LA-7596-PR

Progress Report

0.3

Applied Nuclear Data

Research and Development

LOS ALAMOS SCIENTIFIC LABORATORY

Post Office Box 1663 Los Alamos. New Mexico 87545

July 1-September 30, 1978

An Affirmative Action/Equal Opportunity Employer

.

۳,

The four most recent reports in this series, unclassified, are LA.7066.PR, LA.7200.PR, LA.7301.PR, and LA.7482.PR.

This work was performed under the auspices of the Electric Power Research Institute and the US Department of Energy's Division of Military Application, Reactor Research and Technology Division, Division of Basic Energy Sciences, and Office of Fusion Energy.

> This reput was prepared as an account of work sponsored by the United States Government. Neither the United States nos the United States Department of Energy, noe any of their employees, nos eny of their contractors, subcontractors, or their employees, mekee any werrenty, express ce implied, or assume any legal liability or responsibility for the occurrecy, completeness, or usefulness of any informetion, appealuo, product, or process disclosed, or represents their its use would not infringe privately owned rights.

> > UNITED STATES DEPARTMENT OF ENERGY CONTRACT W-7405-ENG. 36

LA-7596.PR Progress Report

Special Distribution Issued: December 1978

Applied Nuclear Data

Research and Development

July 1-September 30, 1978

Compiled by

C. I. Baxman P. G. Young

CONTENTS

I.	THEOI	RY AND EVALUATION OF NUCLEAR CROSS SECTIONS	1
	۸.	Charge-Independent R-Matrix Analysis for the Four-Nucleon System	1
	Β.	Charge-Symmetric R-Matrix Analysis of the Seven-Nucleon System	1
	C.	T(t,2n) ⁴ He Reaction	2
	D.	Comparison of Cross Sections Calculated with Various Statistical Model Codes Using Identical Parameter Sets	5
	E.	Calculations of ²³⁵ U and ²³⁸ U(n,xn) Cross Sec- tions and Individual Neutron Emission Spectra	7
	F.	Evaluated Photon and Neutron Spectra of Uranium Isotopes	9
	G.	Neutron-Nucleus Optical Potential for the Act- tinide Region	10
II.	NUCL	EAR CROSS-SECTION PROCESSING	16
	A,	NJOY Code Development	16
	В.	Energy Balance Tests for Preliminary ENDF/B-V	16
	c.	Phase II Testing of Preliminary ENDF/B-V Data	17
	D,	CSEWG Shielding Data Testing	19
	E.	MATURE	19
	F.	ERRFILS A Preliminary Library of 30-Group Multigroup Covariance Data For Use in CTR Sensitivity Studies	20
111.	FISS DECA	ION PRODUCTS AND ACTINIDES: YIELDS, YIELD THEORY, Y DATA, DEPLETION, AND BUILDUP	26
	A.	Fission-Yield Theory	26
	В.	ENDF/B-V Yields	28
	C.	ANS 5.1 Decay-Heat Standard	28
	D.	233 235 239 U, U, and U Gamma Spectra	39
	E.	Delayed Neutron Calculations	42
	F.	Calculation of H. B. Robinson II Spent Fuel Actinide and Fission-Product Inventory	52
REFE	RENCE	S	52

.

APPLIED NUCLEAR DATA RESEARCH AND DEVELOPMENT QUARTERLY PROGRESS REPORT July 1 - September 30, 1978

Compiled by

C. I. Baxman and P. G. Young

ABSTRACT

This progress report describes the activities of the Los Alamos Nuclear Data Group for the period July 1 through September 30, 1978. The topical content is summarized in the contents.

I. THEORY AND EVALUATION OF NUCLEAR CROSS SECTIONS

A. Charge-Independent R-Matrix Analysis for the Four-Nucleon System (G. M. Hale and D. C. Dodder)

The analysis of reactions in the 4 He system having isospin-one parameters constrained to fit p + 3 He elastic scattering data has continued with the addition of new experimental data from Ohio State University and with some modification of the low-energy D(d,p)T analyzing-power measurements from Basel. Qualitative success of this charge-independent analysis in accounting for certain features of the 4-nucleon reactions, as described last quarter, were reported ¹ at the recent Few Body Conference in Graz, Austria.

B. Charge-Symmetric R-Matrix Analysis of the Seven-Nucleon System [D. C. Dodder, G. M. Hale, S. D. Baker (Rice University), and E. K. Biegert Rice University)]

Two of the seven-nucleon reactions are important at low energies in applications; the ${}^{6}Li(n,t){}^{4}$ He cross section is widely used as a neutron standard and that for the mirror ${}^{6}Li(p, {}^{3}\text{He}){}^{4}$ He reaction is an important astrophysical cross section for understanding the abundance of the lithium isotopes. To determine both these important cross sections and the spectroscopy of the seven-nucleon systems ${}^{7}Li$ and 7 Be more reliably, we have been carrying out a charge-symmetric R-matrix analysis that includes most of the known data for the seven-nucleon reactions.

The low-energy behavior of the ${}^{6}\text{Li}(n,t){}^{4}\text{He}$ and ${}^{6}\text{Li}(p, {}^{3}\text{He}){}^{4}\text{He}$ reactions is strongly influenced by a pair of $J^{P} = 5/2^{-}$ resonances, in addition to the usual long-range (external) Coulomb effects that prevail near threshold. Both the external Coulomb differences and the relatively small internal Coulomb effects on the resonance parameters produce remarkable qualitative differences in the cross sections for the two reactions, as is illustrated by the 3-dimensional plots of Fig. 1. In these calculations, the reduced width amplitudes of states in the ${}^{7}\text{Li}$ and ${}^{7}\text{Be}$ systems are the same, while the eigenenergies of the levels are shifted to account for internal Coulomb energy differences. The effect of both $5/2^{-}$ levels is apparent in broad structures in the ${}^{6}\text{Li}(p, {}^{3}\text{He})^{4}\text{He}$ cross sections at ~ 0.8 and 1.9 MeV, while only a single narrow anomoly, corresponding to the upper $5/2^{-}$ level, is visible at about 240 keV in the ${}^{6}\text{Li}(n,t)^{4}\text{He}$ cross section. The lower level is shifted below the $n + {}^{6}\text{Li}$ threshold in ${}^{7}\text{Li}$ by mass differences and other Coulomb effects.

A discussion of this application was included in a contribution² to the International Conference on Neutron Physics and Neutron Data for Reactors and Other Applied Purposes at Harwell. Reliable values of the ⁶Li(p, ³He)⁴He cross section resulting from this analysis are being reported³ in the astrophysical literature.

C. T(t,2n)⁴He Reaction (G. M. Hale and P. G. Young)

The $T(t,2n)^4$ He reaction is of interest in d-T fusion systems as a possible mechanism for tritium removal and as a diagnostic for determining initial tritium ion temperatures in injected d-T designs. We have evaluated the integrated cross section and neutron spectra for this reaction at energies up to a few MeV and have calculated Maxwellian rates for temperatures up to kT = 100 keV.

The cross sections were obtained from a rudimentary R-matrix analysis of data for the t + t reactions at energies up to $E_t = 2$ MeV, using the EDA⁴ code. An excellent fit to the few usable data sets available at these energies was obtained by allowing only a single transition (0^+) in the R-matrix with contributions from the ground state of ⁶He plus a distant level. Included in the fit were the t + t elastic scattering differential cross-section measurements of Holm and Argo, ⁵ reduced in scale by \sim 15% following the suggestion of Allen and Jarmie, ⁶ and the T(t,2n)⁴He integrated reaction cross-section measurements of Serov et al, ⁷ Govorov et al., ⁸ and Jarmie and Allen.⁹ Measurements detecting

Fig. 1. Calculated differential cross sections for the ${}^{6}Li(p, {}^{3}He){}^{4}He$ (top) and ${}^{6}Li(n,t){}^{4}He$ (bottom) reactions.

neutrons at 0° lab, like those of Agnew et al.¹⁰ and Strel'nikov et al.,¹¹ could not be used directly in the analysis, but zero-degree lab cross sections calculated from our integrated cross sections using a simple model appear to lie between the measurements of Refs. 10 and 11 in the region where their data overlap, and fall below the results of Ref. 10 above 1 MeV. Figure 2 shows the calculated reaction cross section compared with the measurements of Ref. 7-9. The dashed curves give the estimated uncertainty band on the calculated cross sections. Figure 3 shows the Maxwellian-averaged reaction rate $\langle \sigma_V \rangle$, as a function of kT, calculated from the R-matrix cross sections using the STEEP code.¹² Calculations of the reaction rate for kT up to 100 keV were found to be insensitive to extensions of the cross section above 2 MeV. Also shown in Fig. 3 (dashed curve) is the reaction rate obtained by Greene.¹³ The differences between our curve and Greene's at the lower temperatures result mainly from our use of the new lowenergy cross-section measurements of Serov,⁷ which were not available at the time of Greene's report.

An evaluated energy spectrum of neutrons emitted from the T + T reaction was derived by optimizing a simple model to the measurements of Wong, Anderson, and McClure.¹⁴ (The Wong et al. data were obtained by stopping 0.5-MeV tritons in a tritium-loaded titanium target and measuring the neutron emission spectra at 90° by the time-of-flight method.)

Following the analysis of Ref. 14, we assumed the neutron spectrum from T + T to be composed of the following reactions:

$$T + T \rightarrow n + n + {}^{4}He \qquad Q = 11.33 \text{ MeV},$$
 (1)

$$T + T \rightarrow n_0 + {}^{5}_{He} * Q = 10.44 \text{ MeV},$$
 (2)

$$T + T \rightarrow n_1 + {}^{5}_{He} * Q = 8.44 \text{ MeV},$$
 (3)

where reaction (1) corresponds to pure 3-body breakup, and reactions (2) and (3) proceed through the ground and first excited states of 5 He. The neutron continua from reaction (1) and from decay of 5 He in reactions (2) and (3) were assumed to follow a pure phase space distribution. With these assumptions, it

was not possible to reproduce a broad peak observed near $E_n = 3.5$ MeV in the Wong et al. experiment. To overcome this problem, a fourth reaction was arbitrarily introduced,

$$T + T \rightarrow n_2 + {}^{5}He^* \qquad Q = 3.75 \text{ MeV},$$
 (4)

where this Q-value does not correspond to a known level in ⁵He but was added merely to compensate for deficiency of the model.

An angle-averaged calculated spectrum for 85-keV incident tritons is compared in Fig. 4 to points obtained by drawing a smooth curve through the Wong et al.¹⁴ measurement. A \pm 10% error bar has been attached arbitrarily to the Wong data for comparison purposes. The average neutron energy in the calculated spectrum is 5.034 MeV. Center-of-mass widths of 0.85, 4.0, and 3.0 MeV were assumed for reactions (2)-(4), including an rms component of 0.6 MeV to account for kinematic broadening in averaging the spectra over all outgoing angles. Relative intensities of 0.60, 0.19, 0.14, and 0.14 were used in the calculation of reactions (1)-(4), respectively.

D. Comparison of Cross Sections Calculated with Various Statistical Model Codes Using Identical Parameter Sets (E. D. Arthur)

We have completed a comparison of cross sections calculated with GNASH to those obtained from COMNUC and STAPRE calculations performed by Don Gardner at Lawrence Livermore Laboratory (LLL). Cross sections were computed for $n + {}^{90}Zr$ reactions using identical parameter sets for neutron, proton, and alpha-particle transmission coefficients, level densities, gamma-ray normalizations, and discrete level information. For this comparision no attempt was made to include preequilibrium effects since such effects would tend to complicate the comparison at this stage.

GNASH results obtained for binary and tertiary reactions in the energy range from 11.5-16 MeV are compared to COMNUC results in Table I (STAPRE results are in agreement with those from COMNUC). Generally, the agreement obtained between calculated results is less than 5%. Below 11 MeV where only binary reactions occur, the agreement is generally within 1 or 2%.

This represents one of the most stringent comparison tests made between statistical codes, and the agreement is gratifying in light of the different techniques used for integration, treatment of cascade, etc. Efforts are now under

Calculated $T(t,2n)^4$ He cross sections compared with the measurements of Serov et al.,⁷ Govorov et al.,⁸ and Jarmie and Allen.⁹ Also shown is the estimated uncertainty band on the calculated cross sections.

Maxwellian-averaged reaction rates for $T(t,2n)^4$ He compared to those of Greene¹³ (dashed curve).

Angle-averaged neutron emission spectrum from the T+T interaction with 85-keV tritons. The points are from the experiment of Wong et al.¹⁴ with 10% error bars arbitrarily assumed.

way to compare results from GNASH and STAPRE when preequilibrium contributions are included.

E. Calculations of ²³⁵U and ²³⁸U(n,xn) Cross Sections and Individual Neutron Emission Spectra (E. D. Arthur)

Using the GNASH preequilibrium-statistical model code, we have calculated (n,2n), (n,3n), and (n,4n) cross sections for ^{235}U and ^{238}U in the neutron energy range from 6 to 22 MeV. We have also calculated the individual spectra of the two (n,2n) and three (n,3n) neutrons. These spectra were then used to provide efficiency corrections to the data of Veeser.¹⁵

These calculations used neutron transmission coefficients determined from recent optical model parameter sets obtained by Madland¹⁶ for use in the actinide region and fission barrier parameters based on the values of Back et al.¹⁷ Pre-equilibrium effects are important in the energy range under consideration, and the Kalbach exciton model¹⁸ was used to include such effects.

Figure 5 shows the individual neutron spectra calculated for 19-MeV neutrons on ²³⁵U. Preequilibrium effects are most apparent in the first neutron spectra and lead to a general hardening of the spectra compared to what one would obtain from purely statistical calculations. Figure 6 shows the calculated ²³⁸U(n,xn) cross sections compared with the experimental data of Veeser, ¹⁵ Frehaut, ¹⁹ and Mather. ²⁰ The calculations are generally in good agreement with these data. Above 15 MeV the inclusion of preequilibrium effects contribute significantly to the agreement between calculated and experimental results. Without preequilibrium corrections, the calculated (n,2n) curve would generally be too low in this energy region.

TABLE I

CROSS SECTIONS (mb) CALCULATED WITH GNASH (G) AND COMNUC (C) FOR $n + \frac{90}{2r}$

En (n,p)		(n,2n)		(n, np)		(n,pn)		
(MeV)	G	<u> </u>	G	С	G	С	G	С
11.5	11.9	12.2	-		9.8	7.1	0.053	0.043
12.5	13.4	13.7	79.	69.	57.	55.5	0.51	0.53
13.	13.8	14.2	299.	294.	77.	76.7	1.22	1.27
14.	13.5	13.7	781.	769.	74.	81.1	4.25	4.4
15.	11.1	11.3	1079.	1092.	76.	79.5	9.5	9.74
16.	8.0	8.2	1232.	1273.	88.	84.8	15.7	16.

Comparison of the present calculations and experimental data for 238 U(n,xn) reactions. The open symbols are the Veeser results [circles, triangles, and squares are (n,2n), (n,3n), and (n,4n) results, respectively]. Small closed circles show (n,2n), and the dashed show (n,3n) measurements of Frehaut. The large closed circles show (n,2n), and the closed triangles show (n,3n) measurements by Mather.

F. Evaluated Photon and Neutron Spectra of Uranium Isotopes (D. G. Foster, Jr.)

An evaluation of the photon and neutron spectra emitted by isotopes of uranium and their immediate decay products has been completed. Since the primary interest was in radiation hazards for times less that 1000 yr after milling of uranium, the decay chains were followed only as far as the first descendant with a half-life greater than 10^4 yr.

Several improvements in evaluation techniques have been developed since performing a similar evaluation for the isotopes of plutonium three years ago.²¹ Most of the data were taken from recent compilations²² (which include partial evaluations) by the Nuclear Structure Group at Oak Ridge National Laboratory. These compilations are very detailed and usually include actual internalconversion coefficients, properties of most of the nuclear levels, corrected energy scales, partial intensity balances at individual levels, and much additional information. Several sets of intensities required normalization. This information has been supplemented by copying portions of calculated tables²³ of internalconversion coefficients into computer files and using them in conjunction with an interpolation routine to calculate the resulting feed to K, L, and lower energy x rays from each observed gamma transition. Similarly, tables of nuclear²² and atomic²⁴ levels have been keypunched to use in calculating consistent gamma and x-ray energies. The relative intensities of individual x-ray lines were taken largely from direct measurements,²⁵ because extensive transitions between subshells make it very difficult to calculate these intensities even if the subshell internal-conversion coefficients are known.

Data for the spontaneous-fission yields of neutrons were taken mostly from the same sources.²² Values of $\bar{\nu}$ were deduced from the systematics given by Bois and Frehaut,²⁶ using an empirical relation due to Smith²⁷ to calculate the nuclear temperature characterizing each spectrum. Table II summarizes the constants adopted for each nuclide.

For summing the results over decay chains and various mixtures of isotopes, two separate computer programs used in the previous work have been combined into a single program ACTDEC, which uses superposition of linear chains to calculate the decay rates and apply them to the evaluated spectra. Tabulated results using 30 neutron groups and both 30 and 100 photon groups have been stored in computer files to facilitate use of the data.

TABLE II

SPONTANEOUS-FISSION DATA

	Fissions per Disintegration	<u> </u>	Temperature (MeV)
231 _{Th}	1.0×10^{-10}	1.0	1.03
234 _{Th}	none		
231 _{Pa}	none		
234 _U	1.2×10^{-11}	1.39	1.11
235 _U	none		
236 _U	none		
238 _U	5.4 x 10^{-5}	1.96	1.22

G. Neutron-Nucleus Optical Potential for the Actinide Region (D. G. Madland and P. G. Young)

Further progress has been made in the determination of a neutron-nucleus optical potential for the actinide region, namely, a first version of a deformed global potential for coupled-channel calculations has been obtained. (Earlier work, reported in Ref. 28, is now outdated.) The iterative procedure used to determine the potential and some results obtained using the potential are discussed in the following.

First, the regular optical model is assumed adequate, that is, the potential is spherical, local, energy and isospin dependent, and utilizes Saxon-Woods form factors. A modified global optical-model search code²⁹ was used to search on differential elastic and total cross-section data from 232 Th, 233 U, 235 U, 238 U, and 239 Pu targets spanning an energy range of 1 keV to 14.1 MeV.³⁰⁻⁴⁴ The following parameterization was adopted for the real and (surface) imaginary strengths and the imaginary diffuseness, respectively:

$$V_{R} = V_{R}^{(0)} - V_{R}^{(1)} E_{L} - V_{R}^{(2)} \eta , \qquad (5)$$

$$W_{\rm D} = W_{\rm D}^{(0)} - W_{\rm D}^{(1)} E_{\rm L} + W_{\rm D}^{(2)} E_{\rm L}^2 - W_{\rm D}^{(3)} \eta \quad , \qquad (6)$$

$$a_{I} = a_{I}^{(0)} + a_{I}^{(1)}E_{L}$$
, (7)

where E_L is the laboratory neutron energy, and $\eta = (N-Z)/A$ is the isospin related symmetry parameter. The optimum spherical potential obtained using this parameterization is labeled "Iteration O" in Table III and total cross sections calculated with it are compared with the experimental data $^{33,36,37,39,40,45-50}$ in Figs. 7 and 8. The main feature of the calculation is that it generally agrees well with all data sets except in the region ~ 1 to ~ 7 MeV, where it consistently underpredicts the data (by as much as $\sim 8\%$). This region is where direct inelastic coupled-channel effects are strongest.

The second step is to use the Iteration 0 potential as the starting potential in coupled-channel calculations which simultaneously fit the inelastic differential cross sections as well as the elastic and total cross sections. The additional requirement of simultaneous good fits to the inelastic data should constrain the parameter values and correlations to more narrow ranges. Accordingly, coupledchannel search calculations for three coupled states were performed using the Karlsruhe search version of JUPITOR⁵⁰ modified to also search on the total cross section. The 2.5 and 3.4 MeV ²³⁵U data of Refs. 30, 31, and 43 were studied. Search calculations on this data indicated that the real and imaginary radii, r_R and r_I , and the real diffuseness, a_R , are constrained to lie near the best fit values of 1.264, 1.256, and 0.612, respectively. The imaginary strength and diffuseness vary more widely at each energy but are correlated. The optimum values of β_2 and β_4 are 0.200 and 0.058, respectively, agreeing well with Refs. 30 and 31.

The third step is an iteration of the first, but with r_R , r_I , and a_R fixed at the values determined in the coupled-channel search calculations. The reoptimized spherical potential is labeled "Iteration 1" in Table III. Comparing to Iteration 0, the total χ^2 has improved by only $\sim 10\%$. Thus, two statistically equivalent potentials have been determined, but it is believed that Iteration 1 is physically more realistic. Figures 7 and 8 show that the calculated total cross sections are much improved over Iteration 0 in the region ~ 1.5 to ~ 7 MeV for all cases. However, the results are somewhat worse in the ~ 500 keV to ~ 1 MeV region for 232 Th and 238 U.

The last step is to determine the deformed potential for coupled-channel calculations at all energies from the Iteration 1 spherical global potential. We assume that the values of r_R , r_I , and a_R are already well determined. The remaining unknowns (assuming the deformations are given) are V_R , W_D , and a_I . It was determined in step 2 that the product of W_D and a_I was better determined than

TABLE III

INITIAL RESULTS: SPHERICAL OPTICAL POTENTIALS FOR USE IN THE DETERMINATION OF A DEFORMED NUCLEUS INTERACTION POTENTIAL FOR COUPLED-CHANNEL CALCULATIONS IN THE ACTINIDE REGION^a

		·
Parameter	Iteration 0	Iteration 1
v _R ⁽⁰⁾	53.016	50.378
v _R ⁽¹⁾	0.360	0.354
v _R ⁽²⁾	24.620	27.073
r _R	1.203	(1.264)
a _R	0.629	(0.612)
w _D ⁽⁰⁾	8.983	9.265
w _D ⁽¹⁾	0.220	0.232
w _D (2)	3.252/10 ²	3.318/10 ²
w _D ⁽³⁾	. 13.642	12.666
r _I	1.297	(1.256)
a(0) a _I	0.555	0.553
a ⁽¹⁾ I	1.428/10 ²	1.440/10 ²
$\chi^2_{\sigma(\theta)}$	8.64	10.30
$\chi^2_{\sigma T}$	5.86	2.75
X ² (tot)	14.50	13.05

(10 keV $\leq E_{\tau} \leq 10$ MeV)

^a Quantities in parentheses were held fixed during the searches. The spin-orbit term parameterization of Ref.29 was used throughout. Units are MeV and fermis.

Fig. 7.

Comparisons of calculated and experimental total cross sections for the indicated isotopes in the energy range 10 to 500 keV for the cases of (a) Iteration 0 of the spherical global optical potential (---), (b) Iteration 1 of the spherical global optical potential (---), and (c) the deformed global coupled-channel potential (--).

Comparisons of calculated and experimental total cross sections for the indicated isotopes in the energy range 500 keV to 10 MeV for the cases of (a) Iteration 0 of the spherical global optical potential (---), (b) Iteration 1 of the spherical global optical potential (---), and (c) the deformed coupled-channel potential (--).

 W_D or a_I individually. A comparison of equivalent fit $W_D a_I$ products of step 2 to the $W_D a_I$ product of step 3 indicates that $\langle W_D a_I (coupled-channels) \rangle / W_D a_I (spherical) = \alpha \approx 0.7$. Similarly it was found that $\langle V_R (coupled-channels) \rangle / V_R (spherical) = \beta \approx 1.02-1.03$. If one assumes that these simple relationships are valid at other energies, then their use with Eq. (5)-(7) may provide a means of transforming a suitably chosen spherical global potential to a deformed global potential. Sample calculations indicated the feasibility of this approach. Therefore, a complete set of coupled-channel calculations was performed for $^{232}_{Th}$, $^{238}_{U}$ using values of $\alpha = 0.705 = 0.75 \times 0.94$ and $\beta = 1.025$.

The results are shown in Figs. 7-9. The agreement with the angular distributions is, of course, very good because these data were used in determining the simple scaling transformation. Comparison with the 238 U total cross section, however, is a test of the procedure over the entire energy range: the agreement

Fig. 9.

is very good from ~ 50 keV to 10 MeV and departs from the trend of the data below ~ 50 keV by at most 3%. The calculation of the ²³²Th and ²³⁵U total cross sections (using the deformations of Refs. 30 and 3]) disagree with the data slightly more than in the ²³⁸U case. We believe this is possibly due to the fact that the scaling transformation is based mostly upon ²³⁸U data. However, the transformation could be more complicated, the isospin dependence could be incomplete, or the wrong form of the potential could have been chosen. Our results must therefore be considered preliminary until these possibilities have been studied.

In conclusion, a method has been proposed to transform a suitably chosen spherical global optical potential to a deformed global interaction potential for coupled-channel calculations. The transformation must be considered preliminary until more complete studies have been made. The deformed potential given here for the actinide region is limited to energies below 10 MeV because of the quadratic energy dependence of the absorptive potential.

This work has been reported at the International Conference on Neutron Physics and Neutron data for Reactors and Other Applied Purposes at Harwell, England, in September 1978.¹⁶

II. NUCLEAR CROSS-SECTION PROCESSING

A. NJOY Code Development (R. E. MacFarlane and R. M. Boicourt)

A new version of the NJOY cross-section processing system has been released to users at Oak Ridge National Laboratory (ORNL), Brookhaven National Laboratory (BNL), and Combustion Engineering, Inc. Besides correcting several errors, this version is completely compatible with ENDF/B-V, including the new covariance formats in ERRORR. All IBM-compatibility changes proposed by ORNL have been included or flagged with comment cards. This version has also been made compatible with the FTN compiler and the LTSS operating system at the Los Alamos Scientific Laboratory. A new short operator's manual and description of the code is being prepared for publication.

B. Energy Balance Tests for Preliminary ENDF/B-V (R. E. MacFarlane and L. Stewart)

Many of the evaluations for ENDF/B-V have been checked for neutron-photon energy balance using the HEATR module of NJOY. This testing method⁵¹ is based on calculating the energy deposition by charged secondary particles and the recoil nucleus (i.e., heat production or KERMA factor) by energy balance using

$$\sigma_{\rm H} = \sum_{\rm n} (E + Q_{\rm n} - \bar{E}_{\rm n})\sigma_{\rm n} - \sum_{\rm \gamma} \bar{E}_{\rm \gamma}\sigma_{\rm \gamma} \quad , \qquad (8)$$

where σ_{H} is the heat production cross section (usually eV \cdot barns), E is the incident neutron energy, Q_{n} is the mass-difference Q value for reaction n, \overline{E}_{n} is the average energy of secondary neutrons, σ_{γ} is the photon production cross section for reaction γ , and \overline{E}_{γ} is the average energy of emitted photons.

If the photon energy term in Eq. (8) is too large, σ_{H}^{σ} can come out negative; clearly a nonphysical result. If the photon term is too small, σ_{H}^{σ} can be too large. Equation (8) is seen to be a very sensitive test of the photon production files and the consistency between neutron and photon data in an evaluation.

The HEATR module of NJOY contains an option which compares $\sigma_{\rm H}$ from Eq. (8) with kinematic limits on the charged-particle energy available and flags any serious discrepancies. Such checks have been run on 28 of the nuclides from preliminary ENDF/B-V. The results show that only oxygen and lighter isotopes are truly consistent. The most common problem with the heavier isotopes is that photon production cross sections (MF=13) are not consistent with the corresponding neutron interaction data. There are also problems with both neutron and photon spectra. These difficulties have been reported to the evaluators and to the data testing subcommittee of CSEWG. Hopefully, deadlines and funding will still allow some of the more important discrepancies to be removed before the final version of ENDF/ B-V is released.

C. Phase II Testing of Preliminary ENDF/B-V Data (R. B. Kidman)

The phase II testing of the preliminary $ENDF/B-V^{52}$ data was completed this quarter. Thirty-seven of the new isotopes were processed into a 185-group structure. These isotopes were then collapsed to 50 groups and combined with the unchanged LIB-IV⁵³ isotopes to form a PRE-V library that is in the same order and format as LIB-IV. The packaged benchmarks previously constructed for LIB-IV were then conveniently employed to complete Phase II testing of PRE-V on benchmarks JEZEBEL, GODIVA, ZPR-6-6A, and ZPR-6-7.

Table IV compares the corrected eigenvalues obtained by using⁵⁴ LIB-IV with those obtained by using PRE-V. These eigenvalue results (differences), espeially for the uranium fueled assemblies GODIVA and ZPR-6-6A, plus other results for reaction rate ratios and reactivity worths, all of which are confirmed by

TABLE IV

CORRECTED EIGENVALUES

	LIB-IV	PRE-V
JEZEBEL	0.9945	1.0032
ZPR-6-7	0.9909	0.9942
GODIVA	1.0063	0.9893
ZPR-6-6A	0.9951	0.9857

other laboratories, have prompted another look at 235 U and 238 U before the final ENDF/B-V is released.

As the packaged benchmarks are being used in post LIB-IV calculations, they are being modified to give the transport theory eigenvalues as a function angular quadrature order, S_i . The results are shown in Table V. The small assembly eigenvalues vary much more with S_i than do the large assembly eigenvalues. Results such as these can be plotted, which should enable one to convert any S_i eigenvalue to a reasonable, extrapolated S_{∞} eigenvalue.

For convenience in storage and future reference, the LIB-IV and PRE-V cross sections and their group-by-group percentage differences have been put on micro-fiche.

TABLE V

UNCORRECTED P_{1/2} EIGENVALUES vs S_i

	JEZEBEL	<u>ZPR-6-7</u>	GODIVA	ZPR-6-6A
s,	1.05458	0.98298	1.02888	0.98186
s,	1.02070	0.97967	1.00242	0.97891
So	1.01120	0.97950	0.99586	0.97878
8 16	1.00850	0.97946	0.99399	0.97874
^S 32	1.00775	0.97945	0.99348	0.97873
s ₄₈	1.00761	0.97945	0.99338	0.97873

D. CSEWG Shielding Data Testing (R. J. Barrett)

Group-averaged photon production data were calculated from preliminary ENDF/ B-V evaluations using NJOY for comparison with shielding benchmark experiments. Photon production from a thermal flux of neutrons was calculated for Fe, Na, N, and S, and production from a fast Fe, Na flux of neutrons was calculated for ${}^{16}0$ and S. The results were forwarded to R. C. Maerker at ORNL, who presented them along with his own calculations at the ORNL meeting of the Cross Section Evaluation Working Group's (CSEWG) Shielding Subcommittee.

E. MATURE (R. J. Barrett, R. M. Boicourt, and R. E. MacFarlane)

The MATXS format is currently being used at LASL and other installations as a comprehensive storage format for group-averaged neutron and photon cross sections. The TRANSX code has been developed and used extensively to produce transfer tables from MATXS files for use in S_ codes.

Currently under development is a generalized utility code called MATURE, which will alter MATXS files in a variety of user-specified ways. The operations contemplated for this code include

- group collapsing,
- adding, eliminating, or replacing materials, and merging files;
- selective editing of files, adding reactions, summing partials to produce response functions,
- converting BCD to binary and binary to BCD;
- printing.

During this past quarter, a number of these options were implemented and tested on the LTSS system. Starting with the MATXS1 file, a multi-isotope library in 30 neutron and 12 photon groups, we were able to perform the following operations:

- Collapse the cross sections and matrices to 5-neutron and 2-photon groups, with a user-input weight function.
- Sum the partial transfer matrices to get a total matrix and a separate fission matrix.
- Eliminate all but a few user-specified materials.
- Convert binary to BCD and BCD to binary.
- Print a number of MATXS files and produce an index of each.

Work on the MATURE code is continuing, with highest priority being placed on expanding the selective editing capabilities.

F. ERRFILS -- A Preliminary Library of 30-Group Multigroup Covariance Data For Use in CTR Sensitivity Studies (R. J. LaBauve and D. W. Muir)

A library of 30-group multigroup covariance data designed for use in CTR sensitivity studes was prepared from preliminary ENDF/B-V data with the NJOY code. The selection of the contents of this library, called ERRFILS, is based upon a Los Alamos Scientific Laboratory report⁵⁵ by E. L. Simmons, S. A. W. Gerstl, and D. J. Dudziak, issued September 1977. In this report the authors examine the sensitivity of neutronic responses in the preliminary design of the Tokamak Experimental Power Reactor (EPR) by Argonne National Laboratory. Their investigations were limited to responses related to toroidial field coil (TFC) integrity and activation of the TFC's outermost dewar. In particular, these included (1) neutron and gamma-ray heating in the TFC; (2) the dose in the Mylar insulation of the TFC; (3) the radiation damage, i.e., the displacements per atom (dpa) in copper in the TFC; and (4) the copper transmutation in the TFC.

The investigations reported in LA-6942⁵⁵ revealed the scattering cross sections in the stainless steel (in particular, the iron in stainless steel) and copper and the absorption cross sections of the 10 B in boron carbide to be the most significant contributors to the integral sensitivities of the responses studied in this design. Of lesser importance were the scattering cross sections of hydrogen, carbon, and lead. Thus, in the 30-group multigroup covariance library we have constructed (ERRFILS), we have included data for Fe, Cr, Ni, 10 B, C, Cu, H, and Pb. Reactions include total cross sections, elastic and inelastic scattering cross sections, and the most important cross sections contributing to the absorption cross section for each nuclide.

The ERRFILS library was obtained by processing preliminary ENDF/B-V data into 30 groups with the NJOY code. Since the ENDF/B-V data are preliminary as of this date, the ERRFILS library must also be considered preliminary and can only be finalized when ENDF/B-V is finalized. This may require some reprocessing. We feel, however, that we have uncovered most of the errors in the preliminary ENDF/B-V covariance files. We also discovered several "bugs" in the ERRORR overlay of the NJOY code in the course of processing the ENDF/B-V covariance data.

The ENDF/B-V evaluation of one important material, namely Cu, did not contain covariance data. For this material, we assumed that the uncertainties for copper were the same as those for chromium, and we attached the covariance

data for ENDF/B-V Cr to the ENDF/B-V Cu evaluation for processing. Another deficiency in the ENDF/B-V data is that the 10 B covariance evaluation is only given up to 1.02 MeV. This is not significant for this application, however, since the most important energy range for 10 B lies between 10⁴ and 10⁶ eV.

The group structure specified in the NJOY input was the LASL 30-group structure that was used in the EPR analysis, except the top energy boundary was set at 20 rather than 17 MeV. Table VI summarizes the ENDF/B-V covariance data (MF=33) processed with NJOY. This covariance data library was placed in a LASL photostore file named ERRFILS.

The excerpt from the ERRFILS library shown in Table VII provides an example for explaining the ENDF-like output format of the NJOY code. Note that on card No. 957, columns 67-70 contain the number 326, the MAT-No. for preliminary version V evaluation for Fe; columns 71 and 72 contain the number 33, the MF- or File-No. used to designate the covariance files; and columns 73-75 contain the number 4, which is the MT- or reaction-number, in this case the number used to designate total inelastic scattering. Also, on the same card, columns 42-44 contain the number 103, which is the MT-No. for the (n,p) reaction. Thus, the data to follow is the covariance of the iron inelastic scattering reaction with the iron (n,p) reaction. The number 30 in columns 65 and 66 indicates that the data are given in 30 energy groups. Note that the ENDF format requires that energies be specified in eV from low to high, so that the energy range for group 1, the lowest energy group, is from 1.39×10^{-4} eV to 1.52×10^{-1} eV, while the range of group 30 is from 1.5×10^7 to 2.0×10^7 eV.

To avoid duplicate group numbers for MT=4 and MT=103, skip to the second set of data beginning at card 961 and observe that columns 32 and 33 (as well as 54 and 55) contain the number 12, columns 43 and 44 contain the number 19, and columns 65 and 66 contain the number 20. The number 20 signifies that this set of data is for group 20 of MT=4, and the numbers 12 and 19 are used to identify the group numbers for MT=103; that is, the covariance data which follow on cards 962 and 963 are given for 12 groups for MT=103 beginning at group 19, specifically, for groups 19 through 30. This set of data then represents the relative covariances of energy group 20 for MT=4 with energy groups 19 through 30 for MT=103. In referring to the datum in the sixth field of card 962, for example, one would say that "the relative covariance of the iron inelastic cross sections (MT=4) in group 20 (1.353-1.738 MeV) with the iron (n,p) cross section (MT=103) in group 24 (3.68-6.07 MeV) is -2.76354 x 10^{-5} ."

TABLE VI

PRELIMINARY ENDF/B-V COVARIANCE DATA (MF=33) PROCESSED WITH NJOY

	MAT N	luclide	MT-Nos. Processed	Reaction Cross Sections
	305	B-10	1,2,107,780,781	Total, elastic (n,α) , (n,α_0) , and (n,α_1)
	306	С	1,2,4,51-68,91,102 104, 107	Total, elastic, total inelastic, inelastic levels 1-18, inelastic continuum, (n,γ) , (n,d) , (n,α)
	324	Cr	1,2,3,4,16,17,22,28, 102,103,104,105,106 107	Total, elastic, nonelastic, total inelastic, $(n,2n)$, $(n,3n)$, $(n,n'\alpha)$, $(n,n'p)$, (n,γ) , (n,p) , (n,t) , (n,d) , $(n, ^{3}He)$, (n,α)
	326	Fe	1,2,3,4,16,22,28,102 103,104,105,106, 107	Total, elestic, nonelastic, total inelastic, $(n,2n)$, $(n,n'\alpha)$, $(n,n'p)$ (n,γ) , (n,p) , (n,d) , (n,t) , $(n,^{3}He)$, (n,α)
	328	Ni	1,2,4,16,22,28,51-76 91, 102,103,104,107, 111	Total, elastic, total inelastic, (n,2n), (n,n' α), (n,n' p), inelas- tic levels 1-26, inelastic contin- uum, (n, γ), (n, p), (n,d), (n, α), (n,2p)
	329	Cu	1,2,3,4,16,17.22,28 102,103.104,106,107	Total, elastic, nonelastic, total inelastic, $(n,2n)$, $(n,3n)$, $(n,n'\alpha)$, $(n,n'p)$, (n,γ) , (n,p) , (n,d) , $(n,^{3}He)$, (n,α)
-	382	РЪ	1,2,3,4,16,17,51,52, 64,102	Total, elastic, nonelastic, total inelastic, (n,2n), (n,3n), inelas- tic levels 1,2, and 14, (n,Y)
	1301	Hl	1,2	Total, elastic

•

.

TABLE VII

.

.

.

.

EXCERPT FROM LISTING OF Fe COVARIANCE DATA

0.0000. 0 0.000	00+ 0	10 Z	1 10	26	32633	4 947
-1,67234.092	2 0- 5-4.6 n402-	5-5.46#50-	5-6.07958- 5-	· -66685. 9	32633	4 941
-6,19527- 5-5+841	47- 5-5.31004-	5-4.79=42.	5		32633	4 944
0.0000+ ^ 0+000	00+ 0	10 ' 2	1 10	. 27	32633	4 94 E
-1.74797_ 5+4+37 0	20- 5-4,91187-	5-5.A2458- !	5-6.47322- 5-	6.69235- 5	37633	4 944
-6.59564_ 4-A+178	93- 5-5.65893-	5-5.11434-	5		32633	4 947
0.0000. 0 0.000	00+ 0	10 2	ī 10	24	32631	4 944
-2.37664. 5-5.660	09- 5-6.33191-	5-7.46402-	5-8,26873-5-	8.54054- 5	32631	4 949
-8.42057- 5-7.903	68. 5.7.25866.	5+6. KR114-		•	32633	A GEL
0.00004 6 0.000	00+ 0	10 2	i 1a	20	32433	A GET
-3.79314- 4-9.144	25- 5-1 01624-	4-1.18-19-	A-1 30975- A-	1 35404-4	32633	A 95-
-1.37276- 4-1.254	43- 4-1 15669-	4-1.05.31	A		1243-	A 98.
8.00004 6 0+000	00+ n	10 2	1 10		32633	A 984
-7.67502_ 5-1.839	61. A-3.02808-	4-7.74440-	4-2 57149- 44	3 64747 - A	326.33	
-2.61401 - 4-2.469	01 . 4-2.28804-	4-2.09-56-	4-6,3/6-2 - 4- A		32033	
9.00000 0.0.000	004 0	A	•		32433	4 0
		12 10	J 19	30	26033	7 77
-3 00635 - 3-5-405	90- 3-0 16311-	16 L	7 <u>16</u>	3 00000 19	32013	4 753
	70- <u>3-4</u> .19211-	4-6.35002-	4-1.0301/- 44	2.405154 H	32633	
-1-02043- 3-1-143	77 - 4 -7 .04 44 04	0-0.024/2-	0-0.20,60-0.	-1.40/4/- 5	32633	• •••
	VU+ () 93 5 4 9305.	12 1	9 12	70	32633	4 941
-1 34444 8-0 1-7		4-1.74608-	4-1,23032- 54	2,70354- 5	32633	4 962
	-0-0.100784	0-7,45994	0-2,0437]- 04	·7.5/630- 6	32033	4 941
	VU+ 0 70 33,66	12 1	9 12	21	32633	4 944
	78- 3-5,62135- 30 4 - 1440-	4-1,48170-	4-0,32046- 5-	C.20/08- 5	32633	4 768
-1.03527- 5-6-773	C8- 6-5,14487-	0-9,54400-	6-4,80446- 04	.7,97097- 6	32633	4 966
0.00000. 7 7.000	UO+ N	12 1	9 12	52	32633	4 947
-1.0556- 5-5-689	9- 3-4.90917-	4=1,45075=	4=0,64791= 5	3,13859- 5	32633	4 9 88
-4.57625- 4-4.263	91- 6-4,75791-	6-4.20288-	6-4,49845- 6.	7.37153- 6	32633	4 944
0.00000+ 0 0.000	00+ 0	12 1	9 12	23	32633	4 977
-1.24270- 2-2.223	18- 3-3.87761-	4-1.23118-	4-6,29763- 5.	-3,55438- 5	32633	4 971
-7.32784- 6-4.793	21- 6-3,64081-	6-3.71609-	6-3,44247- 6.	-5.64078- 6	32633	4 979
0.0000. 1 0.000	00+ 0	12 1	9 12	24	32633	4 971
-9.01031_ 2-1.776	11- 3-3,30389-	4-1,21935_	4-7_45627_ 5.	5,18605- 5	32633	4 974
-7.84091- 6-7.939	Un= 6-2,86779-	6-2.53725-	6-2.71140- 6-	4.44312- 6	32633	4 97x
0.0000. 0 0.000	00+ 0	12 1	9 12	25	32633	4 974
-9,94913- 3-1.765	95- 3-2,94357-	4-8.21732-	5-3,39546- 5.	.1,73183- 5	32633	4 977
=1,014#9= 4=1+143	34- 5-2,91911-	6-2.57858_	6-2,75943- 64	4.52264- 6	32633	4 97#
0.0000. 0.000	00+ 0	12 1	9 12	26	32633	4 979
-1.04560_ 2-1.855	93- 3-3,0935<-	4-8.63#99_	5-3,56845- 54	-1.39812- x	32633	4 907
-1.87700- 5-1.351	59- 4-3.06784-	6-2,70996-	6-2,90054- 6	-4.75307- 6	32633	4 9#j
0.00000.0 0.000	00+ 0	12 1	9 12	27	32633	4 985
-1,1-644_ 2-1.963	91- 3-3,27354-	4-9,13847-	5-3,77547- 5-	-1.41778- 5	32633	4 983
-6.53391- 4-4-273	89- 6-2.17194-	4-2.86764_	6-3.06931- 6-	-5.02962- 6	32633	4 9=4
0.0000+ 0 0.000	00+ 0	12 1	9 12	45	32633	4 9pm
-1.37246- 2-2.436	08- 3-4.0605A-	4-1.13356-	4-4.68368- 5.	-1.75864- 5	32633	4 9=4
-8.1-482- 6-5.301	43- 6-4.02684-	6-3.03990-	4-1.09600- 4.	.0.23886- 6	32633	4 987
0.00000 · n n.0n0	00+ 0	12 1	9 12	29	32633	4 988
-2.0798A- 2-3+691	75- 3-6.15354-	4-1,71784-	4-7.09745- 5.	-4.66513- 4	32633	4 999
-1.22824- 5-8.034	02- 4-6.10245-	6-1.45180-	4-2.37058- 4	-8.47901- R	32633	4 994
0.0000.0 1.000	00+ 0	12 1	9 12	36	32633	4 991
-3.8=014- 2-6.833	96- 3-1.13912-	3-3.17998-	4-1.31391- 4	4.93354- 5	32633	4 992
-2.27365- 5-1.487	21- 5-1.12965-	5-9.97#73_	6-9.578J6- 5	-1.83795- 4	32631	4 991
0.0n000+ 0 0+0n0	00+ 0	0 10	4 0	30	32633	4 904
0.0000+ 0 0.000	00+ 0	5 2	6 5	26	32633	4 99E
-2.59263- 3-2.641	53- 5-5,99977-	- 6-2.74906-	6-1.91200- 6		32633	4 904
0.00000 . 0 0.000	00+ 0	5 2	6 5	27	32631	4 907
-3,47481_ 3-3+011	92- Å-7,41987-	6-3.39974-	6-2,36456- 6		32631	4 9cm
0.0000+ 0 0.000	00+ 0	5 2	6 5	28	32633	4 900
-3.97400- 3-3.736	06- 5-1.37411-	3-1.36912-	3-2.93345- 6		32633	4 10 7ñ
0.0000. 0 0.000	00+ 0	5 2	6 5	29	32633	4 1001
-6.02237_ 3-5.661	79- 5-4.52828-	3-4.52072-	3-4 44488- 6		32633	4 1000
0.0000. 0 0.000	00+ 0	5 2	6 5	30	32633	4 1005
-1,11483- 2-1+848	08- 4-7.58194-	5-1,18303-	5-1,20244- 2	3.	32633	4 1004

Cross sections for the various reactions (MT-Nos.) for each nuclide are also given in ERRFILS in an ENDF-like format in File No. 3 (MF=3), and the boundaries of the group structure from low to high in eV are given in MF=1, MT=451.

A small routine named COVARD was written to retrieve the covariance data from ERRFILS, fill out the gaps in the matrices with zeros, and invert the results so that the data would be rearranged from high to low energy. COVARD also contains an option for multiplying the relative covariance matrices obtained from ERRFILS by the product of the cross sections of the two reactions involved to obtain absolute covariance matrices. The output of COVARD, then, consists of (a) the 30-group cross sections of the reactions involved, (b) the 30 group x 30 group relative covariance matrix for the reactions, and (c) the 30 group x 30 group absolute covariance matrix for the reactions.

Each data set on ERRFILS can be specified by four numbers; namely, MAT1, the identifying number of the first material; MAT2, the identifying number of the second material; MT1, the identifying number of the reaction in MAT1; and MT2, the identifying number of the reaction in MAT2. Note, however, in the present version of ERRFILS, MAT2 is always equal to MAT1; that is, there are no covariances for reactions in different materials in this version. For simplicity in the calling sequence in COVARD, we have arranged to have a single ID number represent one combination of MAT1, MAT2, MT1, MT2. The definitions of the IDnumbers that we have assigned are given in Table VIII.

By comparing TABLE VIII with Table VI, one can see that we've eliminated many of the reactions for which covariance data exist on ERRFILS. We do not retrieve any of the data for the various inelastic levels and continua or for those reactions having negligibly small cross sections. Although COVARD will operate successfully on ERRFILS, we have prepared a stripped down version of ERRFILS name ERRFILT containing only those reactions given in Table VIII. The use of ERRFILT rather than ERRFILS somewhat decreases the running time for sequential problems for COVARD, as the data file is rewound every time a new ID is searched for.

TABLE VIII

DEFINITIONS OF ID-Nos. IN TERMS OF SPECIFICATION OF CROSS-SECTION COVARIANCES (NOTE: In this version, MAT1=MAT2)

.

.

10-40	MAT1	MAT2 MT1	412	CROSS SECTION COVAPIANCE
1	395	385 1	1	BIN TOTAL WITH BLP TOTAL
ź	305	385 1	Ż	BIR TOTAL WITH BIG ELASTIC
3	305	385 1	107	BIP TOTAL WITH BIR (N, ALPHA)
4	345	305 2	2	BIR ELASTIC WITH BIR FLASTIC
5	385	305 2	187	BIP ELASTIC WITH BIR (N. ALPHA)
6	325	385 147	197	BIP (N, ALPHA) WITH BIR (N, ALPHA)
Ť	396	386 1	1	C TOTAL WITH C TOTAL
Å	396	3#6 1	ż	C TOTAL WITH C ELASTIC
ÿ	306	386 2	ž	C ELASTIC WITH C ELASTIC
18	396	306 4	ā	C INFLASTIC WITH C INELASTIC
11	386	306 107	197	C (N.ALPHA) WITH C (N.ALPHA)
12	324	324 1	1	CR TOTAL WITH CR TOTAL
	324	120 1	5	CR TOTAL WITH CR ELASTIC
10	320	324 2	ž	CR FLASTIC WITH CR FLASTIC
15	324	124 2	2	CR FLASTIC WITH CR INFLASTIC
16	124	124 4	Ä	CR INFLASTIC WITH CR INFLASTIC
17	324	120 4	102	CR INFLASTIC WITH CR CAPTURE
18	324	324 102	182	CR CAPTURE WITH CR CAPTURE
10	376	326 1	1	FE TOTAL WITH FE TOTAL
20	126	· 126 1	;	FF TOTAL WITH FF FLASTIC
21	326	326 1	192	FF TOTAL WITH FE CAPTURE
22	326	326 2	2	FE FLASTIC WITH FE ELASTIC
23	326	326 2	ă	FE FLASTIC WITH FE INFLASTIC
24	326	326 2	182	FF FLASTIC WITH FE CAPTURE
25	124	326 4	4	FF INFLASTIC WITH FF INFLASTIC
	326	126 4	192	FF INGLASTIC WITH FF CAPTURE
27	326	326 4	183	FE THELASTIC WITH FE (N.P)
28	326	326 4	107	FE THELASTIC WITH FE (N.A.PHA)
20	126	326 182	102	FF CAPTURE KITH FF CAPTURE
20	126	326 102	101	FE IN DY WITH FF IN DY
21	134	126 103	-107	EE (N ALDHAN NITH EE (N. ALDHAN
31	138	138 1	101	NT TOTAL MITS NT TOTAL
,)C 11	128	128 2	5	NT FLASTIC WITH NT FLASTIC
33	128	128 4	<u>د</u>	NT THELASTIC WITH NT INFLASTIC
10	124	178 182	182	NT PADTIOF WITH NT PADTIOF
35	128.	178 101	100	NT (N.P) WITH NI (H.P)
37	120	120 1	1	CU TOTAL WITH CU TOTAL
18	320	120 1	5	CU TOTAL WITH CU FLASTIC
ĩũ	120	120 2	5	CU FLASTIC WITH CU FLASTIC
24	120	120 2	ā	CU FLASTIC WITH CU INFLASTIC
31	329	329 4	ã	CU THELASTIC WITH CU INELASTIC
42	329	329 4	182	CU INFLASTIC WITH EU CAPTURE
43	329	329 4	183	CU INFLASTIC WITH CU (N.P)
44	329	329 4	107	CU THELASTIC WITH CU (NAALPHA)
45	329	329 182	192	CU CAPTURE WITH CU CAPTURE
. 46	329	329 103	103	CI (N.P) WITH CU (N.P)
47	329	329 197	107	CH (N. ALPHA) WITH CU (N. ALPHA)
48	382	382 1	1	PB TRITAL WITH PB TOTAL
49	382	382 1	2	PR TOTAL WITH PB ELASTIC
50	382	382 1	182	PR TOTAL WITH PE CAPTURE
51	342	382 2	2	PR ELASTIC WITH PB ELASTIC
52	382	382 2	ũ.	PR ELASTIC WITH PB INELASTIC
53	382	382 4	4	PB INELASTIC WITH PB INFLASTIC
54	382	332 4	192	PS INELASTIC WITH PS CAPTURE
55	382	382 182	102	PR CAPTURE WITH PE CAPTURE
56	1331	13#1 1	ī	H TOTAL WITH H TOTAL
57	1301	1301 1	ż	H TOTAL WITH H ELASTIC
SA	1301	1301 2	Ž	H.ELASTIC WITH H ELASTIC
•			-	•

. .

MEIES, MEPESS MTIENT-ND FOR SIGMA-1, MTERT NO FOR SIGMA-2.

.

-

III. FISSION PRODUCTS AND ACTINIDES: YIELDS, YIELD THEORY, DECAY DATA, DEPLETION, AND BUILDUP

A. Fission-Yield Theory [R. E. Pepping (University of Wisconsin), C. W. <u>Maynard (University of Wisconsin)</u>, D. G. Madland, T. R. England, and P. G. <u>Young]</u>

Some empiricism has been introduced into the yield model through the spacing parameter δ . Delta is to be interpreted as the distance between the tips of the deformed, coaxial fragments at the scission point. In order to minimize the effect of prompt neutrons, experimental values for the charge yields, summed over all masses, were taken from ENDF/B-VC for 235 U thermal fission, and the parameter δ was allowed to vary with Z, the light fragment charge number. The values of $\delta(Z)$ were determined by performing a GMAX calculation⁵⁷ with level density parameters as reported previously⁵⁸ on a discrete grid of the δ -values ranging from 1-7 fm. The δ parameters affect the energy release at scission, which enters the yield expression in an exponential. The resulting yields were then binned according to charge and the log of the unnormalized yield fit by a cubic spline in The final set of δ -parameters were then determined using a standard leastδ. squares package. The values of δ thus obtained varied in an even-odd fashion, the even Z's giving a value of about 6 fm and the odd Z's giving a value of about The agreement between computed and measured charge yields is good, but the 4 fm. total kinetic energy of the fragments is much too low, being only about 145 MeV. Also, for a given mass number, A, the even Z fragments are enhanced by almost 1500% as compared to the 22% value for fission products in ENDF/B-VC. It is unlikely that prompt neutron emission, which connects the fission products to the fission fragments, could reduce the computed enhancement to the measured enhancement.

Attempting to increase the total kinetic energy by increasing the Coulomb energy at scission gives another set of δ 's. These also vary according to the evenness or oddness of the light fragment charge. The total kinetic energy obtained with these δ 's is about 159 MeV, and the even Z enhancement along a given mass chain is reduced to a more modest 300%. Of course, there is some loss of agreement between the computed and measured charge yields. In Fig. 10, the computed and measured charge yields are plotted. The circles denote the measured values, and the solid line denotes the computed values. In Fig. 11, the computed fragment mass yield (solid line) is plotted. For reference, the measured product mass yield is also plotted (circles).

The smaller values of δ also introduce another problem. In seeking the minimum potential energy configuration at the scission point, the Coulomb energy corresponding to the smaller δ is so strong that the fragments seek a shape of greater deformation than that for which the mass may be computed. In order to stay within the current allowed space of fragment shapes, it appears that a low value of the total fragment kinetic energy will have to be accepted.

In order to compare this calculation to the results of a previous calculation, ⁵⁹ the values of $\delta(Z)$ were fit to a polynomial expression that included an even-odd term. The expression which resulted was

$$\delta(Z) = (\delta_{Z,\text{even}} - \delta_{Z,\text{odd}}) (\sum_{n=0}^{4} p_n Z^n) + p_5 Z + p_6 Z^5$$

where

$$\begin{aligned} & \delta &= 1, \ Z = \text{even} & \text{and} & \delta &= 1, \ Z = \text{odd} \\ & 0, \ Z = \text{odd} & 0, \ Z = \text{even} \end{aligned}$$

Using the even-odd term from this expression, and A-dependent term $\delta(A,Z)$ may be extracted from the computed yields,

$$\delta(A,Z) = \delta(A) + (\delta_{Z,\text{even}} - \delta_{Z,\text{odd}}) \sum_{n=0}^{4} p_n Z^n$$

where

$$\delta(A) = \sum_{i} y(A, Z_{i}) [R_{c}(A, Z_{i}) - R_{01}(A, Z_{1}) - R_{02}(A, Z_{2}) - (\delta_{Z, even} - \delta_{Z, odd}) \sum_{n=0}^{4} p_{n} Z^{4}],$$

 R_c = fragment center-to-center distance, R_{01} = light fragment center-to-tip distance at the GMAX shape, R_{02} = heavy fragment center-to-tip distance at the GMAX shape.

The $y(A, Z_i)$ are identified as the fractional independent yields. The resulting $\delta(A)$ parameters have a fairly constant value of 3 fm for light fragment mass less than 90 and decrease almost linearly to a value of 1.75 fm at mass 118. Yields may then be computed assuming δ to be a function of both A and Z, using the equation for (A,Z) given above.

The computed charge yields are plotted in Fig. 12 (solid line) along with the measured values (circles). In Fig. 13 the computed fragment mass yields are computed, and the measured product mass yields (circles) are also computed for reference.

Currently, possible improvements in the level density expression are being examined. The parameters of the current level density expression were determined by fitting to experimentally observed neutron resonance spacings. The agreement at higher excitation energies with other formulations of the level density is unsatisfactory.⁶⁰ A newer model⁶¹ appears to give good agreement at both low and high excitation energies and is currently under investigation. Another possibility being considered is a hybrid model that combines the older result at lower excitation and the desired high excitation behavior.

B. ENDF/B-V Yields (T. R. England, D. G. Madland, W. B. Wilson, N. L. Whittemore and J. Liaw (University of Oklahoma)]

ENDF/B-V contains independent and cumulative yields by A and Z but not mass chain yields. Mass chain yields and uncertainties are listed in Table IX for each of the 20 ENDF/B-V yield sets. This table is based on yield version VE, which has been sent to BNL and accepted for ENDF/B-V.

Extensive data tests have been completed on these yields and the results are now being reduced for inclusion in a summary report. Some of the more significant results of interest to the user will be included in the next progress report. No test has indicated any significant error in these yields, but their quality naturally varies because of a lack of experimental data for some fissionable nuclides and fission-neutron energies.

C. ANS 5.1 Decay-Heat Standard [T. R. England, R. E. Schenter (Hanford Engineering Development Laboratory), and F. Schmittroth (Hanford Engineering Development Laboratory)]

The ANS 5.1 Decay Heat Working Group met on September 8, 1978, to review comments by the Nuclear Power Plant Standards Committee, Nuclear Regulatory Commission, and ANS 5 members. Substantial clarifying changes were made in the text, but no change was made in the technical approach, decay-heat values, or uncertainties. Figure 14 compares the new 235 U standard with the previous standard for the case of infinite 235 U fission without fuel depletion or absorption in the

Independent yield vs light-fragment charge for $\delta = \delta(Z)$. Circles denote ENDF/B-VC data, solid line denotes computed value.

Independent yield vs light-fragment mass for $\delta = \delta(Z)$. Circles denote ENDF/ B-VC for light-fission product, solid line gives computed light-fragment yield.

Independent yield vs fragment charge for $\delta(A,Z) = \delta(A)$ + pairing switch. Circles denot ENDF/B-VC data, solid line gives computed value.

Independent yield vs light-fragment mass for $\delta(A,Z)=\delta(A)$ + pairing switch. Circles denote ENDF/B-VC light-product mass yield, solid line denotes lightfragment mass yield.

TABLE IX

.

.

•

ENDF/B-VE MASS CHAIN YIELDS/100 FISSIONS (UNCERTAINTIES IN %)

MASS	TH232(F) UNCENTAINTY	TH232(HE)UNCERTAINTY	U233(T) UNCERTAINTY	U233(F) UNCERTAINTY	U233(HE)UNCERTAINTY
66	1.220E-06 +/- 32.00	1.290E-04 +/- 6.00	2.639E-07 +/- 23.00	4.500E-07 +/- 32.00	6.680E-04 +/- 11.00
67	4.191E-06 +/- 32.00	2.200E-04 +/- 8.00	1.200E-06 +/- 23.00	1.800E-06 +/- 32.00	1.520E-03 +/- 16.00
68	1.450E-05 +/- 32.00	7.330E-04 +/- 8.00	3.678E-06 +/- 23.00	5.500E-06 +/- 32.00	1.828E-03 +/- 32.00
64	3.351E-05 +/- 32.00	1.462E-03 +/- 8.00	1.010E-05 +/- 23.00	1.500E-05 +/- 32.00	2.940E-03 +/- 32.00
70	6.6121 + 05 + 1 + 23.00	2.685E-03 +/- 8.00	3.948E-05 +/- 23.00	6.000E - 05 + / - 23.00	4.768E-03 +/- 32.00
71	1.680E-04 + / - 23.00	5.117E-03 +/- 8.00	1.749E-04 +/- 23.00	2.600E-04 +/- 32.00	7.549E-03 +/- 32.00
72	4.461E-04 + / - 16.00	7.637E-03 +/- 8.00	5.058E-04 +/- 23.00	7.700E-04 +/- 32.00	1.291E-02 +/- 8.00
73	6.632E-04 + 16.00	1.601E - 02 + 7 - 6.00	1.135E-03 +/- 16.00	1.699E-03 + / - 23.00	1.919E - 02 + / - 11.00
74	1.189E-03 +/- 16.00	2.915E-02 +/- 8.00	2.759E-03 +/- 23.00	4.198E-03 +/- 32.00	2.8321-02 +/- 16.00
75	2.969E-03 +/- 16.00	5.117E-02 +/- 8.00	8.278E-03 +/- 23.00	1.249E-02 +/- 32.00	4.387E-02 +/- 16.00
76	7.137E-03 + / - 16.00	8.745E-02 +/- 8.00	1.471E-02 +/- 22.99	2.220E-02 +/- 31.99	6.744E-02 +/- 15.99
77	1.229E-02 +/- 8.00	1.253E - 01 + / - 8.00	2.615E-02 +/- 23.00	4.049E-02 +/- 23.00	1.028E-01 + - 16.00
78	3.644E-02 + 10.00	2.406E-01 +/- 8.00	5.518E-02 +/- 23.00	6.997E-02 +/- 32.00	1.562E-01 +/- 16.00
79	8.465E-02 +/- 11.00	1.214E+00 +/- 6.00	1.512E-01 +/- 16.00	1.100E-01 +/- 23.00	2.328E-01 +/- 16.00
ŔÓ	2.046E = 01 + 1 = 16.00	1.293E+00 + 2 = 8.00	2.391E = 01 + 1 = 23.00	1.999E - 01 + / - 32.00	3.404E = 01 + 16.00
81	4.290F = 01 + / = 16.00	1.463E+00 + 4 = 8.00	2.910E = 01 + 1 = 16.00	3.700E-01 + 4 - 6.00	5.466E = 01 + 1 = 23.00
82	1.116F+00 + 4 - 16.00	1.675E+00 + 2 = 8.00	$5.521E_{-01} + 1 = 22.97$	5.827E-01 + 2.96	8.378E = 01 + 1 = 22.84
มั่ง	2.223E+00 + 1 = 1.40	1.679E+00 +/- 4.00	1.018E+00 +/70	9,9428-01 +/- 2,00	1.307E+00 + / - 6.00
81	4.108F+00 +/- 2.00	2.282F+00 +/+ 4.00	1.7041+00+/-1.00	1.640E+00 + 2.00	2.058F+00 +/~ 4.00
85	4 242F+00 +/- 2 00	4 3145+00 +/- 4 00	2 1965+00 +/70	2.174F+00 + l = 6.00	2.042F+00 +/- 8.00
86	6.723E+00 +/- 2.00	5.191F+00 +/- 8.00	2.859F+00 +/- 1.40	2.783E+00 + / = 2.00	2.691E+00 + / = 15.98
87	7 1545+00 +/- 2 80	4 797F+00 +/~ 4 00	4 019F+00 +/- 1 00	3.802F+00 + 1 = 2.00	3.327F+00.+/= 6.00
88	7 4805+00 +/~ 2.00	5.123E+00 +/- 4.00	5.504F+00 +/- 1.00	5.117F+00 + / = 2.00	3.989E+00 + / = 6.00
ÂQ	7 600E+00 +/- 4 00	5.727F+00 +/- 2.80	6 314F+00 +/- 2.80	5.859E+00 + l = 6.00	4.607F+00 + 4 = 6.00
άn	7.685E+00 +/+ 6.00	5.8948+00 +/- 2.80	6.9065+00 +/- 2.80	6.450E+00 + 2.00	4.746F+00 +/- 8.00
Q1	7.378F+00 + 1 = 2.80	5.8621+00 +/- 2.80	6.537E+00 +/- 1.00	6.470F+00 + / = 2.00	5.156E+00 + / = 6.00
62	6.833E+00.+/-4.00	5.598F+00 +/- 4 00	$6595F_{-00} + l_{-} = 1.00$	6.494F+00 +/- ·2.00	5.531F+00 + 4.00
92	6.731E+00 +/- 4.00	5.4548+00 +/- 2.80	7 014F+00 +/- 1 00	6.882F+00 + 1 = 2.00	5.394F+00 +/- 6.00
о́л	5 682E+00 +/- 6 00	7 061E+00 +/- 8 00	6 815E+00 +/- 1 00	$6.740F_{-}00 + l_{-} - 2.00$	5.061E+00 + / - 16.00
95	5.374E+00 + / = 4.00	4 7528+00 +/- 6 00	6 190E+00 + 4 = 4 00	6.272F+00 + 1 = 2.00	5.024F+00 + 4 = 6.00
46	4 409F+00 +/- 6 00	3 6405+00 +/- 8 00	5.665E+00.4/- 1.00	5.705F+00 + l = 2.00	4.845F+00.4/-15.94
07	4 45 45 45 40 4/- 2 00	3 1795+00 +/- 100	5 1585+00 +/- 1 00	5 4556+00 +/- 2 00	4 712E+00 +/~ 4 00
08	3.700E+00 +/- 6.00	2 6125+00 +/- 8 00	5.158E+00 +/- 1.00	5 140F+00 +/- 2.00	4.7122400 + 2 4.00
00	$2.876F_{+}00 + /_{-} + 00$	2.0122400 + 2.00	4 874F+00 +/- 2 80	4 681F + 00 + 7 = 4 00	3.611F+00 +/- 2.80
100	1 379F+00 +/- 6 00	1.551F+00 +/- 8.00	4.0742400 + 2.00	4.380F+00 +/- 2.00	3.151F+00 +/- 11.00
10 1	$7.305F_{-}01 + 11.00$	1 508E+00 +/- 8 00	$3 231E_{+}00 \pm 4_{-} 1 00$	3.740F+00 + / - 6.00	2 803F+00 +/~ 11.00
10.2	$3.732F_{-01} + I_{-11} = 11.00$	1 058E+00 +/- 8 00	2 451F+00 +/- 1 40	$2 830F_{-}00 + I_{-} = 6 00$	2.524F+00 +/- 16.00
10 3	1.528F=01 +/= 6.00	~9-555F-01 +/- 6 00	1 6695+00 +/- 4 00	1.772F+00 +/= 6.00	2.345F+00 +/= 6.00
10 4	$9.059F_{-0.2} + 11.00$	9 8721-01 -7- 8 00	1.029E+00 +/- 1.00	1.240F+00 + l = 6.00	1.991F+00 + / = 16.00
105	4.617F = 02 + 1 = 4.00	$9.677F_{-}01 + 4.00$	$4.829F_{-01} + 16.00$	8.981F = 01 + l = 6.00	1.816F+00 + 4 = 6.00
106	4.414E=02 +/- 8.00	1.089F+00 +/- 6.00	$2.587F_{-01} + /_{-1} = 1.00$	2.920F = 01 + / = 6.00	1.418F+00 + / = 11.00
107	5.194E=02 +/= 11.00	1.017F+00 + 2 8.00	1.174F = 01 + 1 = 16.00	1.500E = 01 + I = 8.00	1.467E+00 + 4 = 16.00
108	6.262E+02 +/- 16.00	1.029E+00 +/- 8.00	6.318E = 02 + 1 = 16.00	$1.100E_{-01} + 1.32.00$	1.476F+00 + / = 16.00
10.9	6.091E-02 +/- 11.00	1.181E+00 + - 6.00	4.419F+02 + /- 11.00	9.269E+02 +/+ 16.00	1.670F+00 + 4 = 8.00
110	7.219E-02 +/- 16.00	1.096E+00 +/- 8 00	2.612F = 02 + / = 16.00	8.997E = 02 + / = 32 00	1.3346+00 +/+ 22.99
111	7.132E-02 +/- 8.00	1.204E+00 +/- 4 00	1.921E=02 +/- 8.00	7.711E=02 +/= 8 00	1.399F+00 +/- 6.00
112	8.621E-02 +/- 8.00	1.277E+00 +/~ # 00	$1 440F_{-0}2 + /_{-} 11 00$	6.840F=02 +/= 16 00	1.662F+00 +/- 6.00
113	8.630E-02 +/- 11.00	1.220E+00 +/- 4.00	$1.366E_{-02} + / - 16.00$	6.692E = 02 + / = 16.00	1.722F+00 +/- 8.00
114	7.578E-02 +/- 16.00	1.150E+00 +/- 8.00	1.308E-02 +/- 16.00	6.297E - 02 + / - 32.00	1.267E+00 +/- 16.00
115	6.924E-02 +/- 6.00	1.268E+00 +/~ 6.00	1.183E-02 +/- 16.00	5.627E-02 + /- 11.00	1.370E+00 +/- 8.00

•

MASS	TH232(F) UNCERTAINTY	TH232(HE)UNCERTAINTY	U233(T) UNCERTAINTY	U233(F) UNCERTAINTY	U233(HE)UNCERTAINTY
116	7.542E-02 +/- 16.00	1.550E+00 +/- 8.00	1.4422-02 +/- 16.00	6.318E-02 +/- 23.00	1.403E+00 +/- 15.99
117	6.812E-02 +/- 8.00	1.847E+00 +/~ 6.00	1.141E-02 +/- 11.CO	5.270E-02 +/- 16.00	1.332E+00 +/- 11.00
118	6.490E-02 +/- 16.00	1.480E+00 +/- 8.00	1.224E-02 +/- 11.00	5.186E-02 +/- 23.00	1.300E+00 +/- 16.00
119	5.893E-02 +/- 16.00	1.417E+00 +/- 8.00	1.258E-02 +/- 11.00	6.425E-02 +/- 16.00	1.238E+00 +/- 16.00
120	5.593E-02 +/- 16.00	1.370E+00 +/- 8.00	1.384E-02 +/- 11.00	7.165E-02 +/- 23.00	1.177E+00 +/- 16.00
121	5.041E-02 +/- 8.00	9.747E-01 +/- 0.00	1.496E-02 +/- 23.00	7.0802-02 +/- 10.00	1.653E+00 +/~ 8.00
122	3./052-02 +/- 10.00	1 2575.00 ·/ 8.00	1.4/5E-02 +/- 11.00	7.1046-02 +/- 23.00	1.261E+00 +/~ 22.99
121	3.0300 = 02 + 7 = 10.00	1 1095+00 +/- 7 61	2 4245.02 +/- 23.00	1 0205.01 ./ 22.06	1.5/1E+00 +/~ 10.00
125	3.861F=02 + /= 11.00	1.224F+00 +/- 8 00	$1 122F_01 + 7 = 10.99$	1 3835-01 +/- 8 (0	1.5400+00+7= 5.00
126	5.013F=02 +/= 16.00	1.309F+00 +/= 8.00	$2.464F_{-01} + 1 = 23.00$	$2.735F_{-01} + 11.00$	1.0142+00 +/- 0.00
127	9.077E-02 + - 8.00	1.141E+00 + 4.00	5.617E = 01 + / = 11.00	5.000F=01 + /= 6.00	
128	1.851E-01 +/- 16.00	1.522E+00 +/- 8.00	7.573E-01 + 2 - 6.00	1.111E+00 + 4 = 8.00	2.580F+00 +/- 16.00
129	3.730E-01 +/- 11.00	1.567E+00 +/- 6.00	1.613E+00 + - 16.00	1.622E+00 +/- 6.00	2.856E+00 +/- 11.00
130	8.399E-01 +/- 11.00	2.258E+00 +/- 7.91	2.101E+00 +/~ 15.98	2.519E+00 +/- 7.99	3.237E+00 +/- 15.73
131	1.621E+00 +/- 2.00	2.668E+00 +/- 4.00	3.606E+00 +/70	3.738E+00 +/- 2.00	3.457E+00 +/- 6.00
132	2.881E+00 +/- 1.40	3.200E+00 +/- 4.00	-4.939E+00 +/- 1.00	4.953E+00 +/- 2.00	4.071E+00 +/- 4.00
133	3.964E+00 +/- 4.00	4.298E+00 +/- 6.00	6.022E+00 +/70	6.005E+00 +/- 2.00	4.564E+00 +/~ 6.00
134	5.290E+00 +/- 2.00	6.812E+00 +/- 6.00	6.310E+00 +/70	6.218E+00 +/- 2.00	5.015E+00 +/- 5.98
135	5.382E+00 +/~ 2.00	4.994E+00 +/- 4.00	6.215E+00 +/- 1.40	6.359E+00 +/- 2.00	5.070E+00 +/- 6.00
136	5.655E+00 +/- 2.00	5.853E+00 +/- 7.98	7.122E+00 +/- 3.94	6.985E+00 +/- 1.95	6.920E+00 +/- 13.80
137	6.640E+00 +/- 4.00	5.263E+00 +/- 2.80	6.812E+00 +/70	6.633E+00 +/- 2.00	4.958E+00 +/- 4.00
138	7.140E+00 +/- 11.00	5.301E+00 +/- 2.80	5.914E+00 +/- 1.40	6.479E+00 +/- 2.00	5.946E+00 +/- 11.00
139	7.156E+00 +/- 2.80	5.523E+00 +/- 2.80	6.334E+00 +/- 4.00	6.330E+00 +/- 2.00	5.871E+00 +/- 4.00
140	7.704E+00 +/- 2.80	5.767E+00 +/- 2.80	6.493E+00 +/- 1.00	6.214E+00 +/- 2.00	4.429E+00 +/- 4.00
141	7.303E+00 +/~ 4.00	5.666E+00 +/- 2.80	6.531E+00 +/- 2.80	6.405E+00 +/~ 2.60	4.630E+00 +/~ 6.00
142	6.318E+00 +/~ 4.00	5.019E+00 +/~ 6.00	6.656E+00 +/- 1.00	6.468E+00 +/- 2.00	4.463E+00 +/- 16.00
143	0.519E+00 +/~ 2.80	4.893E+00 +/~ 2.80	5.892E+00 +/~ 1.00	5.531E+00 +/~ 2.00	3.2758+00 +/~ 4.00
144	7.01/L+UU +/- 4.UU	3.9282+00 +/~ 0.00	4.639E+00 +/~ .70	4.485E+00 +/~ 2.00	2.507E+00 +/~ 8.00
140		2.4412+00 +/~ 4.00	3.3922+00 +/~ .70	3.1802+00 +/- 2.00	2.040E+00 +/~ 8.00
140	3 0115+00 +/- 4.00				1.040E+00 +/~ 10.00
14.8	1.979E+00.4/- 2.80	9.799E=01 + /= 8.00	1 27 25,00 . /. 70	1 1025.00 ./- 2.00	0.0215-01.02=00
140	8.832F = 01 + 4 = 16.00	7540F-01 + / - 6.00	$7.771E_{-01} + I_{-} - 2.80$	$7 032F_{-}01 \pm I_{-} 2 00$	$6 23\mu_{\rm E} 01 + 23.00$
15.0	3.466E = 01 + 16.00	3.763F=01 + /= 8.00	$5.023F=01 \pm 1 = .99$	4.638F=01 + 1.99	$4.468F_{-01} + 2.82$
15 1	3.142E-01 + 7 = 6.00	2.069E = 01 + / = 4.00	$3.153F_{\pm}01 \pm /_{\pm} 2.00$	$3.046F_{\pm}01 + /_{\pm} 2.00$	$3.299F_{-}01 + / - 8.00$
152	7.591E-02 +/- 16.00	1.187E-01 +/- 8.00	2.136E-01 +/- 2.80	1.908E-01 + / - 2.00	2.205E-01 +/- 16.00
15.3	3.325E-02 +/- 16.00	8.271E-02 +/- 6.00	1.048E-01 +/- 6.00	1.159E-01 +/- 6.00	1.441E-01 +/- 8.00
15 4	7.287E-03 +/- 42.57	5.064E-02 +/- 18.87	4.669E-02 +/- 29.84	6.184E-02 +/- 28.20	9:898E-02 +/- 22.49
155	3.828E-03 +/- 23.00	2.899E-02 +/- 8.00	2.179E-02 +/- 23.00	3.268E-02 +/- 16.00	6.651E-02 +/- 16.00
156	2.561E-03 +/- 11.00	1.679E-02 +/- 8.00	1.131E-02 +/- 6.00	1.777E-02 +/- 11.00	4.344E-02 +/- 6.00
157	9.562E-04 +/- 23.00	9.733E-03 +/- 8.00	6.327E-03 +/- 8.00	9.622E-03 +/- 23.00	2.784E-02 +/- 11.00
158	5.041E-04 +/- 32.CO	5.736E-03 +/- 8.00	2.315E-03 +/- 32.00	3.150E-03 +/- 32.00	1.752E-02 +/- 15.88
159	1.060E-04 +/- 32.00	4.162E-03 +/- 8.00	8.746E-04 +/- 6.00	1.685E-03 +/- 16.00	1.073E-02 +/- 11.00
16.0	7.5121-05 +/- 32.00	1.582E-03 +/- 8.00	3.544E-04 +/- 44.93	3.974E-04 +/- 31.88	7.214E-03 +/- 15.93
16 1	1.650E-05 +/- 23.00	9.950E-04 +/- 6.00	1.209E-04 +/- 6.00	9.000E-05 +/- 32.00	4.709E-03 +/- 6.00
16.2	8.002E-00 +/- 32.00	4.680E-04 +/- 8.00	1.569E-05 +/- 32.00	2.160E-05 +/- 32.00	2.859E-03 +/- 32.00
10 3	5.0418-06 +/- 32.00	2.340E-04 +/- 8.00	7.317E-06 +/- 32.00	9.900E-06 +/- 32.00	1.775E-03 +/- 32.00
16.5	2.211E-00 +/- 32.00	1.2108-04 +/- 8.00	2.409E-06 +/- 32.00	3.330E-06 +/- 32.00	1.085E-03 +/- 31.99
16.6	1 500F.07 ./ 22.00	0.080E~05 +/~ 8.00	7.577E-07 +/- 23.00	1.120E-00 +/- 23.00	0.420E-04 +/- 23.00
167	1 0608-07 +/- 32.00	1 #60F 0F +/ # 00	4.0200+07 +7- 32.00	0.390E-07 +/- 32.00	2.4102-04 +/~ 11.00
16 8	5.7511+08 +/- 32.00	7.3608-06 -/- 8.00	1 6605-08 -/- 22.00	2 3HUE-08 +/- 32.00	1 3805-00 +/- 32 00
16.9	2.921F=08 +/= 32.00	3 5701-06 +/- 8 00	5 6088-00 +/- 22 00	$7 820E_00 + 1 = 32.00$	$R = 210 F_{-} C_{-} = 11 00$
170	1.160E+08 +/- 32.00	1.600E+06 +/- 8.00	$1.671F_{\pi}09 = 1.21.07$	$2.342F_{-09} + 1 = 32.00$	$4.446F_{-05} + / - 31.96$
17 1	5.041E-09 +/- 32.00	7.510E+07 +/- 8.00	5.558F=10 =/= 32.00	7.2008-10 -/- 32.00	2.470E+05 +/- 32.00
172	2.591E-09 +/- 32.00	3.500E-07 +/- 8.00	1.849E - 10 + 7 - 32.00	2.700E-10 +/- 32.00	1.890E-05 +/- 11.00
	I				

•

· ·

•

.

31

۰ *د*

ω	WA 66	UDDE/T) UNCENTATETY	UDDE/EN UNCERTATURY	U225/UENUNCERTAINTY	U236(F) UNCERTAINTY	U23E(F) UNCERTAINTY
N	MASS	7 5195.09 1/- 22 00	8 8165 - 07 + 7 = 22 00	$3 010F_04 \pm 7 = 8.00$	$7.470F = 07 \pm 1 = 32.00$	$1.752F_{-08} + I_{-32.00}$
	00	7.010E = 00 + 7 = 32.00	2 8205 - 06 + 1 - 23 00	6.740E=04 + 1 = 8.00	$1.870E = 06 \pm 1 = 32.00$	6.057F=08 + /= 32.00
	64	5.9192-07 + 7- 32.00	$4 018F_06 + 7 = 23.00$	9.060F = 04 + 4 = 32.00	3.740F + 06 + / = 32.00	2.283E = 07 + 1 = 23.00
	60	1 #20E = 06 + 1 = 32.00	$1.060F_{-}05 + /_{-} 23.00$	1 #10F=03 + /= 32.00	8.410E+06 + /- 32.00	6.187E-07 + / - 23.00
	70	3300E = 06 + l = 32.00	$2299F_{-}05 \pm l_{-}23.00$	2.412F=03 + /= 23.00	1.870E - 05 + / - 32.00	1.712E - 06 + / - 23.00
	70	7.708E - 06 + / = 32.00	5.667F = 05 + / = 23.00	4.027E-03 + / - 32.00	4.670E-05 +/- 32.00	4.946E-06 +/- 23.00
	72	2.679F = 05 + / = 11.00	2.019E-04 +/- 23.00	6.086E-03 +/- 8.00	1.680E-04 +/- 32.00	3.321E-06 +/- 32.00
	73	1.180E = 04 + 7 = 45.00	6.027E-04 +/- 16.00	1.161E-02 +/- 8.00	6.670E-04 +/- 23.00	4.776E-05 +/- 23.00
	74	3.619E - 04 + / - 23.00	1.450E-03 +/- 23.00	1.740E-02 +/- 11.00	1.588E-03 +/- 32.00	9.321E-05 +/- 32.00
	25	1.179E-03 +/- 23.00	9.173E-03 +/- 16.00	2.761E-02 +/- 11.00	1.214E-02 +/- 32.00	2.423E-04 +/- 23.00
	76	3.857E-03 +/- 32.00	1.615E-02 +/- 23.00	4.092E-02 +/- 11.00	2.055E-02 +/- 32.00	9.049E-04 +/- 23.00
	77	8.432E-03 +/- 11.00	3.539E-02 +/- 11.00	6.802E-02 +/- 11.00	4.195E-02 +/- 23.00	3.334E-03 +/- 11.00
	78	2.183E-02 +/- 8.00	6.470E-02 +/- 11.00	1.020E-01 +/- 11.00	5.231E-02 +/- 32.00	1.128E-02 +/- 23.00
	79	4.531E-02 +/- 4.00	1.007E-01 +/- 8.00	1.734E-01 +/- 8.00	1.049E-01 +/- 23.00	3.342E-02 +/- 16.00
	80	1.308E-01 +/- 4.00	1.762E-01 +/- 11.00	2.624E-01 +/- 11.00	1.682E-01 +/- 32.00	6.950E-02 +/- 23.00
	81	1.953E-01 +/- 2.80	2.537E-01 +/- 11.00	2.977E-01 +/- 11.00	2.429E-01 +/- 32.00	1.431E-01 +/- 23.00
	82	3.278E-01 +/- 2.80	3.817E-01 +/- 10.99	6.241E-01 +/- 10.92	3.458E-01 +/- 31.99	2.383E-01 +/- 23.00
	83	5.360E-01 +/50	5.722E-01 +/- 1.00	1.115E+00 +/- 4.00	5.242E-01 +/- 23.00	3.935E-01 +/- 1.00
	84	9.951E-01 +/70	1.026E+00 +/- 1.40	1.539E+00 +/- 16.00	9.576E-01 +/- 23.00	8.1495-01 +/- 1.40
	85	1.3108+00 +/35	1.328E+00 +/- 1.00	1.685E+00 +/- 2.80	1.509E+00 +/~ 8.00	7.308E-01 +/- 1.40
	86	1.969E+00 +/50	1.934E+00 +/- 1.00	2.624E+00 +/~ 11.00	1.672E+00 +/~ 16.00	1.2782+00 +/- 1.40
	87	2.557E+00 +/70	2.479E+00 +/~ 2.00	2.473E+00 +/~ 2.80	2.305E+00 +/~ 0.00	1.50/E+UU +/~ 1.40
	88	3.633E+00 +/70	3.485E+00 +/~ 1.00	3.4528+00 +/~ 4.00	2.9582+00 +/~ 0.00	
	89	4.877E+00 +/~ 1.40	4.527E+00 +/~ 2.00	4.2132+00 +/~ 2.80	3.7952+00 +/~ 0.00	2.840E+00 +/- 2.00
	90	5.913E+00 +/~ .70	5.453E+00 +/~ 1.00	4.07 IE+00 +/~ 2.80	5 6H0E+00 +/~ 11.00	3.2402+00 +/- 2.00
	91	5.9332+00 +/~ .50			$6.217E_{+}00.4/_{-}$	4.0092400 4/- 2.00
	92	5.980E+00 +/~ ./0	5./42E+00 +/~ 1.00	5 2055.00 ./- 6 00	5 6936+00 +/- 4 00	4.925E+00 +/- 2.80
	93	6.3032+00+7=.70	6 1075.00 ./. 1 00	5.2352+00 + 1 = 0.00	5.586E+00 + 1 - 16.00	4.977F+00 + - 6.00
	94		6.363E+00.4/- 70	$5.050E_{\pm}00 \pm 1 = 5.00$	6.410E+00 +/- 6.00	5.105E+00 + / - 1.00
	20	6 282E + 00 + 7 = 70	6.099F+00 +/- 1.40	$5.316\Gamma + 00 + / = 7.99$	5.750E+00 +/- 16.00	5.932E+00 +/- 6.00
	90 U7	5.941F+00.4/- 70	5.921F+00 +/70	5.610E+00 +/- 4.00	5.077E+00 +/~ 4.00	5.525E+00 +/- 1.00
	97	5.774F+00 + / = .70	5.869E+00 + / - 1.00	4.138E+00 +/- 8.00	5.804E+00 +/- 11.00	5.812E+00 +/- 1.40
	99	6.119E+00 +/- 1.00	5.755E+00 +/~ 1.40	5.085E+00 +/- 4.00	5.912E+00 +/- 6.00	6.248E+00 +/- 2.00
	100	6.206E+00 +/- 1.40	6.284E+00 +/- 1.00	3.970E+00 +/- 8.00	5.567E+00 +/- 11.00	6.618E+00 +/- 1.40
	10 1	5.074E+00 +/~ 1.00	5.352E+00 +/- 1.40	3.470E+00 +/- 8.00	5.293E+00 +/- 11.00	6.084E+00 +/- 6.00
	102	4.236E+00 +/- 1.00	4.535E+00 +/- 1.40	3.269E+00 +/- 8.00	4.934E+00 +/- 16.00	6.327E+00 +/- 6.00
	103	3.0428+00 +/- 1.40	3.276E+00 +/- 1.40	3.218E+00 +/- 2.80	4.207E+00 +/- 4.00	6.229E+00 +/- 1.40
	104	1.835E+00 +/70	2.275E+00 +/- 2.00	2.134E+00 +/- 8.00	3.363E+00 +/- 16.00	4.989E+00 +/- 6.00
	105	9.674E-01 +/- 2.00	1.210E+00 +/~ 2.00	1.891E+00 +/- 4.00	2.470E+00 +/- 6.00	3.975E+00 +/- 2.80
	106	4.017E-01 +/- 1.00	5.577E-01 +/- 4.00	1.570E+00 +/- 4.00	1.014E+00 +/- 8.00	2.513E+00 +/~ 4.00
	107	1.405E-01 +/- 6.00	3.275E-01 +/- 11.00	1.284E+00 +/~ 8.00	9.247E-01 +/- 23.00	1.303E+00 +/~ 8.00
	108	6.706E-02 +/- 6.00	1.717E-01 +/- 16.00	1.078E+00 +/~ 11.00	3.457E-01 +/- 32.00	5.UTIE-UT +/- 10.UU
	109	3.443E-02 +/- 11.00	1.148E-01 +/- 11.00	1.423E+00 +/~ 4.00	1.431E-01 +/- 23.00	2.0/IE-UI +/- 11.00
	110	3.034E-02 +/- 11.00	9.026E-02 +/- 16.00	1.049E+00 +/~ 11.00	1.0278-01 +/~ 32.00	1.377E+UI +/+ 10.00
	111	2.005E+02 +/- 4.00	4.314E-02 +/- 2.80	1.205E+00 +/~ 2.80	0.342E+U2 +/- 8.00	6 = 005 E = 02 + 7 = 2.00
	112	1.010E-02 +/- 4.00	3.819E-02 +/- 2.80	1.004E+00 +/~ 8.00	9.105E+U2 +/+ 32.00	$5.267F_02 \pm 1 = 8.00$
	113	1.034E-02 +/- 0.00	3.3071-02 +/- 2.80	1.054E+00 +/~ 8.00	3.0132+02 +/- 23.00	2 022E. 02 +/- 16 00
	114	1.403E-02 +/- 6.00	3.2901-02 +/- 2.80	9.797E-01 +/- 11.00	5.2092-02 +/~ 32.00	3.332402 +/- 10.00
	115	1.079E-02 +/- 11.00	2.939E-02 +/- 8.00	9.024E-01 +/- 4.00	5.124E-02 +/- 23.00	3.3072-02 +/- 4.00

.

.

+ 13

•

r 1

MASS	U235(T) UNCERTAINTY	U235(F) UNCERTAINTY	U235(DE)UNCERTAINTY	U236(F) UNCERTATHTY	U238(F) UNCERTAINTY
116	$1.690F_{-0}2 + I_{-} = 6.00$	3 467 = 02 + 1 = 4 00	9.7616-01 + 11.00	$3 363F_02 + 1 = 32 00$	$4 162F_02 + 11 00$
117	1.0955-02 + / - 2.80	2 286E - 02 + 11 00		2578E - 02 + 1 = 16 00	$3.678F_{-02} + I_{-} 11.00$
118	1.0035=02 + 1 = 2.00	$3 \cdot 30 \cdot 50 = 02 + 7 = 11.00$	1.0792+00+/- 8.00	3.578E=02 + 1 = 10.00	3.0702 = 02 + 7 = 11.00
110	1 2165-02 +/- 11 00	2 1055-02 +/- 8 00	1 1165+00 +/- 8 00	2 1005-02 1/- 22.00	2 5765-02 +/- 11.00
100	1 2105 02 4/ 11 00	3.4052-02 +/- 8.00	1 1355.00 ./ 8.00	3 7975 02 +/- 23.00	3.5702-02 +/- 11.00
120	1.2005 02 4/4 11.00	3.4356-02 +/- 0.00		3.705E-02 +/- 23.00	3.5772+02 +7- 10.00
121	1.5305 02 +/ 11.00	3.522E-02 +/- 11.00		3.094E~02 +/~ 32.00	4.3526-02 +/- 11.00
122		4.0412-02 +/- 11.00	1.200L+00 +/~ 11.00	4.9072-02 +/~ 32.00	3.702E-02 +/- 10.00
123	1.585E-02 +/- 4.00	4.5000-02 +/~ 11.00		7.18/E-02 +/- 23.00	4.0466-02 +/- 16.00
124	2.592E-02 +/~ 10.99	8.596E-02 +/- 11.00	1.314E+00 +/- 10.95	9.232E-02 +/- 32.00	4.430E-02 +/- 10.00
125	2.939E-02 +/- 4.00	7.095E-02 +/- 6.00	1.423E+00 +/- 8.00	1.633E-01 +/- 23.00	5.271E-02 +/- 8.00
126	5.559E-02 +/~ 8.00	1.395E-01 + 7 - 11.00	1.778E+00 +/- 4.00	2.459E = 01 + 7 = 23.00	6.385E-02 +/- 11.00
127	1.256E-01 +/- 6.00	2.814E-01 +/- 16.00	2.183E+00 +/- 2.80	2.265E-01 + - 16.00	1.300E-01 +/- 6.00
128	3.507E-01 +/- 2.80	6.808E-01 +/- 11.00	2.476E+00 +/- 8.00	6.052E-01 +/- 23.00	4.615E-01 +/- 11.00
129	7.435E-01 +/- 6.00	8.926E-01 +/- 6.00	3.557E+00 +/- 8.00	1.007E+00 +/~ 8.00	9.975E-01 +/- 8.00
130	1.784E+00 +/~ 2.00	1.935E+00 +/- 8.00	3.648E+00 +/- 7.95	1.991E+00 +/~ 16.00	1.875E+00 +/- 8.00
131	2.883E+00 +/~ .50	3.178E+00 +/70	3.995E+00 +/- 4.00	3.034E+00 +/~ 6.00	3.233E+00 +/- 1.40
132	4.298E+00 +/~ .50	4.601E+00 +/70	4.779E+00 +/- 6.00	4.305E+00 +/~ 6.00	5.130E+00 +/- 1.40
Í 133	6.702E+00 +/~ .35	6.730E+00 +/- 1.00	5.527E+00 +/- 8.00	7.026E+00 +/~ 6.00	6.620E+00 +/- 1.40
134	7.795E+00 +/~ .70	7.536E+00 +/70	6.055E+00 +/- 5.99	8.017E+00 +/- 6.00	7.565E+00 +/- 2.80
135	6.541E+00 +/- 1.00	6.581E+00 +/70	5.912E+00 +/- 4.00	5.790E+00 + 4 - 6.00	6.863E+00 +/- 1.40
136	6.316E+00 +/50	6.162E+00 +/70	5.069E+00 + / - 10.53	6.412E+00 +/- 15.99	6.855E+00 +/- 4.00
137	6.221E+00 +/+ .35	6.151F+00 +/70	4.917F+00 + 2.80	6.066F+00 + / = 4.00	6.000F+00 + / = 1.00
138	6.756F+00 +/~ .70	6.5501+00+7=1.40	4 6345+00 +/- 4 00	6.219F+00 + / = 16.00	5.666F+00 +/- 2.00
130	6.377F+00 + 1 = 0	6.328F+00 + / = 1.00	4 738F+00 +/- 4 00	5.873E+00 + 1 = 16.00	5.967E+00.+/- 2.80
140	6 276E+00 +/- 50	6 105F+00 +/- 70		5.796E+00 + 1 = 10.00	5 9485+00 +/- 1 00
1111	5.796E+00+/- 1.00	5.0535+00.4/- 2.00		5.79024004/2 2.00	5 N56E+00 +/- 2 80
14.2		5 6 7 2 00 1/ 2 00	H 2078-00 -/ 6 00	5 9175.00 ./ 6 00	
142		5.00/2+00 +/~ 2.00	4.24/E+00 +/~ 0.00	5.81/E+00 +/~ 0.00	4.728E+00 +7~ 1.40
143	5.93/E+00 +/~ .35	5.0000+00 +/~ .50	3.00000 4/~ 4.00	8.085E+00 +/~ 8.00	4.5582+00 +/~ 1.00
144	5.4/4E+00 +/~ .50	5.2002+00 +/~ 1.40	3.1228+00 +/~ 4.00	5.209E+00 +/~ 4.00	4.5432+00 +/~ 1.00
145	3.9172+00 +/~ .35	3.7432+00 +/~ .50	2.0812+00 +/~ 0.00	3.008E+00 +/~ 11.00	3.755E+00 +/~ 1.00
140	2.9/5E+00 +/~ .35	2.9022+00 +/~ .50	2.2142+00 +/~ 8.00	2.943E+00 +/~ 10.00	3.393E+00 +/~ 1.00
147	2.2532+00 +/~ 1.00	2.0962+00 +/~ 1.40	1.0272+00 +/~ 4.00	2.341E+00 +/~ 4.00	2.531E+00 +/~ 1.40
148	1.07UE+00 +/~ .35	1.0/2E+00 +/~ .35	1.203E+00 +/~ 11.00	1.741E+00 +/~ 10.00	2.081E+00 +/~ .70
149	1.007E+00 +/~ 1.40	1.026E+00 +/~ 1.00	5.442E-01 +/- 8.00	1.369E+00 +/~ 8.00	1.610E+00 +/~ 1.40
150	0.483E-01 +/50	0.842E-01 +/70	5.1732-01 +/- 10.97	7.295E-01 +/- 31.99	1.265E+00 +/~ 1.40
151	4.184E-01 +/- 1.00	4.076E-01 +/- 1.00	3.536E-01 +/- 8.00	4.227E-01 +/- 11.00	8.011E-01 +/- 2.00
152	2.678E-01 +/70	2.797E-01 +/- 4.00	2.624E-01 +/- 11.00	3.877E-01 +/- 32.00	5.207E-01 +/- 1.40
153	1.613E-01 +/- 2.80	1.752E-01 + 7 - 4.00	2.018E-01 +/- 11.00	2.553E~01 +/~ 23.00	4.109E-01 +/- 2.80
154	7.340E-02 +/- 10.66	7.430E-02 +/- 17.45	8.026E-02 +/- 32.17	1.292E-01 +/- 52.33	2.134E-01 +/- 3.82
155	3.205E-02 +/- 4.00	5.016E-02 +/- 10.00	6.399E-02 +/- 11.00	9.232E-02 +/- 32.00	1.328E-01 +/- 16.00
150	1.3191-02 +/- 4.00	1.929E-02 +/- 6.00	5.271E-02 +/- 2.80	3.365E-02 +/- 6.00	6.748E-02 +/- 2.80
157	0.154E-03 +/- 8.00	1.126E-02 +/- 23.00	3.785E-02 +/- 11.00	2.308E+02 +/- 32.00	3.872E-02 +/- 16.00
158	2.915E-03 +/- 23.00	6.772E-03 +/- 16.00	2.345E-02 +/- 11.00	1.108E-02 +/- 32.00	1.730E-02 +/- 16.00
159	1.004E-03 +/- 6.00	3.053E-03 +/- 11.00	1.193E-02 +/- 8.00	4.339E-03 +/- 32.00	8.091E-03 +/- 16.00
160	3.160E-04 +/- 32.00	1.181E-03 +/- 16.00	7.175E-03 +/- 10.97	1.939E-03 +/- 32.00	3.229E-03 +/- 23.00
101	8.528E-05 +/- 4.00	3.598E-04 +/- 11.00	5.201E-03 +/- 8.00	4.920E-04 +/- 6.00	1.279E-03 +/- 8.00
162	1.920E-05 +/- 32.00	6.137E-05 +/- 23.00	2.799E-03 +/- 11.00	1.990E-04 +/- 32.00	4.916E-04 +/- 23.00
16.3	7.668E-06 +/- 32.00	1.020E-05 + - 23.00	1.592E-03 +/- 11.00	1.110E-04 +/- 32.00	1.211E-04 +/- 23.00
164	2.399E-06 +/- 32.00	0.137E-06 +/- 23.00	9.841E-04 +/- 11.00	4.430E-05 +/- 32.00	3.925E-05 +/- 23.00
165	1.170E-06 +/- 23.00	2.459E-06 +/- 23.00	5.410E-04 +/- 11.00	1.700E-05 +/- 23.00	1.502E-05 +/- 23.00
10.0	5.519E-07 +/- 23.00	1.020E-06 + / - 23.00	2.710E-04 +/- 8.00	1.020E-05 +/- 3?.00	5.386E-06 +/- 23.00
167	3.009E-07 +/- 23.00	4.098E-07 +/- 23.00	1.860E-04 +/- 11.00	4.800E-06 +/- 32.00	1.592E-06 +/- 23.00
168	0.888E-08 +/- 23.CO	1.020E-07 +/- 23.00	1.070E-04 +/- 11.00	1.200E-06 +/- 32.00	6.828E-07 +/- 23.00
169	2.819E-08 +/- 23.00	6.137E-C8 +/- 23.00	7.700E-05 +/- 8.00	2.950E-07 +/- 32.00	2.243E-07 +/- 23.00
170	5.919E-09 +/- 23.00	2.049E-08 +/- 23.00	3.261E-05 +/- 11.00	8.960E-08 +/- 32.00	6.828E-08 +/- 23.00
171	2.619E-09 +/- 23.00	7.167E-09 +/- 23.00	1.770E-05 +/- 11.00	2.950E-08 +/- 32.00	1.912E-08 +/- 23.00
172	9.708E-10 +/- 23.00	2.049E-09 +/- 23.00	1.610E-05 +/- 8.00	7.940E-09 +/- 32.00	9.972E-09 +/- 23.00

je i

ASS	U235(HE) UNCERTAINTY	NP237(F) UNCERTAINTY	PU239(T) UNCERTAINTY	PU239(F) UNCENTAINTY	PU239(HE)UNCERTAINTY
66	8.501E-05 +/- 11.00	1.910E-07 +/- 8.00	1.841E-07 +/- 23.00	8.813E-07 +/- 16.00	6.330E-05 +/- 8.00
67	1.400E-04 +/- 16.00	3.810E-07 +/- 8.00	3.681E-07 +/- 23.00	2.911E-06 +/- 16.00	9.991E-05 +/- 8.00
66	3.011E-04 +/- 16.00	1.920E-06 +/- 8.00	1.290E-06 +/- 23.00	8.553E-06 +/- 16.00	2.210E-04 +/- 8.00
69	5.051E-04 +/- 10.00	1.010E-05 +/- 8.00	4.611E-06 +/- 23.00	3.171E-05 +/- 16.00	3.770E-04 +/- 8.00
70	9.082E-04 +/- 16.00	2.490E-05 +/- 8.00	1.571E-05 +/- 23.00	8.823E-05 +/- 16.00	6.811E-04 +/- 8.00
21	1.605E-03 +/- 16.00	6.320E-05 +/- 8.00	2.851E-05 +/- 23.00	2.071E-04 +/- 32.00	1.216E-03 +/- 8.00
72	3.020E-03 +/- 11.00	1.540E-04 +/- 8.00	9.613E-05 +/- 45.00	5.312E-04 +/- 32.00	2.222E-03 +/- 8.00
73	5.242E-03 +/- 11.00	3.740E-04 +/- 6.00	2.301E-04 +/- 23.00	7.502E-04 +/- 16.00	3.804E-03 +/- 6.00
74	8.072E-03 +/- 16.00	6.770E-04 +/- 8.00	5.332E-04 +/- 32.00	1.763E-03 +/- 16.00	5.982E-03 +/- 8.00
75	1.398E-02 +/- 16.CO	1.346E-03 +/- 8.00	1.243E-03 +/- 32.00	2.734E-03 +/- 23.00	1.041E-02 +/- 8.00
76	2.217E-02 +/- 16.00	6.139E-03 +/- 8.00	2.756E-03 +/- 31.99	5.864E-03 +/- 16.00	1.666E-02 +/- 7.99
77	3.138E-02 +/- 8.00	1.089E-02 +/- 8.00	7.336E-03 +/- 11.00	1.399E-02 +/- 8.00	2.403E-02 +/- 8.00
78	4.104E-02 +/- 11.00	2.516E-02 +/- 8.00	2.853E-02 +/- 11.00	3.744E-02 +/- 16.00	3.097E-02 +/- 8.00
79	1.683E-01 +/- 11.00	5.796E-02 +/- 6.00	4.704E-02 +/- 16.00	6.103E-02 +/- 11.00	8.733E-02 +/- 6.00
80	2.146E-01 +/- 16.CO	1.149E-01 +/- 8.00	1.133E-01 +/- 16.00	1.050E-01 +/- 16.00	1.601E-01 +/- 8.00
81	3.341E-01 +/- 11.00	2.360E-01 +/- 8.00	1.716E-01 +/- 16.00	1.423E-01 +/- 11.00	2.767E-01 +/- 8.00
82	4.566E-01 +/- 16.00	3.363E-01 +/- 10.98	2.057E-01 +/- 22.63	2.142E-01 +/- 7.98	3.551E-01 +/- /.92
83	6.332E-01 +/- 1.40	4.815E-01 +/- 1.40	2.951E-01 +/50	3.088E-01 +/- 2.00	4.788E-01 +/- 8.00
84	1.083E+00 +/~ 2.80	7.634E-01 +/- 2.00	4.745E-01 +/- 1.00	4.888E-01 +/- 2.00	8.104E-01 +/- 8.00
85	9.764E-01 +/- 1.40	9.648E-01 +/- 2.00	5.732E-01 +/50	6.004E-01 +/- 1.00	9.924E-01 +/- 4.00
86	1.513E+00 +/~ 2.80	1.307E+00 +/- 2.00	7.591E-01 +/- 1.00	7.762E-01 +/- 1.40	1.148E+00 +/~ 7.99
87	1.666E+00 +/- 2.80	1.731E+00 +/- 2.00	9.925E-01 +/70	1.000E+00 +/~ 2.00	1.330E+00 +/~ 0.00
88	2.182E+00 +/~ 2.00	2.196E+00 +/- 2.00	1.364E+00 +/- 1.40	1.312E+00 +/~ 1.40	2.0072+00 +/~ 8.00
89	2.895E+00 +/~ 2.00	2.515E+00 +/- 4.00	1.708E+00 +/- 2.80	1.7512+00 +/~ 2.00	2.084E+00 +/~ 4.00
90	3.190E+00 +/~ 2.80	3.334E+00 +/- 2.00	2.109E+00 +/- 2.00	2.0382+00 +/~ 1.40	2.429E+00 +/~ 8.00
91.	3.750E+00 +/- 2.00	3.914E+00 +/- 2.00	2.503E+00 +/- 1.40	2.436E+00 +/~ 1.00	2.114E+00 +/~ 8.00
92	3.924E+00 +/~ 2.60	4.478E+00 +/- 2.00	3.009E+00 +/- 2.00	2.981E+00 +/~ 1.00	2.9535+00 +/~ 8.00
93	4.481E+00 +/~ 2.60	5.138E+00 +/- 2.00	3.896E+00 +/~ 1.40	3.7302+00 +/~ 1.00	3.2532+00 +/~ 8.00
94	4.902E+00 +/~ 8.00	5.126E+00 +/- 2.00	4.429E+00 +/~ 2.00	4.2000+00 +/~ 1.00	3.5352+00 +/- 8.00
95	4.947E+00 +/~ 2.80	5.699E+00 +/- 2.00	4.8945+00 +/~ 2.00	4.0852+00 +/~ 1.00	3.637E+00 +/- 7.99
96	5.613E+00 +/~ 11.00	5.541E+00 +/- 2.00	5.080E+00 +/~ 2.00		4.4000 ± 00 $4/ 4.00$
97	5.290E+00 +/~ 2.00	6.131E+00 +/~ 2.00	5.3962+00 +/~ 2.80	5 6215.00 . /. 1 80	4.4752400 + 2 8.00
98	5.490E+00 +/- 11.00	6.124E+00 +/~ 2.00	5.8322+00 +/~ 2.00	5.031E+00 +/~ 1.40	4.9302400 + 6.00
99	5.670E+00 +/- 1.40	6.192E+00 +/~ 2.80	6.150E+00 +/~ 2.00		5 185E+00 +/- 8 00
100	5.035E+00 +/~ 8.00	0.559E+00 +/~ 2.00			5.066E+00 +/- 8.00
101	5.655E+00 +/~ 2.80	6.179E+00 +/~ 2.00	5.8992+00 +/~ 1.40	6 6505.00 ·/· 1 /0	5 5528+00 +/- 8.00
102	4.614E+00 +/- 8.00	5.884E+00 +/~ 2.00	5.9092+00 +/~ 2.00		5.3522+00 + 1 = 0.00
103	4.635E+00 +/~ 2.00	5.584E+00 +/~ 2.80	6.950E+00 +/~ 2.00	6 5 3 5 E + 00 + / - 1.40	5.2352+00 +/- 8.00
104	3.598E+00 +/- 0.00	4.209E+00 +/~ 2.00	5.9142+00 +/~ 2.00		4 238F+00 +/- 6.00
105	3.234E+00 +/- 2.00	3.179E+00 +/~ 4.00	5.302E+00 +/~ 0.00		3 5828+00 +/- 6 00
106	2.439E+00 +/- 4.00	2.240E+00 +/~ 11.00	4.2822+00 +/~ 2.00		2.901E+00 +/= 8.00
107	1.729E+00 +/- 6.00	1.694E+00 +/~ 11.00	3.3022+00 +/~ 11.00	1.0115.00.4/-11.00	2.9012+00 +/= 8.00
108	1.235E+00 +/~ 11.00	9.537E-01 +/- 10.00	1 6765.00 ./ 8 00	1 9155+00 +/- 6 00	2 481F+00 + 4.00
109	1.227E+00 +/~ 0.00	4.402E-01 +/- 11.00	E 0005 01 1/ 22 00	6 1095 - 01 + 4 - 11 00	1.768F+00 + - 8.00
110	1.0372+00 +/~ 11.00	2.300E+01 +/- 10.00	2.0275-01 + / = 23.00	3.556F=01 + /= 2.00	1.510E+00 +/- 6.00
111	1.01%5.00 / % 00	7 9655 02 ·/ 6 00	3.03/2.01 + 2.00	$1.924F_{-0.01} + /_{-0.00} - 2.80$	1.414E+00 +/- 6.00
112		1.200L = 02 + 7 = 0.00	6 517F-02 +/- # 00	1.263F=01 + / = 2.00	1.313E+00 +/- 8.00
113	9.400E-UI +/- 0.00	5.1285-02 + 7 = 0.00	$6 061F_02 \pm /- 4 00$	9.313E-02 +/- 2.00	1.274E+00 +/- 8.00
114	/ .23/L-UI +/- 11.00	1 2014 02 +/~ 0.00	2 572F-02 +/- # 00	7 170F=02 +/+ 6.00	9.749E-01 +/- 6.00
115	C.591E-01 +/- 4.00	3.03 IL+U2 +/+ 0.00	3.3136-02 +/- 4.00	111102-02 47 - 3100	

i - -

13

...

MASS	H238(HE) HECERTAINTY	EP237(F) UNCERTAINTY	PU239(T) UNCENTAINTY	PU239(F) UNCERTAINTY	I-U239(HE)UNCERTAINTY
116	6.819F = 01 + 7 = 11.00	4.816E-02 +/- 8.00	4.950E-02 +/- 8.00	5.972E-02 +/- 6.00	1.173E+00 +/- 7.99
117	7.3528-01 +/- 8.00	4.345E-02 +/- 8.00	5.633E-02 +/- 8.00	7.877E-C2 +/- 11.00	1.167E+C0 +/- 8.00
118	8.324F-01 +/- 11.00	5.532E-02 +/- 8.00	3.642E-02 +/- 11.00	6.274E-02 +/- 11.00	1.287E+00 +/- 8.00
110	$7 349F_{-01} + /_{-11} 00$	5.569E-02 +/- 8.00	3.908E-02 +/- 16.00	6.321E-02 +/- 11.00	1.261E+00 +/- 8.00
120	8 610F=01 +/= 11.00	5.541E-02 +/- 8.00	3.657E-02 +/- 16.00	6.164E-02 +/- 11.00	1.257E+00 +/- 8.00
121		5.469F = 02 + 1 = 6.00	3.831E-02 +/- 8.00	6.849E-02 +/- 11.00	1.474E+00 +/- 6.00
120	8 6335-01 +/- 11.00	6.089E-02 +/- 8.00	5.017E-02 +/- 16.00	7.587E-02 +/- 11.00	1.470E+00 +/- 7.99
122	9.0552-01 + 11.00	6.720E = 02 + 1 = 8.00	4.372E-02 +/- 23.00	8.581E-02 +/- 16.00	1.742E+00 +/- 8.00
123	1 0515+00 +/~ 11 00	7.504F=02 +/- 8.00	8.781E-02 +/- 15.98	1.329E-01 +/- 15.98	2.026E+00 +/- 7.84
125	1.0312400 + - 6.00	$1.318F_{-0}1 + 4.00$	1.110E-01 +/- 8.00	1.484E-01 +/- 8.00	2.019E+00 +/- 6.00
125	1 6455+00 +/- 16 00	1.655E = 01 + 16.00	2.708E-01 +/- 11.00	3.125E-01 +/- 8.00	2.083E+00 +/- 8.00
120	1.5025+00+/- 6.00	3.586F = 01 + / = 8.00	4.893E-01 +/- 11.00	5.533E-01 +/- 3.00	2.287E+00 +/- 8.00
127	1 6785.00 +/~ 8 00	6.786F - 01 + / - 16.00	7.178E-01 +/- 6.00	9.436E-01 +/- 6.00	2.737E+00 +/- 8.00
120		1 + 66E + 00 + 7 = 6.00	1.486E+00 + / - 11.00	1.626E+00 +/- 8.00	3.411E+00 +/- 8.00
129	2.0092700 + - 11.00	$2.207F_{\pm}00 \pm 11.00$	2.329E+00 + - 10.97	2.567E+00 +/~ 7.99	4.473E+00 +/- 7.81
130	3.1972+00 +/- 11.00	2 6075+00 +/- 2 00	3 8465+00 +/70	3.869E+00 +/~ 1.00	4.763E+00 +/- 6.00
131		5.0972+00 +7= 2.00	5 3936+00 +/70	5.309E+00 + / - 1.00	5.314E+00 +/- 8.00
132	4.853E+00 +/~ 1.40		6 075E+00 +/- 70	6.890F+00.+/- 1.00	5.433E+00 +/- 8.00
133	6.145E+00 +/~ 2.00			7 373E+00 + / = 1.00	5.679E+00 + 7.96
134	6.500E+00 +/~ 2.00	7.309E+00 +/~ 1.40	7.6212+00 +//0	$7 h h 0 E_{+} 0 0 + I_{-} = 1 0 0$	5.858F+00 + 4 = 8.00
135	5.832E+00 +/~ 1.40	7.549E+00 +/~ 2.00	6 7 10 C . 00 . / 2 77	$7.022E_{+}00 + I_{-} = 1.00$	6579F+00+/=7.12
136	5.706E+00 +/~ 1.99	6.870E+00 +/- 1.99	6./IUE+UU +/~ 2.//		$\frac{1}{100}$
137	4.930E+00 +/- 2.00	6.267E+00 +/~ 2.00	6.698E+00. +/~ .50	6 0025.00 ./ 1 00	4.5312+00 + 4 = 8.00
138	4.688E+00 +/~ 2.00	6.203E+00 +/- 2.00	6.057E+00 +/~ 1.40	5.093E+00 +/~ 1.00	
139	5.086E+00 +/~ 2.00	5.651E+00 +/~ 2.80	5.624E+00 +/- 4.00	5.5962+00 +/~ 2.00	
140	4.621E+00 +/~ 1.40	5.489E+00 +/~ 1.40	5.552E+00 +/~ 1.00	5.326E+00 +/~ 1.00	3.8312+00 +/~ 4.00
14 1	4.389E+00 +/~ 2.80	5.439E+00 +/- 4.00	5.257E+00 +/- 2.80	5.238E+00 +/~ 2.80	3.3802+00 +/- 8.00
142	4.139E+00 +/- 4.00	4.900E+00 +/- 2.00	4.984E+00 +/~ 1.00	4.774E+00 +/- 1.00	3.0332+00 +/- 8.00
143	3.917E+00 +/- 2.80	4.703E+00 +/- 2.00	4.428E+00 +/70	4.295E+00 +/70	2.601E+00 +/- 6.00
144	3.645E+00 +/- 4.00	4.198E+00 +/- 2.00	3.738E+00 +/~ .50	3.622E+00 +/~ 2.80	2.703E+00 +/- 4.00
145	3.005E+00 +/~ 4.00	3.482E+00 +/~ 2.00	2.992E+00 +/~ .50	2.965E+00 +/70	2.127E+00 +/- 8.00
146	2.167E+00 +/~ 8.00	2.798E+00 +/~ 2.00	2.462E+00 +/~ .50	2.436E+00 +/70	1.757E+00 +/- 8.00
147	2.097E+00 +/~ 2.00	2.211E+00 +/~ 2.00	2.043E+00 +/- 1.40	1.978E+00 +/- 1.00	1.776E+00 +/- 4.00
148	1.746E+00 +/- 11.00	1.729E+00 +/~ 2.00	1.635E+00 +/~ .70	1.637E+00 +/50	1.305E+00 +/- 8.00
149	1.425E+00 + 4 - 6.00	1.275E+00 +/~ 2.00	1.239E+00 +/- 1.40	1.239E+00 +/- 1.00	1.063E+00 +/~ 8.00
15.0	1.099E+00 +/- 16.CO	9.850E-01 +/- 2.00	9.663E-01 +/50	9.843E-01 +/70	9.740E-01 +/- 7.90
15 1	8.017F = 01 + / = 6.00	7.138E+01 +/- 2.00	7.721E-01 +/- 1.40	7.770E-01 +/- 1.40	7.345E-01 +/- 8.00
15.2	$5.888E_{-01} + 4_{-16} = 0000$	4.563E=01 +/- 2.00	5.852E-01 +/- 1.40	6.061E-01 +/- 4.00	5.536E-01 +/- 8.00
15 2	$3.918E_{-01} + I_{-} = 6.00$	3.594F = 01 + 4.00	3.637E-01 +/- 6.00	4.344E-01 +/- 4.00	4.549E-01 +/- 8.00
15.4	$2.565E = 01 \pm 1 = 20.26$	1.853F = 01 + 1 = 35.26	2.717E-01 +/- 31.60	2.755E-01 +/- 32.06	3.299E-01 +/- 19.01
155	1.579E - 01 + / - 16.00	1.192F=01 + / = 8.00	1.655E-01 +/- 11.00	2.260E-01 +/- 11.00	2.318E-01 +/- 8.00
15.6	1.080E=01 + I = 4.00	9.992E = 02 + 1 = 6.00	1.184E-01 +/- 2.80	1.475E-01 +/- 4.00	2.105E-01 +/- 6.00
150	R 270E 02 1/- 16 00	3 330F - 02 + / - 8 00	7.410E - 02 + - 6.00	1.128E-01 +/- 8.00	1.115E-01 +/- 8.00
15.9	$h_{222} = 02 + 1 = 10.00$	$1.320F_02 + / = 8.00$	4.074E+02 +/- 23.00	7.304E-02 +/- 16.00	7.488E-02 +/- 8.00
120	2 62HE 02 +/- 11 00	$6.709F_{-03} + 1 = 8.00$	2.059F = 02 + 1 = 6.00	4.176E-02 +/- 11.00	5.188E-02 +/- 8.00
159	1 5055 02 +/~ 11.00	2 = 02 = 03 + 1 = 0.00	$0.723F_{-}03 + 1 - 31.96$	2.605E = 02 + 1 = 15.98	3.802E-02 +/- 7.97
16 1			4 8461 = 03 = 100	8.924F=03 + 1 = 4.00	1.823E-02 +/- 6.00
16 1	6 0305 03 / 16 00	2 1205 - 04 + 7 = 8.00	2.396F = 03 + /= 32.00	7.104E-03 +/- 23.00	9.276E-03 +/- 8.00
16 2		1 2005 00 1/2 8 00	$0.703E_04 + 1 = 32.00$	3.777F = 03 + / = 15.00	3.275E-03 +/- 8.00
10 3	3.4522-03 +/- 10.00		$3.661E_0/(1.1) = 32.00$	2 379F - 03 + 1 = 45.00	1.875E-03 +/- 8.00
104	2.0202-03 +/~ 10.00		1 2005-04 4/- 22.00	$1 100F_{\pm}03 \pm /_{\pm} 32.00$	7.560E-04 +/- 8.00
105	1.110E-U3 +/~ 10.00	1 1605 05 1/ 0.00	6 822F-05 1/- 16 00	7.642F=04 ±/= 32.00	5.180E-04 +/- 6.00
10 0	0.341E-04 +/~ 0.00	1.1002-03 +/- 8.00		3.371F=04 ±/= 32.00	2.810E-04 +/- 8.00
167	3.751E-04 +/~ 10.00	1.010E-00 +/- 8.00	I. YO IL-UD +/~ 32.00	$0.662E_05 \pm l_{-}32.00$	1.410E = 04 + 7 = 8.00
16.8	2.030E-04 +/- 16.00	4.120E-07 +/~ 8.00	5.542E+UD +/~ 32.00	2.005E=05 + 1= 52.00	6 580F=05 +/- 8.00
169	1.300E-04 +/- 8.00	1.340E-07 +/- 8.00	1.001E-00 +/~ 32.00	0 740F. 06 1/- 21 00	4 761F=05 +/- 7.98
170	0.051E-05 +/- 16.00	4.221E-07 +/- 8.00	3.9346-07 +/- 44.97	3 2515.06 ·/ 3 00	3 760E=05 +/- 8,00
171	3.361E-05 +/- 16.00	1.250E-07 +/- 8.00	1.891E-07 +/- 32.00	3.231E-U0 +/- j2.UU	1 880F=05 ±/= 8.00
172	2.160E-05 +/- 16.00	4.84CE-07 +/- 8.00	5.502E-08 +/- 32.00	9.003E-0/ +/- 32.00	1.0000-00 +/- 0.00

.

E.A	uss	PU240(F) UNCERTAILTY	PU241(T) UNCERTAINTY	PU241(F) UHCERTAINTY	PU242(F) UNCENTAINTY	CF252(S) UNCERTAINTY
	6.6	5.411E-06 +/- 23.CO	1.350E-07 +/- 23.00	1.840E-07 +/- 32.00	1.890E-07 +/- 32.00	2.318E-09 +/- 32.00
	67	8.111F = 06 + / = 23.00	2.511E+07 +/- 23.00	1.2901-06 +/- 32.00	3.780E-07 +/- 32.00	1.159E-08 +/- 32.00
	68	1.890F = 05 + / = 23.00	5.802E-07 +/- 23.00	2.770E-06 +/- 32.00	6.620E-07 +/- 32.00	3.487E-08 +/- 32.00
	60	2.970F=05 +/= 23.00	1.260E=06 +/= 23.00	1.010E - 05 + 7 - 32.00	1.420E-06 +/- 32.00	1.159E-07 +/- 32.00
	20	$1.330E_{-}05 + I_{-}32.00$	4.541F=06 +/= 23 00	3,230F=05 + 1 = 32,00	2.840E+06 +/+ 32.00	4.456E-07 +/- 23.00
	70	2,7005,05,1/-,22,00	6 762F = 06 + I = 23.00	8 3005-05 +/- 32 00	4 7305-06 +/- 32 00	1.389E = 06 + 1 = 32.00
	42	1 1205.00 ./. 8 00	25111 - 05 + 7 - 23.00	$1 h B 0 F_0 h + / = 32.00$	$1.040F_{-}05 + 1_{-}32.00$	4.646F=06.4/=.32.00
	12	2 2405 04 4/2 22 00	E 9528 05 1/ 16 00	# 720E 01 1/ 22 00	1.720E - 05 + 1 = 22.00	1 109E = 05 + i = 23 00
	73	3.3402-04 +/- 23.00		1 10(1 03 1/ 33 00	h 7205 05 1/ 22.00	2 4875 05 11 22 00
	74	8.721E-04 +/- 32.00	9.0032-05 +/- 23.00	1.100E-03 +/- 32.00	4.7302~05 +/~ 32.00	1 1505 04 1 32.00
	75	5.391E-04 +/- 10.00	2.901E-04 +/- 23.00	4.010E-04 +/- 10.00	9.4002-05 +/- 32.00	1.1592-04 +/- 32.00
	76	1.468E-03 +/- 16.00	9.663E-04 +/- 23.00	8.070E-04 +/~ 16.00	2.8402-04 +/- 32.00	2.898E-04 +/- 32.00
	77	1.310E-02 +/- 16.00	1.933E-03 +/- 23.00	9.611E-03 +/- 16.00	9.620E-03 +/- 23.00	8.902E-04 +/- 23.00
	78	2.709E-02 +/- 16.00	9.470E-03 +/- 6.00	1.826E-02 +/- 16.00	1.798E-02 +/- 32.00	2.081E-03 +/- 11.00
	79	5.075E-02 +/- 11.00	1.525E-02 +/- 11.00	3.597E-02 +/- 11.00	3.560E-02 +/- 23.00	6.678E-03 +/- 23.00
	80	8.485E~02 +/~ 16.00	2.964E-02 +/- 16.00	6.439E-02 +/- 16.00	6.340E-02 +/- 32.00	1.566E-02 +/- 16.00
	81	1.412E-01 +/- 16.00	6.299E-02 +/- 16.00	9.541E-02 +/- 11.00	1.041E-01 +/- ?2.00	3.046E-02 +/- 16.00
	82	2.007E-01 +/- 15.98	1.319E-01 +/- 15.99	1.438E-01 +/- 8.00	1.609E-01 +/- 31.99	4.977E-02 +/- 15.97
	83	3.031E+01 +/- 11.00	2.127E-01 +/- 2.80	1.9808-01 +/- 1.00	2.406E-01 +/- 23.00	5.989E-02 +/- 8.00
	84	4.273E = 01 + / = 11.00	3.715E-01 + 2.80	3.480E+01 +/- 1.00	3.515E-01 +/- 32.00	1.031E-01 + / - 16.00
	85	5.721F = 01 + / = 11.00	3.986E = 01 + 1 = 2.00	3.968E-01 +/- 1.00	4.140E-01 +/- 23.00	1.668E-01 +/- 16.00
	86	$7.560E = 01. \pm l = 11.00$	6 396F=01 +/- 4.00	5.845E = 01 + 1 = 1.00	6.531E = 01 + 1 = 23.00	1.830E - 01 + / - 11.00
	07		$7.864F_{-}01 \pm l_{-} 2.80$	$7.516F_{-01} + I_{-} = 1.00$	8 5476-01 +/- 16 00	2.720F = 01 + / = 11.00
	60	1 2255.00 ./. 11 00	1 0215 + 00 + 1 = 2.00	$9.639E_{-01} + 1.00$	1 0935+00 +/- 23.00	3.661F = 01 + 4 = 16.00
	00	1 4745.00 . / 8 00	1 2265.00 ./ # 00	1 2505.00 ./ 6.00	1 2455.00 . /. 16 00	$3.891E_{-01} + l_{-} = 6.00$
	69	1.4742+00 +/~ 8.00		1.5315.00 ./ 1.00		6.707E - 01 + 1 - 16.00
	90	1.883E+00 +/~ 0.00	1.5/02+00 +/~ 2.80	1.531E+00 +/~ 1.00	1.720E+00 +7~ 11.00	
	91	2.269E+00 +/~ 6.00	1.8922+00 +/~ 2.80	1.8972+00 +/~ 1.40	2.004E+00 +/~ 10.00	
	92	2.880E+00 +/~ 11.00	2.373E+00 +/- 4.00	2.337E+00 +/- 2.00	2.504E+00 +/~ 10.00	7.158E-01 +/- 0.00
	93	3.778E+00 +/- 4.00	3.090E+00 +/- 4.00	2.971E+00 +/- 1.40	3.130E+00 +/~ 11.00	9.4265-01 +/- 8.00
	94	4.118E+00 +/- 11.00	3.544E+00 +/~ 4.00	3.411E+00 +/~ 1.40	3.653E+00 +/~ 16.00	1.140E+00 +/~ 11.00
	95	4.396E+00 +/- 6.00	4.074E+00 +/~ 2.80	3.919E+00 +/- 1.00	4.022E+00 +/- 16.00	1.320E+00 +/~ 2.80
	96	4.929E+00 +/- 11.CO	4.621E+00 +/- 3.99	4.380E+00 +/- 2.00	4.490E+00 +/- 16.00	1.604E+00 +/~ 15.99
	97	5.147E+00 +/- 6.00	4.856E+00 +/~ 2.80	4.653E+00 +/70	4.836E+00 +/~ 11.00	1.715E+00 +/~ 2.80
	98	5.475E+00 +/- 11.00	5.141E+00 +/~ 8.00	4.962E+00 +/- 1.00	5.181E+00 +/~ 11.00	2.240E+00 +/~ 11.00
	99	5.996E+00 +/~ 2.80	6.270E+00 +/- 2.80	5.536E+00 +/~ 4.00	5.386E+00 +/- 8.00	2.657E+00 +/- 2.80
1	Ю0	6.045E+00 +/- 11.00	6.128E+00 +/- 8.00	6.265E+00 +/- 1.00	5.621E+00 +/- 11.00	3.312E+00 +/- 11.00
1	101	6.053E+00 +/- 11.00	6.006E+00 +/- 8.00	6.330E+00 +/~ 1.00	5.886E+00 +/- 11.00	'3.990E+00 +/- 6.00
1	102	6.086E+00 +/- 11.00	6.391E+00 +/- 8.00	6.697E+00 +/- 1.00	5.832E+00 +/- 16.00	4.089E+00 +/- 4.00
1	103	6.713E+00 +/- 4.00	6.151E+00 +/- 4.00	6.426E+00 +/- 4.00	5.882E+00 +/- 11.00	5.638E+00 +/~ 2.80
1	104	5.903E+00 + / - 11.00	6.8761+00 + - 8.00	7.129E+00 +/- 1.00	5.814E+00 +/- 16.00	6.246E+00 +/- 11.00
1	ю5	5.549E+00 + / = 6.00	6.146E+00 + 4 = 6.00	6.418E+00 + 2 - 6.00	5.673E+00 +/~ 11.00	6.320E+00 +/- 2.80
1	106	# 969E+00 +/~ 6 00	6 2268+00 +/- 6 00	6.085E+00.+/= 1.40	5.313F+00 + 4 = 16.00	6.942E+00 +/~ 11.00
	107	1 15 25 +00 +/- 11 00	5.2115+00.1/-11.00	1 871E+00 +/~ 8 00	5.0235+000+/-11.00	6.516F+00.+/= 8.00
4	104	2 0265,00 . /. 11 00	2 0285.00 ./. 11 00	2 1025.00 1/- 11.00	4 221E+00 + 1 = 16.00	6 101E+00 + 4 = 8.00
	100	1 2020 00 1/2 11.00	3.930E+00 +/~ 11.00	3.492E+00 +/* 11.00	3 2895.00 ./ 9 00	5.0525 ± 00 $\pm/ 6.00$
	109	1.1922+00 +/~ 0.00	2.2346+00 +/- 0.00	2.524E+00 +/* 0.00	3.240E+00 +/~ 0.00	5 0195.00 ./. 11 00
	110	1.1/(E+00 +/~ 11.00	1.1/2E+00 +/~ 10.00	1.41/E+UU +/~ 8.00	2.199E+00 +/~ 10.00	5.910E+00 +/* 11.00
	111	5.U34E-U1 +/~ 5.00	5./10L-01 +/- 4.00	7.4782-01 +/~ 10.00	1.285E+00 +/~ 10.00	5.194E+UU +/~ 2.0U
1	112	2.392E-01 +/- 0.00	2.311E-01 +/- 4.00	3.607E-01 +/- 11.00	0.445E-U1 +/- 23.00	4. 102L+UU +/~ 2.8U
1	113	1.597E-01 +/- 8.00	1.459E-01 +/- 6.00	2.114E-01 +/- 10.00	3.078E-01 +/- 23.00	3.4792+00 +/~ 4.00
1	114	9.865E-02 +/- 16.00	7.249E-02 +/- 23.00	1.167E-01 +/- 11.00	1.514E-01 +/- 32.00	3.451E+00 +/~ 11.00
1	115	6.638E-02 +/- 6.00	4.224E→02 +/- 23.00	1.023E-01 +/- 23.00	1.024E-01 +/- 32.00	2.504E+00 +/- 6.00

÷

•

۲

•

.

4

¢

MASS	<pre>PU240(F) UNCERTAINTY</pre>	PU241(T) UNCERTAINTY	PU241(F) UNCERTAINTY	PU242(F) UNCERTAINTY	CF252(S) UNCERTAINTY
116	7.9306-02 +/- 16.00	2.859E-02 +/- 32.00	9.612E-02 +/- 16.00	9.463E-02 +/- 32.00	1.956E+00 +/~ 11.00
117	7.862E-02 + / - 11.00	2.539E-02 +/- 16.00	8.753E-02 +/- 11.00	9.731E-02 +/- 16.00	1.109E+00 +/~ 8.00
118	7.391F = 02 + 1 = 16.00	2.383E-02 +/- 32.00	8.265E-02 +/- 16.00	8.658E-02 +/- 23.00	8.9571-01 +/- 16.00
210	7 401F = 02 + 1 = 11.00	2.3835+02 +/- 32.00	8.170E-02 +/- 16.00	8.658E+02 +/+ 23.00	3.305E-01 +/- 16.00
120	7 8205-02 +/- 16 00	$230 \mu F_{-}02 + I_{-}2300$	8.287F = 02 + 16 = 00	8.177F = 02 + 1 = .23.00	2.910F = 01 + / = 16.00
121	7 8525.02 4/4 16.00	2.3372-02 + 1 - 23.00	8 7745-02 +/- 16 00	$0 108F_{-}02 + 1 = 32.00$	1 116F = 01 + I = 6 00
121		2.3335-02 +/- 32.00	0.0675.02 ./. 16.00	0 + 01 = 02 + 1 = 32.00	6 0665-02 +/- 22 00
122	8.//3E-02 +/- 10.00	2.3522402 +/4 32.00	9.0072=02 +/= 10.00	9.4012-02 4/- 32.00	
123	1.012E-01 +/- 10.00	2.49UE-02 +/- 23.00	9.7492-02 +/- 10.00	9.0492-02 +/~ 23.00	9.2196-02 +/~ 11.00
124	1.154E-01 +/~ 10.00	2.9165-02 +/- 32.00		6 6725 02	2.3220-02 +/* 31.99
125	1.054E-01 +/- 11.CU	4.242E-02 +/- 11.00	9.185E-02 +/- 8.00	8.0/2E-U2 +/- 8.00	2.1962-02 +/- 0.00
126	2.812E-01 +/- 16.00	7.6652-02 +/- 23.00	1.898E-01 +/- 16.00	1.777E-01 +/- 23.00	2.573E-02 +/- 32.00
127	4.188E-01 +/- 6.00	2.294E-01 +/- 4.00	3.137E-01 +/- 11.00	3.044E-01 +/- 23.00	9.883E-02 +/- 8.00
128	6.683E-01 +/- 16.CO	3.544E-01 +/- 23.00	5.927E-01 +/- 8.00	5.077E-01 +/- 23.00	2.022E-01 +/- 16.00
129	1.102E+00 +/- 11.00	7.572E-01 +/- 16.00	9.929E-01 +/- 8.00	8.487E-01 +/- 16.00	3.743E-01 +/- 11.00
130	1.993E+00 +/- 11.00	1.651E+00 +/- 16.00	1.695E+00 +/- 8.00 ·	1.486E+00 +/~ 16.00	7.028E-01 +/- 16.00
131	3.544E+00 +/~ 4.00	2.843E+00 +/- 2.00	3.218E+0C +/- 4.00	3.185E+00 +/~ 4.00	1.501E+00 +/- 6.00
132	4.807E+00 +/- 4.00	4.218E+00 +/~ 2.00	4.641E+00 +/- 2.00	4.566E+00 +/~ 6.00	1.976E+00 +/- 4.00
133	7.005E+00 + 4.00	6.770E+00 + 4 - 1.40	6.691E+00 +70	6.593E+00 +/~ 2.00	3.323E+00 +/- 8.00
134	7 0275+00 +/- 6 00	7 + 18 + 00 + 4 = 2.00	7.717E+00 + 4 = 1.00	7.375F+00 +/+ 2.00	3.078E+00 + / - 16.00
125	7 #505+00 +/- # 00	7 3025+00 +/- 1 40	7 3235+00 +/70	7.165F+00 + 4.00	4.009E+00 + 2.80
135		6 6828.00 ./. 2 70	6 8255.00 ./. 1 40	6 888E+00 +/~ 4 00	3 9995+00 +/- 10 94
130				6 2875.00 . /. # 00	1 P60E+00 +/- 2 80
137	0.405E+00 +/~ 4.00	0.805E+UU +/~ 1.40	0.5/1E+UU +/~ ./U	0.3072+00 +/- 4.00	F 2225.00 ./ 8.00
138	6.541E+00 +/- 6.00	6.771E+00 +/- 2.80	6.426E+00 +/~ 1.00	0.3292+00 +/~ 0.00	5.222E+00 +/- 8.00
139	5.877E+00 +/- 11.00	5.947E+00 +/- 6.00	6.173E+00 +/~ 2.80	6.026E+00 +/~ 0.00	5.943E+00 +/~ 4.00
140	5.108E+00 +/- 4.00	6.170E+00 +/- 2.00	5.363E+00 +/~ 1.40	4.995E+00 +/- 6.00	6.086E+00 +/~ 2.00
14 1	4.765E+00 +/- 6.00	4.964E+00 +/- 2.00	4.986E+00 +/- 6.00	5.106E+00 +/- 11.00	6.173E+00 +/- 2.80
142	4.964E+00 +/~ 6.00	5.032E+00 +/~ 2.00	4.661E+00 +/- 1.40	4.599E+00 +/~ 6.00	6.030E+00 +/- 6.00
143	4.720E+00 +/- 4.00	4.704E+00 +/- 1.40	4.561E+00 +/~ .70	4.678E+00 +/~ 2.00	6.430E+00 +/- 2.00
144	4.067E+00 +/- 4.00	4.334E+00 +/- 1.40	4.188E+00 +/- 1.00	4.259E+00 +/~ 4.00	6.038E+00 +/~ 4.00
145	3.277E+00 +/- 4.00	3.344E+00 +/- 1.40	3.245E+00 +/70	3.467E+00 +/- 2.00	5.429E+00 +/~ 6.00
146	2.736E+00 +/- 4.00	2.862E+00 +/- 1.40	2.737E+00 +/70	3.002E+00 +/- 2.00	4.793E+00 +/~ 11.00
147	2.233E+00 +/- 4.00	2.368E+00 +/- 2.00	2.235E+00 +/~ 1.00	2.419E+00 +/- 6.00	4.453E+00 +/- 2.80
148	1.915E+00 + 4.00	1.990E+00 +/- 1.40	1.906E+00 +/50	2.063E+00 +/- 2.00	4.189E+00 +/~ 11.00
140	1.369E+00 +/- 6.00	1.524F+00 +/- 2.00	1.451E+00 +/70	1.615E+00 + 2.00	2.950E+00 +/- 4.00
15.0		1 2/18E + 00 + 1 = 2 00	1 1935+00 + 70	1.360F+00 + / = 2.80	2.408F+00 +/+ 15.90
15 0		0 2605 01 1/ 2 00	0.1215-01.1/- 1.00	1 0255+00 +/- 4 00	1.861F+00.+/= 4.00
15 1		9.309E=01 +/= 2.00		R 2085-01 4/- 2 80	1 4915+00 +/- 16.00
152	0.5/02-01 +/- 0.00	7.400E-01 +/- 2.00	7.0832-01 +/- 1.00		1 20/15:00 ./. // 00
153	5.797E-01 +/- 6.00	5.4828-01 +/- 4.00	5.3822-01 +/- 4.00		
15.4	3.171E-01 +/- 16.04	3.961E-01 +/- 12.96	3.708E-01 +/- 12.40	4.000E-01 +/- 0.9/	
155	2.476E-01 +/- 6.00	2.417E-01 +/- 8.00	3.217E-01 +/- 16.00	3.678101 +/- 32.00	8.749E-01 +/- 18.00
156	1.754E-01 +/- 6.00	1.761E-01 +/- 2.80	2.340E-01 +/- 16.00	2.657E-01 +/- 32.00	6.747E-01 +/- 4.00
157	1.304E-01 +/- 8.00	1.372E-01 +/- 4.00	1.560E-01 +/- 16.00	1.839E-01 +/- 32.00	5.309E-01 +/- 6.00
158	8.503L-02 +/- 16.00	8.625E-02 +/- 23.00	1.072E-01 +/- 16.00	1.226E-01 +/- 32.00	4.629E-01 +/- 16.00
159	3.651E-02 +/- 6.00	4.867E-02 +/- 4.00	6.239E-02 +/- 16.00	7.357E-02 +/- 32.00	3.523E-01 +/- 6.00
160	3.046E-C2 +/- 16.00	1.917E-02 +/- 23.00	3.802E-02 +/- 16.00	4.598E-02 +/- 32.00	2.691E-01 +/- 15.99
16 1	1.190E-02 +/- 8.00	8.5728-03 +/- 4.00	2.242E-02 +/- 16.00	2.657E-02 +/- 32.00	1.995E-01 +/- 4.00
16 2	6.7458-03 +/- 23.00	2.492E-03 +/- 23.00	1.045E-02 +/- 32.00	1.431E-02 +/- 32.00	1.734E-01 +/- 16.00
16 3	2.283E-03 +/- 32.00	8.493E-04 +/- 23.00	5.890E-03 +/- 32.00	6.130E-03 +/- 32.00	1.446E-01 +/- 16.00
16 4	1.141E-03 +/- 32.00	2.8818-04 +/- 23.00	3.040E-03 +/- 32.00	3.065E-03 +/- 32.00	9.455E-02 +/- 16.00
165	5.651E+04 +/- 23.00	9-003E-05 +/- 23-00	1.4478-03 +/- 23.00	2.0318-03 +/- 23.00	6.575E-02 +/- 16.00
166	5.1811++01 +/- 23 00	6 - 0.32F = 05 = 1 - 23 = 00	5.700E=04 ±/= 32.00	1.022E-03 +/- 32.00	4.3398-02 +/- 16.00
16.7	2 8608-04 4/- 22 00	2 7318-05 4/- 23 00	2 2508-04 +/- 32 00	3.980F-04 +/- 32.00	2.392E-02 +/- 16.00
16.9	1 2805.08 ./ 32.00	1 2505.05 ./. 22.00		$1.740E_04 + 1 = 32.00$	1 196F+02 +/+ 16-00
10.0	1.20000+04 +7+ 23.00	E 271E 0/ 1/ 23.00	1.140E+04 +/* 32.00	0 7108-05 +/- 32.00	3 2548-03 1/- 32.00
170	3.2516-03 +/- 10.CU	1 F20F 06 . / 22.00	1 CODE NE 1/ 32.00	1 6005-05 +/- 32.00	$1 282F_03 + /= 31.99$
170	3.211E-05 +/- d3.(0	1.53GE-0C +/- 23.00	1.520E-05 +/- 32.00	3 EEOP 0E / 33 00	5 005F_0# 1/- 32 00
1/1	1. /8UE-US +/- 23.CO	2.871E-07 +/- 23.00	5.320E-00 +/~ 32.00	2.3302-03 +/- 32.00	3 7675. (AL . /. 33 00
172	1.0408-05 +/- 23.00	9.583E-08 +/- 23.00	1.52CE+06 +/+ 32.00	1.5306-05 +/- 32.00	3.1012-04 +/~ 32.00

•

•

.

٠

fission products. The standard contains a method for approximate absorption corrections and heating values for 238 U and 239 Pu and methods for obtaining the heating rates for finite, variable fission rates.

The technical basis for the new standard is summarized in Ref. 62. The standard has been accepted as an ANS Standard and is expected to be formally accepted as an ANSI Standard in November 1978. It is expected that the new standard will form the basis for changes by the Nuclear Regulatory Commission following formal rule change hearings in the Code of Federal Regulations, Title 10 - Energy, Part 50 - Licensing of Products and Utilization Facilities, Appendix K - ECCS Evaluation Models. The process requires extensive evaluation of procedure and sensitivity studies by the NRC. The ANS 5.1 Committee was informed that the NRC staff currently estimates that this process will require approximately two years. Current rules require that ECCS design use a 20% addition to the mean heating values (in contrast to the $\sim 2\%$ 10 uncertainty); however, the new mean values can apparently be used without formal rule-making hearings, and even this represents a significant savings to the reactor industry.

Fig. 14. Comparison of proposed nominal (20 uncertainty bars) with ANS 5.1 (infinite irradiation, no depletion or absorption effects).

D. 233 235 239 U, U, and Pu Gamma Spectra (T. R. England and N. L. Whittemore)

Measurements of the fission product gamma spectra by P. Bendt and E. Jurney of LASL's P-Division have been completed. For 233 U, 235 U, and 239 Pu fission in a constant flux for 2 x 10⁴ s, the spectra have been measured at 12 mean cooling times from 29 to 1.465 x 10⁵ s for each fuel. The results have been compared to calculations using ENDF/B-IV fission product data. Figures 15-17 are typical spectral comparisons. Table X compares the integrated energies and Fig. 18 compares the per cent deviation of the calculated integrated gamma energies from the measurements. Calculated values are for the rates at the midpoint of the counting interval. Except for the first interval, this rate is within 1% of the time average over each counting period. However, the value tabulated for 29 s applies to a counting period of 4-54 s; here the time average value is $^4.5\%$ larger than the rate at 29 s. That is, the calculation is $^4.5\%$ closer to the measurement than is indicated in Table X or Fig. 18 at 29 s.

A complete report on the measurements and comparisons with calculations is in preparation.

Fig. 15. U comparison of calculation with LASL experiment 5.56-h 128-s decay.

Fig. 16. U comparison of calculation with LASL experiment 5.56-h irradiation 128-s decay.

Fig. 17, Pu comparison of calculation with LASL experiment 5.56-h irradiation 128-3 decay.

INTEGRATED γ -SPECTRUM: COMPARISON OF LAST MEASUREMENTS AND CINDER-10 PLUS ENDF/B-IV (8/14/78)

	A	235			233			239	
MEAN COOLING	MeV/7165	RATIO EXP/CAL	X ENERGY FROM 180 NUCLIDES	MeV/FISS EXP	RATIO EXP/CAL	X ENERGY FROM 180 NUCLIDES	MeV/FISS EXP	RATIO EXP/CAL	X ENERGY FROM 180 NUCLIDES
29	3.762 ± 0.198	1.137 (1.140)*	80.4	3.333 ± 0.155	1.129 (1.131)*	85.2	3.100 ± 0.168	1.133 (1.136)*	74.8
128	2.502 ± 0.108	1.077 (1.080)	91.5	2.430 ± 0.094	1.108 (1.111)	92.9	2.136 ± 0.086	1.081 (1.084)	87.1
284	1.975 ± 0.089	1.054 (1.057)	94.7	1.982 ± 0.083	1.100 (1.103)	95.1	1.747 ± 0.074	1.081 (1.085)	92.2
538	1.658 ± 0.071	1.053 (1.057)	96.2	1.647 ± 0.068	1.084 (1.087)	96.3	1.502 ± 0.061	1.098 (1.102)	94.7
1218	1.195 ± 0.027	0.991 (0.995)	97.6	1.242 ± 0.025	1.071 (1.075)	97.3	1.104 ± 0.024	1.063 (1.068)	96.8
2530	0.823 ± 0.029	0.974 (0.979)	98.9	0.787 ± 0.028	0.955 (0.959)	98.8	0.725 ± 0.025	1.024 (1.029)	98.6
3930	0.626 ± 0.029	0.970 (0.975)	99.5	0.656 ± 0.028	1.040 (1.045)	99.4	0.533 ± 0.024	1.001 (1.007)	99.2
5010	0.531 ± 0.034	0.975 (0.981)	99.7	0.550 ± 0.035	1.032 (1.037)	99.6	0.444 ± 0.028	1.006 (1.012)	99.4
23760	0.108 ± 0.004	0.924 (0.937)	99.8	0.121 ± 0.004	0.970 (0.983)	99.7	0.099 ± 0.003	0.980 (0.998)	99.5
59320	0.042 ± 0.002	0.956 (0.982)	99.9	0.044 ± 0.002	0.999 (1.024)	99.8	0.041 ± 0.002	0.976 (1.004)	99.4
96840	0.024 ± 0.002	0.956 (0.989)	99.8	0.024 ± 0.002	0.958 (0.990)	99.8	0.024 ± 0.002	0.961 (0.995)	99.3
146500	0.014 ± 0.002	0.922 (0.961)	99.8	0.015 ± 0.002	0.974 (1.013)	99.8	0.015 ± 0.002	0.963 (1.004)'	99.2
	1			1			1		

"Values in parentheses are ratios after removing the conversion electron energy (CE) of the 38 nuclides having CE data in ENDF/B-IV.

1)

Fig. 18. Integrated γ -spectrum comparison with LASL measurement vs calculation.

E. Delayed Neutron Calculations [T. R. England, N. L. Whittemore, and J. Liaw (University of Oklahoma)]

Using ENDF/B-V yields and delayed-neutron emission probabilities from 102 precursors, the equilibrium delayed neutrons per 100 fissions have been calculated for each fuel and yield set, each precursor, decay group, and totals over all groups. Table XI lists the results including uncertainties. The uncertainties are calculated from both yield and emission probability uncertainties but are too small to be credible. These calculations treat the ENDF/B-V yield uncertainties as being statistically independent and only indicate the relative quality of calculated delayed neutrons. In fact, there are a number of correlations that could increase the uncertainties. This is now being examined in a joint effort with F. Schmittroth and R. E. Schenter of Hanford Engineering Development The ²³⁸ U value is much smaller than current evaluations, and this Laboratory. is believed to be a result of the large yield pairing effect that results from a pairing model that is singular at the large U fission threshold. Table XII lists a comparison of total values with ENDF/B-IV calculations, evaluations, and ranges of measured values.

TABLE XI

DELAYED NEUTRONS/100 FISSIONS (UNCERTAINTY 105)

CROUP	HUCLITE	PU240(F) UNCENTAINTY	PU241(T) UNCERTAINTY	PU241(F) UNCERTAINTY	PU242(F) UNCERTAINTY	CF252(S) UNCERTAINTY
1	35118 870	1.875E-02 +/- 32.89	1.548E-02 +/- 8.58	1.552E-02 +/- 13.37	1.775E-02 +/- 24.22	5.114E-03 +/- 24.22
i	13TC1000	5.519F = 03 + 118.72	1.327E-02 + / -109.66	1.475E-02 +/-109.66	1.720E-02 +/-102.61	2.593E-02 +/-102.61
	43101090	$2 \mu 27 F_0 2 \pm 1 = 37.07$	2.875F = 02 + 1 = 50.81	3.027E-02 +/- 53.88	3.4958-02 +/- 51.98	3.105E-02 +/- 85.80
2	2500 800	1 2665-02 +/- 15 38	4 093F - 02 + 1 - 12.47	4-042E+02 +/- 45-38	4.711E-02 +/- 45.38	1.422E-02 +/- 64.27
2	335h 000		6 1775 - 03 + 1 - 102 61	6.4328-03 +/-102.61	5.905E-03 + / -101.27	4.842E-03 +/-102.61
2	41001030	1 (000 08 1/ 65 50		$4 134F_04 + 7 = 65 50$	2.948F = 04 + 1 = 65.50	1.296E+04 + 4 - 65.50
2	51581341			$1.650E=02 \pm I = 50.00$	2501F - 02 + 1 - 50 04	6 + 17F = 03 + 1 = 54 77
2	521E1300	1.0502-02 +/- 50.04			$2.667E_{-01} + l_{-} 24.07$	1.795E - 01 + 1 - 24.07
2	53 11370	1.857E-01 +/- 24.97	2.9/30-01 +/- 11.42	2.01/2=01 +/= 24.9/	$2,0072=07 \pm 7 = 24.97$	2 3856-03 +/- 8 54
2	55CS1410	1.744E-03 +/- 24.21	2.1/02-03 +/- 1/.09	2.2122-03 +/- 24.21	2 + 200 = -01 + 1 = -20 = 53	$2.075F_{-01} + /_{-} 22.24$
		2.4011-01 +/- 20.05	3.008E-01 +/- 9.90	3.4776-01 +/- 21.13	1 6335 0/ 1/ 78 01	1 222E 0E ./. 79 01
3	33AS 840	1.542104 +/- 78.91	2.0222-04 +/- 78.91	1.9/12-04 +/- /0.91		
3	34SE 870	6.196E-04 +/- 65.58	4.943E-04 +/- 27.08	6.271E-04 +/- 05.58	9.110E-04 +/- 05.5/	1.2956-04 +/- 05.57
3	35BR 890	5.130E-02 +/- 68.03	5.412E-02 +/- 24.42	6.881E-02 +/- 50.57	0.702E-02 +/~ 50.57	1+491E-02 +/- 08.03
3	37KB 920	2.680E-04 +/- 24.46	2.184E-04 +/- 18.07	2.462E-04 +/- 18.04	2.028E-04 +/- 24.40	6.810E-05 +/- 24.46
3	37RB 930	2.826E-02 +/- 25.02	2.680E-02 +/- 25.02	2.857E-02 +/- 25.02	2.873E-02 +/- 25.02	7.322E-03 +/- 46.07
3	39 Y 970	1.354E-02 +/-101.27	1.426E-02 +/-101.27	1.275E-02 +/-101.27	1.430E-02 +/-101.27	4.513E-03 +/-102.61
3	40ZR1040	1.962E-04 +/-118.73	6.158E-04 +/-109.66	5.598E-04 +/-109.66	7.243E-04 +/-109.66	1.765E-04 +/-118.73
3	49IN1271	7.563E-04 +/-118.73	5.964E-04 +/-118.73	7.706E-04 +/-118.73	7.153E-04 +/-118.73	2.245E-04 +/-118.73
3	53 I1380	2.4858-02 +/- 46.46	6.012E-02 +/- 13.01	4.879E-02 +/- 25.73	3.760E-02 +/- 25.73	3.229E-02 +/- 19.73
-		1.199E-01 +/- 33.25	1.574E-01 +/- 14.07	1.613E-01 +/- 24.70	1.510E-01 +/- 25.87	5.967E~02 +/~ 22.25
4	302 N 790	1.444E = 05 + 118.73	9.358E-06 +/-118.71	1.980E-05 +/-118.73	2.915E-05 +/-118.72	1.355E-06 +/-118.64
u.	31GA 790	2.520F = 05 + / = 118.73	1.085F = 05 + 1.18.72	2.619E-05 +/-118.73	2.416E-05 +/-118.73	3.607E-06 +/-118.71
ц	3164 800	9.264F = 05 + / = 118.73	5.551F=05 +/=118.72	1.299E-04 + / - 118.72	9.837E-05 +/-118.73	2.080E-05 +/-118.73
Ц	31GA 810	2.752F = 04 + / = 118.73	2.416E = 04 + 1.18.73	3.737E-04 + / - 118.73	3.803E-04 +/-118.73	5.943E-05 +/-118.74
ц	3201 830	$5 403E_{-}05 \pm 118 73$	$7 168E = 05 \pm 7 = 118 73$	6 037F = 05 + 118.73	1.049E - 04 + / - 118.73	8.486E-06 +/-118.73
н	3205 880	$1.066F_{-0.2} + 1.18.73$	$2 038F_{-}03 + 118 73$	1.655E=03 + 118.73	2.608F = 03 + 118.73	1.681E-04 +/-118.73
	320E 040	1 6505-02 +/- 65 32	$1 007F_02 + 1 - 65 32$	2 053F=02 +/= 65.32	1.903F = 02 + 1 = 65.32	5.224E-03 +/- 65.31
	2762 000	1 7585.04 ./- 87 72	2 1555 - 04 + 4 - 87 73	$1585F_04 \pm 1 = 87.73$	3.849F = 04 + 1 = 87.73	3.494E-05 +/- 87.72
4	343E 000	2 HORE 02 ./ 6H 70	5.7885-02 + 1 = 14.55	$5 \ 461F_{-}02 \ -1/{-} \ 64 \ 70$	4.656F=02 +/- 64.70	1.470E-02 +/- 64.70
4	3555 900	3.4200~02 +/~ 04.70	2 1055 00 1/ 10 01	2 0255-04 +/- 45 01	4.0502-02 +/- 24.73	4.708E-05 +/- 64.64
4	30KR 920	2.8335-04 +/- 45.91		7 7645 02 . /. 64 78	$1 172E_02 + 1 46 10$	1 032F = 03 + 7 = 64.75
4	30KH 930	6.043E-03 +/- 64.70	3.0000-03 +/- 12.01	1 2075 01 ./ 20 25	1 2005.01 +/- 24.25	4.266F=02 +/- 45.65
4	3788 940	9.980E-02 +/- 45.05	1.302E-UI +/- 24.25	2 0055 02 1119 72	2.026E.02.4/-118.73	2 502F-04 +/-118.73
4	38SR1000	8.387E-04 +/-118.73	2.312E-03 +/-118.73	2.0052-03 +/-110.73	2.930E~U3 +/~110.73	$8 27 \mu F_0 3 \pm 7 = 48.80$
4	39 Y 971	2.186E-02 +/- 29.71	1.957E-02 +/- 29.74	1.838E-02 +/- 29.73	1.0116-02 +/- 29.79	6 = 1 = -03 + 1 = 102 - 61
4	39 Y 980	1.460E-02 +/-101.27	1.818E-02 +/-101.27	1.819E-02 +/-101.27	1.765E-02 +/~101.27	
4	39 Y 990	1.954E-02 +/- 70.52	3.058E-02 +/- 70.52	2.801E-02 +/- 70.52	2.509E-02 +/- 70.51	
4	41HB1050	2.154E-02 +/-109.66	4.637E-02 +/-102.61	5.035E-02 +/-102.61	3.997E-02 +/-102.61	3.170E-02 +/-102.01
4	42M01090	6.494E-05 +/-118.73	3.062E-04 +/-118.73	2.818E-04 +/-118.73	5.411E-04 +/-118.73	2.039E-04 +/-110.73
4	42M01100	1.799E~05 +/~118.74	7.9646-05 +/-118.72	7.618E-05 +/-118.73	1.874E-04 +/-118.73	1.168E-04 +/-118.73
4	47AG1220	1.242E-04 +/-118.73	6.890E-05 +/-118.73	2.544E-04 +/-118.73	2.022E-04 +/-118.73	1.532E-04 +/-118.73
4	49IN1270	7.563E-04 +/-118.72	5.965E-04 +/-118.72	7.708E-04 +/-118.72	7.155E-04 +/-118.72	2.245E-04 +/-118.72
4	49111290	3.504E-03 +/-118.73	5.407E-03 +/-118.73	6.309E-03 +/-118.73	4.839E-03 +/-118.73	1.862E-03 +/-118.73
4	50511330	1.499E-05 +/-118.73	5.488E-05 +/-118.73	3.781E-05 +/-118.73	5.570E-05 +/-118.73	9.335E-06 +/-118.73
4	50SN1340	1.043E-03 + 76.11	5.950E-C3 +/- 76.10	3.918E-03 +/- 76.10	5.993E-03 +/- 76.10	6.699E-04 +/- 76.10
ů	51SB1350	1.302E = 02 + 1 = 65.57	4.060E-02 +/- 65.57	3.311E-02 +/- 65.58	3.284E-02 +/- 65.58	1.105E-02 +/- 65.57
ů	52TE1370	5-537E=03 +/= 67-92	1.518E+02 +/+ 50.41	1.227E-02 +/- 50.41	1.804E-02 +/- 50.41	4.528E-03 +/- 67.92
ц Ц	C2TE1320	2 2638-03 4/- 70 00	1.008E=02 +/= 70-09	6.297E = 03 + 7 = 70.09	9.714E-03 +/- 70.09	1.884E-03 +/- 70.09
ц Ц	52 T1200	$3 301F_0 2 + / = 64 61$	$k_{36} = 02 + 11 - 01$	7.7786-02 +/- 45-86	6.902E-02 +/- 45.86	4.179E-02 +/- 64.61
4 11	- JJ - 1 390	2 h625.0h 1/2 h5 5h		5 7741-04 1/- 24 03	8-1685-04 +/- 24-03	4.233E-04 +/- 10.61
4	54851410	3.4026404 474 43.34	2 264F=02 +/= 10 84	1 2025-03 -/- 64 42	2.8416-03 +/- 45.59	7.692E-04 +/- 64.42
4	54AE1420	9.004E-04 +/- 04.42	E HOTE OF 10.04	5 1218-02 x/2 57 HH	$\mu = 511F_{-03} + 1 = 57_{-44}$	5.234E-03 +/- 55.01
4	55651420	3++37E+V3 +/+ 5/+44	2 220E 02 1/ 26 10	3 + 15 + 2 - 05 + 7 - 57 + 9 - 10	2 2411-02 -/- 26.18	1.9651-02 +/- 26.18
4	55651430	1.204E-02 +/- 40.70	2.3290-02 +/~ 20.1C	1 1124-02 +/* 20.10	1 0816-02 -/- 68 71	1.5118-02 +/- 29.68
4	55651440	3.030L-U3 +/- 08.71	1.4018402 +/* 51.40	1.4136462 +/* 21.40	1.0016-06 47- 00.11	

•

+ -	GROUP	NUCLITE	PU240(F) UNCERTAINTY	PE241(T) UNCERTAINTY	PU241() UNCERTAINTY	PU242(F) UNCERTAINTY	CF252(S) UNCERTAINTY
	4	56BA1500	6.649E-08 +/-118.73	4.010E-07 +/-118.72	2.976E-C7 +/-118.72	6.433E-07 +/-118.72	6.762E-08 +/-118.72
	4	571.A1490	4.628E-04 +/-118.73	1.187E-03 +/-118.73	1.109E-03 +/-118.73	1.138E-03 +/-118.73	8.3991-04 +/-118.73
	•		3.201E-01 +/- 20.56	5.505E-01 +/- 13.52	5.303E-01 +/- 16.88	4.878E-01 +/- 15.94	2.245E-01 +/- 22.31
	5	31CA 820	2.180E-04 +/-118.71	3.504E-04 +/-118.72	3.909E-04 +/-118.73	3.920E-04 +/-118.73	5.317E-05 +/-118.77
•	ś	3345 860	2.251E-03 +/- 67.34	3.907E-03 +/- 67.34	3.780E-03 +/- 67.34	3.293E-03 +/- 67.34	5.6751-04 +/- 67.34
	ź	33AS 870	2.335E=03 +/= 64.00	4.030E-03 +/- 64.00	4.519E+03 +/- 64.01	5.354E-03 +/- 64.00	5.833E-04 +/- 64.01
	ś	345F 890	1.168F = 03 + / = 70.68	1.844E = 03 + 1 = 70.68	2.091E-03 +/- 70.68	3.344E-03 +/- 70.68	2.199E-04 + 70.69
	5	345E 900	4.392F = 04 + 118.73	1.117E = 03 + 1.18.73	8.828E-04 +/-118.73	1.562E-03 +/-118.73	1.023E-04 + / - 118.73
	5	35188 910	6.433E+03 +/- 66.53	9.872E-03 +/- 66.53	1.141E-02 +/- 66.53	1.185E-02 +/- 66.53	1.768E-03 +/- 66.53
	5	36KR 950	7.377E-04 + / - 118.73	1.945E-03 + 1.18.73	1.658E-03 +/-118.73	2.607E-03 +/-118.73	1.333E-04 +/-118.73
	5	385K 970	1.368E = 03 + 102.61	1.871E = 03 + 102.61	1.561E = 03 + 102.61	2.313E-03 +/-102.61	3.203E-04 + / - 118.73
	5	385R 480	2.624E-03 +/-118.73	4.478E-03 +/-109.66	3.913E-03 +/-109.66	6.434E-03 +/-102.61	6.671E-04 +/-118.73
	ŝ	3858 990	3.355E=03 +/= 95.28	8.006F=03 +/= 95.28	6.560E+03 +/- 95.28	9.5376-03 +/- 95.28	9.5925-04 +/- 95.28
	ς.	39 Y 981	4.414F=02 + 1 = 55.07	5.031E = 02 + 1 = 55.10	5.250E-02 + 1 - 55.08	4.094E-02 +/- 55.13	2.173E-02 + 7 - 67.32
	5	39 91000	3.290F=02 +/=109.66	5.910F = 02 + 102.61	6.503E = 02 + 102.61	4.453E-02 +/-109.66	1.905E - 02 + / - 118.73
	5	40781050	2.831F = 04 + 118.73	1.157F = 03 + / = 118.73	1.089E = 03 + 1.18.73	1.445E-03 +/-118.73	3.2296-04 +/-118.73
	ί.	41881040	1.287F = 02 + 102.61	2.445F=02 +/=102.61	2.644F = 02 + 102.61	1.865E = 02 + 102.61	1.749E-02 +/-102.61
	ź	41081060	9.055F=03 +/-118.73	2.826F = 02 + 109.66	2.950F = 02 + 109.66	1.999E = 02 + 1.18.73	1.811E = 02 + 1.18.73
	ś	437(1100	2 326F-03 +/-116 73	5 3276-03 +/-118 73	$6.580F_{03} \pm 118.73$	7.789F=03 +/=118.73	1.983F=02 +/=118.73
	ŝ	43101100	7 0435-06 +/-118 73	1 4436-05 4/-118 73	$1.635E = 05 \pm 1.1873$	2 202F = 05 + 118.73	$3.039F_{-06} + / - 118.73$
	5	40001200	2 1746-03 4/-118 73	$2 178F_03 \pm 118 73$	3 452F=03 +/=118 73	2 365F-03 +/-118 73	1.0625-03 +/-118.73
	É	491N1200	$1.762F_03 \pm 1.18.73$	$2.668E_03 \pm 118.73$	3.4522-05 + -118 73	2365E - 03 + 118 73	$9.377F_{-0.4}$ +/-118 73
	é.	49181291	2 0865-03 4/-118 73	5 0645-03 +/-118 73	4 533F=03 4/=118 73	3 1025-03 +/-118 73	1 3155-03 +/-118 73
	ž	51581260	2.00002-03 + - 70.75	0 107E = 03 + 1 = 72 84	7 7 26 - 03 +/- 72 84	7 7405-03 +/- 72 84	$2 3885 - 03 \pm 1 = 72 84$
	, i	52TE1300	2.0152-05 + 7-72.05	1 1215 - 03 + 1 - 105 00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$1 274F_02 + 118 72$	2.3000003 + 2.04 2.211E-04 + 2.118 72
	, ,	52 T1000	1 2025-02 +/- 60 57		2 6615-02 +/- 60 57	2 8815-02 +/- 60 57	2.1515-02 + 1 - 60.57
	Ę	53 11410	$3 045F_{-}03 + 1 - 72 16$	$1 23\mu F_{-}02 + I_{-} 72 16$	1 100E = 02 + 7 = 03.37	1 268E - 02 + 7 = 03.57	$\mu = 571E_{-02} + 1_{-} = 72 + 16$
	5	5411410	$2 222F_05 + 118 73$	1.2345402 + 74 72.10	R = 1525 - 05 + 7 = 118 73	1.2000 = 02 + 7 = 72.10 1.2060 = 00 + 7 = 110 72	2 1278-05 +/- 118 73
	5	55051050	6 2165.02 ./. 65 59	1 6705.02 ./. 65 58	1 6175.02 / 65 58	1 7005-02 +/- 65 57	$\frac{3}{2}$
	5	56641800	1 5065 07 110 73	7 6595 07 119 73		1 0505 06 1/ 110 73	1 6305 07 // 110 73
	5	571 4 15 00	7 6255 05 1119 72		2 2418 04 1/ 118 72	2 2005-00 +/-110-73	1 6285.08 +/.118 72
•	5	57281500	1 5225.01 ./. 21 84	2.4/02-04 +/-110./3	2.3412-04 +/-110.73	2.5400-04 +/-110./5	1 1255-01 +/- 22 06
	6	2104 820	1 26 25. 04 . /. 119 70	3.4056-01 +/- 25./9	3.010E+01 +/- 29.99	2.5000-01 +/- 21.11	2 2015 0F 1/ 110 71
	6	2 2 CE 860	2 6225-04 +/-118 72	5.001E-04 +/-118.75	6 1725 0H +/- 110 73	3.010E-04 +/-110./1	2.3012+05 +/-110.71
	6	3205 860	3.0336-04 +/~110./2		0,1/32~04 +/~110./2	1 7565.04 +/~110./3	6 156E 06 + 1 10 70
	6	3202 000	7 REEE OF ./ 7h Mu	1.2026-04 +/-110.72	1 0610 04 / 74 40	3 5305 04 4/ 7110.12	
	6	2650 020	2 4965 02 ./ 60 57	2 5415 02 1/ 60 57	E 3655 03 ./ 60 57	5.7202-04 +/- (4.40	5 £ 195.00 +/- 74.40
	ç	350h 920	2,400E=03 +/~ 09.5/	5.5412-03 +/- 09.57	5.5052-05 + 7-05.57	$3 \cdot 3 \cdot 7 \cdot 1 = 0 \cdot 7 \cdot 1 = 0 \cdot 7 \cdot$	1 2005.00 1/2 110 70
	6	3204 930	1 4675 02 1 00 25	0.2121-03 +/-116.13		1.9396-03 +/-110./3	$702E_0 + 7 = 10.75$
	6	2760 050	2 55 85 02 ./ 68 27	E 960E 00 ./ HE 50		F 3875 03 ./ NE 53	1 0715.00 1/ 60 20
	6	2780 060	1 4715 02 +/~ 04.3/	2 0225-02 +/- 43.33	2 021E 02 +/- 43.33	3.34/E=02 +/= 43.33	1.0712-02 + 7- 64.37
	6	2700 900	6 HODE OD . / 6E 07	1 5/55 02 +/- 04.40	1 4255 02 1/ 65 27	1 7005 00 . / 65 07	1 6035 03 1/ 65 37
	Ă	3768 050	3 1425-04 -/- 65 00	1 0245-02 -/- 45 07	1 0258-02 +/* 03.3/	1 1275-02 +/* 03.37	1 0525-03 +/- 65 05
	6	2760 200	1 1215.05 ./. 119 73	E 700E.05 ./. 110 70	E 1005 AC 110 70	6 2675 05 1/- 110 72	2 H28F_06 1/2110 72
	6	3780 990	1 6225.04 ./.119 72	1 0205 04 1 110 72	5.124E-05 +/-110.12	2 2245 04 . / 110 72	1 0205.00 +/-110.73
	š	40101230	1 2515 02 116 72	1.029E-04 +/-118.73	3.52/12-04 +/-110./2	3.3222-04 +/~110./3	1.020E=04 +/=116./3
	6	49101310	1.35 IE~U3 +/~110./3	4.7102-03 +/-118.73	3.9022-03 +/-118./3	4.1512-03 +/-118./3	9.7745-04 +7-118.73
	u A	505N1320	2.0105-05 4/ 119 73	2.0296-03 +/-110.73	1.2108.00 119.75	1.79UE-US +/-110.75	3.010E+04 +/+118.74 3 36HF_06 ±/_110 73
	6	50301330	1 45 25 04 . / 149 72	2.0102-04 +/-118.73		2.0992-04 +/-110./3	
	0 A	513113/0	1.4735409 4/4110.72	7.373E-04 +/-118.73	7.304E-04 +/-118.73	0.0/2E-04 +/-118.73	1.0932-04 +/-118.72
	6	53 1 1420 53 1 1420	0 2105 07 1/ 116 73	4. (IUE-US +/- 116.73	4.4202-04 +/-116.73	4.0U5L-04 +/-110.73	1.0495-04 +/-118.72
	U K	53 1 14 3U	2 6 2 2 1 0 1 0 1 1 0 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 2	1 1075 02 440 72	0.1932-00 +/-110.73	D. 122E-UD +/-118.72	D. 1925-01 +/-110.75
	6	5441.1430	5.053C+04 +/+110./3	1.19/2-03 +/-110.73	1.0732-03 +/-110./3	1.0146-03 +/-110.73	3.7/16-04 4/4110./3
	0	55681460	3.476L-04 +/- 04.22 7.0872 05 .7 65 10	2.1/32-03 +/- 64.21	1.9782-03 +/- 04.21	2.130L-U3 +/- 04.21	1.100E+U3 +/+ 04.2]
	U	55651970	1.94/L-UD +/- UD.10	3.90/E-U5 +/- 05.10	4.020E+05 +/- 05.11	0.047E-05 +/- 05.10	1.1116403 +/- 05.11
			0.0200 01 04 11 50	1.5565.00 / 20.95	1.244E-01 +/~ 20.03	1.219E-01 +/- 20.02	2. 1/95-02 +/* 30.01 6. 0605 01 . / 10 0:
			9.270E-01 +/- 11.59	1.3002+00 +/- 8.19	1.4902+00 +/~ 10.50	1.3335+00 +/~ 3.85	0.0092-01 +/- 12.90

.

•

.

. .

GHOUP	HUCLIDE	U238(HF) UNCERTAINTY	HP237(E) UNCERTAINTY	PU239(T) UNCERTAINTY	PU239(F) URCERIAINTY	PU239(HE) URCENTAINT
4	560A 1500	1.673E-06 +/-118.71	2.976E-08 +/-118.72	7.155E-09 +/-118.73	9.7958-09 +/-118.72	1.195E-09 +/-118.73
4	57LA 1490	2.809E-03 +/-116.73	5.112E-04 +/-118.73	1.656E-04 +/-118.73	2.245E-04 +/-118.73	7.5346-05 +/-118.73
_ `		1.034E+00 +/- 12.53	4.818E-01 +/- 17.35	2.699E-01 +/- 12.69	2.519E-01 +/- 21.56	1.409E-01 +/- 23.37
5	31CA 820	2.988E-03 +/-118.73	4.106E-04 +/-118.74	8.608E-05 +/-118.74	1.2708-04 +/-118.72	6.372E-05 +/-118.79
5	33AS 860	2.063E-02 +/- 67.34	4.842E-03 +/- 67.34	1.131E-03 +/- 67.34	1.533E-03 +/- 67.34	8.915E-04 +/- 67.34
5	33AS 870	2.364E-02 +/- 64.00	4.088E-03 +/- 64.00	8.072E-04 +/- 64.00	1.155E-03 +/- 64.00	4.336E-04 +/- 64.04
2	34SE 890	9.191E-03 +/- 70.68	1.374E-03 +/- 70.68	5.413E-04 +/- 70.68	6.061E-04 +/- 70.68	2.205E-04 +/- 70.69
2	34SE 900	4.503E-03 +/-118.73	5.400E-04 +/-118.73	1.470E-04 +/-118.73	1.798E-04 +/-118.73	4.895E-05 +/-118.73
2	3568 910	4.354E-02 +/- 66.53	1.226E-02 +/- 66.53	1.885E-03 +/- 36.80	4.222E-03 +/- 66.53	1.426E-03 +/- 66.53
2	30KK 950	0.7181-03 +/-118.73	7.015E-04 +/-118.73	8.752E-05 +/-118.73	3.093E-04 +/-118.73	7.078E-05 +/-118.73
2	385K 970	2.510E-03 +/-102.61	1.199E-03 +/-102.61	7.606E-04 +/-109.66	8.725E-04 +/-109.66	3.849E-04 +/-118.73
2	3858 980	0.583E-03 +/-102.01	1.962E-03 +/-118.73	1.226E-C3 +/-118.73	1.392E-03 +/-118.73	5.118E-04 +/-116.73
2	3858 990	1.393E-02 +/- 95.28	2.575E-03 +/- 95.28	1.272E-03 +/- 95.28	1.600E-03 +/- 95.28	4.016E-04 +/- 95.28
2	39 I 981	0.710E-02 +/- 55.12	0.525E-02 +/- 55.05	4.374E-02 +/- 55.05	4.586E-02 +/- 55.05	3.572E-02 +/- 67.28
2	39 11000		4.895E-02 +/-109.66	2.301E-02 +/-118.73	2.917E-02 +/-109.66	1.469E-02 +/-118.73
2	4028 1050	1.146E-03 +/~118.73	1.596E-04 +/-118.73	1.256E-04 +/-118.73	1.673E-04 +/-118.73	3.090E-05 +/-118.73
2	41NII 1040	1.8051-02 +/-102.01	1.330E-02 +/-102.61	1.075E-02 +/-109.66	1.541E-02 +/-102.61	8.723E-03 +/-102.61
2	4 IN D 1000	2.274E-02 +/-118.73	6.400E-03 +/-118.73	4.702E-03 +/-118.73	7.115E-03 +/-118.73	2.266E-03 +/-118.73
2	43101100	0.992E-03 +/-118.73	7.151E-04 +/-118.73	8.167E-04 +/-118.73	1.020E-03 +/-118.73	9.539E-04 +/-118.73
2	40001200	3.9420-03 +/-118.73	0.308E-00 +/-118.73	2.224E-06 +/-118.74	3.687E-06 +/-118./3	1.771E-07 +/-118.72
5	49101200	6 7475 02 1/ 110 73	3.1022-03 +/-118.73	1.222E-03 +/-105.00	2.311E-03 +/-118.73	8.831E-04 +/-118.73
ŝ	49101291	8 0205.02 ./ 110.73	2.9901-03 +/-118.73	1.380E-03 +/-118.73	1.504E-03 +/-118./3	2.146E-04 +/-118.73
5	51581260	0 8745-02 1/ 72 84	3+1/52+03 +/-118.73	1.237E-03 +/-118.73	1.368E-03 +/-118.73	8.020E-05 +/-118.71
ś	52TF 1200	1 401F - 02 + 119 72	2.403E~U3 +/~ /2.04	0.200E-04 +/- 72.85	7.120E-04 +/- 72.85	2.190E-05 +/- 72.84
ś	53 T 1400	7 7025-02 4/- 60 57	1.5625 02 . 4 . 60 57	5.143E~05 +/~104.99	0.335E-05 +/-118.76	2.791E-06 +/-118.80
ś	53 T1410	$2 727 F_0 2 + 1 = 09.51$	1.002E+U2 +/+ 09.57	1.305E-02 +/- 42.04	5.911E-03 +/- 69.57	7.440E-04 +/- 69.57
ś	54YF1440	2 8775-04 4/-119 73	3.434E~U3 +/~ (2.10	2.700E-03 +/- 72.10	1.096E-03 +/- 72.16	1.006E-04 +/- 72.16
5	55051450	4 7218-02 4/- 65 57	6 5855.03 ·/ 65 59	4.5/10-00 +/~118./3	5.477E-06 +/-118.73	5.979E-07 +/-118.73
ś	56841400	$3 034E = 06 \pm 118 72$	1 0505 07 / 110 73	2.9901-03 +/- 05.58	2m377E-03 +/- 05.57	5.101E-04 +/- 65.58
ś	571 4 1500	$8 006E = 04 \pm 118 72$	7 0625 05 / 110 73	2.4082-08 +/-118.73	3.541E-08 +/-118.73	5.160E-09 +/-118.73
	J12A1500	$5 476E_01 + 1 = 25 02$	2 0255.01 ./ 22 47	2.04/6~05 +/~118.73	2.//1E-05 +/-118.73	8.587E-06 +/-118.71
6	31GA 830	$2.573F_03 + 118 73$	$1 80 \mu E_0 \mu + 1 19 71$	3 65HE OF 1 110 71	1.20 IE-UI +/~ 35./5	D.942E-02 +/- 44.96
6	32GE 850	3-458F=03 +/=118 73	4 544E = 04 + 7 = 118 - 72	5.054E~05 +/~118./1	5.0046-05 +/~118.71	2.044E-05 +/-118.72
6	32GE 860	6.432E = 04 + 118.73	$4.731F_05 \pm 1.118 72$		1.0100-04 +/~118./0	3.0222-05 +/-118.72
6	34SE 910	1.091F=03 +/= 78 48	9 1568-05 +/- 74 48		1.424E~U5 +/~118./2	3.2122-06 +/-118.72
6	35BR 920	2.451E-02 +/- 69.57	4.120F=03 +/= 69 57	$6 20 \mu F_{-}0 \mu_{-} \lambda_{-} 60 57$	1 2245.02 ./ 60 57	1 2225 OF 1/ 60 56
6	35BR 930	2.277E-03 +/-118.73	$8.401F=04 \pm 118 73$	2 0 4 3 5 - 03 + 1 - 118 73	2 2425.04 119 72	F 617E 0E . / 110 72
6	36KR 940	7.468E-03 +/- 90.25	1.299F=03 +/= 90.25	4 708F-04 +/- 71 22	6 20 HE-0H +/- 110 - / 3	1 8175 04 1 00 05
6	37RE 950	1.450E-01 +/- 24.01	$5.484F=02 \pm 1 = 45.53$	$3 250F_02 + 1 = 21 01$	2 7785.02 ./. 64 27	1 2025 02 . / 64 27
6	37RD 960	9.789E-02 +/- 45.56	2.098F=02 + 1 = 64 + 40	6 872F - 03 + 1 - 32 70		1.202E=02 +/= 04.37
6	37 RE 970	4.990E-02 +/- 65.37	7.610F=03 + 1 = 65.37	2.050F = 03 + 1 = 52.19	2 2675-02 1/2 65 27	1 0545.03 +/- 04.40
6	37 RL 980	4.323E-03 +/- 65.97	3.889F = 04 = 1/2 = 65.97	$0 126F_{-}05 \pm 1_{-} 35 82$	1 1065-01 1/2 65 05	1,0542+05 +/+ 05,37
6	37RD 990	2.945E-04 +/-118.72	1.149F = 05 + / = 118.73	$2 175F_{0}6 \pm 118 73$	2 8745-06 1/ 118 72	F 1802-05 +/- 05.98
6	47AG1230	3.840E-03 +/-118.73	1.452E = 04 + 1.18.73	$3.845F = 05 \pm 118.70$	7 0 12 E = 05 + 1 = 118 71	1 0705-04 +/-110.73
6	49181310	4.673E-03 +/-118.73	1.529E+03 + / + 118.73	5.956F=04 =/=118 73	5 2216-04 1/-118 72	1.0108.05 ./ 116.73
6	49111320	1.445E-03 +/-118.73	$4.528F_04 + 118 72$	$3.031E_004 + 118.74$	1 1176.04 +/~118.72	8 0525.07 110.72
6	50SN 1350	1.068E-04 +/-118.73	2.150E-05 +/-118.73	8.358F=06 +/=118 73	5 044E=06 +/-118 72	2 0 16 5 - 09 - 1 - 1 10 - 73
6	51561370	1.298E-03 +/-118.73	1.496E-04 +/-118-72	4.5628-05 +/-118 79	3 6225-05 1/-118 72	7 0818.07 ./ 110.73
6	53 I 1420	1.998E-03 +/-105.00	9.042E-05 +/-118.72	3.762F=05 +/=118 72	2 465F-05 -1-118 72	1 9205-06 -/-118 73
6	53 I 1430	5.108E-05 +/-118.72	7.888E-07 +/-118-73	9.305F=08 =/=118 73	1 3845-07 -/-118 73	5 0655-00 +/-118 73
6	54XE1#30	2.597E-03 +/-118.73	2.894E-04 +/-118.73	1.110E=04 +/=118.73	1.199F+04 +/+118 73	1.344F=05 +/=118 73
6	55CS 1460	6.879E-03 +/- 64.21	5.726E-04 +/- 64.21	1.933E-01 +/- 61 18	1.670F=04 +/= 64 23	2.922F=05 +/- 64 20
6	55081470	4.108E-04 +/- 65.09	7.9746-06 +/- 65.11	1.152E+06 +/- 65-11	1.710E = 06 + / = 65 11	2.112E = 07 + 7 = 65 + 11
		3.628E-01 +/- 18.97	9.412E-02 +/- 30.89	4.701E-02 +/- 19.14	4.478E-02 +/- 42.82	1.853E-02 +/- 46.51
		2.668E+00 +/- 8.05	1.310E+00 +/- 10.39	7.916E-01 +/- 7.57	7.481E-01 +/- 12.15	4.062E=01 +/= 15 50
					11 10 10 10 1 17 - 1611J	

•

•

•

1

•

•

4							
6	CEOUP	DUCTIEF	U238(HE) UNCERTAINTY	NP237(F) UNCERTAINTY	PU239(T) URCERTAINTY	PU239(F) UNCERTAINTY	PU239(HE) UNCENTAINT
	1	35 UR 870	3.601E-02 +/- 8.58	3.3921-02 +/- 17.71	1.644E-02 +/- 8.58	1.784E-02 +/- 32.89	2.055E-02 +/- 45.64
	i	43TC1090	1.049E-02 +/-109.65	1.8991-03 +/-118.73	4.475E-03 +/-118.73	5.250E-03 +/-118.73	3.100E-03 +/-118.73
			4.650E-02 +/- 25.61	3.5828-02 +/- 17.91	2.091E-02 +/- 26.29	2.309E-02 +/- 37.07	2.365E-02 +/- 42.60
	2	351iR 880	1.039E-01 +/- 9.93	8.120E-02 +/- 23.74	3.645E-02 +/- 8.40	4.104E-02 +/- 45.38	4.711E-02 +/- 45.38
	2	411:81030	5.345E-03 +/-101.27	5.066E-03 +/~102.61	4.701E-03 +/-102.01	5. 110E-03 +/-102.01	5.192E~03 +/~102.01
	2	51SB1341	4.260E-04 +/- 65.50	2.4281-04 +/- 05.50	1.033E-04 +/- 03.30	$h RR2F_03 + / = 63.25$	5.054F=04 + 1 = 77.92
	2	52TE1360	1.336E-02 +/- 50.04	2 0805 01 1/ 24 07	4.0022 = 03 + 7 = 03.23 1 755E=01 +/= 11 42	1 370F = 01 + / = 24.97	3.352E-02 + 1 - 64.73
•	2	53 113/0	2.4000 = 01 + 7 = 11.42 2.107 = 03 + 7 = 17.69	2.009E=01 + 7 = 24.97 2.132E=03 + 7 = 24.21	1.742E=03 + 1 = 13.34	1.635E-03 + - 24.21	7.387E-04 +/- 24.21
	2	55031410	3.651F=01 + l = 8.36	3.049F-01 + 7 = 18.38	2.233E-01 +/- 9.44	1.898E-01 +/- 20.78	8.507E-02 +/- 36.02
	2	33AS 840	8.562E-04 +/- 61.46	3.647E-04 +/- 78.91	8.731E-05 +/- 56.16	1.564E-04 +/- 78.91	1.766E-04 +/- 78.91
	3	345E 870	1.678E-03 +/- 47.21	7.991E-04 +/- 65.58	3.117E-04 +/- 65.57	3.829E-04 +/- 65.58	2.330E-04 +/- 65.58
	ž	355R 890	1.915E-01 +/- 28.08	9.597E-02 +/- 50.57	4.609E-02 +/- 23.42	4.790E-02 +/- 68.03	3.813E-02 +/- 68.03
	3	37RB 920	4.433E-04 +/- 18.04	4.323E-04 +/- 18.04	2.348E-04 +/- 13.80	2.580E-04 +/- 24.46	1.051E-04 +/- 45.77
	3	37KB 930	4.776E-02 +/- 25.02	4.294E-02 +/- 25.02	2.580E-02 +/- 18.79	2.289E-02 +/- 25.02	1.636E-02 +/- 25.02
	3	39 Y 970	1.663E-02 +/-100.18	1.667E-02 +/-101.27	1.237E-02 +/-100.60	1.290E-02 +/-101.27	9.6926-03 +/-101.27
	3	402R1040	4.546E-04 +/-118.73	1.254E-04 +/-118.73	9.633E~05 +/~118.73	1.420E~04 +/~118.73	3.475E-05 +/-118.73
	3	491N1271	4.012E-03 +/-118.73	7.453E~04 +/~118.73	2 020F-02 1/- 10 04	2 704F-02 +/- 15 04	2 015E - 03 + 1 - 34 02
	3	22 11200	4.057E=02 +7= 14.04 2 110E=01 +7= 18.65	3.3302-02 + 7- 23.73	$1 160F_{-01} + /_{-15} - 28$	$1.124F_{\pm}01 + I_{\pm} 31.88$	6.834E=02 + /= 41.07
	ц	30711 790	$1.592F_{-}04 + /_{-}118.73$	1.226E = 05 + 118.72	2.898E-06 + / -118.68	8.157E-06 +/-118.71	3.414E-06 +/-118.80
	4	31GA 790	1.646E-04 +/-118.73	3.370E-05 +/-118.73	9.577E-06 +/-105.00	2.523E-05 +/-118.73	2.347E-05 +/-118.73
	4	31GA 800	7.476E-04 +/-118.73	1.726E-04 +/-118.73	7.9428-05 +/-118.73	9.322E-05 +/-118.73	7.840E-05 +/-118.72
	4	31GA 810	2.537E-03 +/-118.73	5.136E-04 +/-118.73	1.639E-04 +/-118.74	1.756E-04 +/-118.73	1.333E-04 +/-118.72
	4	32CE 830	2.869E-04 +/-118.73	5.846E-05 +/-118.73	2.563E-05 +/-118.73	3.285E-05 +/-118.73	1.880E-05 +/-118.73
	4	32GE 840	8.452E-03 +/-118.73	1.325E~03 +/~118.73	3.000E~04 +/~118./3	1 28/F-02 +/- 65 32	1 105F-02 +/- 65 32
	4	33AS 850	8.599E-02 +/- 05.32	3.358E~U2 +/~ 05.32	$7.852F = 05 \pm 1 = 87.73$	$9 207F_05 \pm 7 = 87.73$	4.682F=05 + 1 = 87.73
	ч Ц	342E 000	$2 223F_01 + 1 = 24.89$	8.315E=02 + /= 64.70	4.869E - 02 + 1 - 12.44	2.887E-02 +/- 64.71	1.881E-02 +/- 64.71
	4	36KR 920	5.892E-01 + - 9.51	2.843E-04 +/- 45.91	1.034E-04 +/- 9.51	1.706E-04 +/- 45.91	1.055E-05 +/- 64.64
	4	3658 930	1.525E-02 +/- 12.81	6.015E-03 +/- 64.78	1.324E-03 +/- 12.81	2.891E-03 +/- 64.78	1.053E-03 +/- 64.78
	4	37 KH 940	3.187E-01 +/- 24.25	1.697E-01 +/- 24.25	8.416E-02 +/- 17.75	8.463E-02 +/- 45.65	5.342E+02 +/- 45.05
	4	38SR1000	4.599E-03 +/-118.73	6.348E-04 +/-118.73	2.763E-04 +/-118.73	3.738E-04 +/-118.73	2 0/11 02 1/- 20 68
	4	39 Y 971	2.038E-02 +/- 29.77	3.0828-02 +/- 29.09	2.384E-U2 +/~ 29.09 1 307E-03 +/-101 37	1 3805-02 4/- 29.09	$1.017F_{-02} + / - 102.61$
	4	39 I 980	2.49UE+U2 +/- IUI.2/	2 2845.02 +/~ 101.27	$1 \ 425F_{-}02 \ +/- \ 70.52$	$1.629F_{-02} + /_{-} 70.52$	7.981E-03 + 2 - 80.43
	4 11	39 I 990	4.202E=02 +/= 70.51	$1.706F_02 + 1.00.52$	1.559E+C2 +/-118.73	1.932E-02 + / -109.66	8.193E-03 +/-118.73
	4	42M01090	2.557E = 04 + / = 118.73	1.639E-05 + / -118.72	3.254E-05 +/-118.73	3.878E-05 +/-118.72	8.229E-06 +/-118.73
	4	42HC1100	1.274E-04 +/-118.73	3.226E-06 +/-118.71	3.395E-06 +/-118.72	4.162E-06 +/-118.72	1.172E-06 +/-118.76
	4	47AG1220	3.075E-03 +/-118.73	1.321E-04 +/-118.73	4.732E-05 +/-118.73	7.795E-05 +/-118.73	2.170E-04 +/-118.73
	4	49IN1270	4.012E-03 +/-118.72	7.453E-04 +/-118.72	6.885E-04 +/-109.66	7.658E-04 +/-118.73	6.970E-04 +/-118.73
	4	49IN1290	1.345E-02 +/-118.73	5.921E-03 +/-118.73	2.720E-03 +/-102.01	2.9026-03 +/-110./3	4.190E+04 +/+118.73
	4	50SN1330	2.943E-05 +/-118.73	1.107E-05 +/-118.73	5.30 IE-00 +/- 118.73	4.9/UE-U0 +/- 110./3	2 2105-06 +/- 76-10
	4	505N1340	3.007E-03 +/~ /0.10	1 420F-02 4/- 55 58	7 5158-03 4/- 35 04	$5.697F_{-03} + /- 65.57$	1.776E-04 +/~ 05.50
	- н	52761370	$1 257F_02 = 1 = 50.41$	4.0275-03 +/- 67.92	2.890E-03 + / - 67.92	2.048E-03 +/- 67.92	1.264E-04 +/- 67.92
	4	52TE1380	8.162E-03 +/- 70.09	1.600E-03 +/- 70.09	6.404E-01 +/- 42.90	1.108E-03 +/- 70.09	3.2998-05 +/- 70.08
	4	53 I139C	9.200E-02 +/- 14.10	3.742E-02 +/- 64.61	3.168E-02 +/- 45.86	1.903E-02 +/- 64.61	2.833E-03 +/- 64.60
	4	54×E1410	6.004E-04 +/- 8.04	2.8928-04 +/- 45.54	2.001E-04 +/- 8.04	1.812E-04 +/- 64.38	3.366E-05 +/- 64.38
	4	54XE1420	2.081E-03 +/- 8.34	5.5871-04 +/- 64.42	5.567E-04 +/- 9.46	3.379E-04 +/- 64.42	4.0946-03 +/- 04.42
	4	55CE1420	5.881E-03 +/- 57.44	3.946E-03 +/- 57.44	2.820E-03 +/- 55.01	2.772E-U3 +/- 57.44	2 5021-03 +/- 64 21
	4	55681430	3.575L-02 +/- 21.18	1.043L-02 +/- 20.18 7 808E-03 +/- 69 71	2 7 365-03 4/- 51 48	3.239E=03 +/- 68.71	9.630E-04 +/- 68.71
	٦	55051440	J.0196-02 +/- JJ.91	1:0002-00 +/- 00:11	JIJUU-03 +7 - 71140	J-JJ- JJ - J	

.

,

1

I

۰ **۱**

•

•	GHOUP	HUCLIDE	U235(T) UNCENTAINTY	U235(F) UNCLATAIGTY	U235(HE) UNCENTAINTY	U236(F) UNCERTAINTY	U238(F) UNCERTAINTY
	4	561/A 1500	5.735E-08 + 118.72	1.320E = 07 + 1.10 - 79	8.5210-09 +/-118.72	$3.0961 \pm 07 \pm 118.72$	6-944F-06 +/-118 73
	4	571.A1490	4.704E-C4 +/-118.73	6.8241-04 +/-118.73	1.71EE=04 +/=118.73	1.261F = 03 + 7 = 118.73	3.3548-08 4/-118 73
		51201190	6.4331.+01 +/- 6.41	7.2511-01 +/- 16.22	3.624F=01 + 19.58	8 405E=01 +/= 15 23	1 3168+00 +/- 12 10
	٠.	31CA 820	1.105F=03 + /=118.73	8 7068-04 -/-118 72	$3.678F_04 \pm 1.1873$	1 0 425 - 02 + 7 - 118 72	1 6405.03 ./ 119 73
	ر ۱	3346 860	0 + 1 + 1 = 02 + 1 = 21 + 11	1 0745.02 . 4. 67 24	5.0102-04 4/-110.15		1.040E=03 +/=118./3
	5	2248 670	y y H H H H H H H H H H H H H H H H H H			1.1200-02 +/~ 07.34	1.545E-02 +/- 0/.34
	2	- 3343 010 - 3543 010	C 0328 03 . C 34 00	1.1/3E~U2 +/~ 04.00	2.7952-03 +/- 04.00	1.500E-02 +/- 04.00	2.337E-02 +/- 64.00
	2	34.4E 090	0.0232~03 +/~ 34.00	0.1912-03 +/- 10.00	1.4456-03 +/- 70.08	7.39 IE-03 +/- 70.68	1.931E-02 +/- 70.68
	2	3428. 900	2.0132-03 +/-110./3	2.7258-03 +/-116.73	3.9116-04 +/-118.73	3.1502-03 +/-118.73	1.1418-02 +/-118.73
	2	35118 910	2.704E-02 +/- 19.15	2.004E-02 +/- 60.53	9.1501-03 +/- 00.53	3.096E-02 +/- 66.53	5.180E-02 +/- 66.53
	5	30Kh 950	1 6.622L-04 +/-118.73	2.334E-03 +/-118.73	3.878E-04 +/-118.73	3.276E-03 +/-118.73	1.371E-02 +/-118.73
	5	38SR 970	2.026E-03 +/-100.08	2.002E-03 +/-102.61	8.719E-04 +/-109.66	1.950E-03 +/-102.61	3.397E-03 +/-102.61
	5	3858 980	3.632E-03 +/-100.60	4.170E-03 +/-109.66	1.0512-03 +/-118.73	5.054E-03 +/-109.66	1.312E-02 +/-102.61
•	5	3888 990	1.200E-02 +/- 72.38	5.834E-03 +/- 95.28	1.548E-03 +/- 95.28	7.834E-03 +/- 95.28	2.913L-02 +/- 95.26
•	5	39 Y 981	4.391E-02 +/- 67.60	6.032E-02 +/- 55.07	4.045L-02 +/- 55.05	6.013E-02 +/- 55.09	4.632E-02 +/- 55.28
	5	39 Y1000	2.950E-02 +/-10C.60	5.979E-02 +/-102.61	2.362E-02 +/-118.73	5.996E-02 +/-102.61	1.0700-01 +/-102.61
	5	40281050	1.243E-03 +/-118.73	1.554E-04 +/-118.73	3.923E-05 +/-116.73	4.971E-04 +/-118.73	3.3205-03 +/-118.73
	5	4111.1040	5.293E-03 +/-100.32	6.736E-03 +/-109.66	5.388E-03 +/-109.66	1.271E-02 +/-102.61	2.445E-02 +/-102.61
	5	41681060	8.098E-04 +/-118.73	2.350E-03 +/-118.73	2.616E-03 +/-118.73	5.040E-03 +/-118.73	2.150F-02 +/-118.73
	5	43TC1100	8.267E-05 +/-118.72	3.823E-01 +/-118.73	1.681E+03 +/-118.73	5.363E+04 +/-118.73	1.151F = 03 + 1.18.73
	5	48001280	6.999E-06 +/-118.73	1.745E-05 + / - 118.73	1.343E-06 + 1.18.71	3.001E = 05 + 118.73	$1.117F_{-04} + 1.18.73$
	÷,	49111280	1.507E = 03 + / = 118.73	3.7711 = 03 = 118.73	2.690F = 03 + 118.73	4 3245-03 +/-118 73	5 0455-03 + 118 73
	,	49IN1291	1.7456-03 +/-118.73	$5.424F = 05 \pm 118.73$	$9 \ 925F_04 \ 4/-118 \ 73$	4 132F - 03 + 7 - 118 73	7 0086-03 +/-116 73
	5	49181300	4.649F=03 +/=105 00	$4 471F_{-03} \pm 11873$		7 2005 - 02 + 118 72	$1510F_{-02} \pm 118.73$
	ź	51281360	3.626F=03.4/-72.84	5 6878-03 +/- 72 84		1 1065.02 . /. 72 84	h 7561.02 +/-110.13
	ś	62TE1200	1 207E-01 1/ 10E 00	7 0455 04 119 73	2 0605 06 1/ 110 72		4.7571-02 +/- 72.04
	, ,	52 11400	H 7045 02 . / 60 57	2 24(1 22 4 4/4116.73	3.0092-05 +/-118.72	1.3/32-03 +/-110./3	1.0052-02 +/-118./3
	5	53 11400	4./94E-02 +/- 09.5/	3-2101-02 +/- 09.5/	5.1118-03 +/- 42.05	5.170E-02 +/- 09.57	1.291E-01 +/- 52.62
	2	53 11410	5.070E-03 +/- 72.10	0.0022-03 +/- 72.10	9.5872-04 +/- 72.10	1.797E-02 +/- 72.16	7.014E-02 +/- 72.16
	2	24XE 1440	4.50/1-05 +/-118.(3	8.19HE-05 +/-118.73	5.802E-06 +/-118.73	1.498E-04 +/-118.73	9.274E-04 +/-101.27
	2	55051450	8.094E-03 +/- 21.45	1.5901-02 +/- 05.58	3.152E-03 +/- 05.58	2.330E-02 +/- 65.58	6.930E-02 +/- 27.08
	5	566A1490	1.869E-07 +/-118.73	3.361E-07 +/-118.73	2.874E-08 +/-118.73	8.706E-07 +/-118.73	8.772E-06 +/-118.73
	5	57LA1500	5.783E-05 +/-118.73	1.132E-04 +/-118.73	2.462E-05 +/-118.73	1.841E-04 +/-118.73	8.7462-04 +/-118.73
			2.496E-01 +/- 22.67	2.673E-01 +/- 29.04	1.108E-01 +/- 33.93	3.534E-01 +/- 25.12	7.420E-01 +/- 21.91
	6	31GA 830	2.090E-04 +/-118.79	6.220E-04 +/-118.72	2.034E-04 +/-118.72	8.349E-04 +/-118.73	1.880E-03 +/-118.73
	6	32GE 850	8.826E-04 +/-118.73	1.705E-03 +/-118.73	3.534E-04 +/-118.71	2.808E-03 +/-118.73	6.250E-03 +/-118.73
	6	32GE 860	1.8618-04 +/-118.72	2.4660-04 +/-118.75	3.653E-05 +/-118.72	3.294E-04 +/-118.74	1.615E-03 +/-118.73
	6	34SE 910	3.389E-04 +/- 74.48	3.3218-04 +/- 74.48	5.0828-05 +/- 74.48	7.268E-04 +/- 74.48	3.182E-03 +/- 74.48
	6	356R 920	7.950E-03 +/- 42.04	5.748E-03 +/- 69.57	2.924E-03 +/- 69.57	1.603E-02 +/- 69.57	2.425E-02 +/- 69.57
	6	358R 930	1.286E-03 +/-118.73	1.048E-03 +/-118.73	H.818E-04 +/-118.73	3.506E-03 +/-118.73	1.094E-02 +/-118.73
	6	36KR 940	4.879E-03 +/- 65.62	3.965L-03 +/- 90.25	8.713E-04 +/- 90.25	4.800E-03 +/- 90.25	1.6828-02 +/- 77.94
	6	37RB 950	7.119E-02 +/- 7.44	8.669E-02 +/- 24.01	3.703E-02 +/- 64.37	1.005E-01 +/- 24.01	1.4438-01 +/- 24.01
	6	37KB 960	2.891E-02 +/- 17.52	3.766E-02 +/- 64.40	1.419F = 02 + 1 = 64.40	4.265F=02 1/- 64.40	8.135E+02 +/- 45.56
	6	37KB 970	2.3428-02 +/- 65.37	1 6346-02 +/- 65.37	4.4675-03 +/- 65.37	$1.831F_{-}02 + 1 - 65.37$	2.566F=02 +/- 26.54
	6	37RE 980	3 668F-01 +/- 65 95	$4 648F_04 + 7 - 65 07$	$1.648E_04 \pm 1 = 65.05$	1.0312-02 + 7 = 03.37	$5 382F_03 \pm 1 = 65.97$
	6	3788 000	$1.621E_{-05} + 118.73$	3 0055-05 1/-118 72	5 2125.06 1/.118 72	6 275F. 05 . /. 118 72	5.512E = 0.4 = 1.18 = 71
	š	J76C1230	2 1/06-05 4/-118 7/	1 6228-04 1/-118 72		2 6705 04 119 72	$h 220F_0h + l = 118 72$
	6	POTN1210	2 0125 02 1/ 105 00		3.9052~04 +/~110./3	3.0/UE-04 +/-110./3	4.2392-04 +/-110.73
	6	40101220	1 6105 02 1 104 00	3.004E=03 +/=110./3	1.0110 05 4/-110.72	5.04 IE-03 +/-110.73	2.1002-02 +/~110./3
	6		E HE 10 05 ./ 110 73	A E201 OF . / 110 20	1.0112.00 +/~110.72	2.7012-03 +/-110.73	1.0772-02 +/~110.73
	6	50381350	5.45 IL~U5 +/~I 18.73	0.0/96-00 +/-110.73	4.0251-07 +/-118.73	1. YO IE-04 +/-118.73	2.5992-03 +/-118.73
	Ŭ	51581370	1.048E~02 +/-118.73	4.942E-04 +/-118.72	1.002E-05 +/-118.72	1.142E-03 +/-118.73	9.064E-03 +/-118.73
	Ŭ	53 11420	9.743E-04 +/-118.73	4.039E-04 +/-118.72	3.441E-05 +/-118.72	8.388E-04 +/-118.72	4.496E-03 +/-118.73
-	ò	53 11430	2.234E-06 +/-118.73	5.2198-08 +/-118.73	1.850E+07 +/-118.73	1.439E-05 +/-118.72	1.649E-04 +/-118.71
	ů,	54XE1430	0.308E-04 +/-118.73	7.0U7E-04 +/-118.73	1.182E-04 +/-118.73	1.961E-03 +/-118.73	4.895E-03 +/-100.32
	6	55CS 1460	2.256E-03 +/- 23.59	1.635E-03 +/- 64.21	2.639E-04 +/- 64.21	2.945E-03 +/- 64.21	1.498E-02 +/- 23.59
_	6	55081470	1.386E-05 +/- 65.11	3.517E-05 +/- 65.11	3.019E-06 +/- 65.11	8.285E-05 +/- 65.10	1.107E-03 +/- 65.05
4			1.586E-01 +/- 13.85	1.632E-01 +/- 21.13	6.170E-02 +/- 41.83	2.076E-01 +/- 19.98	3.983E-01 +/- 16.98
7			1.774E+00 +/- 5.12	1.975E+00 +/- 9.17	9.936E-01 +/- 10.11	2.252E+00 +/- 8.67	3.424E+00 +/- 7.70

,

.

•

.

.

ę a

48	скопь	HUCLIDE	U235(T) ULCERTAINTY	U235(F) HHCERTAINTY	U235(IE) UNCERTAINTY	U236(F) UNCELTAINTY	U238(F) UNCERTAINTY
~	1	3528 570	4.756F=02 +/= 8.09	5.022E = 02 + 1 = 17.71	3.778E-02 +/- 13.37	4.740E+02 +/- 17.71	3.4711-02 +/- 9.60
	i	43TC 1090	$1.357F_{-04} + /_{-118}.72$	6.285E-04 +/-118.72	3.826E-03 +/-118.73	9.0031-04 +/-118.72	2.469E-03 +/-118.71
	•		4.769E-02 +/- 8.08	5.0H5E-02 +/- 17.55	4.161E-02 +/- 16.33	4.880E-02 +/- 17.52	3.718E-02 +/- 11.99
	2	35bR 880	1.390E - 01 + 2 - 8.40	1.560E-01 +/- 23.74	1.263E-C1 +/- 12.47	1.411F-01 +/- 23.74	1.135E-01 +/- 32.54
	2	41411030	2.915E-03 +/-100.08	3.2541-03 +/-102.61	2.581E-03 +/-102.61	4.341E-03 +/-102.61	7.347E-03 +/-100.60
	2	51581341	2.268E-04 +/- 14.23	3.280E-04 +/- 65.50	3.032E-05 +/- 65.50	5.336E-04 +/- 47.11	8.644E-04 +/- 26.90
	2	52TE1360	1.380E-02 +/- 47.24	1.386E-02 +/- 50.04	1.457E-03 +/- 77.92	1.951E-02 +/- 50.04	4.208E-02 +/- 47.24
	2	53 I 1370	2.321E-01 +/- 11.42	2.433E-01 +/- 24.97	8.309E-02 +/- 24.97	2.892E-01 +/- 24.97	3.828E-01 +/- 18.72
	2	55CS1410	2.344E-03 +/- 7.81	2.2388-03 +/- 17.69	1.403E-03 +/- 24.21	2.553E-03 +/- 17.69	2.720E-03 +/- 9.64
			3.904E-01 +/- 7.64	4.1891-01 +/- 17.08	2.149E-01 +/- 12.20	4.572E-01 +/- 17.57	5.493E-01 +/- 15.18
	3	33AS 840	3.218E-04 +/- 46.54	5.366E-04 +/- 78.91	5.506E-04 +/- 78.91	5.369E-04 +/- 78.91	6.139E-04 +/- 78.91
	3	34SE 870	1.577E-03 +/- 14.84	1.834E-03 +/- 47.21	8.005E-04 +/- 65.58	1.984E-03 +/- 47.21	1.959E-03 +/- 27.08
	3	35Bh 890	1.720E-01 +/- 23.42	2.306E-01 +/- 32.58	1.359E-01 +/- 32.58	2.1626-01 +/- 32.58	2.231E-01 +/- 32.58
	3	3786 920	5.855E-04 +/- 8.57	4.994E-04 +/- 18.04	4.943E-04 +/- 24.46	6.634E-04 +/- 16.04	4.475E-04 +/- 11.55
	3	37 RE 930	5.118E-02 +/- 9.96	4.669E-02 +/- 25.02	3.759E-02 +/- 25.02	5.479E-02 +/- 25.02	5.672E-02 +/- 14.77
	3	39 Y 970	1.719E-02 +/-100.02	1.718E-02 +/-101.27	1.365E-02 +/-101.27	1.505E-02 +/-101.27	1.744E-02 +/-100.18
	3	40ZF 1040	1.245E-04 +/-105.00	1.365E-04 +/-118.73	3.874E-05 +/-118.73	3.053E-04 +/-118.73	1.452E-03 +/-102.61
	3	49 I N 127 1	2.559E-04 +/-118.73	6.788E-04 +/-118.73	1.632E-03 +/-118.73	6.306E-04 +/-118.73	4.541E-04 +/-118.73
	3	53 I1380	4.143E-02 +/- 13.01	4.529E-02 +/- 25.73	1.166E-02 +/- 19.73	5.422E-02 +/- 25.73	7.933E-02 +/- 25.73
			2.846E-01 +/- 15.61	3.494E-01 +/- 23.10	2.0235-01 +/- 23.44	3.444E-01 +/- 21.69	3.815E-01 +/- 20.44
	4	30ZN 790	1.845E-05 +/-109.66	4.806E-05 +/-118.73	1.973E-05 +/-118.74	6.665E-05 +/-118.73	6.836E-05 +/-118.73
	4	31GA 790	2.613E-05 +/-100.60	6.872E-05 +/-118.73	7.632E-05 +/-118.73	7.872E-05 +/-118.73	3.358E-05 +/-118.73
	4	31GA 800	1.007E - 04 + 7 - 101.27	3.209E-04 +/-118.73	2.597E-04 +/-118.73	3.517E-04 +/-118.73	2.102E-04 +/-118.73
	4	31GA 810	3.547E-04 +/-105.00	8.710E-04 +/-118.73	3.671E-04 +/-118.73	1.028E-03 +/-118.73	1.1622-03 +/-118.73
	4	32412 830	8.497E-05 +/-100.60	1.583E-04 +/-118.73	1.007E~04 +/~118.73	1.783E-04 +/-118.73	2.250E-04 +/-118.73
	4	3265 840	3.1402-03 +/-105.00	4.1998-03 +/-118.73	1.4352~03 +/~118.73	5.140E-03 +/-118.73	1.570E-02 +/-118.73
	4	3342 020	5,0015,002 +/~ 15,30	7 2465 04 1/2 75 00	3.//DE+U2 +/+ 03.32 3.1505.00 ./. 97.73	7 6155 0H 1/ 75 00	1 2025-02 +/* 03.32
	ч Ц	25112 000	1 4358-01 +/- 14 55	1 7785-01 +/- 46 00	8 1455-02 +/- 64 70	1.679E=01 + I = 46.00	$1.845F_{-01} + /_{-} 46.00$
	ц Ц	36KR 920	5.6858-08 +7- 9.51	$3 \ 463F = 04 \ \pm 1 = 12 \ 11$	2 + 32F = 04 + 12 + 11	8.502F=04 + 1 = 24.73	8.630E-04 + / - 10.89
	ц	36KR 430	$1.053F_{\pm}02 + I_{\pm} 10.77$	5.713F=03 + 1= 25.08	4.1695-03 +/- 14.57	1.645F = 02 + 1 = 46.10	2.860E-02 +/- 12.81
	ų	37 11 940	1.861E - 01 + / - 8.19	2.310E - 01 + 7 - 24.25	1.3936-01 +/- 24.25	2.327E-01 +/- 24.25	2.986E-01 +/- 17.75
	4	385R1000	7.597E-04 +/-118.73	1.818E-03 +/-118.73	2.615E-04 +/-118.73	2.227E-03 +/-118.73	1.280E-02 +/-118.73
	4	39 Y 971	2.545E-02 +/- 19.17	2.560E-02 +/- 29.72	2.611E-02 +/- 29.69	2.084E-02 +/- 29.74	1.412E-02 +/- 49.37
	4	39 Y 980	1.948E-02 +/-101.27	2.056E-02 +/-101.27	1.200E-02 +/-101.27	2.142E-02 +/-101.27	2.603E-02 +/-101.27
	4	39 Y 990	2.832E-02 +/- 66.94	2.698E-02 +/- 70.52	1.681E-02 +/- 70.52	3.048E-02 +/- 70.52	4.509E-02 +/- 70.50
	4	41281050	7.472E-03 +/-105.00	7.830E-03 +/-118.73	5.704E-03 +/-118.73	2.029E-02 +/-109.66	4.942E-02 +/-102.61
	4	42H01090	2.022E-06 +/-118.68	1.133E-05 +/-118.73	2.068E-05 +/-118.72	2.041E-05 +/-118.72	1.491E-04 +/-118.73
	4	42H01100	8.C87E-07 +/-118.71	4.200E-06 +/-118.70	4.565E-06 +/-118.81	7.820E-06 +/-118.75	5.9228-05 +/-118.73
	4	47AG1220	3.C52E-05 +/-118.74	1.119E-04 + 7 - 118.73	6.462E-04 +/-118.73	1.766E-04 +/-118.73	2.110E-04 +/-118.73
	4	49181270	2.560E-04 +/-109.65	6.789E-04 +/-118.72	1.632E-03 +/-118.73	0.308E-04 +/-118.71	4.5512-04 +/-118.00
•	4	49181290	3.4892-03 +/-118.73	1.0012-04 +/-118.73	1.943E-03 +/-118.73	8.3951-03 +/-118.13	2 6515 08 . / 105 00
	4	50581330	2.9181-05 +/-118.73	3.1102-05 +/-118.73	7.9246-07 +/-118.73	7 1975 02 . /. 76 10	5 4695-02 -/- 76 10
	4	51:151250	2 0805 02 .7 18 88	2.03/2-03 +/- /0.10	1 1725 02 1/ 65 58	2 7005.02 ./- 65 58	1 2205-01 +/- 47 21
	ц	52TE1270	$0.36 \mu F_{-}02 + J_{-} - 20.25$	$0.625F_02.4/67.02$	$7 210F_{-}() + 1 - 67 02$	$1.563F_{-02} + 1 = 50.41$	$5.202F_{-0}2 + /_{-}32.33$
	4	52TE 1380	$3.778F_{-03} + /_{-} 42.00$	5.417 = 03 = 70 00	2.6868-04 +/- 70.08	9.383E+03 +/- 70.09	4.782E-02 +/- 53.30
	4	53 11390	1.001E-01 + / - 0.26	6.6418-02 +/- 45.86	1.272E-02 + / - 61.60	9.017E-02 +/- 45.86	1.887E-01 +/- 24.63
	4	54XE1410	5.663E-04 +/- 7.52	3.952E-04 +/- 10.61	1.058E-04 +/- 13.03	7.836E-04 +/- 24.03	1.401E-07 +/- 9.20
	4	54XE1420	1.826E-03 +/- 9.46	1.891E-03 +/- 64.42	3.413E-04 +/- 24.14	2.963E-03 +/- 45.59	7.941E-0? +/- 24.13
	4	55CE1420	5.087E-03 +/- 52.78	5.720E-03 +/- 57.44	3.033E-03 +/- 57.44	6.846E-03 +/- 57.44	7.425E-C3 +/- 53.77
	4	55CS1430	2.369E-02 +/- 13.12	2.411E-02 +/- 26.18	9.351E-03 +/- 46.70	3.604E-02 +/- 26.18	3.793E-C2 +/- 20.30
	4	55CS1440	9.964E-03 +/- 20.25	1.5428-02 +/- 51.48	3.8978-03 +/- 68.71	2.000E-02 +/- 51.48	3.224E-02 +/- 33.97

.

.

N

	CRAUP	NUCLIDE THOODER PROFESSATION	THORD (HE MINCERTATHEY	H233(T) HECERCATETY	1222/FA DICERTATION	11000/bg) HACCETATATY
	61007	56141600 1 318F-06 4/-118 72	$2.6655-07 \pm 1.18.72$	2 2361-09 4/-118 73	$2 074F_{00} \pm 118 73$	$1 - 166F_{-}00 + 1 - 119 - 72$
	4	571 A1800 1 5718-02 +/-115 72	1 1806-03 +/-118 73		8 873F=05 +/=118 73	6 660F-06 +/ 119 72
	-	1 725F+00 +/- 10.65	$1 272F_{+}00 + 7 = 13.07$	$3 077\Gamma_01 + 17 43$	2 Cuse-61 A/ = 10.38	$2 \mu_0 2 F_0 1 + I_0 2 \mu_0 \mu$
	5	31GA 820 6.2431-03 +/-118.73	6.083F=03 + 118.73	1.661F = 04 = 1.18.71	$2.006F_{-}04 + /_{-}118.71$	2 4615-04 4/-118 72
	, ,	33AS 860 6 206F=02 +/- 49.64		3 1025-03 +/- 67 34	3 528F=C3 +/= 67 34	$3 1205-02 \pm 1 = 67 20$
	ś	3345 870 1 055F=01 +/= 64.00	3.270E = 02 + 1 = 64 00	$3 047F = 03 \pm 1 = 64.00$	2.5541 - 03 + 1 - 64 00	1 5028-02 +/- 64 00
	ś	345F 890 4.274F-02 +/- 54.08	1.0855-02 +/- 70.68	1.056F = 03 + 1 = 70.68	$1.306F_{-}03 \neq 4 = 70.68$	$7.661F_0k + 1 - 70.68$
	ξ.	34SE 900 2.040F 02 + / - 118.73	$4.0871 \pm 03 \pm 118.73$	5.9888-04 +/-118.73	3.164F = 04 + 118.73	1.7528-04 +/-118 73
	5	3568 910 8-449E+02 +/+ 48-53	4.7141-02 +/- 66.53	5.9680-03 +/- 66.53	7.4311-03 +/- 66.53	$5.783F_{-03} + /_{-} - 66.53$
	ŝ	3668 950 1.0081-02 +/-118.73	2.6688-03 +/-118.73	3.001E - 05 + 118.73	2.376E - 04 + / - 118.73	1.723E=04 + / = 118 - 73
	5	3858 970 2.744E-03 +/-102.61	1.183E-03 +/-102.61	7.092E-04 +/-109.66	6.918E-04 +/-109.66	5.453E+04 +/+109.66
	5	385K 980 7.337E-03 +/-102.61	2.152E-03 +/-118.72	8.499E-04 +/-118.73	8.717E-04 +/-118.73	6.232E-04 +/-118.73
	5	3836 990 1.077E-02 +/- 95.28	2.9558-03 +/- 95.28	7.6338-04 +/- 95.28	7.710E-04 +/- 95.28	5.814E-04 +/- 95.28
	5	39 Y 981 3.080E-02 +/- 67.69	3.206E-02 +/- 67.36	3.094E-02 +/- 81.27	3.548E-02 +/- 67.29	3.369E-02 +/- 67.29
	5	39 Y1000 1.945E-02 +/-118.73	2.365E-02 +/-118.73	1.169E-02 +/-118.73	1.388E-02 +/-118.73	1.202E-02 +/-118.73
	5	40ZR1050 3.228E-05 +/-118.73	2.147E-04 +/-118.73	8.411E-06 +/-118.73	1.609E-05 +/-118.73	2.031E-05 +/-118.73
	5	4181040 4.131E-04 +/-118.73	4.392E-03 +/-109.66	1.560E-03 +/-118.73	2.146E-03 +/-118.73	3.896E-03 +/-109.60
	5	41NE1060 3.549E-04 +/-118.73	8.408E-03 +/-118.73	2.358E-04 +/-118.73	3.248E-04 +/-118.73	1.240E-03 +/-118.73
	5	43TC1100 6.087£-04 +/-118.73	7.621E-03 +/-118.73	2.576E-05 +/-118.71	1.021E-04 +/-118.73	1.075E-03 +/-118.73
	5	48CL1280 3.848E-05 +/-118.73	1.760E-05 +/-118.73	2.124E-06 +/-118.73	2.429E-06 +/-118.72	2.850E-07 +/-118.72
	5	491%1280 1.916E-03 +/-118.73	7.569E-03 +/-118.73	1.299E-03 +/-118.73	1.953E-03 +/-118.73	1.140E-03 +/-118.73
	5	491N1291 2.423E-03 +/-118.73	3.449E-03 +/-118.73	T.117E-03 +/-118.73	1.073E-03 +/-118.73	2.659E-04 +/-118.73
	5	49IN1300 5.839E-03 +/-118.73	3.582E-03 +/-118.73	7.383E-04 +/-118.73	7.964E-04 +/-118.73	9.329E-05 +/-118.71
	5	51SE1360 3.088E-02 +/- 72.84	4.820E-03 +/- 72.84	3.6578-04 +/- 72.85	3.668E-04 +/- 72.85	3.864E-05 +/- 72.84
	5	52TE1390 9.386E-03 +/-118.73	1.006E-03 +/-118.73	3.584E-05 +/-104.99	3.358E-05 +/-118.72	7.750E-06 +/-118.72
	5	53 I1400 1.443E-01 +/- 52.62	6.616E-02 +/- 69.57	3.803E-03 +/- 69.57	4.073E-03 +/- 69.57	1.436E-03 +/- 69.57
	5	53 I1410 8.303E-02 +/- 72.16	2.071E-02 +/- 72.16	6.779E-04 +/- 72.16	7.227E-04 +/- 72.16	2.496E-04 +/- 72.16
	5	54XE1440 1.362E-03 +/-118.73	1.508E-04 +/-118.73	4.539E-06 +/-118.73	3.402E-06 +/-118.73	1.029E-06 +/-118.73
	5	55CS1450 7.961E-02 +/- 47.21	2.433E-02 +/- 65.57	1.498E-03 +/- 65.57	1.557E-03 +/- 65.57	7.761E-04 +/- 65.57
	5	56BA1490 3.465E-06 +/-118.73	8.592E-07 +/-118.73	1.071E-08 +/-118.73	1.086E-08 +/-118.73	5.790E-09 +/-118.73
	5	57LA1500 1.996E-04 +/-118.73	1.696E-04 + 7 - 118.73	7.037E-06 +/-118.73	7.481E-06 +/-118.73	6.491E-06 +/-118.70
		7.700E-01 +/- 18.97	3.630E-01 +/- 22.52	7.041E-02 +/- 41.86	8.045E-02 +/- 37.33	6,949E-02 +/- 39.80
	6	31GA 830 1.045E-02 +/-118.73	2.970E-03 +/-118.73	9.855E-05 +/-118.72	9.803E-05 +/-118.72	1.014E-04 +/-118.72
	o ć	326E 850 2.742E-02 +/-118.73	7.502E-03 +/-118.73	3.044E-04 +/-118.74	3.087E-04 +/-118.74	2.039E-04 +/-118.75
	b ć	326E 800 6.019E-03 +/-118.73	9.205E-04 +/-118.73	2.683E-05 +/-118.72	2.574E-05 +/-118.72	1.4508-05 +/-118.72
	o ć	345E 910 4.321E-03 +/- 74.48	7.7062-04 +/- 74.48	3.212E-05 +/- 74.48	3.822E-05 +/- 74.48	2.205E-05 +/- 74.48
	6	3508 920 3.584E-02 +/- 09.57	1.9296-02 +/- 09.57	1.230E-03 +/- 09.57	1.722E-03 +/- 69.57	1.4082-03 +/- 09.57
	6	350K 930 1.342E-02 +/-118./3	1.204E-01 +/-118.73	3.0532-03 +/-118.73	2.4725-04 +/-118.73	
	6	3748 CEO 1 2555 01 1/ 28 01		1 0605 00 . (() 27	0./04E+04 +/- 90.25	4.3045-04 +/~ 30.23
	6	3746 060 E 060E 00 ./ 64 40	9.24 IE-02 +/- 24.01	1.000E-02 +/- 04.3/	2.00000-02 +/- 04.3/	2.3/25-02 +/- 04.3/
	6	3780 070 3 7800 4/- 65 37	1 6075 02 4/ 65 27	1 7045 02 . / 65 27	1 0675 02 ./ 65 27	1.0500-03 + 7 = 65.27
	6	27HB 080 2 5205 02 474 03.37		1./U4E=03 +/= 03.3/	1.90/E+U3 +/- 05.3/	6 726F. 05 . /. 65 06
	6	2788 000 1 6115 0H +/- 03.97	3.5992-04 +/~ 03.97	0 1765 07 ./. 118 73	1 2205 06 1/ 118 72	$1 1955-06 \pm 118 73$
	6	$47401230 3 106F_04 +/-118 72$	3 8555-02 +/-118 72	1 4685-05 +/-118 60	5 1005-05 1/-118 73	$1.541F_0A_{+/-}118.73$
	ň	44TN 1210 8 443F-03 4/-118 73	1 350E = 02 + 7 = 118 - 72			$1.300E_05 \pm 1.18.72$
•	ň	49181320 7 207F-03 +/-118 73	$3702F_04 + 11873$	$5.501E_{-}05 + 118.72$	1 5775-05 1/-118 72	$1.387F_06 \pm 118.72$
	6	505W1350 1.591E=03 +/=118.73	$3.388F=05 \pm 118.73$	2.641F=06 +/=118.73	$2^{\circ}064F=06 \pm 118.73$	$5.186E_{\pm}08 + /_{\pm}118.73$
	6	51SE1370 7.027E-03 +/-118.73	4-726E=04 =/=118 73	$1.959F_{-05} + /_{-118} 72$	1 742F=05 ±/=118 72	1.600F=06 +/=118.73
	6	53 I1420 4.602F=03 +/-118 73	4.683E=03 ±/=105 00	1.3775-05 -/-104 00	1.485F=05 ±/=118 76	5.648F+06 +/+118.72
	6	53 I 1430 1.646E+04 +/-118 72	1.945E=05 ±/=118.72	5.608E+08 +/-118.72	6_926F+08 ±/=118.73	1.657E - 08 + 7 - 118.73
	Ğ	54XE1430 8.847E-03 +/-118 73	1.7326-03 -/-118.73	5.2338-05 -/-118.73	8.597F+05 ±/-118.73	2.825E-05 +/-118.73
	6	55CS1460 1.408E-02 +/- 64.21	4.044E-03 +/- 64.21	7.639E-05 +/- 64.18	8.446E+05 + - 64.18	4.892E-05 +/- 64.20
	6	55CS1470 8.496E-04 +/- 65.05	1.316E-04 +/- 65.10	5.4128-07 +/- 65.11	6.127E-07 +/- 65.11	3.120E-07 +/- 65.11
~		3.820E-01 +/- 19.12	3.325E-01 +/- 46.76	2.459E-02 +/- 36.04	3.979E-02 +/- 44.92	3.563E-02 +/- 45.07
6		4.619E+00 +/- 7.12	2.990E+00 +/- 9.14	8.587E-01 +/- 8.37	9.292E-01 +/- 10.00	7.226E-01 +/- 13.31
			· · ·			

•

٤ ۴

•

.

.

CROUP	NUCLEDE	TH232(F) UNCERTAINTY	TH232(RE)UNCERTAINTY	U233(T) UNCERTAINTY	U233(F) UNCERTAINTY	U233(HE) UNCERTAINTY
1	3518 870	1.572E-01 + 7 - 9.68	9.922E-02 +/- 9.68	5.085E-02 +/- 9.68	6.346E-02 +/- 24.22	4.289E-02 +/- 24.22
i	4 3TC 10 90	5.723E-04 +/-118.69	8,991E-03 +/-109,66	7.9998-05 +/-118.73	1.861E-04 + / - 118.73	2.660E-03 +/-118.73
•		1.577E-01 +/- 9.65	1.082E-01 +/- 12.72	5.093E-02 +/- 9.67	6.364E-02 +/- 24.15	4 555E-02 +/- 23.84
2	351-R 880	4.014E-01 +/- 23.74	2.109E-01 +/- 12.47	1.035E-01 +/- 8.40	1.338E-01 +/- 23.74	1.112E-01 +/- 23.74
2	41881030	1.758E-04 +/-102.61	1.030E-03 +/-105.00	1.016E-03 +/-109.66	1.165E-03 +/-109.66	1.612E-03 + 102.61
2	51581341	3.9208-04 +/- 65.50	2.919E-04 +/- 65.50	6.092E-05 +/- 65.50	5.9268-05 +/- 65.50	7.4708-00 +/- 65.50
2	52TE1360	3.243E-02 +/- 50.04	9.766E-03 +/- 50.04	3.882E-03 +/- 77.92	3.487E-03 +/- 77.92	7.1271-04 +/- 77.92
2	53 I1370	3.880E-01 +/- 14.68	2.128E-01 +/- 14.68	1.189E-01 +/- 10.51	1.132E-01 +/- 24.97	4.908E-02 +/- 46.04
2	55CS1410	3.697E-03 +/- 13.34	2.655E-03 +/- 17.69	1.698E-03 +/- 24.21	1.786E-03 +/- 24.21	1.139E-03 +/- 24.21
		E.261E-01 +/- 13.58	4.375E-01 +/- 5.41	2.291E-01 +/- 6.80	2.535E-01 +/- 10.82	1.637E-01 +/- 21.25
3	33AS 840	2.670E-03 +/- 51.57	1.476E-03 +/- 51.57	3.693E-04 +/- 78.91	4.078E-04 +/- 78.91	5.348E-04 +/- 78.91
3	345E 870	9.557E-03 +/- 27.08	3.414E-03 +/- 27.08	1.571E-03 +/- 21.45	1.146E-03 +/- 47.21	6.164E-04 +/- 65.58
3	35146 690	5.667E-01 +/- 32.58	3.555E-01 +/- 28.08	1.1438-01 +/- 25.56	1.303E-01 +/- 32.58	1.047E-01 +/- 50.57
3	37KB 920	7.725E-04 +/- 13.80	6.149E-04 +/- 18.04	4.766E-04 +/- 24.46	5.143E-04 +/- 24.46	4.563E-04 +/- 24.46
3	37KB 930	7.441E-02 +/- 18.79	5.460E-02 +/- 25.02	3.157E-02 +/- 25.02	3.861E-02 +/- 25.02	3.218E-02 +/- 25.02
3	39 Y 970	1.394E-02 +/-100.32	9.714E-03 +/-100.60	1.191E-02 +/-101.27	1.216E-02 +/-101.27	1.114E-02 +/-101.27
3	402R1040	2.2018-05 +/-118.73	8.3216-05 +/-118.73	1.335E-05 +/-118.73	1.610E-05 +/-118.73	2.002E-05 +/-118.73
3	49IN1271	3.172E-04 +/-118.73	2.399E-03 +/-118.73	6.2918-04 +/-118.73	5.433E-04 +/-118.73	8.677E-04 +/-118.73
3	53 I1380	8.979E-02 +/- 25.73	4.919E-02 +/- 25.73	1.520E-02 +/- 19.73	1.331E-02 +/- 46.46	8.440E-03 +/- 65.03
		7.584E-01 +/- 24.68	4.770E-01 +/- 21.40	1.761E-01 +/- 18.59	1.970E-01 +/- 23.18	1.590E-01 + / - 34.62
4	30ZN 790	1.420E-04 +/-118.73	5.641E-04 +/-118.73	1.248E-05 +/-118.75	9.285E-06 +/-118.72	1.416E-05 +/-118.73
4	31CA 790	7.918E-05 +/-118.73	0.230E-04 +/-109.66	4.487E-05 +/-118.73	3.606E-05 +/-118.73	7.719E-05 +/-118.73
4	31GA 800	5.493E-04 +/-118.73	3.3916-03 +/-118.73	1.324E-04 + 1.18.73	1.282E - 04 + 1.18.73	2.238E-04 + / - 118.73
4	31GA 810	2.968E-03 +/-118.73	6.386E-03 + / - 118.73	2.140E-04 +/-118.73	3.009E = 04 + 118.73	3.897E - 04 + / - 118.73
4	32CE 830	1.487E-03 +/-109.66	4.984E-04 +/-118.73	8.613E-05 +/-118.73	7.437E-05 + / - 118.73	7.260E-05 + / - 118.73
4	32GE 840	6.496E-02 +/-109.66	1.026E-02 +/-118.73	1.209E-03 + / - 118.72	1.168E-03 +/-118.73	9.880E-04 +/-118.73
4	33AS 850	3.305E-01 +/- 26.44	2.762E-01 +/- 26.44	3.042E-02 +/- 65.32	3.340E-02 + 1 - 65.32	3.136E-02 + - 65.32
4	34SE 880	4.213E-03 +/- 64.26	1.029E - 03 + / - 75.00	2.712E-04 +/- 87.73	2.503E-04 +/- 87.73	1.409E-04 + / - 87.73
4	35bR 900	3.879E-01 +/- 24.89	2.947E-01 +/- 24.89	9.340E-02 +/- 18.62	6.403E-02 +/- 64.70	5.264E-02 +/- 64.70
4	36KR 920	1.504E-03 +/- 24.73	7.037E-04 +/- 10.89	2.651E-04 +/- 9.51	2.968E-04 +/- 45.91	1.610E-04 +/- 24.73
4	36KR 930	4.173E-02 +/- 25.08	1.468E-02 +/- 33.53	3.056E-03 +/- 10.77	4.053E-03 +/- 64.78	2.642E-03 +/- 64.78
4	3768 940	2.979E-01 +/- 24.25	4.047E-01 +/- 32.91	9.393E-02 +/- 45.65	1.102E-01 +/- 24.25	9.872E-02 +/- 45.65
4	385R1000	1.989E-03 +/-118.73	7.130E-04 +/-118.72	1.326E-04 +/-118.73	1.415E-04 +/-118.73	9.004E-05 +/-118.73
4	39 Y 971	1.213E-02 +/- 49.15	1.404E-02 +/- 48.85	2.320E-02 +/- 29.68	2.395E-02 +/- 29.68	2.264E-02 +/- 29.68
4	39 Y 980	1.584E-02 +/-102.61	1.086E-02 +/-102.61	9.218E-03 +/-109.66	1.047E-02 +/-102.61	9.733E-03 +/-102.61
4	39 Y 990	1.905E-02 +/- 70.51	1.264E-02 +/- 70.52	9.308E-03 +/- 80.43	9.897E-03 +/- 80.43	8.908E-03 +/- 80.43
4	41NE1050	5.349E-04 +/-118.73	9.893E-03 +/-118.73	1.142E-03 +/-118.73	2.364E-03 +/-118.73	4.3546-03 +/-118.73
4	421:01090	3.554E-05 +/-118.73	1.809E-04 +/-118.73	4.903E-07 +/-118.71	1.055E-06 +/-118.71	8.7346-06 +/-118.73
4	421101100	3.084E-05 +/-118.73	8.309E-05 +/-118.73	9.540E-08 +/-118.72	3.303E-07 +/-118.72	1.7428-06 +/-118.72
4	47AG1220	2.066E-04 +/-118.73	3.576E-03 +/-118.73	1.206E-05 +/-118.73	5.953E-05 +/-118.73	3.129E-04 +/-118.73
4	49IN1270	3.176E-04 +/-118.69	2.399E-03 +/-118.72	6.291E-04 +/-118.73	5.433E-04 +/-118.73	8.678E-04 +/-118.73
4	49IN1290	5.369E-03 +/-118.73	6.828E-03 +/-118.73	2.199E-03 +/-118.73	2.109E-03 +/-118.73	5.200E-04 +/-118.73
4	50SN1330	1.293E-04 +/-118.73	1.077E-05 +/-118.73	3.5598-06 +/-118.73	2.431E-06 +/-118.73	1.206E-07 +/-118.73
4	505113110	2.073E-02 +/- 76.10	1.354E-03 +/- 76.10	1.649E-04 +/- 76.10	1.243E-04 +/- 76.09	3.383E-06 +/- 76.10
4	51SB1350	8.948E-02 +/- 47.21	1.577E-02 +/- 65.57	2.822E-03 +/- 65.57	2.649E-03 +/- 65.58	2.514E-04 +/- 65.59
4	52TE1370	4.798E-02 +/- 32.33	7.174E-03 +/- 67.92	1.651E-03 +/- 67.92	1.352E-03 +/- 67.92	2.281E-04 +/- 67.92
4	52TE1380	4.756E-02 +/- 53.30	4.965E-03 +/- 70.09	5.773E-04 +/- 70.09	4.280E-04 +/- 70.09	1.059E-04 +/- 70.07
4	53 I1390	1.964E-01 +/- 24.63	9.309E-02 +/- 45.86	2.128E-02 +/- 45.86	1.299E-02 +/- 64.61	6.271E-03 +/- 64.61
4	54XE1410	1.951E-03 +/- 24.03	6.611E-04 +/- 13.03	1.487E-04 +/- 8.04	1.628E-04 +/- 64.38	4.124E-05 +/- 24.03
4	54XE1420	9.678E-03 +/- 24.13	2.566E-03 +/- 13.21	3.580E-04 +/- 9.46	2.837E-04 +/- 64.42	1.070E-04 +/- 64.41
4	55CS1420	9.505E-03 +/- 57.44	6.803E-03 +/- 57.44	2.687E-03 +/- 57.44	2.862E-03 +/- 57.44	1.906E-03 +/- 57.44
4	55CS1430	5.935E-02 +/- 26.18	3.502E-02 +/- 26.18	6.443E-03 +/- 65.21	7.904E-03 +/- 65.21	4.126E-03 +/- 65.21
4	55CS1440	5.122E-02 +/- 33.97	2.351E-02 +/- 51.48	2.5728-03 +/- 68.71	2.548E-03 +/- 68.71	1.290E-03 +/- 68.71

•

,

50

ι

TABLE XII

Fissionable <u>Nuclide</u>	Calculated ENDF/B-V Data	From- ENDF/B-IV Data	Evaluation ENDF/B-IV ^b	Range Experiments	e of 1 Data ^c
²³² Th(F)	4.62 ± 0.33 (4.32)	3.93	5.27 ± 0.40	3.9 ± 0.9	5.9 ± 1.5
²³² Th(H)	2.99 ± 0.27 (2.68)	~	3.00 ± 0.40	1.30 ± 0.51	8.72 ± 0.67
²³³ u(T)	0.859± 0.07 (0.807)	0.821	0.740± 0.04	0.63 ± 0.18	0.671± 0.41
²³³ U(F)	0.929± 0.09 (0.874))	0.740± 0.04	0.67 ± 0.08	0.75 ± 0.064
²³³ U(H)	0.723± 0.10 (0.666))	0.44 ± 0.05	1.42 ± 0.42	0.439± 0.04
²³⁵ U(T)	1.77 ± 0.09 (1.64)	1.60	1.67 ± 0.07	1.58 ± 0.10	2.05 ± 0.61
²³⁵ U(F)	1.98 ± 0.18 (1.82)	1.48	1.67 ± 0.07	1.63 ± 0.13	1.83 ± 0.18
235 _{U(H)}	0.994± 0.10 (0.905)) 1.09	0.90 ± 0.10	0.88 ± 0.07	0.91 ± 0.04
²³⁶ U(F)	2.25 ± 0.20 (2.04)				÷
²³⁸ U(F)	3.42 ± 0.26 (2.94)	2.93	4.60 ± 0.25 ^d	3.88 ± 0.49	4.84 ± 0.36
238 _{U(H)}	2.67 ± 0.22 (2.29)	1.96	2.60 ± 0.20	1.70 ± 0.67	7.85 ± 0.50
237 _{Np(F)}	1.31 ± 0.14 (1.15)	~			
239 Pu(T)	0.792± 0.06 (0.686)	0.520	0.645± 0.04	0.59 ± 0.23	0.95 ± 0.15
²³⁹ Pu(F)	0.748± 0.09 (0.623)	0.508	0.645± 0.04	0.62 ± 0.05	0.721± 0.008
239 _{Pu(H)}	0.406± 0.06 (0.340))	0.43 ± 0.03	0.41 ± 0.02	1.35 ± 0.16
240 _{Pu(F)}	0.928± 0.11 (0.786))	0.90 ± 0.09	0.94 ± 0.11	
241 _{Pu(T)}	1.59 ± 0.14 (1.31)	1.05	1.57 ± 0.15	0.160± 0.16	
²⁴¹ Pu(F)	1.50 ± 0.16 (1.22)		1.57 ± 0.15		
242 _{Pu(F)}	1.40 ± 0.14 (1.16)			1.50 ± 0.5	
²⁵² Cf(S)	0.687± 0.09 (0.527)		0.86 ± 0.10	

DELAYED NEUTRONS PER 100 FISSIONS^a

^aENDF/B-V calculated values (in parentheses) include only measured Pn values (48 nuclides); otherwise the calculations include model estimates for an additional 54 precursors. The yields are ENDF/B-VE. The calculated values for ENDF/B-IV use Version IV yields and Pn values for 57 precursors, 24 being estimated values.

(NOTE: T = Thermal, F = Fast, H = High Energy, and S = Spontaneous Fission.)

^bEvaluations and uncertainties from S. A. Cox, "Delayed Neutron Data - Review and Evaluation," Argonne National Laboratory report ANL/NDM-5 (1974).

^CSummary report by R. J. Tuttle, "Delayed Neutron Data for Reactor-Physics Analysis," Nucl. Sci. Eng. <u>56</u>, 37 (1975).

^dPreliminary ENDF/B-V evaluation alters this to 4.40 ± 0.12.

F. Calculation of H. B. Robinson II Spent Fuel Actinide and Fission-Product Inventory [W. B. Wilson, G. Grisham (CNC-11), T. R. England, and N. L. Whittemore]

The density of actinide and fission-product nuclides in spent fuel assembly B05 of the H. B. Robinson II reactor were calculated with the EPRI-CINDER code and fission-product absorption-decay library.⁶³ A library of actinide data being developed for EPRI describing the fission, transmutation, and decay of $234 \le A \le$ 246 nuclides was used with a power history constructed from data given in Ref. 64. Calculations were performed preliminary to analyses planned by LASL's Group CNC-11 of a single fuel rod from the assembly, which was removed from the reactor in 1974 following the second fuel cycle at an exposure of \sim 28 GW days/MT.

6

These calculations are to be repeated following CNC-11 measurements, using selected nuclide concentrations to indicate true sample exposure. Additional calculations will be performed for EPRI using resonance self-shielded actinide cross sections.

REFERENCES

- 1. G. M. Hale and D. C. Dodder, "Charge-Independent RrMatrix Analysis of the Four-Nucleon System," Proc. of the 8th Intern1. Conf. on Few Body Systems and Nuclear Forces, Graz, Austria, (Sept. 1978) Vol. 2 (to be published).
- D. C. Dodder and G. M. Hale, "Applications of Approximate Isospin Conservation in R-Matrix Analyses," Proc. Internl. Conf. on Neutron Physics and Neutron Data for Reactors and Other Applied Purposes, Harwell, England (Sept. 1978) (to be published).
- 3. E. K. Biegert, S. D. Baker, D. C. Dodder, and G. M. Hale, "Low Energy ⁶
 ³
 ⁴
 Li(p, He) He Cross Section," to be submitted to Astrophysical Journal.
- 4. D. C. Dodder, G. M. Hale, and K. Witte, Los Alamos Scientific Laboratory, private communication.
- 5. D. M. Holm and H. V. Argo, "t-t Elastic Scattering from 1.6 to 2.0 MeV," Phys. Rev. <u>101</u>, 1772 (1956).
- 6. R. C. Allen and N. Jarmie, "Triton Reaction Cross Sections," Phys. Rev. <u>111</u>, 1129 (1958).
- V. I. Serov, S. N. Abramovich, and L. A. Morkin, "Total Cross Section Measurement for the Reaction T(t,2n)⁴He," At. Eng. <u>42</u>, 59 (1977) [English Translation Sov. At. En. <u>42</u>, 66 (1977)].
- A. M. Govorov, L. Ka-Yeng, G. M. Osetinskii, V. I. Satatskii, and I. V. Sizov, "Total Cross Section of the T+T Reaction in the 60-1140 keV Energy Range," J. Exptl. Theor. Phys. (USSR) <u>42</u>, 383 (1962) [English Trans. Sov.: Sov. Phys. JETP <u>15</u>, 266 (1962)].

N. Jarmie and R. C. Allen, "T(t,α)n, n Reaction," Phys. Rev. <u>111</u>, 1121 (1958).

3

- H. M. Agnew, W. T. Leland, H. V. Argo, R. W. Crews, A. H. Hemmendinger, W. E. Scott, and R. F. Taschek, "Measurement of the Cross Section for the Reaction T+T He⁴ + 2n + 11.4 MeV," Phys. Rev. 84, 862 (1951).
- 11. Y. V. Strel'nikov, S. N. Abramovich, L. A. Markin, and N. D. Yur'eva, "Excitation Function for the Reaction ³He(t,2n)⁴He at 0° Angle and Energies of 40-200 keV," Bull. Acad. Sci. USSR, Phys. Ser. 35, 149 (1971).
- 12. D. R. Harris, D. E. Dei, A. A. Husseiny, Z. A. Sabri, and G. M. Hale, "The STEEP4 Code for Computation of Specific Thermonuclear Reaction Rates from Pointwise Cross Sections," Los Alamos Scientific Laboratory report LA-6344-MS (1976).
- S. L. Greene, Jr., "Maxwell Averaged Cross Sections for Some Thermonuclear Reactions on Light Isotopes," Lawrence Livermore Laboratory report UCRL-70522 (1967).
- 14. C. Wong, J. D. Anderson, and J. W. McClure, "Neutron Spectrum for the T+T Reaction," Nucl. Phys. <u>71</u>, 106 (1965).
- 15. L. R. Veeser and E. D. Arthur, "Measurements of (n,3n) Cross Sections for 235 U and U,"Proc. of the Internl. Conf. on Neutron Physics and Neutron Data for Reactors and Other Applied Purposes, Sept. 1978, Harwell, England (to be published).
- 16. D. G. Madland and P. G. Young, "Neutron-Nucleus Optical Potential for the Actinide Region," Proc. of the Internl. Conf. on Neutron Physics and Neutron Data for Reactors and Other Applied Purposes, Sept. 1978, Harwell, England (to be published).
- B. B. Back, H. C. Britt, O. Hansen, B. Leroux, and J. D. Garrett, "Fission of Odd-A and Doubly Odd Actinide Nuclei Induced by Direct Reactions," Phys. Rev. <u>C10</u>, 1948 (1974).
- C. Kalbach, "The Griffin Model, Complex Particles, and Direct Nuclear Reactions," Z. Phys. <u>A283</u>, 401 (1977).
- 19. J. Frehaut and G. Mosinski, "Measurement of (n,2n) and (n,3n) Cross Sections between 6 and 15 MeV," <u>Nuclear Cross Sections and Technology</u> (NBS Special Publication 425, 1975) p. 855.
- 20 D. S. Mather and L. F. Pain, "Measurement of (n,2n) Cross Sections for Induced Energies between 6 and 14 MeV," Atomic Weapons Research Establishment report AWRE 0 72/72 (1972).
- 21. D. G. Foster, Jr., "Photon Radiation from Dirty Plutonium," in "Applied Nuclear Data Research and Development October 1-December 31, 1975," compiled by C. I. Baxman and P. G. Young, Los Alamos Scientific Laboratory report LA-6266-PR, p. 4 (1976).

22. Y. A. Ellis, "Nuclear Data Sheets for A = 230," Nuclear Data Sheets 20, 139 (1977).
M. R. Schmorak, "Nuclear Data Sheets for A = 232, 236, 240," Nuclear Data Sheets 20, 165 (1977).
M. R. Schmorak, "Nuclear Data Sheets for A = 231, 234, 239," Nuclear Data Sheets 21, 91 (1977).
Y. A. Ellis, "Nuclear Data Sheets for A = 234," Nuclear Data Sheets 21, 493 (1977).
Y. A. Ellis, "Nuclear Data Sheets for A = 238," Nuclear Data Sheets 21, 549 (1977).
23. R. S. Hager and E. C. Seltzer, "Internal Conversion Tables, Part I: K-, L-, M-Shell Conversion Coefficients for Z = 30 to Z = 103," Nuclear Data A4, 1 (1968).
24. C. M. Lederer, J. M. Hollander, and I. Perlman, <u>Table of Isotopes</u> (John Wiley and Sons, New York, 1967) Appendix 3.

(

25. E. Vano, R. Gaeta, L. Gonzales, and C. F. Liang, "Etude des Niveaux Excites du 231 Th par la Desintegration α du 235 U," Nucl. Phys. A251, 225 (1975).

I. Ahmad, "Nuclear Spectroscopy Studies of Some Very Heavy Odd-Mass Nuclides," Lawrence Livermore Radiation Laboratory report UCRL-16888, pp. 20-22 (1966).

- 26. R. Bois and J. Frehaut, "Evaluation Semi-Empirique du $\overline{\nu}_p$ pour la Fission Induite par Neutrons Rapides," Commissariat a l'Energie Atomique report CEA-R-4791 (1976).
- 27. A. B. Smith, "Fission Neutron Spectra: Perspective and Suggestions," Proc. of a Consultants' Meeting on the Status of Prompt Fission Neutron Spectra, Vienna, Austria, p. 3 (August 1971).
- 28. D. G. Madland, "Neutron Optical Potential for Uranium Isotopes," in "Applied Nuclear Data Research and Development July 1-September 30, 1977," compiled by C. I. Baxman and P. G. Young, Los Alamos Scientific Laboratory report LA-7066-PR, p. 12 (1977).
- 29. F. D. Becchetti, Jr., and G. W. Greenlees, "Nucleon-Nucleus Optical-Model Parameters, A > 40 E < 50 MeV," Phys. Rev. <u>182</u>, 1190 (1969).
- 30. G. Haouat, J. Sigaud, J. Lachkar, Ch. Lagrange, B. Duchemin, and Y. Patin, "Differential Cross Section Measurements of Fast Neutron Scattering for ²⁰⁸
 ²³²
 Pb, Th, and U," INDC report INDC(FR) 13/L, NEANDC(E) 180 "L" (1977).
- 31. G. Haouat, J. Lachkar, Ch. Lagrange, Y. Patin, J. Sigaud, and R. Shamu, "Differential Cross Section Measurements for 3.4 MeV Neutron Scattering by 208 pb, 232 Th, 235 238 239 Pu," INDC report INDC(FR) 29/L, NEANDC(E) 196 "L" (1978).

- 32. D. G. Foster, Jr., and Dale W. Glasgow, "Neutron Total Cross Sections 2.5-15 MeV, I. Experimental," Phys. Rev. <u>C3</u>, 576 (1971).
- 33. N. J. Pattenden and J. A. Harvey, "Measurement of the Neutron Total Cross Section of ²³³U from 0.07 to 10,000 eV," Nucl. Sci. Eng. <u>17</u>, 404 (1963).

3

- 34. M. L. Yeater, R. W. Hockenbury, and R. R. Fullwood, "Eta of ²³³U from 1 to 800 eV," Nucl. Sci. Eng. <u>9</u>, 105 (1961).
- 35. W. P. Poenitz, J. F. Whalen, and P. Guenther, "Measurements of the Total Neutron Cross Section of ²³³ U Between 40 keV and 4.5 MeV," submitted for publication in Nucl. Sci. Eng. (1978).
- 36. C. A. Uttley, C. M. Newstead, and K. M. Diment, "Neutron Strength Function Measurements in the Medium and Heavy Nuclei," IAEA Conf. on Nuclear Data, paper CN-23/26, Paris (1966), and personal communication to the Brookhaven National Laboratory Nuclear Data Center (1964).
- 37. H. Derrien, personal communication to the Brookhaven National Laboratory Nuclear Data Center (1969).
- 38. K. H. Bockhoff, A. Dufrasne, G. Rohr, and H. Weigmann, "Neutron Total Cross-Section Fluctuations of ²³⁵U in the keV Range," J. Nucl. Energy <u>26</u>, 91 (1972).
- .:39. R. B. Schwartz, R. A. Schrack, and H. T. Heaton, III, "Total Neutron Cross Sections of U, U, and Pu from 0.5 to 15 MeV," Nucl. Sci. Eng. <u>54</u>, 322 (1974).
- 40. R. C. Allen, "The Interaction of 0.15 to 1.0 MeV Neutrons with ²³⁸ U, ²³⁵ U, and ²³⁹ Pu," Nucl. Sci. Eng. 2, 787 (1957).
- 41. L. Cranberg, "Neutron Scattering by 235 238 U, and Pu," Los Alamos Scientific Laboratory report LA-2177 (1959).
- 42. H.-H. Knitter, M. M. Islam, and M. Cappola, "Investigation of Fast Neutron Interaction with ²³⁵U," Z. Physik <u>257</u>, 108 (1972).
- 43. G. P. Couchell, J. J. Egan, G. H. R. Kregel, and T. V. Marcella, "Inelastic Neutron Scattering Cross Sections for ²³⁸U from 0.9 to 3.1 MeV," Trans. Am. Nucl. Soc. <u>27</u>, 871 (1977).
- 44. J. Voignier, "Experimental Study of the Interaction of 14-MeV Neutrons with 238 U," Commissariat a l'Energie Atomique report CEA-R-3503 (1968).
- 45. J. F. Whalen and A. B. Smith, "Note on the Fast-Neutron Total Cross Section of Thorium," Nucl. Sci. Eng. <u>67</u>, 129 (1978), and personal communication to the Brookhaven National Laboratory National Nuclear Data Center (1969).

- 46. R. E. Shamu, Western Michigan University, personal communication (1978).
- 47. P. A. Egelstaff, D. B. Gayther, and K. P. Nicholson, "The Slow-Neutron Resonance Behavior of Plutonium Isotopes," J. Nucl. Energy <u>6</u>, 303 (1958).
- 48. R. L. Henkel, "Total Neutron Cross Sections for U, Normal Uranium, Pu," Los Alamos Scientific Laboratory report LA-1493 (1952).
- 49. L. Green, "Total Cross-Section Measurements with a CF-252 Time-of-Flight Spectrometer," Proc. of 3rd Conference on Neutron Cross Section Technology, Knoxville, Tenn., CONF-710301, Vol. 1, p. 325 (1971)
- 50. H. Rebel and G. W. Schweimer, "Improved Version of Tamura's Code for Coupled-Channel Calculations: JUPITOR Karlsruhe Version," Gesellschaft fur Kernforschung M.B.H., Karlsruhe report KFK-1333 (1971).
- 51. R. E. MacFarlane, P. G. Young, and D. W. Muir, "Nuclear Heating and ENDF/B Consistency," in "Applied Nuclear Data Research and Development April 1-June 30, 1977," compiled by C. I. Baxman and P. G. Young, Los Alamos Scientific Laboratory report LA-6971-PR (1977).
- 52. D. Garber, Ed., "Data Formats and Procedures for ENDF Neutron Cross Section Library," Brookhaven National Laboratory report BNL-50274 (1976).
- 53. R. B. Kidman and R. E. MacFarlane, "LIB-IV, A Library of Group Constants for Nuclear Reactor Calculations," Los Alamos Scientific Laboratory report LA-6260-MS (1976).
- 54. R. B. Kidman, "ENDF/B-IV, LIB-IV, and the CSEWG Benchmarks," Los Alamos Scientific Laboratory report LA-7355-MS (1978).
- 55. E. L. Simmons, S. A. W. Gerstl, and D. J. Dudziak, "Cross-Section Sensitivity Analysis for a Tokamak Experimental Power Reactor," Los Alamos Scientific Laboratory report LA-6942-MS (1977).
- 56. T. R. England, Los Alamos Scientific Laboratory, private communication.
- 57. R. E. Pepping, D. E. Madland, C. W. Maynard, T. R. England, and P. G. Young, "Fission Yield Theory," in "Applied Nuclear Data Research and Development October 1-December 31, 1977," compiled by C. R. Baxman and P. G. Young, Los Alamos Scientific Laboratory report LA-7200-PR (1978).
- 58. R. E. Pepping, D. G. Madland, C. W. Maynard, T. R. England, and P. G. Young, "Fission Yield Theory," in "Applied Nuclear Data Research and Development July 1-September 30, 1977," compiled by C. I. Baxman and P. G. Young, Los Alamos Scientific Laboratory report LA-7066-PR (1977).
- 59. T. Yamamoto and K. Sugiyama, "Statistical Estimation of Distributions of Physical Quantities in Nuclear Fission," J. Nucl. Sci. Tech. <u>11</u>, 461 (1974).
- 60. L. G. Moretto, "Statistical Description of Deformation in Excited Nuclei and the Disappearance of Shell Effects with Increasing Excitation," Nucl. Phys. A182, 641 (1972).

61. S. Kataria, V. Ramamurthy, and S. Kapoor, "Semi-Emperical Nuclear Level Density Formula with Shell Effects," Phys. Rev. <u>C18</u>, 549 (1977).

- 62. T. R. England, R. E. Schenter, and F. Schmittroth, "Integral Decay-Heat Measurements and Comparison to ENDF/B-IV and V," Los Alamos Scientific Laboratory report LA-7422-MS [NUREG/CR-0305] (1978).
- 63. T. R. England, W. B. Wilson, and M. G. Stamatelatos, "Fission Product Data for Thermal Reactors, Part 1: A Data Set for ERPI-CINDER Using ENDF/B-IV," Los Alamos Scientific Laboratory report LA-6745-MS (1976) and "Fission Product Data for Thermal Reactors, Part 2: Users Manual for EPRI-CINDER Code and Data," Los Alamos Scientific Laboratory report LA-6746-MS (1976). [Also published as Electric Power Research Institute report EPRI NP-356, Part 1 and Part 2 (1976.)]
- 64. S. J. Dagbjartsson, B. A. Murdock, D. E. Owen, and P. E. MacDonald, "Axial Gas Flow in Irradiated Power Fuel Rods," Idaho National Engineering Laboratory report TREE-NUREG-1158 (with addendum) (1977).