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BUBBLE FUSION: PRELIMINARY ESTIMATES
by

R. A. Krakowski
January 4, 1995

ABSTRACT

The collapse of a gas-filled bubble in disequilibrium (i.e., intemnal pressure
<< external pressure) can occur with a significant focusing of energy onto
the entrapped gas in the form of pressure-volume work and/or acoustical
shocks; the resulting heating can be sufficient to cause ionization and the
emission of atomic radiations. The suggestion that extreme conditions
necessary for thermonuclear fusion to occur may be possible has been
examined parametrically in terms of the ratio of initial bubble pressure
relative to that required for equilibrium. In this sense, the disequilibrium
bubble is viewed as a three-dimensional "sling shot” that is "loaded” to an
extent allowed by the maximum level of disequilibrium that can, stablsy be
achieved. Values of this disequilibrium ratio in the range 10 -10" are
predicted by an idealized bubble-dynamics model as necessary to achieve
conditions where nuclcar fusion of deuterium-tritium might be observed.
Harmonic and aharmonic pressurizations/decompressions are examined as
means to achicve the required levels of disequilibrium required to create
fusion conditions. A number of phenomena not included in the analysis
reported herein could enhance or reduce the small levels of nuclear fusions
predicted.

I INTRODUCTION

Liquids exposed to intense ultrasonic waves can generate small cavities or bubbles that
upon expansion and subsequent implosion create strong local heating. Studies of acousto-
chemical or sonochemical reactions induced by this strong local heating have been recently

reportedl'2 and thoroughly reviewed.*'° Although temperatures of 10,000s K have been
reported, extension of these sonochemical conditions to those required to induce

thermonuclear fusion have also been suggested.m'“ To examine the latter possibility, the

standard (simplified) bubbie-dynamics t=,quation4'8'12'13 has been solved parametrically in
the context of DT fusion, and projections are reported herein. This parametric analysis is
based on modeling the dynamics of a cavity filled with a (nearly) ideal gas (g) and vapor
(v); the gas-filled cavity is subject to a constant hydrostatic (h) pressure and an oscillatory
externa.ly applied pressure (a). While a van der Waals equation of state is used and free-
electron (Bremsstrahlung) radiation loss»s ure included, the generally optimistic
assumptions of no gradient-driven transport, no gas/plasma interactions with the cavity
wall, and completely stable spherical implosions are invoked.

While the impact of gas-phase shock waves launched from the inward-moving spherical
piston are not included in this analysis, the creation and interactions of these cavity-wall



launched and reflected shocks has been suggestedm'“s as one explanation for the timing
and location of sonoluminescence observed under some conditions. Other explanations for
th® radiation gbserved to accompany bubble collapse include collision-induced emission
from digpolw” and Casimir energy'® released when a dielectic hole (i.e., the cavity) is
filled.'” The latter two explanations would preclude conditions where nuclear fusion of
light elements might occur, whereas the modeling multiply interacting, reactive shocks is an
area for future work; the present "scoping” calculations, therefore, are based on modeling
uniform, nearly adiabatic compressional heating of a hard-sphere gas in a collapsing cavity
usinia formalism that differs little from that reported by Lord Rayleigh nearly eighty years
ago .

Tue collapse of a gas-filled bubble with an intemal gas pressure Py, << Py was simply and
accurately modeled in 1917 by Lord Rayleighzo. who suggested that the potential energy
~(4/3) Rg P,- Pp) created by the formation of a non-equilibrium cavity of radius R, in a
hydrostatically pressurized liquid at a pressure Py, could be converted to kinetic energy of
all the surrounding liquid and focused onto the gas trapped in the cavity of ever-
diminishing radius R(t). This "disequilibrium” bubble (e.g., f., = Pyo/Ppl << 1, where
Pg‘DQis the gas pressure needed to achieve force balance with the environinent) can be

viewed as a three-d‘'mensional “sling shot”, cocked and ready to convert the elastically
stored poteatial energy in the liquid and to perform pressure-volume work on the contained
gas.

The first part of the analysis reported herein parametrically describes in a fusion context
(e.g., fusion neutron yield, density-time-temperature product) the effect of varying the
loading of this thrce-dimensional "sling shot” vis 4 vis the disequilibrium parameter f,.
The feasibility of achieving the required lcvel of disequilibrium starting with an equilibrium
bubble (e.g., f; = 1) is then investigated by solving the bubble-dynamics equation under
conditions of both harmronic and aharmonic/resonant pressure loading of the liquid
surrounding the (initially) equilibriumn bubble. The main goal of this study is to understand
better conditions where deuterium-tritium fusions might be observed; not even a hini of a
prognoses for practical application is intended at this point.

II. MODEL

A gas-filled bubble in pressure equilibrium between forces associated with a uniform
hydrostatic pressure, P\, vapor pressure in the cavity associated with the surrounding
liquid, P,, the surface-tension or Laplace pressure, P; = 20/R, and the internal (insoluable)

gas pressure, Py, is describe for a bubble of radius R relative to some reference radius R,
as follows:

B, = (P + Poo - Pv)z7 + Py - Pyoz , 1)

3 . . " - " [}
where z = (R./R)" is the compression ratio, and the subscript “o" refers to a reference

(initial) equilibrium conditions (e.g., A’g%o = Py + Py, — P,), the cavity wall is assumed to
be isothermal (e.g., the vapor pressure, P, is assumed to be constant), and an ideal gas



with polytropic expoaent y are assumed. The parameter f., = Py / Pg":’,Q is introduced &s a
measure of ‘nitial force or pressure "disequilibriurn” within the gas bubble. While the path
to this "disequilibrium” is left unspecified in the first part of the parametric analysis. the

(starting) pressure Py, = fng‘,Q does not satisfy the equilibrium described by Eqn. (1),
and for f,, < 1 the bubble will collapse under the force of this disequilibrium.”’ The
potential energy associated with this disequi brium bubble of (initial) radius R, emersed in
a liquio under hydrostatic pressure P, is given by

(PE; — (4/3mR) - REQ’R, . @)

As this fy; < 1 disequilibrium bubble collapses, the potential energy relative to (PE); is
dcscribede%y

PE = (4/3m(R3 - RP, , A3)

and the kinetic energy of the inward-moving liquid surrounding the collapsing bubble is
sum:med up over all radii r > R(t) as follows:

KE = j%(mrz pe dr)(dr/dr)? @)
R

where the radial coordinate r is associated with the liquid. Including the work expended in
adiabatically compressing the gas entrapped within the bubble [for an ideal gas, Pg/zY e
constant, work = PgoVo{zY_1 —1}/y-1) fory> 1 or PV, ¢n z for y = 1], along with
the assumption of incompressibility of the host liquid [e.g., 47 r* (dr/dc) = 4n R® (dR/dW)],
the following bubble kinetics equation results from the balance of KE, PE, and pressure-
volume work'>?:

2 P,
where
z @) (=1
(Z = Y_l— ’ 6
g(z) zy—11(7>1) (6)

and @, = JZ—B, /pe) /R, is the natural (resonant) frequency of the initial (disequilibrium)
bubble. For the case where Py, = Py, = 0, the time for the disequilibrium collapse, t* =

R
J‘dr/(dR/dt). is given by*
R,



Zmax =

on T = f3 dz
R - N2 3 /o -z
1

_ 1 TG5/6) T1/2) _
= g oTan) - - 0946 .

e)

where I'(y) = F"‘ x? ~ !dx is the Garama Function. Lastly, the “impulse parameter",
(]

J‘ Pdt, is expressed below in “fusion units,” n(l/ms). 1(s), and T} .y(keV):

Zou

3 - Na kp FPpo 2! 4 da -
<NTTev>(G keV/m’) = Rg o, j. @R7A) (o, o) ®
1

When a time-varying pressure, Py(t), is added to the hydrostatic pressure, P, far from the
bubble and included in the balance between k'metilg energy, E)otential energy, and work,
along with the addition of a viscous pressure term ~ [~4 | R™ (dR/dt)/r] to P, and using

the relative pressure balance described by Eqn. (1), the following (Rayleigh-Plesset)
bubble-dynamics equation results:

pl[R%‘t-' + %vz] = (B + Pgo - P2' + P2'"7

9)
1/3
~ 4_ﬂRvo_z_ R, - P.(b) ,

where v = dR/dt. The Rayicigh-Plesset (Nultingk—Neppiras-Poritsky)13 equation describes
a highly idealized bulgble ana is subject to a number of important limitation, some of which
are listed below ' ":

single bubble in an infinite medium

spherical bubble, no distortions or breakup

spatially uniformity within and outside the bubble

absence of body forces

acoustic wavelengths (associated with P,) much greater than R

no viscous effects within the bulk liquid [the term in Eqn. (9) is associated only
with fluid motion near the bubble surface]

incompressible liquid phase

constant gas inventory within the bubble

constant liquid vapor pressure (isothermal cavity wall)

no molecular diffusion into or out of the bubble

no acoustic streaming and impact of resulting shear stresses on bubble shape



¢ ideal-gas, adiabatic behavior within the bubble with a constant polytropic
coefficient

e no radiation loss from the g=s/’lasma within the bubble

e no gas-phase shock formation (c >> dRvdt).

With these limitations in mind, Eqn. (9) is solved for both a sinusoidal (P, = P, sin ® t)
and an aharmonic/resonant pressure function, [P,(t) = P4 2"~ for the N compression in
a series of compression-expansion cycles], starting with an equilibrium bubble (x, =
R‘,/RoBQ = 1, fog =1). In the case of driven systems, an initial radius, REQ, is chosen to
give a uatural resonant frequency, ,, equal to the driver frequency, 2 &t f; otherwise, a
significa. part of the numerical computation is devoted to resolving uninteresting transient
oscillations . In addition to determining R(t) and T(t), the resulting gas pressure, Py(t) is
ascumed to be generated in a deuterium- tritium (DT) gas mixture, an impulse parameter
<n T Ty .v> is computed for each compression the arises, and u:¢ DT fusion yield

t
YLD = J‘% n<ov> dt (4/3) = R’ dt , (10)

o

for each compression registered, where n = p, N, and <o v> is the DT fusion reactivity.
These integral quantities, along with the peak radial comrpression, Xpmin = Rpyin/R,, and the
maxinum temperature, T(Xp;,), arz correlated with the disequilibrium parameter, f,, =
Pgo! Pfoo , cvaluated at the beginning; of each major compression.

Both DT depletior: through bumup aid fusion-product heating are monitored, but this
information is not incorporated into the time-dependent model; for most of the conditions
examined, these fusion-related effects on the bubble dynamics and response are not
important.

Although most of the approximations listed above are retained in the present analysis, the
foliowing van der Waals equation of state replaces the ideal-gas assumption:

P(v-vy)=Rg (11)
w=c, T=(v-vy) PI(Y-1) (12)
P(v -vy) =Sk, , (13)

where v = 1/p; is the specific volume of the gas and vy = 0.05 m’/kmole is the “hard-
sphere” volume of the hydrogen atom. In this case the ideal-gas adiabatic is subject to thc
tfollowing correction:

P oy _ 1
P, * % Tvow (14)



fvow = [_—_Vn/_x_T (1s)
1- VH

where vy= Pgo Vi1 and Py, = Py /(R Ty) is the initial pressure gas pressure in the bubble.

A second correction to the ideal-gas adiabatic is applied to adjust (approximately) for
“sliding adiabaticity” associated with energy shed from the compressing bubble from free-
electron (Bremsstrahlung) radiation In this case, the right-hand side of Eqn. (14) is

mu'tiplied by the factor ¢ ', where the integral I(t) is given by

t
Kt = "I% dt , (16)
Jg
and
prRAD(W/m’) = Cpr(Z fion n)* Tild (17)
w(J/m?) = %('. + fio)kpThn . (18)

The radiatica power density and the total energy density in the bubble are pgap and w,
respectively. The degree of ionization, f;,,, is assumed io be given by the Saha
equilibrium relatwnsmp 2

1
fion =
T 1+ Ja+ 4/K)

12 12
- B T o

The dissociation of DT is neglected, the atomic and ionic partition functions Q, ,, are taken

as unity, T,y is the temperature in electron-volts, and the ionization potential is E; =
13.6eV.

(19)

. RESULTS

The conditions where DT fusions might be generated in the course of a compressional
heating driven by the liquid forces transferred to a collapsing gas-filled cavity are explc.ed
at two levels using the simplified model described in Sec. II. At the parametric level, the
"disequilibrium” pararaeter f,; along with and initial equllib.LJm bubble radius, REQ, are
specified to determine an 1mt1al normalized radius, x, = ROIR , with which to begin the
time-dependent calculation of R{t) and the fus1on-related integral and peak parameters. At
the second level, the Rayleigh-Plesset equation, Eqn. (9), is solved for an initially

equilibrium bubble with a radius REQ chosen to assure that the natural resonance



frequency, @, = /(P /p¢)/REQ, matches that of the drive frequency, 2 & f, where P,(t) =
P, sin (2w ft). A second, aharmonic/resonant drive -cenario was also investigated,
wherein P,(t) is appliea culy during a given bubble collapse at a value that is double the
value used to drive a previous collapse. For ecither of these harmonic- or
aharmonic/resonant-triven simulations, the value of f, prior to each coliapse is recorded
and correlated with the fusion performance [e.g., X0, Thv(xmm). <nt Ty .y>, and YLD].

For all computations a van der Waals equation of state is used, and the correction for
(accumulated) radiation losses embodied in Eqns. (16)-(20) is impcsed. The fixed

paranmershstemeableIareused, which generaily reflects the properties of water at T,
=300 K.

A. Ccrrelation Based on Specification of Disequilibrium Parameter, f

Figure 1 gives a schematic representation of the case wherein an equilibrium (x = 1, f

1) bubble is brought by some unspeaﬁed route to a state ofdlsethbnum (fq< 1), the
resulting three-dimensional "sling shot” is released, and the ensuing comprcssxon (and
rebound) is numerically followed in time. The unspecified (unmodeled) equilibrium —
disequilibrium trajectory, x = 1 — x,, is assumed to occur slcwly (relative to the time scale
of the ensuing collapse) and isothermally; the initial conditions used for the modeling of the
bubble collapse in terms of the equilibrium (x = 1, f = 1) state are as follows:

Pgo=feq PSEOQ ’
R, = REQ/£5° ; 1)
To= TEQ

The state conditions upon peak (adiabatic) compressior are approximately given by
P = ngoQ/feqll(y -b .
R = [EQ fg-Y)/J/(Y-l) , f (22)
T=ToQ /oy .

The product of peak pressure, ~nT),.y, and the collapse time, 1*, given by Eqn. (7) scales
as follows:

niT _ 1 .
mtD)y fgﬂ)/s(v-l) ’ (23;
where
* _ Na kp . -—
ntT) = Rg (@rt) VB p1 (24)



and from Eqn. (7), @, T* is near unity. These relationships are based solely on equilibrium
conditions and are given only as an indication of key scaling dependencies in the search for

means to maximize T and <n T Ty >.

All computations that varies [, parametrically correspond to an equilibrium bubble of
radius REC = 100 um, with the isothermal excursion to the initial radius R, where actual
modeling of the bubble collapse begins, being given by

. /3
Xo = IVM]‘ . (25)
L

1+ vy

In this expression, x,=R/REQ, vij = po vy, and p, = (P, + Py - P, )(Rg T,) is the
(DT) gas density in the equilibrium (x = 1) bubble; for all cases, the Table-1 parameters are
used, along witn P, = 1x10° Pa and P, = 2 o/REQ.

The parametric dependencies 0 Xp/Xo = Ryyn/Ry, <0tT>/10, YLD/10%, and T(x,;,) on
foq are shown on Fig. 2. The sample normalized-radius trajectory (during compression)
used in ths Fig.-1 illustration corresponds to f,, = 0.01. Shcwn also is the f., dependence
of Xpin = Rmin/ REQ. The peak temperatures rcported correspond to an adlabaIJc heating
along an adiabat that starts with a disequilibrium bubble at T, = 300 K, under the
assumption that the equilibrium — disequilibrium trajectory was achieved slowly and
isothermally; the T ~ 1/f, dependence suggested by Eqn. (22) is indicated. Shown also on
Fig. 2 are temperatures for the case where the expansion pait of the trajectory was also
adiabatic; that is, the expans:ion from x = 1 to x = x, was accompanied by a cooling prior to
the subsequent burble collapse and adiabatic colnpression:! heating. [e.g., neglecting the
van der Waals correction, which is small in this region, T, = T /(xXY~")]. The <nt1>
and YLD values reported on Fig. 2, however, comrespond to the more optimistic isothermal
equilibrium — disequilibrium trajectory. For this case, measurable quantities of neutrons
from a single bubble collapse would require that bnbbie to be “set 1:p" with f < 10"

Considerable lower values of f., would be required if the assumed expansion from the
equilibrium to the disequilibrium state is adiabatic, as will be seen from the following
evaluations of the Rayleigh-Plesset equation to describe an initially equilibrium bubble

trajectory to disequilibrium and subsequent collapse under a range of externally driving
pressures.

B. Correlations for Driven Equilibrium Bubbles
1. Harmonic Drive [P, = P, sin (2w f t)]

The radius trajectory of an (initially) equilibrium bubble subjected to P, = 5x10° Pa
pressure oscillations at an f = 10-kHz frcquency is shown on Fig. 3. For this case, the

(initially) resonant bubble has a radius REQ =292 pm when Py, = 1x10° Pa. Comparing x

=R/REQ to the driver pressure, also given as 1 + P,(t)/P, on Fig. 3, indicates an initially
harmonic, but highly non-lir.ear, response thut is followed by the bubble traijectory settling



onto a moderately rhythmic forth subharmonic. Fairly dejp compressions (limited by the
van der Waals cquation of state) from f,, ~ 0.5-1.0x10 ~ disequilibria are predicted for
these sinusoidally driven bubbles. The comelation of X pin, T(Xmin) and <ntT> with the

computed f,, values taken from the Fig.-3 trajectories just prior to a given collapse is
shown on Fig. 4. The relatively low (peak) temperatures for even low values of f, result
from the adiabatic cooling computed during the expansion part of the trajectury, as well as
the cumulative effects of radiaticn cooling for this constant-a. plitude sinusoidal drive. The
impact of elimination of radiative losses is also shown on Fig. 4; the accumulated radiation
losses impact primarily those deep compressions thst occur Iater in the chain of
compressions depicted on Fig. 3. As for the cases where the bubble is forced to begin to
collapse from a specified f., value (Sec. [IL.A.), the van der Waals equation of state limits
the maximum compressions permitted. The neutron yield, YLD, for all compresssions
registered on Fig. 3 are below the minimum scale used on Fig. 4 for this P, = 5x10"-Pa
harmonic-drive case; a means must be found to pump more energy into the collapsing
bubble while forcing it to higher levels of disequilibrium prior to collapse.

2. Aharmonic/Resonant Driver

Just as more energy and greater excursions can be transferred to a ball tethered to a paddle
by an elastic band through timely swats, so can tailoring of the impulse to the anharmonic
trajectory of the bubble radius increase the response and perfcrmance. Figure S gives the
time dependence of the normalized bubble radius and drive pressure for the case reported in
Sec II1.B.2., but with pressure being applied only once the bubble collapse commences.
Furthermore, this aharmonic application of pressure is doubled in intensity for each
subsequent collapse, with P, starting at 1x10” Pa. The values of xp;,, T(Xpip), <0TT>
and YLD for each bubble collapse registered on Fig. 5 is shown on Fig. 6 as a function of
the respective value of f, just prior to collapse. The impact of (cumulative) radiation loss
is not as great as that reported of the harmonic drive because of the ratcheting of the applied
pmsure_6in the aharmonic/resonant case. The neutron yields, however, remain low unless
feq <10 " primarily becavse of the low (peak) tempe atures related to the adiabatic cooling
during each expansion to the disequilibrium state that proceeds a give bubble collapse.
Generally, the assumption of fully adiabatic expansion (and cooling) leads to unrealistically
low temperatures prior to collapse and requires an improved model.

IV. SUMMARY

The collapse of a gas-filled bubble in disequilibrium can occur with a significant focusing
of energy onto the entrapped gas in the form of pressure-volume work and/or acoustical
shocks. ;1'7h¢|= suggestion that extreme conditions necessary for nuclear fusion may be
possible " ' been examined parametrically in terms of the ratio f, of initial bubble
pressure relative to that required for equilibrium. The disequilibrium bubble is viewed as a
three- dimensional “sling shot” loaded to an extent allowed by the maximum levci of
disequilibrium that can stably be achieved. Values of this disequilibrium ratic in the range
f.=10" - 10° are predicted by an idealized bubble-dynamics inodel as necessary to
aﬁaieve conditions where nuciear fusion of deuterium-tritium might be observed. Harmonic
and ahaimonic pressurizations/decompressions have been examined as means to achieve
the required levels of disequilibrium, with the latter drive scenario offering a possible

means (o achieve f,, values und peak temperatures where measurable quantities of fusion



and

listed in Sec. 1. mdnotmclmbdmthnsamlysnsomldlmpactthﬁepredlcuonsma
genenilly negative way. The creation of multiple and interacting gas-phase shock waves
and mechanisms that allow isothermal expansions to the disequilibrium state could enhance
the predictions of relatively low fusion yiclds, however; an improved understanding of the
potentially positive impact (from the view point of heating, density amplification, and
increased fusion yield) of multiple interacting shocks is suggested as a course for future
work, as well as the incorporation of gradient-driven transport. gas/plasma-wall
interactions, and an improved radiation model.
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NOMENCLATURE

o(m/2)
Cp/kg/K)

CBR(W m /ch )

EgeV)

e(J/eV)

(Hz)

feq

fion
fvow
g(z)
h(Js)
I

K

k(€V/K)
KEQJ)
M (kg/s)
me(ky)

N A(entmes/mole)
n( l/m )
<ntT>(s keV/m3>
P,(Pa)

P A(Pa)

o(Pa)

% (Pa)

Ph(Pa)
P, vo(P2)
Ps (Pa)
PE(J)
Prap(W/m’)

Qo.1

R(m)
Rg(/kg/K)
r(m)

Ry(m)

RE2 (m)
SUJ/K)

t(s)
T(K)

To(K)
Tcril(K)
Tev(CV)

sound speed in gas

gas heat capacities at constant pmsure.volume
Bremsstrahlung radiation coefficient, 4. 8x10~

(hydrogen) ionization potential

electronic charge

driver frequency

disequilibrium parameter, Pg/ Pg‘,Q

(Saha) ionization fraction, Eqn. (18)

van der Waals correction, Eqn. (15)

pressure-volume work function, Eqn. (6)

Planck’s constant, 6.6252x10™>*

radiation integral, Eqn. (15)

Saha function, Eqn. (19)

8.617x10°

kinetic energy

mass flow of liquid towards collapsmw bubble

electron rest mass, 9. 1083x107

number of a series of sequential bubble compressions
Avagadro’s number, 6. 0249x10**

gas particle density, PgNa

time-averaged gas pressure during a given bubble collapse
acoustic (time-varying) pressure exerted on cavity

amplitude of acoustic (time-varying) pressure exerted on cavity
gas (non-condensible) pressure in cavity

gas (non-condensible) pressure in cavity for equilibrium bubble
hydrostatic (constant background) pressure exerted on cavity
vapor pressure (of liquid) in cavity

effective surface-tension pressure, 2 6/R

potential energy

(Bremsstrahlung) radiation power density

partition function for atom,ion
bubble/cavity radius

gas constant, 8,317.

radial coordinate into liquid

initial bubble/cavity radius

initial cavity radius for equilibrium bubble
enthalpy

time

temperature of gas

reference (initial) temperature of gas
thermodynamic critival temperature of water
gas/plasma temperature in electronvolts
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TkeV(l:ch)
Vo(gl )
v(m /kmole)

Zimax
AH(J/mole)
n(kg/m/s)

Y

I(y)
o(N/m)

<G v>(m'/s)
@(rad/s)
 (rad/s)
pkg/m’)
pg(kmole/m")
1(s)

1 (s)

gas/plasma temperature in kiloelectronvolts
initial volume of bubble, (4/3) nRg

gas molecular (atomic) volume, 1/r
(malkmole) molecular (atomic) volume
normalized molecular (atomic) volume, VHPgo
van der Waals correction, Eqn. (14)
gas/plasma-phase energy density

radius compression ratio, R/ RoEQ
normalized disequilibrium radius, R/ RoEQ
number of (DT) fusions per bubble collapse
atomic number of ionized gas )
volumetric compression ratio, (R,/R)
maximum compression (dR/dt = 0)

heat of vapo.ization

lignid viscosity

gas heat-capacity ratio

Gamma function

surface tension of liquid

(DT) fusion reactivity

driver frequency, 2 &t f

bubble resonance frequency, J(P}, /pe) /R,
liquid density

gas density

bubble natural response time, or nominal inertial confinement time

(as in <ntT>)
collapse time of a pressureless cavity
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EQUILIBRIUM/DISEQILIBRIUM/COLLAPSE TRAJECTORY

/284 Los Alomos
g 10 fuq = Ppo/PE ' ]
é (a) TRAJECTORY UNSPECIFIED @9 ADIABATIC ]
P~ - (5) RAYLEIGH COLLAPSE ySfSOI _ _ —a_ COMPRESSION® _
I I \)«é;/g o
" ‘}f; g DISEQUIHBRIUM
= T \9‘5/@ = Uik
(] e
<10’ E’;<_ """"""""""""""""""""""""""""" =
= . N EQUILIBRIUM .
@ B PEAK COMPR]'BSIONA .
g B Xmin = f:‘q :
I a=@-)/y-1)/3 ]
% T/To = 1/£
S Po/PE = 1/t g = 1ty -1)
10_l S I 1 1 1 l i 1 1 1
0 5 10 15

NORMALIZED TIME, t/7

Figure 1. Schematic diagran: of bubble radius trajectory illustrating approach to f, < 1
disequilibrium from fg, x = 1 equilibrium state, followed by collapse to Xy
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PARAMETRIC DEPENDENCIES on feq

R/28/954 Los Alamos
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Figure 2. Parametric dependence of integral and peak-compression parameters on
disequilibrium parameter, f, = Py/ Pg%Q .
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f = 10. kHz; RE =292, um; P,/P,, = 5.00

Los Alamos
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Figure 3. Response of normalized bubble radius to f = 10 kHz, P, = 5x10° Pa sinusoidal
pressure oscillations starting with a resonant (@, = 2 & f), equilibrium
(x, feg = 1) bubble.
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f = 10. kHz; RE? = 292. um; P,/P;, = 5.00

%101 _El LBLILRRLL] T TTT] T TTTIm LI LLLLLS i lll:fI?]AbTﬁlll
e HARMONIC DRIVE (adiabatic expansions) a
er1 T, = 300 K

—
OI

x, nTT(keV/m?3s)/10%°, YLD/1U°

10° 10° 10* 10° 10° 10° 10
DISEQUILIBRIUM PARAMETER, f.q

Figure 4. Dependence of integral and peak-compression parameters for the harmonically
driven bubble compressions given on Fig. 3.

18



f = 10. kHz; RER = 292. um; P,/Ppn = 2" !
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Figure 5. Response of normalized bubble radius to progressively doubled pressure pnlses
for conditions that are otherwise identical to those used for the harmonically
driven case given on Fig. 3.
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f = 10. kHz; RE® = 292, pumn; Po/Py = 2"
2/26/94 Loa Alomos
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Figure 6. Dependence of integral and peak-compression parameters for the
aharmonic/resonant drive given on Fig. 5.
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Table I Input Parameters

Liquid density, p(kg/m’) 988.
Background hydrostatic pressure, P,(Pa) 1.00x10°
Vapor pressure at T, = 300 K, P, (Pa) 4.21x10°
DT molecular volume, vg(m /kmole) 0.05
Heat-capacity ratio, Y 1.67
Surface tension, 6 (Nm) 0.072%
Fluid viscosity, 1} (kg/m s) 0.00
Reference temperature, T (K) 300.
Critical temperature, T ;,(K) 647.
Ionization potential, E(ev) 13.6
Atomic number of ionized gas, Z 1.0
Partition functions for neutral, ionic species, Qg | 1.0,1.0
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