





## CIC-14 REPORT COLLECTION REPRODUCTION COPY

# AEC RESEARCH AND DEVELOPMENT REPORT

## LOS ALAMOS SCIENTIFIC LABORATORY OF THE UNIVERSITY OF CALIFORNIA ° LOS ALAMOS NEW MEXICO

SOME EXPERIMENTS ON THE PRECIPITATION OF PLUTONIUM COMPOUNDS FROM TRIBUTYL PHOSPHATE SOLUTIONS







APPROVED FOR PUBLIC RELEASE

•

UNCLASSIFIED

This report was prepared as a scientific account of Government-sponsored work. Neither the United States, nor the Commission, nor any person or contractor acting on behalf of the Commission, makes any warranty or representation, express or implied, with respect to the accuracy, completeness or usefulness of the information contained in this report, or that the use of any information, apparatus, method or process disclosed in this report may not infringe privately owned rights. The Commission assumes no liability with respect to the use of, or for damages resulting from the use of any information, apparatus, method or process disclosed in this report.

Printed in USA. Charge 25 cents. Available from the U. S. Atomic Energy Commission, Technical Information Extension, P. O. Box 1001, Oak Ridge, Tennessee. Please direct to the same address inquiries covering the procurement of other classified AEC reports.

## UNCLASSIFIED



## UNCLASSIFIED



PUBLICLY RELEASABLE LANL Classification Group

LA-2050

CHEMISTRY - TRANSURANIC ELEMENTS (Distributed according to M-3679, 17th edition)

This document consists of 8 pages

No. \_\_\_\_\_f <u>390</u> copies, Series <u>A</u>\_\_\_\_

## LOS ALAMOS SCIENTIFIC LABORATORY OF THE UNIVERSITY OF CALIFORNIA LOS ALAMOS NEW MEXICO

REPORT WRITTEN: June 11, 1956 REPORT DISTRIBUTED: AUG 1 0 1956

> SOME EXPERIMENTS ON THE PRECIPITATION OF PLUTONIUM COMPOUNDS FROM TRIBUTYL PHOSPHATE SOLUTIONS

Work done by: L. J. Mullins Report written by: W. J. Maraman L. J. Mullins

Classification changed to UNCLASSIFIED by authority of the U.S. Atomic Financy Commission,

5-15-57 Per acr (710-1149) By REPORT LIBRARY V. Martine, 1-20-608

Contract W-7405-ENG. 36 with the U. S. Atomic Energy Commission





## UNCLASSIFIED

### ABSTRACT

A survey of the feasibility of precipitating plutonium(IV) compounds from 35 per cent tributyl phosphate in Gulf ET solution has been made. In general, the precipitations were made using an anhydrous salt, a saturated aqueous solution and a dilute aqueous solution. The anhydrous precipitants which showed promise for further study were Na<sub>2</sub>O<sub>2</sub> and NaF. Promising aqueous solutions were H<sub>2</sub>O<sub>2</sub>, NaF, HF and K<sub>2</sub>SO<sub>4</sub>. The oxalate, hydroxide, iodate, phosphate, sulfite and sulfide systems either gave precipitates of poor physical characteristics or resulted in high plutonium solubilities in the organic phase.

The precipitation of plutonium(III) in the same solvent was not studied because of the relatively rapid oxidation of plutonium(III) to plutonium(IV) in TBP solution containing HNO<sub>3</sub>.



### Introduction

Direct precipitation of plutonium from the pregnant solvent in the tributyl phosphate processing operation would have advantages over conventional aqueous stripping methods. Laborious concentration steps (evaporation, ion exchange or solvent extraction) and purification steps from dilute aqueous solutions would be eliminated. Selective precipitants would offer a variety of plutonium compounds.

Miscellaneous experiments since 1951 have shown that plutonium could be precipitated from TBP by aqueous solutions of HF,<sup>1</sup> NH<sub>4</sub>F,<sup>1</sup> NH<sub>4</sub>OH,<sup>2</sup> Na<sub>2</sub>CO<sub>3</sub>,<sup>1</sup> or H<sub>2</sub>O<sub>2</sub><sup>1</sup> as well as by the addition of solid Na<sub>2</sub>O<sub>2</sub>,<sup>3</sup> NH<sub>4</sub>F,<sup>3</sup> or H<sub>2</sub>C<sub>2</sub>O<sub>4</sub>·2H<sub>2</sub>O<sup>3</sup> and by sparging with gaseous HF,<sup>4</sup> SO<sub>2</sub>,<sup>3</sup> or NH<sub>3</sub><sup>3</sup>.

The experiments described in this report were designed to explore the feasibility of precipitating plutonium from 35 per cent TBP in Gulf BT using peroxide, fluoride, sulfide, sulfite, sulfate, oxalate, hydroxide, iodate and phosphate ions from anhydrous, dilute and concentrated aqueous sources.

It was originally planned to study plutonium in both the tri- and tetravalent form; however, the plutonium(III) study was not undertaken because of its relative instability in TBP solutions containing nitric acid.





### Method of Precipitation of Plutonium(IV) Compounds from TBP Solution

Plutonium(IV) compounds were precipitated in 40 ml centrifuge cones using 25 ml of 35 per cent tributyl phosphate in Gulf BT containing about 2.5 grams Pu/liter as a feed solution. The feed was prepared by equilibrating equal volumes of 35 per cent TBP-GBT and 0.01 M Pu( $NO_3$ )<sub>4</sub> -6 M HNO<sub>3</sub> solutions. The resulting organic phase was scrubbed four times with an equal volume of 2.2 M Al( $NO_3$ )<sub>3</sub>. About ten times the stoichiometric amount for precipitation was added in the form of an anhydrous salt or gas, a saturated aqueous solution or a dilute aqueous solution. The mixture was stirred for 15 minutes. Those precipitates which visually possessed good physical characteristics were centrifuged, washed and sampled for microscopic examination and x-ray diffraction analysis. The supernate was sampled for plutonium radio-analysis.

## Instability of Plutonium(III) in TBP-GBT-HNO3 Solutions

Although  $Pu(NO_3)_3$  can be extracted, the precipitation of plutonium(III) from TBP solutions was not studied because of the relative instability of plutonium(III) in TBP solutions containing  $HNO_3$ . Plutonium(III) is oxidized to plutonium(IV) in such solutions. There is an induction period which depends upon the  $HNO_3$  concentration, and the oxidation rate curve is an

4

S-shaped curve typical of autocatalytic reactions, the slope of which varies with the  $HNO_3$  concentration.

The TBP solution was prepared by equilibrating equal volumes of 35 per cent TBP in Gulf BT with  $Ca(NO_3)_2$ -Pu $(NO_3)_3$ -NH<sub>2</sub>OH solutions of varying HNO<sub>3</sub>. Plutonium oxidation was followed spectrophotometrically. The acidity of the organic phase after plutonium oxidation was determined by titration with standard NaOH in a saturated  $K_2C_2O_4$  solution. Oxidation was complete in 40 minutes for 0.076 M HNO<sub>3</sub>, 140 minutes for 0.010 M HNO<sub>3</sub> and 72 hours for 0.002 M HNO<sub>3</sub> with TBP solutions 0.0016 M in plutonium.

### Precipitation of Plutonium(IV) by Solid and Anhydrous Precipitants

Plutonium(IV) was precipitated from TBP-GBT solutions using anhydrous solid or gaseous precipitants containing  $O_2^{-}$ , F<sup>-</sup>, S<sup>-</sup>, SO<sub>3</sub><sup>-</sup>, SO<sub>4</sub><sup>-</sup>, C<sub>2</sub>O<sub>4</sub><sup>-</sup>, OH<sup>-</sup>, IO<sub>3</sub><sup>-</sup> and PO<sub>4</sub><sup>-</sup>. Results of these precipitations are given in Table I.

The most promising precipitant was NaF, which produced the readily filterable, definite compound  $PuF_4 \cdot H_2O$ . The plutonium solubility in the organic supernate was 5 mg/liter and the data were reproducible. Gaseous HF gave similar results except that there was considerable evolution of heat.

Na<sub>2</sub>O<sub>2</sub> gave a precipitate having better settling characteristics than NaF or HF. The plutonium-peroxide-oxide compound formed was easily soluble in HNO<sub>3</sub>. The erratic organic solubility can probably be corrected by controlling the HNO<sub>3</sub> concentration in the organic supernate and by an improved organic-solid phase separation technique.

5

 $H_2S$  gave excellent removal of the plutonium from the solvent down to 0.2 mg/liter; however, free sulfur and considerable heat were liberated and the precipitate was not identified.

 $K_2SO_4$ , HIO<sub>3</sub> and  $K_3PO_4$  precipitated no plutonium from the solution. (NH<sub>4</sub>)<sub>2</sub>SO<sub>3</sub>·H<sub>2</sub>O, Na<sub>2</sub>C<sub>2</sub>O<sub>4</sub> and NaOH removed some plutonium from the solution, but the precipitates formed had poor physical characteristics and the compounds formed were not identified.

### Precipitation of Plutonium(IV) by Aqueous Precipitants

Plutonium(IV) was precipitated from TBP-GET solutions using saturated and dilute aqueous precipitants containing  $O_2^-$ , F<sup>-</sup>, S<sup>-</sup>, SO<sub>4</sub><sup>-</sup>, C<sub>2</sub>O<sub>4</sub><sup>-</sup>, OH<sup>-</sup>, IO<sub>3</sub><sup>-</sup> and PO<sub>4</sub><sup>-</sup>. Results of these precipitations are given in Table I.

As with the solid precipitants fluoride ion gave the best results. Supernate loss was low, 4 mg/liter, and the data were reproducible. The NaPuF<sub>5</sub> precipitated by dilute NaF solutions had good settling characteristics.  $PuF_4 \cdot H_2O$  was formed by both dilute and concentrated HF solutions, but its settling characteristics were not as desirable as those of the compound produced by the anhydrous method.

Dilute  $K_2SO_4$  solutions yielded a definite compound,  $K_4Pu(SO_4)_4 \cdot 2H_2O_7$ which had good settling characteristics. The supernate loss could be controlled by acidity adjustments.

Dilute  $H_2O_2$  solutions gave only fair results and 30 per cent  $H_2O_2$  precipitated no plutonium.

Dilute solutions of Na<sub>2</sub>C<sub>2</sub>O<sub>4</sub>, NaOH, HIO<sub>3</sub> and H<sub>3</sub>PO<sub>4</sub> produced precipitates

6



which had poor settling characteristics, but gave good solvent clean up. Concentrated  $HIO_3$  and  $H_3PO_4$  were not successful precipitants.

### REFERENCES

- 1. W. J. Maraman and R. S. Winchester, IASL Internal Laboratory Document IAB CMR-11-1099, July, 1952.
- 2. R. S. Winchester, IAB CMR-11-875, November, 1951.
- 3. R. S. Winchester, IAB CMR-11-1763, July, 1954.
- 4. R. S. Winchester, IAB CMR-11-1098, June, 1952.

## UNCLASSIFIED

| SSIFI       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| ED FOR PUBE | $Na_{2}O_{2}$<br>NaF<br>HF(g)<br>$H_{2}S(g)$<br>$(NH_{4})_{2}SO_{3} \cdot H_{2}O$<br>$K_{2}SO_{4}$<br>$Na_{2}C_{2}O_{4}$<br>NaOH<br>$HIO_{3}$<br>$K_{3}PO_{4}$                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| I C RELEASE | 30% H <sub>2</sub> O <sub>2</sub><br>10% H <sub>2</sub> O <sub>2</sub> , 0.1 M H <sub>2</sub> SO <sub>4</sub> , 2 M HNO <sub>3</sub><br>1 M NaF<br>0.8 M HF, 1 M NaF, 0.5 M HNO <sub>3</sub><br>27 M HF<br>2 M HF, 1 M HNO <sub>3</sub><br>0.7 M K <sub>2</sub> SO <sub>4</sub><br>0.57 M K <sub>2</sub> SO <sub>4</sub> , 0.1 M H <sub>2</sub> SO <sub>4</sub> , 10% C <sub>2</sub> H <sub>5</sub><br>0.2 M Na <sub>2</sub> C <sub>2</sub> O <sub>4</sub> , 1 M HNO <sub>3</sub> |  |  |  |  |

#### Table I

### PRECIPITATION OF PLUTONIUM(IV) FROM TBP SOLUTION

|                                                                                                                     | Pu in TBP |              |                    | Precipitate                                                         |                    |                       |
|---------------------------------------------------------------------------------------------------------------------|-----------|--------------|--------------------|---------------------------------------------------------------------|--------------------|-----------------------|
| <b>_</b>                                                                                                            | 1         | Supernate,   | Settling 3         | Micro                                                               | X-ray              |                       |
| Description                                                                                                         | Amount    | g/liter      | Characteristics'   | Examination                                                         | Examination        | Remarks               |
|                                                                                                                     | Sol       | id and Anhyd | lrous Precipitants |                                                                     |                    |                       |
| Na <sub>2</sub> O <sub>2</sub>                                                                                      | 105       | 0.02-0.2     | Good               | PuO <sub>2</sub> + peroxide                                         | No pattern         | $0_{2}^{=}/Pu = 1.55$ |
| NaF                                                                                                                 | 105       | 0.005        | Fair               | PuF4·H2O                                                            | Uncertain          |                       |
| HF(g)                                                                                                               | Saturated | 0.003        | Poor               | PuF4·H2O                                                            | PuF4 H2O           | Heat evolution        |
| H <sub>2</sub> S(g)                                                                                                 | Saturated | 0.0002       | Fair               | Unidentified                                                        | Unidentified       | Same, S <sup>O</sup>  |
| $(NH_4)_2SO_3 \cdot H_2O$                                                                                           | 10S       | 0.5          | Fair               | Unidentified                                                        | Unidentified       |                       |
| K2S04                                                                                                               | 10S       | 2.5          | -                  | None                                                                | None               | No precipitate        |
| Na <sub>2</sub> C <sub>2</sub> O <sub>4</sub>                                                                       | 10S       | 0.5          | Poor               | None                                                                | None               |                       |
| NaOH                                                                                                                | 10S       | 0.05         | Fair               | None                                                                | None               |                       |
| HIO3                                                                                                                | 10S       | 2.5          | -                  | None                                                                | None               | No precipitate        |
| K <sub>3</sub> PO <sub>4</sub>                                                                                      | 105       | 2.2          | -                  | None                                                                | None               | No precipitate        |
|                                                                                                                     |           |              |                    |                                                                     |                    |                       |
|                                                                                                                     |           | Aqueous      | Precipitants       |                                                                     |                    |                       |
| 30% H2O2                                                                                                            | 3 ml      | 1.31         | -                  | None                                                                | None               | No precipitate        |
| 10% H <sub>2</sub> O <sub>2</sub> , 0.1 M H <sub>2</sub> SO <sub>4</sub> , 2 M HNO <sub>3</sub>                     | 15 ml     | 0.01         | Fair               | None                                                                | None               |                       |
| 1 M NAF                                                                                                             | 2 ml      | 0.004        | Good               | NaPuF5                                                              | Uncertain          |                       |
| 0.8 M HF, 1 M NaF, 0.5 M HNO3                                                                                       | 15 ml     | 0.004        | Good               | None                                                                | None               |                       |
| 27 M HF                                                                                                             | 0.1 ml    | 0.002        | Poor               | PuF <sub>4</sub> ·H <sub>2</sub> O                                  | $PuF_4 \cdot H_2O$ |                       |
| 2 M HF, 1 M HNO <sub>3</sub>                                                                                        | 5 ml      | 0.02         | Fair               | PuF4 H20                                                            | PuF4·H2O           |                       |
| 0.7 M K2SO4                                                                                                         | 2 ml      | 0.1          | Good               | K <sub>4</sub> Pu(SO <sub>4</sub> ) <sub>4</sub> •2H <sub>2</sub> O | Unidentified       |                       |
| 0.57 M K <sub>2</sub> SO <sub>4</sub> , 0.1 M H <sub>2</sub> SO <sub>4</sub> , 10% C <sub>2</sub> H <sub>5</sub> OH | 10 ml     | 0.002        | Good               | $K_4Pu(SO_4)_4 \cdot 2H_2O$                                         | Unidentified       |                       |
| 0.2 M Na <sub>2</sub> C <sub>2</sub> O <sub>4</sub> , 1 M HNO <sub>3</sub>                                          | 10 ml     | 0.002        | Poor               | None                                                                | None               |                       |
| 1.7 M NaOH                                                                                                          | 15 ml     | 0.0002       | Poor               | None                                                                | None               |                       |
| 20 M HIO3                                                                                                           | 0.5 ml    | 1.1          | •                  | None                                                                | None               | No precipitate        |
| 1 M HIO3, 1 M HNO3                                                                                                  | 10 ml     | 0.0001       | Poor               | None                                                                | None               |                       |
| 14.9 M H <sub>3</sub> PO <sub>4</sub>                                                                               | 0.2 ml    | 0.07         | Poor               | None                                                                | None               |                       |
| 3 M HaPO4, 0.1 M HNO3                                                                                               | 10 ml     | 0.004        | Poor               | None                                                                | None               |                       |

1. 10S is 10 times the stoichiometric amount of the anion required for complete precipitation of the Pu compound.
2. Beginning TBP feed solution contained 2.5 grams Pu/liter.
3. Qualitative observation based on settling rate, phase wetting and physical appearance of precipitate.

....

APPROVED

FOR PUBLIC

RELEASE

...

### APPROVED FOR PUBLIC RELEASE



# UNCLASSIFIED