0=
‘1

~ ( 1- pxe-WO-e-W)

The optimum value of the thickness X.

to be

Figure 1 is a

x .~ln ‘com
1 - e-pc

graphical presentation of

slab thickness c.

From Eqs. (17), (58), and (61),

(59)

(60)

for minimum thermal stress is found from Eq. (16)

(61)

Eq. (61), normalized by dividing both sides by the total

rate of heat transfer at the slab face x = O for

-15-
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ABSORPTION PARAMETER, PC

Fig. 1. Thickness ratio for optimum cooling.
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minimum thermal stresses is given as a fraction of tie total source strength as

q(o) 1
e-~c

-——
q=l pc+ PC

(62)

From Eqs. ( 16), (57), and ( 61), the rate of heat of heat transfer at the slab face x = c

for minimum therm al stress is given as a fraction of the total source strength as

q(c)
KIA

—.*-(l+-&)e-Wc (63)

. .
Figure 2 is a graphical presentation of Eqs. (62) and (63) and shows the fraction of

the total gamma energy crossing the

The mean temperature function

(61) is
Kr.

boundaries as heat.

for minimum thermal stress from Eqs. (52), (60), and

(64)

For optimum cooling and minimum therm al stresses the value of 6 at both external sur-

faces ( x = o, and x . c ) is zero and the thermal stresses at these surfaces, which are tensile,

are given by
Ea ~

G .—
max 1 -urn

Thus the thermal stresses at the surface are

Figure 3 is a plot of this function versus the

proportional to the function

absorption parameter PC.

(65)

expressed in Eq. (64 ~

Example:

Determine the maximum therm al stresses and optimum cooling in a nuclear reactor

shell that is constructed of steel 5 in. thick and having a yield strength of 50,000 psi. ‘The

reactor rating is 30 megawatts and the inner surface area of the shell is 18 sq ft and the

mean metal temperature is 600°F.

Assume that the self-shielding factor for gamma-rays in the core is 0.8 and the self-

shielding factor for neutrons not causing fission in the core is 0.2. Also assume that the

average energy of all gamma-rays is approximately 3 Mev.

Solution:

The necessary physical properties are determined from References 4 and 5 to be

k . 23 B/hr-ft-F

# = O.7/inch

E = 28 (10)6 psi

aI = 7 (10)-6/OF

v = 0.3

-17-
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Fig. 2. Uptimum cooling rates at external slab faces.
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Fig. 3. Mean temperature and surface stress for optimum cooling.
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The source strength is determined approximately as follows:

The useful energy per fission is taken from Reference 6 to be 189 Mev and the prompt

and delayed gamma-ray energy plus capture gammas is taken to be 12 Mev per fission. Since

the self -shielding factor of the core is assumed to be 0.8, the gamma energy crossing the

interface between the core and shell is

0.2 ( 12) = 2.4 Mev per fission

Of the 1.5 neutrons per fission that do not enter into the fission reaction 0.8 are assumed to

escape from the core. Of these, approximately 0.3 are thermal neutrons captured in iron

emitting 7 Mev gamma energy per capture. Thus the maximum energy to be recovered from

these neutrons is

0.8 (1.5) (0.3) 7 = 2,5 Mev per fission

The total source strength is then 4.9 Mev per fission which is equivalent to 0.026 of the total

energy. or 0.78 megawatts.

Converting this to British thermal units per hour and dividing by the surface area gives

K1 = 1.47 ( 10)5 B/hr-ft2

The value of the absorption parameter is wc = 0.7(5) = 3.5

From Fig. 2 the optimum cooling rates are

(o)
q~ = 1.47( 10)5(0.72) = 1.06( 10)5 B/hr-ft2

q~ = 1.47( 10)5(0.24) = 0.35( 10)5 B/hr-ft2

From Fig. 3 for an absorption parameter of 3.5 and the constants that have been determined,

1.47( 10)5 28( 10)6 7( 10)-6(0.475) = so 600 psi
‘th ‘ 2(23) 12(0.7) (1 - 0.3) 9
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