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Abstract

We consider the problem of using the information from various
time series, each one characterizing a different physical quantity, to
predict the future state of the system and, based on that information.
to detect and classify anomalous events. We stress the application
of principal components analysis (PCA) to analyze ana combine data
from different sensors. We construct both linear and ronlinear predic-
tors. In particular. for linear prediction we use the least-mean-square
(LMS) algorithm and for nonlinear prediction we use both backprop-
agation (BP) networks and fuzzy predictors (FP). As an application.
we consider the prediction of gamma counts from past values of elec-
tron and gamma counts recorded by the instruments of a high altitude
satellite.

1 Introduction

Here we report our progress on the problem of detection and characterization
of multi-instrument signatures of anomalous events. Qur approach is to com-
bine past multi-instrument information in order to predict the future state
of the system. If the predicted and the actual values differ significantly. then
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Figure 1: Gamma and electron counts as a function of time. The time
resolution of the data is 1 min.

we may interpret that difference as evidence about the possible occurrence
of an anomalous event. As a benchmark. we consider the use of past electron
and gamma counts. as recorded by several instruments onboard a satellite. in
order to predict future gamma counts. Plots for gamimna and electron counts
as a function of time are shown in Figure 1.

We can split our approach into two coupled problems: the predictor design
problem and the combination of multi-instrument measurements problem.
In general, the design of a prediction system involves the determination of
a function f, which relates past and present information to future values of
the quantity that we wish to predict. We can design both linear (the output
is proportional to the input) and nonlinear prediction systems.

Recently (1, 2). artificial neural networks have emerged as a flexible nonlin-
ear prediction tool. The reason for this is that feed forward neural networks.
under certain conditions that will be discussed in Section 3, are known to be
universal approximants to functions. If there is a linear or nonlinear function



relating past information to future values. then a neural network with the
appropriate architecture should be able to determine that function.

Backpropagaiion networks are not the only possible systems which can be
used as universal approximators of continuous real-valued functions. There
are several approaches. In particular, we use the fuzzy learning algorithm
of Wang and Mendel [3] to approximate the function. if any, connecting the
past to the future. When constructing fuzzy rules from input-output data.
the fuzzy learning algorithm requires a single pass through the training data.
This is in sharp contrast with the training of bLackpropagation networks,
which requires multiple passes (epochs) through the training daia.

In order to assess the goodness of our predictions we use two diagnos-
tics: the normalized mean squared error £ and the correlation coefficient p
between actual and predicted values. Both £ and p will be formally defined
in Section 2. Ideally £ should be as close to 0 as possible and p should be as
close to 100 % as possible.

Regarding the inputs combination issue, we have chosen to represent the
input data in the principal components representation. There are several
reasons underlying this choice. In particular, if the first principal components
are the ones with most of the intrinsic information of the data, then we can get
information about the relative importance of the input data by considering
the components of the principal vectors. 'CA will be discussed in Section 2.

2 Gamma Counts Prediction

The gamma counts prediction problem can Le stated as follows: let £ be a
data vector containing past information on electron and gamma counts up
to time t,

fl = (elve'—T! ce e @ (p=1)T: 0 T1=T2 v+ - '\I"'—(q—l)r) . (1)

where e, and v, denote the number of electron and zamnma counts at time .
respectively. Let 7, ,r denote the future value of the gamma counts at time
t+ T and assume that there exists a function f connecting past and present
information with the future,

wer = f(&). (2)

The problem is to determine f.



In order to measure the goodness of our predictions we use two quantities:
the normalized error £ and the correlation coefficiznt p. In the fullowing we
will denote the predicted value of ~,.; by 3;.r. We define the normalized
error £ as the ratio of the mean square error M SE.

1 &

—_— ~" 22
MSE = Y E( i — %), (3)

where /¥ is the number of points in the sample. to the variance VAR of the
actual data.

N
VaR= £ 3 (- ()P, (4)
4t i=l

that is.
E=MSE/VAR. (5)

The correlation coefficient o is defined as

_1_-._ 3 (R
p= ¥ (N G- BN 6)

0,03

where o, and o> are the standard deviations of the actual and the predicted
gamma counts, respectively. The prediction is perfect if £ = 0 and p = 100%.
If the function f is approximated by a linear method such as the LMS
algorithm [4], then the predictor is linear. Ou the other hand, if f is ap-
proximated by a nonlinear method. such as a Bl network with nonlinear
activation functions or a fuzzy predictor. then the predictor is nonlinear.

2.1 Backpropagation Networks

Feed-forward neural networks with [ inputs, one or several hidden layers of
units with nonlinear activations, and one output layer with m outputs are
known to be universal approximants to mappings of the form f : R/ — ™.
For an introduction to the theory of neural networks we refer the reader to
[5])-

In all of our nonlinear predictors. we use feed-forward networks with one
hidden-layer of nonlinear activation functions. g(xr) = tanh(x). The networks
are trained using the backpropagation algorithm [6) with the addition of a
momentum term [7] to accelerate convergence. The inputs to the network



are given by the first few principal components. obtained by projecting &
into the principal components basis. The network has one output for the
predicted ~,.7.

2.2 Fuzzy Rule Extraction From the Data

The theory of fuzzy sets [8] provides a useful framework for representing and
making inferences with vague or uncertain information. Traditional fuzzy
inference systems have been constructed usirg fuzzy rules provided by a hu-
man expert. On the other hand. in a neural network the rules are extracted
by the network using the input-output training data. Recently, Wang and
Mendel [3] have deviced a fuzzy learning algorithm for extracting fuzzy ruies
from numerical data. Wang and Mendel also showed that the resulting infer-
ence system can be used to approximate any continuous real-valued function.
In the special case in which we apply the Wang and Mendel algorithm to a
prediction problem. we refer to it as the fuzzy predictor.

The fuzzy predictor has several advanta:zes over backpropagation net-
works:

1. The extraction of fuzzy rules requires a single pass through the training
data. On the other hand. backpropagation networks require several
passes through the training data in order to achieve good function
approximation:

2. Rules generated by a human expert can be easily incorporated into
the fuzzy rule base. In contrast. there is not an straightforward and
general procedure to imnplement rules generated by a human expert into
a backpropagation petwork:

3. Fuzzy predictors are local. that is, the effect of each rule is concectrated
in the vicinity of the training input which was used to generate the rule.
Backpropagation networks implement global mappings. The presence
of a new training sample affects, in general. all the weights in the
network.

We now describe the fuzzy learning algorithm of Wang and Mendel. The
discussion follows [3] and is included here just to make the presentation self-



contained. Suppose we are given a set of R input-output pairs:
(B0 40 .. (2 ). Q
where £ is an m-dimensional vector of input values. y is the corresponding

output value, and the superscript denotes the sample number. The task is
to approximate a function / relating the inputs . to the output y.

y = f(Z). (8)

The approach is to approximate f through the generation of a set of fuzzy
rules such as:

if [(z1is A)) and (rzis A2) and ...(Zn is An,)] then{yisC;). {9)

where A is an antecedent or predicate fuzzy region and C is a consequent
fuzzy region.
The Wane and Mendel algorithm cousists of the following steps:

1. Divide the input and output spaces into fuzzy regions. Let

[;rj‘., .zr;-"] and [y~. y™] denote the domnaiu intervals for the jth input z;

and the output y, respectively. Divide each domain interval into 2V +1
regions and assign each region a fuzzy membership function x, as shown
in Figure 2.

Y]

Generate the fuzzy rules from the training input-output data
pairs. For each one of the trained samples and using the assigned
membership functions: a) determine the degrees of given .. L)
and y in different fuzzy regions. b) assign a given z\’.....14) or 5 to
the region with maximum degree. obtain one rule. such as Eq. (9), from
each training inpu.-output sample, d) assign a degree to each of the
fuzzy rules. and e) solve conflicts between rules by giving priority to the
rule with maximum degree. Fuzzy rules generated by a human expert
can be easily implemented into the fuzzy rule base. This is achieved
by assigning a degree to the rule generated by the human expert and

sclving conflicts with other rules in the way just described.

3. Determine a mapping f based on the fuzzy :xssociative mem-
ory (FAM). Given the out-of-sample data {(z).z;.....z,,)}. use some

defuzzification procedure to determine the output y. Wang and Mendel
use a centroid defuzzification formula.
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Figure 2: Fuzzy regions and fuzzy membership functions

2.3 Principal Component Analysis

One of the most important issues when applying fuzzy predictors and back-
propagation networks is that of data preprocessing. Appropriate data pre-
processing leads to a more efficient use of the information contained in the
past values vector £ of Eq. (I). In our data preprocessing stage we use PCA.
With PCA we get good input data compression (dimeusionality reduction)
and noise reduction while preserving as much information about the inputs
as possible. PCA has been used for image coding [9] and to rednce the dimen-
sion of speech signals for vowel classification [10]. For a general discussion
on PCA see [11].

We obtain the ith principal component. \;, projecting £ along the ith
unit eigenvector, @'", of the covariance matrix C.

Cir = ((§ — (&) (& — (&) (10)

The principal components are ordered in terms of decressing eigenvalue. The
ith eigenvalue J; is the variance of the data along the ith direction.
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Figure 3: Absolute value of the components of the first principal unit eigen-
vector of the covariance matrix.

2.4 Results

The way in which we preprocess our input data follows. We start with
the input vector E-; of Eq. (1) with 8 components (4 for past values of e
and 4 for past values of ) and project it into the principal components
representation [12]. The input Y, <o the predictors is given by the first 3
principal components. Predictors with more than 3 principal components as
inputs did not lead to any improvement in the predictions.

Figure 3 is a plot of the absolute value of the components or loadings of
the first unit eigenvector @' of the covariance matrix. The first principal
component x| is obtained by projecting ¢ along #'!). The components of the
input vector £ are past values of e and past values of +. For the case shown
in Figure 3. the time lag is T = 120 min. In Figure 3 the components 1-4
of @1 determine the coatribution of past values of e to x;. Similarly, the
components 5-8 of #'!) determine the contribution of past values of ~ to X1-
From Figure 3 we have that the relative importance of the contribution of
past electron and gamma counts to x; is similar.

Figure 4 is a plot of the eigenvalues of C as a function of the principal di-
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Figure 4: Eigenvalues of the covariance matrix as a function of the principal
component number.

rection number. \We observe that the only significant eigenvalues are the first
three. This is consistent with the observation that. in all our trials, the best
predictions were obtained using only the first three principal comaponents. It
is interesting to note that whenever we used the raw data vector £ as input
to our predictors. the prediction error was larger than in the case when we
used only the first three principal components. The moral is that PCA is an
effective t20] for vombining diverse signals. for dimensionality reduction, and
for d:.mping the effect of noise.

Figure 5 is a plot of the normalized prediction error and the correlation
coefficient as a function of the prediction time I'. The results shown corre-
spond to single-step predictions of gamma counts using the previous value
(stars) and fuzzy predictors (boxes). In all our trials, the prediction results of
both linear LMS predictors and nonlinear BI’ networks were only comparable
to the results obtained using the previous value as the predicted value. The
poor performance of BI' networks compared to fuzzy predictors is due to the
fact that Bl networks implement global mappings between past information
and future gamma counts and then, given the nonstationary character of
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Figure 5: Normalized prediction error £ and correlation coefficient p as a
function of the prediction time for single-step predictions. The results wer -
generated using the previous value as the predicted value (stars) and fuzzy
predictors {boxes). It is interesting to note that. due to their local char-
acter. fuzzy predictors outperformed backpropagation networks and linear
predictors.

the time series displayed in Figure 1. BP networks capture only the average
properties of the mapping. On the other hand. fuzzy predictors implement
mappings between the past an the [uture using local inference rules.

The results of single-step predictions T = 120 min ahead of time are
shown in Figure 6. The solid curve represents the actual gamma counts
and the dotted curve represents the predicted gamma counts using a fuzzy
predictor. Figure 7 is a scatter plot of the predicted and the actual gamma
counts. Perfect predictions would lie along the diagonal (dashed) line.
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predictor.
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3 Conclusions

We consider the problem of anomalous event detection from multi-instrument
information. Qur approach consists of two parts: combine past mult;- instru-
ment information in order to predict the future state of the system and use
significant deviations between the predicted and actual values as evidence
for the occurrence of an anomalous event. As a benchmark. we consider the
prediction of future gamma counts from past eiectron and gamma counts
recorded by two instruments onboard a satellite.

We have found that the principal components representation provides a
useful framework to combine past multi-instrument informnation for predic-
tion purposes. In particular. PCA allows us to compress the input data, to
determine the relevant variables. and to reduce noise.

We have applied both backpropagation networks and the fuzzy learning
algorithm of Wang and Mendel to the prediction of future gamma counts
problem. The fuzzy predictor consistentiy outperformed backpropagation
networks in the prediction task. The reason for this is that backpropagation



networks implement a mapping from past to future information using global
informration. On the other hand. the fuzzy predictor implements the mapping
from local inference rules. Given the nonstationary character of the electron
and gamma counts time series. a backpropagation network learns the average
properties of the time series. whereas a fuzzy predictor exploits the details
in the time series.

It is important to note that when we used the raw multi-instrument data
as input to our predictors, the prediction accuracy was always smaller than
that obtained using only the first principal components. This shows how
useful can PCA be for data preprocessing and noise reduction.
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