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THEORY OF EXPLOSIONS IN ANISOTROPIC MEDIA

by

J. K. Dienes

ABSTRACT

When a suitable process for retorting of oil shale has been devised it will
become possible to extract large amounts of kerogen, a potential substitute
for oil. We have been studying the mechanics of fragmenting oil shale by
means of explosives, with an emphasis on layering effects, and in this report
we describe the response of a transversely isotropic material to a spherical
explosion. At high pressures the constitutive law is essentially the
(isotropic) Mie-Gruneisen equation of state, whereas at lower pressures it
approaches an elastic, ideally plastic formulation exhibiting transverse
isotropy. Elastic and plastic strain rates are superposed to obtain the total
strain rate in the usual fashion. Because we intended to use the constitutive
law in a standard continuum computer code, it was necessary to invert the
resulting relation to obtain stress rate as a function of strain rate. The
resulting constitutive law has been incorporated into the continuum ALE
(Arbitrary Lagrangian-Eulerian) computer code, YAQUI. Contrary to our
initial expectations, the cavity computed at late times is spherical to within
a few per cent. Though at early times the shock wave is also spherical, the
effects of anisotropy subsequently become very strong. Tensions that are not
present in isotropic media appear near a 45° cone and suggest a new method
of fracturing.

.—— ——— — _________

I. INTRODUCTION

Vast deposits of oil shale in the western United

States could be exploited to solve much of our

energy problem if an economical means of process-

ing it were available. One of the most promising ap-

proaches is the modified in-situ method, in which a

portion of the oil shale is mined out and a large bed

of rubble is prepared with explosives. Then combus-

tion supported by forced air causes the organic mat-

ter (kerogen) to separate from the rock. A portion of

the kerogen supports the flame, and the remainder

flows to the bottom of the retort, whence it is pump-

ed out.

Conversion of the competent shale to rubble by

means of explosives is complicated by the variability

of the shale, which involves natural voids, joints,

and faults and is randomly stratified. Still, we think

that many systematic features of the process can be

investigated by developing a theoretical model and

studying its response to explosives by computer

simulation. We are particularly interested in the ef-

fects of anisotropy and the possibility that anistropy

can influence the propagation of shock waves and

1



the subsequent fracture processes. From the

theoretical point of view, it is convenient to separate

anisotropic effects into three classes. In the elastic

regime, the moduli vary with orientation by roughly

a factor of 2, and it is relatively straightforward to

determine them by acoustic methods. In the plastic

regime, the flow stress also varies by a factor of -2,

as determined by triaxial tests. Finally, fractures

can propagate under certain combinations of prin-

cipal stress, and the tensile fracture strength ap-

pears to vary with orientation by a factor of 2 to 5.
More important than these effects is the pos-

sibility that the entire mechanism of wave propaga-

tion and fracture is modified by the anisotropy and

that new phenomena appear. We concentrated our

first efforts on the effects of spherical charges,

because any absence of point symmetry can then be

attributed unambiguously to anisotropic effects.

Theoretical studies have predicted and experiments

confirm that enhanced fracture appears in the

neighborhood of a cone that makes an angle of about

45° with the bedding planes. Though in general

agreement, many details of this enhanced fracture

process differ between theory (in its rudimentary

form) and experiments. Of most interest, however, is

that enhanced fracture does not exist in isotropic

materials and is a clear consequence of the angular

dependence of wave propagation.
In this report we show how the associated flow law

of plasticity can be used to construct a constitutive

law for an ideally elastic-plastic material and how

the law can be inverted to provide stress rate as a

function of strain rate and stress—an essential step

in performing numerical calculations. The resulting

constitutive law is used in the YAQUI computer

program to compute explosions in a transversely

isotropic material, a calculation that requires a two-

dimensional (axisymmetric) code. The calculations

show that the cavity remains essentially spherical

but that tensile hoop stresses develop in the

neighborhood of the 45° cone through the center of

symmetry. The phenomenon is explained here in

terms of wave propagation phenomena.

II. ANISOTROPIC ‘PLASTICITY

If we assume a plastic potential, we can use the as-

sociated flow rule to construct a constitutive relation

describing plastic flow. In this section we show that

the equations can be solved explicitly for the stress

rate, even in the case of anisotropic materials. The

importance of material rotation is greater for

anisotropic than for isotropic materials; consequent-

ly, the analysis begins with a discussion of the

kinematics of rotation. Next, we construct a poten-

tial involving a 4-index plasticity tensor which is a

generalization of the scalar yield strength that ap-

pears in isotropic plasticity. The flow law involves a

Lagrangian multiplier, A, which we determine as a

function of the stress, strain rate, and material

properties. Papers discussing plasticity frequently

provide expressions for A that involve the stress rate,

but such expressions are not adequate for numerical

work because the stress rate is what we need to find.

For that reason, the calculation indicated here is

somewhat more involved than in the usual treat-

ments. We show that there is no change in plastic

volume, in agreement with Hill.l Finally, we in-

dicate how the stress can be separated into an

isotropic part, which dominates the behavior at high

pressures, and an anisotropic part which dominates

the low-pressure behavior.

To account for material rotation in the con-

stitutive law, we relate the stress in space axes, a, to

the stress in material axes, ~, through the rotation

matrix R by means of the equation

u = M“RT , (1)

as discussed by Dienes .2 A similar relation tran-

sforms the strain rate matrix, D, into materiaI axes:

~ = RTDR . (2)

Because the constitutive law to be developed ex-

presses stress rate in terms of stress and strain rate,

we must consider how the stress rate is affected by

rotation. Physically, the state of material stress

clearly is not affected by material rotation, but as

the material rotates the components of stress in fix-

ed space axes will vary. If W6 define the rate of

material rotation, Q, by

fl=iRT, (3)

then the result of differential ing (1) can be written

.U.m-+ ;-al. (4)

>.
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The quantity

,..
u=u - QG+% (5)

is the Jaumann-Nell stress rate if !2 represents the

vorticity. Reference 2 shows that the quantity fl

given in (3) is approximated by the vorticity for sm-

all deformations; hence we may put

n = (uij) , (6)

where

‘ij
-+(uij-u,, i) . (7)

s

For anisotropic materials we assume the existence

of a plastic potential having the form

f- ‘b (s)2 ij kl”ijukl “

By comparison with the expression

2f = F(CI - 6Z)2 + G(oZ - CIX)2 + H(6X
2

- Q
3’

+ 2L T* + 2M T:x + 2N2 (9)
yz XY

given by Hill, we can deduce the terms of the bljk)

tensor. It is convenient, however, to reduce the

number of indices by defining the stresses as a nine-

element vector, Z~, with the values of K being given
by the matrix

j\i 1 2 3
1

2

3

164

728

593

(lo)

Then the plastic potential takes the form

f = ; BUZKZL . (11)

The elements of the matrix are given by

B-

G!N-E-GOOOO 00

-R H+F -F O 0 0 0 0 0

-G -F F-W O 0 CI o 0 0

Ooo11oooo 0

oOOOMooo o

0 0 000 NOOO

0000 OONO o
ooooooo~ o

00000000 L

(12)

Hill shows that for transversely isotropic materials

F-G, (13)

L-M , (14)

and

N- F+2H. (15)

This is the case of interest in our numerical calcula-

tions, which will assume axially symmetric flow. If

we assume that the plastic strain rates can be

derived from the plastic potential, f, then

(16)

Also, the elastic strain rate for an anisotropic

material is given by

e
:

‘K” QIC L “

The total strain rate

‘K
=I); +D;

is then given by

A
DK = AB=,ZL + QnZL

If we define

-1
C=Q

(17)

(18)

. (19)

(20)
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and express the relation for D~ in matrix notation as

A
D-.4 BZ+QI, (21)

then we can solve for ~

.
X = C(D - /lBZ) . (22)

We can write the stress rate as

A

‘K
=~K+TK , (23)

where

+Cl (1)
‘ij - ‘~m”mj mj ml (24)

and the T~ vector is related to the t,, matrix in the

same manner as previously indicated for the stresses

and strain rates. Then (22) reduces, in matrix rota-

tion, to

~=c(D-lBZ)-T . (25)

To determine A we note that when the yield condi-

tion

+ B=E$L “ 1 (26)

is differentiated we obtain the relation

BU$$L - 0 (27)

involving ~~. In combination with (25) we can ob-

tain an expression for the Lagrangian multiplier

where

%N = ‘KIB~cKM

G -BC
LM KLKM ‘

and

Y - BmXLTK .

? (28)

# (29)

(30)

(31)

The rotational contribution, y, can be expressed as

the sum of two terms

4

(36)

yl-b
Ijkm”iluknl’”l j

(32)

and

Y2-b ijkm~lj%mhi “ (33)

In the case of current interest the rotation is about a

fixed axis as the result of axial symmetry of the

problem, and only the terms wI, and (&, do not

vanish. Then, if we write

’13 “ n
(34)

we find

Y1 = Y~ = [(H+ 2F - L)~l - (H - F)Z2 (35)

+( L- 3F)13]Z4Q ,

hence

y=2y1 .

For isotropic materials,

L= M= N”3F=3G=3H (37)

as discussed by Hill. Consequently,

y-o. (38)

To show that the rate of change of plastic volume

is zero we write

6P = d:i = kbiiUTU . (39)

In the reduced index notation (39) can be expressed

as

dp=l(B +B2J+B )Z
lJ 3JJ”

(40)

However, for any J, the sum of the first three terms

in a row of the B matrix given as (12) is zero; conse-

quently,

ip=o , (41)

demonstrate ing that the theory does not allow for per-

manent changes in volume.



At high pressure the stress is essentially that as-

sociated with the Mie-Gruneisen equation of state

P = P(P,l) , (42)

7 where p is the material density and I the specifllc in-

ternal energy. At intermediate pressures the stress

can be expressed as
1

L
uij-Uij - (P - Wsij , (43)

where U?j denotes the low-pressure component of

stress determined in the preceding pages and p – kp

is the excess of the pressure over the linear approx-

imation. Otherwise expressed,

Here the compression is expressed as

11=1- Polp .

III. ANISOTROPY FRAGMENTATION

(44)

Lagrangian codes determine the movements in a

continuum by tracking elements of mass with the

momentum equation

;Ui = ‘Ij, j (45)

Though YAQU18 is an Arbitrary Lagrangian-

Eulerian Code, for oil-shale calculations it can be

made to function as a Lagrangian code by a special

choice of the mesh-moving equations. We resist dis-

cussing the finite-difference method here, focusing

on the physical interpretation of the numerical

results.

The effects of a spherical charge of explosive can

be approximated by representing the charge as a

sphere of uniform, polytropic gas with index 3.

Although the transit time of the detonation wave in-

itiated at the center is neglected, the average value

of the pressure at the interface is approximated well

by this simplification. The cavity remains spherical

to within a few per cent when the best estimates of

oil-shale elastic and plastic properties are made.

The elastic parameters for 2 g/cm8 material are,’ in

GPa,

Cll = 24.5, C33 = 15.1, C
44

= 5.1, C66

= 8.0, C12 = 8.5, C13 = 6.2 . (46)

The variation of strength with bedding angle is given

in Fig. 1, which shows that the plasticity theory used

to model the triaxial test results of McLamore and

Gray’ gives a minimum strength at 45°, whereas the

test results indicate the minimum at 60°. It is not

clear whether the discrepancy represents a defect of

the theory or of the test method, which tends to

cause failures across the diagonal of the specimen.

Because the test specimens have an aspect ratio of 2

when the bedding angle is 60° (Fig. 1), the diagonal

coincides with the bedding plane, and the coin-

cidence may contribute to ‘ the experimental

lx) r
t!

A
w +Au

\
McLAMORE AND\

\

m — \
\\

~ -—
~

50

I

PLASTICITY
THEORY

x= COS28

o~
o 30 60 90

8 (deg)

Fig. 1.
Comparison of theoretical
strength-us-orientation curves
data of McLamore and Gray,

and measured

(the latter from
Ref. 5).
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Fig. 2.
Contours of constant hoop stress uw at 43 w
resulting from a spherical detonation in
anisotropic oil shale.

minimum at 60°. The high-pressure constitutive law

takes its form from the empirical relation’

‘s =C+su
P

(47)

between shock velocity and particle velocity. This,

together with the constitutive law defined above,

defines the theoretical behavior of the shale.

The effect of bedding on material strength, il-

lust rated in Fig. 1, can be understood by considering

a stack of plates of elastic-plastic material separated

by a lul)ricat ing material of lower strength. When

stressed in compression by loads in either the ver-

tical or horizontal direction, the stack has the same

strength as the plate material, but when a core with

an axis at 45° to the vertical is loaded along its axis,

the strength is reduced because of slip along the bed-

ding planes.

The result of a spherical explosion is illustrated in

Fig. 2, which shows contours of the hoop stress croe.

This principal stress is associated with the directions

normal to planes through the axis of symmetry of the

problem. Tensile values of mootend to cause failures

analogous to the separation of orange sections. In an

explosion in an isotropic medium the stress contours

are spheres and the stresses are all compressive out

to very large radii. The effect of anisotropy is to

cause a region of tensile hoop stress centered at

about 5 charge radii from the center of the explosive.

The tensile stresses exceed a kilobar over a signifi-

cant region, and half a kilobar over a large volume.

In a spherical explosion in horizontally bedded

material the upper portion of the wave front (which

is approximately spherical) is attenuated at a rate

that depends on the vertical strength, and the

horizontal wave front attenuates at essentially the

same rate because it enters material that appears to

have the same strength. Analytic solutions for

spherical waves have been discussed by Luntz,7

Chadwick and Morland,’ and Blake and Dienes,’

but in realistic calculations material nonlinearities

in the oil shale and the complexities of the pressure

history in the explosive make analytic solutions in-

tractable. Intuitively, one expects the wave to at-

tenuate more rapidly where the strength is higher,

and that is borne out by the calculations in spherical

geometry illustrated in Fig. 3, where the stress

profiles for spherical waves in isotropic shales having

shear strengths of 0.05 and 0.0913 GPa are com-

pared. Because the wave moving along a 45° cone in

an anisotropic shale encounters material of ap-

parently lower strength than the horizontal and ver-

tical waves, it attenuates more slowly. Consequent-

ly, the hoop stress in the vertical plane is greatest on

the 45° cone, and it causes material to move away

from the cone. Though the effect is relatively small

in terms of stress gradients, it is large enough to

cause a small reduction in residual density, leaving a

residual tensile stress that exceeds a kilobar in cer-

tain regions. We estimate that the volume of the

toroidal tensile region is about 60 times the volume

of the charge. f
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Fig. 3.
Profiles of spherical waves in isotropic shales
with shear strengths (SJ of 0.05 and 0.0913
GPa.
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