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ABSTRACT

If a one-dimensional shock wave travels through argon, the trans-
lational degrees of freedom of the atoms are immediately excited and
reach translational equilibrium within two collision lengﬁhs. If the
shock velocity is sufficiently high, energy will be transferred from
the translational degrees of freedom to those of electronic excitation
and ionization until complete thermal equilibrium exists. The region
between the first disturbance in front of the shock and the point at which
thermal equilibrium is first realized is the shock front.

A method of computing the equilibrium conditions, which was first
applied by Beihe to air, has been used for the argon equilibrium reac-
tion, A = A+ + e, where only singly-ionized argon atoms have been con-
sidered. The corresponding partition functions for demsity ratios from
2 to 20 and temperatures from 7500° to 26,000° are tabulated. Applying
the standard shock relations, the equilibrium conditions behind the shock
front have been computed for shock velocities between 3-105 and 9'105
cm/sec for two fore-pressures, viz., P, = 1.0 and 59.38 cm Hg.

The non-equilibrium region which exists between the front of the
shock and the equilibrium region has been treated by considering the
individual atomic interactions that take place. From the point where
translational equilibrium is first reached to a point where there is a
sufficient number of electrons for ionizing collisions between electrons
and atoms to be of importance, ionizing reactions between argon atoms

predominate. Then the reaction e + A = 2e + A+ takes over only to be




dampened by recombination between electrons and ions until the gas has
been completely equilibriated. Pressure, density, temperature and
degree of ionization have been computed across the shock front for
various shock velocities and presented in graphical form. Thus the
width of the shock front and, consequently, the relaxation time for
ionization are given as functions of shock velocity.

Various theories for the recombination of electrons and ions have
been discussed and it is shown that Kramers' classical theory of
radiative recombination is incorrect but that a quantum theory gives
the right order of magnitude result. Three-body recombination coef-

ficients have been computed by a method of microscopic reversibility.

iv
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INTRODUCTION

A shock wave travelling through an atmosphere of argon ges may
conveniently be described in the following way. In front of the shock
wave is the undisturbed atmosphere in equilibrium. Upon being struck
by the shock, a violent disturbance occurs, which soon however settles
down to a nevw condition of statistical equilibrium behind the shock.
Connection between the two regions of equilibrium is uniguely determined
by the Rankine-Hugoniot or shock relations (Ref 46).

Disturbance of the statistical equilibrium takes place in the
following way. As a shock wave passes through the gas, the trensla-
tional degrees of freedom of the atoms are excited. The distance re-
quired to achieve translational equilibrium has been investigated
theoretically (Ref 4k, 45, 46, 48, 60, 63, 64, 65, 66) and in the
limit of strong shocks is of the order of two collision lengths. This
seems to have received satisfactory experimental verification (Ref 61,
62). Because the distance is so short it does not concern us in this
report. If the temperature of the translational degrees of freedom is
sufficiently high, transfer of energy to other degrees of freedom takes
Place until complete thermal equilibrium is reached. The region in
vwhich this transfer of energy takes place is referred to as the non-
equilibrium region. We then define the shock front to be all the region
between the undisturbed atmosphere in front of the shock wave and the
point behind the front of the shock wave at which thermal equilibrium

is first essentially achieved.




It is the purpose of this gtudy to determine quantitatively the
conditions and extent of the shock front for shock velocities high
enough so that there is some degree of ionization and low enough so
that the number of doubly ionized argon atoms is negligible. The
reasons for choosing argon as the gaseous medium are, first, because
it is a monatomic gas hence molecular degrees of freedom such as
rotation, vibration, and dissociation do not need to be considered,
and second, because more experimental data pertaining to shocks are
avallable for argon than for most other gases.

Meassurements have been made by various investigators on the de-
tailed structure of argon shocks of the following quantities: material
velocity, shock width, spectral distribution, luminosity, electrical
conductivity, and potential distribution. In addition there are
measurements of many overall phenomena of the shock including reflec-
tion, refraction, and diffraction of shock waves as they impinge on or
pass through various media, how much energy is lost to a shock front
in air as it passes through a cloud containing water droplets (e.g.,
fog), and how much energy is lost to a shock front by radiation. A
detailed theoretical knowledge of the structure of a shock front is
desirable in order to obtain an interpretation for some of the physical
messurements made as well as to predict others. Also, we wish to test
the validity of approximating the shock front by a physical discontinuity,
a8 is usually done. It is essentlally for these reasons that this re-

port is written.




In Part I we consider the equilibrium region which is a plasma
consisting of neutral argon atoms in various states of excitation,
singly charged argon ions, and electrons. The equation of state for
such a plasma is derived and it is shown how the component concentra-
tions behind the shock may be computed.

In Part II we discuss the various atomic interactions that take
place in the non-equilibrium region of the shock front. We evaluate
the reactions that contribute to the production of electrons using the
avallable experimental cross-sections. Once a sufficient number of
electrons has been produced recombination of electrons and ions occurs
until a balance between the production and recombination of electrons
has been reached. Several recombination processes take place,none of
which have been experimentally determined for the temperature and
density conditions that prevail in a shock front of the strength we
will consider. Hence theoretical relations for the recombination
processes are derived.

The theory of Parts I and II is applied to a few special cases in
Part III. Equilibriwn calculations have been made for shock velocities
between 3-105 and 9-105 cm per sec ana for initial or fore-pressures of
1.0 cm Hg and 59.38 cm Hg, the latter corresponding to atmospheric
conditions at Los Alamos. Processes contributing to the production of
electrons in a shock front are evaluated numerically for temperatures
between about 8000° and 350000. Recombination processes, depending on

both density and temperature, are also evaluated. Finally, conditions




in the non-equilibrium region have been computed for an initial pres-
sure of 59.38 cm Hg and shock velocities of 5.0, 5.5, and 6.0'105 cm
per sec.

The important contributions of this report are the following.
Partition functions for argon have been computed and tabulated for
temperatures from 7500° to 26000° and for density ratios from 2 to 20.
The equilibrium constant K for the reaction A = A++e for the above range
of density and temperature and with an initial pressure of 59.38 cm Hg
is tabulated. For an initial pressure of h cm Hg the corresponding
equilibrium constant is obtained by multiplying the tabulated K by
59.38/h. An approximate method by which the energy per particle and
the compopent concentrations may be conveniently obtained from the
equilibrium constant is presented in Part III. The values thus ob-
tained agree well with the more exact method given in Part I.

The quantitative calculations on the shock front show, not only
the true profile, but that the shock front is of such an extent and
the conditions such as pressure, temperature, and density of such
magnitude that for many of the physical applications mentionea pre-
viously the shock front should not be treatea as a discontinuity. In
addition, from the degree of ionization one can predict the spectral
distribution and luminosity and possibly compute the conductivity.

Perhaps the most significant theoretical contribution of this
report is the derivation of the recombination coefficient. It is

shown that Kramers' classical theory of radiative recombination gives




a velue that is too large by a factor of about 105, but that s quantum
theory evaluation is of the correct order of magnitude. Also since the
usual theories of three-body recombination are not applicable to our
cése, we separately evaluated this coefficient by using the principle

of microscopic reversibility applied to the equilibrium state.




PART I: THE EQUILIBRIUM REGION BEHIND THE SHOCK FRONT

1. Introduction.

The general hydrodynamic features of a shock are determined by the
properties of the equilibrium regions in front of and behind the shock
front. The conditions in front of the shock are completely known, of
course. However, behind the shock front in argon we have a plasma con-
sisting of argon atoms.in various states of excitation, argon ions, and
electrons. Despite the fact that such a plasma has received consider-
able attention, particularly at low pressures and temperatures (Ref
1, 2, 56, 57, 58, 59), knowledge of this state is far from being satis-
factory. This 1s especially true at the high pressures and temperatures
behind a shock front.

In Part I, therefore, we calculate the equilibrium equation of state
and the thermodynamic functions of the argon plasma. There are available
several methods for determining the equation of state of a gas. We have
used here the Saha equation and evaluated the partition functions by a
method suggested by Bethe (Ref.67). The reason for using Bethe's method
is that it 1s simple and well adapted for high speed computing machines.
In this calculation, as indeed throughout this report, it will be assumed
that the number of doubly ionized argons is negligible although, occasion-

ally, brief reference will be made to interactions involving A++.

2. Equilibrium Conditionms.

Consider a plasms state behind the shock front in complete thermal

equilibrium. We wish to calculate the concentrations of the three com-




ponents, A, A+, and electrons, as functions of density and temperature.
Let the concentration EA] be defined as the ratio of the number of
neutral argon atoms to the original number before iohization takes
place. Similarly [A‘“’] is the ratio of the number of singly charged
argon ions to the original number of argon atoms and [&l] is the corres-
ponding concentration for electroms, where, at all times

- ]

The equilibrium reaction is

A=a%+ 82

] « (2] =2 (1)

If g is the average number of particles into which an argon atom

80 that

splits at temperature T, then
g = [A] + 2[A+] (2)
where the factor of 2 is due to the presence of one electron for each

ion.

Assume the perfect gas equation of state to hold,
R
P"Q"ﬁT) (3)
where R is the gas constant per mol and M is the original molecular

weight.

If E is the internal energy per gram, the qnantity‘,&? is defined

by
= - B .
E (/ 1)/° (%)

7




Then from the relation

E=t);:%yf—, (5)
*‘%‘1‘. (6)

For a perfect gas ¥ 1is equal to the ratio of specific heats, although,

Y 1is given by

in genexral, particulerly for a solid, this is not true.

Following Bethe we define a quantity € from the enthalpy i, i.e.,

inE-‘-!g:%Te =£;§- . (7)

From (3) and (7),

Ro.f€. R
E’(e-g)MT"(g )8MT’
or _
¢ o .
ﬂ-g' ()
The quantities /f and € have been defined for computational pur-
poses. We can define a parameter analogous to /f separately for atoms,

ions, and electrons. This parameter /f(qi)rﬁill include the energy of

translation and electronic excitation, hence for each specles

B(a,)
Ala) - 1= o (9)

vhere E(qi) is the internal energy per particle and where g, stands for
a particular particle which, in our case may be an argon atom, A, an

argon ion, AY, or an electron, £4 ; i.e.,

8




JOERE

Aty = BAD

|§5

A(&e)-1 = :

If n,n+ and n, are the number of neutrasl atoms, the number of ionms,
and the number of electrons per cm3 then the internal energy per gram
is
nE(A) + n EE(A ) + I} + neE(&)

7 .

Substitute the following quantities in E,

S E

E =

L= mn(n+nt), [A =

Then

e o[a] B, ] Leatherd | (o] me)

m .

If we now substitute this into (7) using (3) we have
+
(4] EA o [x] IEGeal | (o] BE) L o Ry By,

We now divide through by RT/M = kT/m obtaining

[A] +« [a*] M [&]J-—+g=é .

Using (2), (9), and the fact that [&2] = [A*] we finally have




€ =4(a) [A] + B(a%) [A*’] + I-ET&—)- [A+] +B (E4) [51']
where I(A) is the icnization energy farargon and /d (A) means /A' for
neutral argon and includes the energy of translation and excitation.
/5(A+) is similarly defined for singly ionized argon. Since, for a

free particle the energy is 3/2 kT, from (9), we have

BEL) = 2.5,

hence

€ =4(n) [A] + [A+] i,g(f) + Hk%z + 2.5} . (10)
The equilibrium constent for the argon interaction is
[a*] [e2£]

[4]

K = (11)

or, if x = [A{l y

K=7x . (12)

3. The Partition Functions.

Once the equilitirium conditions have been defined, then, for an
ionizing reaction the Saha equation may be used to write the equilibrium
constant in terms of the partition functions. The Saha equation for the

argon equilibrium reaction may be written

feree\? L B2 2 e e
n

h2N° 17 Z\A)

where j 1is the reduced mass, i.e.,

-I/%T

(13)

10




M= = s m = m."'+m.e (1%)

and .

3

n. = number of argon atoms in one cm” of the undisturbed gas in
front of the shock

¥ = density ratio = /0h4f1
/1 = density of the undisturbed gas (cf Fig. 1, Part II)
/ph = density in the equilibrium region behind the shock
k = Boltzmann's const

h = Planck's const

=2
|

= Avogadro's number
T = temperature in degrees absolute
I = first ionization potential of argon
Z(A+) = internal partition function‘for the argon ion
Z(A) = internal partition function for the neutral argon atom
Z(ﬁL) = internal partition function for the electron.

The density ratio ‘7 is used in (13) in place of the correspond-
ing pressure ratio % because 7 varies between 1 and about 10 across
the shock front whereas % may become very large and, in fact, is set
equal to oo in the strong shock approximation.

The internal partition functions are defined by

' -E_/KkT
z=] gnen/ (15)
n

where n corresponds to a state of the system with energy En and sta-

11




tistical weight gn (the energy of the ground state is arbitrarily set
equal to zero). The internal partition function of the electrons re-

duces simply to the degeneracy 2. Hence, if

3/2 T3/2
£ = 2(T,n) = 2TkA N SN i (16)
1 (hz No) o R
then
. =I/KkT
k = op 285 (17)

Z(A) )

At high temperatures the higher excited states of the atom become
numerous and may contribute appreciably to the partition function. The
suming over these higher states could become quite laborious but even
worse would be the overlapping of the higher quantum states of neighbor-
ing atoms. Therefore, a cut-off must be made. This cut-off successively
eliminates the high quantum states of the atom as the density is increased.
The corresponding process is termed pressure ionization.

The radius of a hydrogen-like electron orbit is
a = aon2 (18)

where 8, is the first Bohr radius and n is the principal quahtum number.
We now assume all electron orbits to be suppressed whose radius a ex-
ceeds half the average distance between atoms. Let this half-distance

be rys then, if L is the number of atoms per cm3 in front of the shock,

bwe 3 _ 1
3 o I‘n

or

12




. 1/3
3
ro =(er L7> ¢

From (18), the limiting value of n is

r \1/2 ; 1/6
o 1l
n = 'a—c‘ = a_17§ TFIT»-T
(o]
1/6
ny = D-7'1/6 s D = const = a—i-]g (E?E) . (19)
. (o]

As nv is non-integer, g is reduced proportionately in the following way:
For n z,nv + % the state will be completely cut off and for n g n? - %
the state will be fully counted in the partition function. In between
these values of n the multiplicity is adjusted according to the formulas
(n7 +1/2) = n
(n,l+ 1/2) -(ny, - 1/2)

Hence, the internal partition function of the atom depends not only on

Bertective ~ En =g, (ny+ 1/2 - n)  (20)

the temperature but to a small extent on the density, i.e.,
z =2(T, q).

The effect of the above approximation is discussed in Ref 69 where
it is pointed out that the partition function of the free electrons is
underestimated, since their potential energy is neglected. Also, the
integration over phase space is not carried out properly. While it is
difficult to estimate the size of the error, it can not be large since
theory and experiment are in good agreement (cf Part III, section 3).

In addition, the above theory agrees with more precise celculations made

at Los Alamos,

13




The contribution to the partition function. from the low states is
easy to obtain because of their small number. However, the contribu-
tions from the higher states which have one electron excited to n >k
is8 a different matter both because of the great number available and be-
cause of the cut-off that must be made. Hence the partition function

for the neutral atom may be written as

2= Zlow + Zhigh (21)

vhere Z, . is sumed over the low states (n = 3) as in (15).

The ground state of argon is a (3p)6 lso level with a multiplicity
of one and an energy by convention equal to zero. There is also a level
from the configuration (3p)5(3d), observed spectroscopically, which has

Lor 162,500 degrees. This

a relatively high energy, viz, 113000 cm”
level has a multiplicity 60. Levels with two excited electrons have
such high energies as to be unimportant in the partition function.

Using these levels the evaluation of Z is shown in the following.

low
table: (cf Table IV, Part III)
Table 1

(A IatT = 25000°)

-1 -En/kT
State g, En(cm ) E (degrees) g,e
30 s 1 0 0 1
3p”d 60 113,000 162,500 .0902

From this table it 1s seen that Z, = 1.0902 when T = 25000°.

low
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We now evaluate Zhi gh by the following approximation: Consider
a highly excited atom as an ion with an electron moving around the ion
in a large orbit. The spectrum will be alkali-like and the energy

E NL of a state of principal quantum number n and orbital quantum number

L, will ve
=T+ EBion - Ex'x,@ (22)
where
Eion = excltation energy of the ion (3 0)
Er'x L= binding energy of the electron.
If (22) is substituted in (15) Zhigh becomes
Zyign = Zion ° /et ®high ° (23)

Zion is determined similarly to Zlow although the low states are more
numerous for A II then for A I. zhigh is the partition function for
the (one electron) high excited states of the neutral argon atom,
neglecting the multiplicity of the core configuration (which is included
of course in Zion)' It is given by
1]
+En9/kT

®rign = 2E,(7) e (24)

vhere gnt(q) is the adjusted multiplicity, eq. (20). As shown by (22)
1]
Enﬂ_.corresponds to a positive binding energy which is subtracted from
the energy of the ionm, i.e.,
1]
Pag =T - By

where En is the excitation energy. The high excited states of the ion




have not been included because their contribution to the partition func-

tion is negligible in the temperature range with which we are concerned.

4. The Energy Content.

Knowing the partition function it is possible to obtain the
various other thermodynamic functions. The energy content is of parti-
cular interest because of its importence in determining the shock con-
ditions (section 5).

The average energy per pa;t};%e in units of kT is

n'

ZoZye

n
ABla)-1 =3+ k: (25)

where 3/2 represents the translational energy, En the internal energy
per particle for the remaining degrees of freedom and Z is the corres-

ponding partition function.

Let
-En/kT
W= zign‘92 e (26)
kT
then
=2 .7

A—2+Z ° (27)
W may be evaluated in the same wey as Z, i.e.,

WeW o+ whigh (28)
vhere W) oy 1s given by (26) vut summed over Just the low states. whigh

is obtained by substituting (22) in (26):
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=L
I KT

Whigh = T Znigh * © (yon ®high ~ “high Z1on) (29)
where - )
B ion
"ion kT
Wion = Zgn x ¢ (30)
and El
', né
KT

Ent
“high = Zgn,z(’?_) 5T © (31)

and zhi gn’ Zion’ Zpign %€ determined according to (23) and (24).
Equation (25) follows from the formule for the internal energy
per mol Ei’ i.e.,

2
E,. =RT"d 1n 2
i at i. (32)

Other quantities of interest in shock propagation may be similarly de-

termined. If Fi is the free energy per mol, S, the entropy, and C, the

i i
heat capacity per mol, then
F, = =Rl 1n 2, (33)
s, =Rd (T lnz,) (34)
dT
dE

2 i

C, =Rd T°d 1nZ, ===
i T 5 i &art . (35)

In equations (32) to (35) only the contributions from the internal

degrees of freedom are included.
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5. The Shock Front without Heat Conduction or Viscosity.

In sections 2 to 4 we have shown how component concentrations and
energy content may be calculated in a gas which is in a state of com-
plete thermal equilibrium. If we now specify this equilibrium state to
be that which exists behind a shock front, then the density and tempera-
ture are determined by the conservation equations, the equation of state,
the shock velocity, and the initial conditions. In this section we assume
that heat conductivity and viscosity can be neglected which is perfectly
valid if the conditions are those of equilibrium (cf section 6).

The procedure for calculating‘gf for atoms and ions is given in
section 4 and that for calculaiing € and g in section 2. Then, from

(8), the value of /f for the gaseous mixture is given by
A =5 (36)
Consider a one-dimensional shock for which the shock equations may
be written:
Conservation of mass:

LV =m = const (37)
where Y is the density and v the velocity with respect to the shock
front, i.e., »

v=u-U, (38)
u being material velocity and U the shock velocity.
Conservetion of momentum:
p+mv=mV, V =const (39)
Conservation of energy:

g5+5v¥=3c% ¢ = const. (40)
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The equation of state is given by (3), i.e.,
. _ R
p=gyx LT - (41)

If we substitute (37) and (41) into (39) and (40) and divide through by

/’lzweobtain
g’zagr-m—v7+(9‘—)2=o
MT A 1
2 1.2 2. 1 /m\°
Beg U r-2¢ 3 +§(/-°—1) = 0. |

We take the variable parameter, aside from the initial conditionms,

X\

to be the shock velocity U. This is because it is the most accurately
measured quantity in shock experiments. Also, in producing shock waves
by high explosives, one method is to detonate a stick of high explosive
in a gas chamber. In this case the detonation velocity and the shock
velocity in the gas will be equal and detonation velocities are well
known.

The last two equations are re-written as

872%T'UV"(+U2=0 (42)
ﬂg%»lz'r-%0272+%02=0 (43)

The constants V and C are determined from the conditions in front of the

shock. Then, for a given value of U, and if /3(7,T) and g(»,T) are known,

the quantities Q? T, S and u may be uniquely determined in the shock

front and behind the shock front.




In the above equation radiation has been neglected but a brief
consideration shows that this is probably a good approximation for the
range of shock strengths* we are considering. For example, if é,: 500,

Y =T, and ¥ = h/3 which is about right for T = 20,000 degr and

U = 6.10° cm/sec, then the energy density for internal degrees of freedom
1s 10t ergs per grem. However, if we assume black-body radiation, the
radiation density ie only about 10° ergs per gram.

Assuming about 0.1 of the argon atbms are either excited or ionized
(cf Part III, Table IV) and an average wave-length for emitted radiation
of 2010 cm, we obtain a rate of radiation of about 10%? ergs per gm
per sec (see eq (28), Part II). If we compare this with the internal

1 ergs per gm we see that the relaxation time, E/E,

energy, viz, 10
for radiation loss is of the order of IOO‘/Lsecs. It may be seen from
Fig 17, Part III, that this relaxation time is much longer than times
of interest in the shock front. (As will be shown in Part III, times
of interest are of the order of magnitude of 10'8 sec, which is also
about the lifetime of a radiative transition.) Even the total shock

width involves a time considerably less than the above relaxation time.

*
Shock strength is defined here as the pressure ratio Sn ph/pl vwhere

p), is the equilibrium pressure and P, is the fore-pressure.
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6. The Shock Front with Heat Conduction and Viscosity.

We have shown in section 5 how the equilibrium conditions behind
a shock front may be determined; however thermal conductivity and
viscosity have been omitted from the equations. In this section we
will include these terms and briefly consider how the equations could
then be treated.

In the temperature range of interest here (5000° to 30,000°)
values of the heat canductivity K or the viscosity M are not well
known. But it has been indicated, eq (35), how the specific heat and, .
eq (6), ¥ may be determined. According to Chapman and Cowling (Ref
TO) the quantity

f1 = ()
is reasonably constant with temperature if ¥ is constant (see, also,
Ref Tl). It is doubtful that such a rehtion is valid if ionization
is involved, i.e., if ¥ varies. However, if we knew the specific
heat at constant volume Cv. the ra.tic; }i could, in principle, be
obtained.

If heat conduction and viscosity are included in the conservation

equations, (37) to (40), they may be written (Ref 63)

PV =m = const (45)
mv + (p-0°) = mV = const (46)
v2 l _ 2
m{=5+E| + v(p-o) -E= 5 mC” = const. (47)
21




The equation of state is, again,
p=gy pT. (48)
MP

Assuming a ¥-law ana using (h8), eq (47) becomes

2, (%9)

Nl

2
m[-"—2-+(,5-1)z-§—"2-} + v(p-0o) - H =

© 1s the ordinary stress term due to viscosity and - H is the heat flow

intensity, i.e.,
d
E=K g, o-=53*-y--d—;'- (50)

Putting the relation for ¢ into (46) and using (48) and (L45) we get

L dv _ gRT

-3-/-'-"-—— Vf—"—-v. (51)
Substituting (46) into (49) and using the relation for H, (50):

2

2
K 47T 1.2 v gRT
ﬁ —:=VV - - C --2—-+ (ﬁ-l) _M (52)

Dividing (52) by (51):

dT _ L4 2 2 M
a1 =3KL = (53)
dv v+ gRT -V
Mv
Let
= gRT
h(v,T) = v+ == -V (54)

2
om <Y [ ¥ e g B2
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or using,

[“ 1) -‘2'— %c") +-f-,] (55)

where Pr is a modified Prandtl's number (Ref 63), which is g times the

I(v,T) = § r

Bor-gh
(

usual Prandtl's number,

P = S8R u (56)

If h = 0, conservation of momentum is obtained and j = O gives conserva-
tion of energy.
Letting

v2 =1z, 2vdv = dzg

then (53) becomes, with (54), (55),

z 1
2, L’“‘“’— -3-3¢ “?]__1‘_1 (57)
dz ~ 3 Tk

z + -—— -vYz 2

where
(r-1)M .
L YeR
2 2 T
H=-§r[°l-(vv‘—-‘--20)+s;]

and

a3




Equation (57) has a singularity whenever the numerator and the de-
nominator on the right-hand side go to zero simultaneously. The curve
of k2 = 0 in the z,T-plane intersects the z-axis at z = O and at z = V2
and has its maximum wvalue of T at z = Vz/h. It is concave toward the
z-gxis. Since V2 is always greater than or equal to z, the curve of
k1 = 0 in the z,T-plane has a negative derivative and is convex toward
the z-axis. It intersects the T-axlis at

vl O

and has & minimum at z = V2, intersecting the k.,-curve in the two points

2
(z,, T.) and (z,, T,) where z > z,, T. < T, (cf Fig. 1). The shock
1’ 5 y Ty s T

width is then the distance between points 1 and L.

From k1 = k2 = 0,

_ 2
z(x—;—l - Jvfz +(‘(-1)%=0

2k




or

YV + ;/szz - (¥1)c?

/e = ¥+l 4 (58)

This shows that z is a sensitive function of ¥ which, in turn, depends
on say z and T. A method for determining ¥ has been discussed pre-

viously.
Also, for l& = k2 = 0
M 02 z
T=-§§ (Vﬁ-z) = d'z—"‘é' (59)

One may obtain the integral curves for (57) by using the method of

isoclines. Writing (57) as v

T-T
aT _ 2P a
& " 3R TT, (60)
where
f/ c?

Ta =€fo(-(é- - Vﬁ—'f' -—2- (61)

= -~
Tb == (Wz-z) . (62)

¥ and g vary across the shock front staying, for our temperature range 9
between 1 and 2. As the temperature increases Y decreases and g in-

creases their product remaining approximately constant.

=Fr_ _2 K
¢ = SR = 3 (;-!11'7 (63)

Let
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then (60) becomes

T -T T = .
aT A "a "
&= Atgm o LTIy (64)

The isocline for dT/dz is a curve of constant A . If A = oo,
Ty=T, and if X =0, Ty = Ty- IfA =1, T, = T, and ve obtain (58)
where the plus gign corresponds to z1 and the minus sign to zu. Using
additional values for A it may be seen that point 1 is a nodal point
and point 4 is a saddle point, i.e., an infinite number of integral
curves pass through point 1 and a finite number (viz., 2) through

point 4. If A = (¥-1) we obtain the second equation of (59), i.e.,

- (4 e
which 18 a straight line connecting the points 1 and 4.

If these results are applied to the region im which complete thermesl .
equilibrium exists then, since dT/dz = b here, equations (58) and (59)
may be used to calculate the equilibrium conditions. Fortunately, the
viscosity and heat ccnductivity drop out for dT/dz = 0 and the method
of section 5 may be used to compute the equilibrium conditions behind

the shock front.

Application of the theory given in sections 2 to 5 is made in Part
III. The partition functions and equilibrium constants for a wide range
of densities and temperatures have been computed and are tabulated in

Table IV of Part III. Equilibrium conditions behind the shock front
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for U between 3-105 and 9-105 cm/sec and for p1 = 1.0 and 59.38 cm Hg
have been calculated and are presented in both graphical and tabular

form.




PART II: THE NON-EQUILIBRIUM REGION

l. Introduction.

In Part I it has been shown how the conditions in the region behind
the shock where thermal equilibrium is assumed to be established may be
completely determined. We now wish to look at the non-equilibrium por- '
tion of the shock, i.e., the part between the undisturbed gas in front
of the shock and the equilibriated region behind the shock.

Although a true thermodynamic temperature does not exist in this
region, the velocity distribution of the neutral atoms, the ions, and
the electrons is at each point close to maxwellian. We may therefore
introduce a local "temperature" which is characteristic of this distri-
bution. The use of such a temperature is probably valid, since the high
density and pressure involved cause a maxwellian distribution to be very

quickly established.

Let us divide the

shock front in the follow- [
ing way. Region 1 is
the undisturbed part in front T

of the shock. Region 4 is

\ "
4 3 2} I —
the part behind the shock
b
in which complete thermal
equilibrium is assumed to Flg. 1

be achieved and for which the conditions have been previously calculated.

In region 2 we assume only elastic collisions and a width of about two




mean free paths, as it has been shown that equilibrium between trans-
lational degrees of freedom is established in about two collisions for
strong shocks (Ref 4l, 45, 46). Because of the small extent of region
2 and because its thickness does seem to be known reasonably well, we
will not consider it further. We will be concerned only with region 3
in the following. This is the region in which excitation and ionization
of the argon atoms takes place and we wish to calculate how long it takes
to go from point A to point B (Fig. 1), i.e., from where there is com-
plete equilibrium between translational degrees of freedom only, to
where there is complete equilibrium between all degrees of freedom.

To obtain the conditions at poinﬂ A we use the shock equations with
the assumption,however, that the internal degrees of freedom are not ex-
cited. We therefore use a constant ¥ , viz., ¥ = 5/3 for argon. The

temperature at point A is given by

2
P 2 2
0 op 1) R 6 4+ & @ -3»_’11) Pooy

A 1 2 2
@+1)® @u® | p, ]

Pressure is determined from

RO . T S

pl A pl +1 7oo
and density from

Ca Joo Sp*L




where
Y+l
Joo =¥1°
(Derivation of these equations is indicated in Part III, section 4.)

If we knew the cross-sections for all the various atomic inter-
actions that take place in a shock front, it should be possible to com-
pute the ratéf;ransfer of energy from the translational degrees of
freedom to the other degrees of freedom, i.e., the rate at which true
thermal equilibrium is established. For argon, the interactions in-
volved are fairly simple and many of the cross-sections are known. In
the following sections thesé interactions are considered in some detail
and it is shown how they may be used to compute conditions in the non-
' equilibrium region.

If n, is the electron concentration, the rate of change of the

3

number of electrons per cm” is

dn
= = P

1]

q represents the rate at which electrons are produced and p the rate at

which recombination takes place. (See, however, Part III, section k4.)

2. Production of Electrons in the Shock Front.

We first consider the means by which electrons are produced in the
shock front and then, in section 3, consider how they recombine with the
argon ions. There are numerous processes by which electrons are pro-

duced in forming a plasma. Hence the production term is written
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Q= q

, 1
where the summing is over all posslble processes. Some of the processes
will be neglected because the conceﬁtmtions of one or more of the
interacting components is small and some will be neglect;ad because the
interaction is small. In the final computation (cf Part III) only the

processes (1) and (3) listed below are used, although one could easily
include others. .

We start with a maxwellian distribution of neutral argon atoms with
a sufficient number in the high-energy tail to produce lonization by the

reaction

A+d—> A+AY + e ' (1)
This produces small concentrations of electrons and argon ions, A+,

which then enter into the following reactions:

A+at—at+at e e (2)
e+A——-)e+A++e (3)
e+A——de + A + 2 (4)
e+A—e+ AT 4 36, : (5)

Reactions (4) and (5) offer small contributions compared to (3) but their
cross-gections are known,
The reaction
e+ At —ge+ A + e (6)

is not included because the concentration of each of the reactants is
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small. However, this reaction may be of more importance thun (5) but
the cross-gection is not available.
The reactions

A++A——>AH+A+e (7)
and

At ot —a™ v at s e (8)
are neglected because of the higher ionization potential of A II (27.62
ev) compared to that of A I (15.76 ev) as well as the low concentration
of one or both of the reactants. In addition, the cross-sections are
not available.

Finally, the absorption reaction,

h +A—>e + A" (9)
is neglected because of the long lifetime involved (cf Part I, section
5), and because the photons escape from the system.

Finally, the argon atom may be excited by processes similar to the
ones listed above. Once excited it can drop into a meta-stable state
from which ionization can take place either by collisions of the second
kind or by a photo-process. In both cases radiative transitions are
involved and, as pointed out above, the lifetimes of radiative transi-
tions are of such lengthsas to warrant neglect of excitation. It is
possible, however, that excitation processes compete with some of the
one-step processes but the cross-sections are not known very well (al-
though cf Ref T6).

If all processes are included the production term is
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Ta=2.q (10)

vwhere q,, Qy; 43 etc., represent the reactions (1) to (9) respectively.

2.1. Collisions between Atoms and Ions.

Since, at the peak of the shock (point A, Fig 1), only the trans-
lational degrees gf freedom are excited and there are no electrons
present, we consider first the reactions between argon atoms. ql and
q, and the cross-sections involved in (1) and (2) are similar so only
ql need be discussed in detail.

We write
q = f(vl)f(v2)c71(vr)vrd$id¢é (11)

vhere f(vl), f(v2) are the maxwellian distributions for the two reactants
(in this case, neutral argon aéoms), <7i(vr) is the ionization cross-
section, vy is the relative velocity, and d$i, dGE are the elements of
volume in velocity epace. The use of maxwellian distributions here is
particularly good because of the high shock velocities to be considered
(Ref 48) and because the masses of the reactants are equal. However,
the cross-section o&‘vij is not well known and some assumptions must
be made.

Very* 1ittle theoretical work has been done for the case

of two heavy atoms colliding and not much more experimental

work. The observed cross-sections for argon in argon are
sketched in Fig. 2.

*
Text which is typed in single-space may be omitted without interrupt-
ing the continuity.
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Rostagni (Ref. 49)
Batho (Ref. 51)

I Berry (Ref. 50)

= S~

F . 2

Since agreement between the various observers is not good,
we conslder the reasons for the discrepancies.

To obtain a sowrce of fast neutral particles, use is made

of the charge transfer process which occurs without the
direction of the neutrallzed ion being altered. A source

of the appropriate ion is obtained which is then accelerated
to the desired energy by an ion gun and allowed to pass
through a chamber of neutral atoms. Charge exchange takes
place and a beam of neutral atoms is emitted and the ions
remeining in the beam are removed by an electrical field.
The energy of the neutral beam is nearly the same as that
of the original ion beam.

For the detection of fast neutral beams, three methods
have been used. In the ionization method a neutral beam
enters an ionizstion chamber and the relative ionization
is measured. In the thermal method the neutral beam is
allowed to lmpirge on a thermo-element and the beam in-
tensity determiried by the heating effect produced. In
the secondary endsslion method the neutral beam strikes

a metal surface and the secondary electrons produced are
collected by an electrode held positive with respect to
the surface. These methods of detection give relative
intensities but, since only total cross-sections are re-
quired here, this is sufficient. The discrepancy between
the observed cross-sections as measured by different ob-
servers is probably due to employment of different methods
of measuring the neutral beam intensity.




0f the numerous methods used for measuring the cross-sections,
one will be briefly described. A homogeneous beam of ions,
e.g. A+, is caused to enter a collision chamber which is
filled with neutral atoms. If the beam energy is smsall,
charge exchange without ionization will teke place and the

Collision
Chamber

JTon Beam

Fig. 3

flux of slow lons produced may be measured. The slow lons
are attracted to the collecting cylinder Z which has in front
of it a grid R. The saturation current ic represents slow

]
N Z Low Energy
i* Jon Beam
c
l —
(-) (+)

P. D, between Z and R

Fig. 4

ions produced by charge exchange.
If the beam energy is large, not only will charge exchange

take place but there will be ionization. If Z is positive
with respect to R the saturation value for the electron
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(<) L 11 (+)

P. D. bel;een Z and R

Fig. 5

current i_ will be measured from which the ionization cross-
section may be ccmputed. If Z is negative with respect to
R, the total current measured will be that due to charge ex-
change 1 plus that due to ionization i.. Knowing i, it is
then posSible t0 calculated ic’ thus bo charge exc e
and ionization cross-sections may be computed.

Actually, as indicated by Fig. 2, the measurement of accurate
ionization cross-sections is extremely difficult for the fol-
lowing reasons. The ionization currents produced are small,
and the electrons which have to be collected in order to
measure the lonization are produced in the presence of large
quantities of slow positive ions produced both in the iloniza-
tion process itself, and, more often, by charge exchange.

The positive ions, when collected, may give rise to consider-
able quantities of secondary electrons. Also, the saturation
electron current must be measured at a potential below that
needed to ionize the gas by electron impact. Finally, parti-
cularly in argon and other inert gas atoms and ions, meta-
stable atoms may he present which have the property of free-
ing electrons from surfaces on which they are incident.

It is appropriate to mention here that the chief difficulty
in measuring excitation cross-sections arises from the low
intensity of the effects produced. There will, of course,
be a loss iIn Intensity due to the presence of the gas it-
self, but, in addition, there will be losses in intensity
due to the necessity of spectral analysis of the radiation
emitted. This partially explains why excitation cross-
sections for very low energies have not been measured.
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If v is the velocity of réiative motion of ﬁhe two colliding atomic
systems and u the orbital veloéity of the electrons concerned in the
particular excitation process, then, in discussing inelastic collisionms,
two regions are distinguished, viz., lv/u|>>J.and ,v/ul << 1l. For the
high-velocity region Born's approximation may be used but since we are
primarily interested in the low velocity region for which no suitable
theory exists, we must, as pointed out above, use the observed cross-
sections. The low welocity or near-adiabatic region is defined such
that collisions occur so gradually that the chancé of any ultimate
transfer of energy ils slight.

As indicated in Fig. 6, the cross-section in the near-adisbatic
region is extremely small. The correspondence principle argument for
this is the follqwing. If the collision time T of the atomic systems
is large compared to the period T of the electron involved in the
particular excitation (or ionization) collision, then the orbital
electrons have time to readjust themselves to the slowly changing con-
ditions without a transition taking place. If & is the range of inter=--
action between the stoms and v their relative velocity, the condition

for weak excitation becomes

i

>

4P

The frequency # is given by AE/h where AE is the internal energy in-

volved in the electronic transition. The relative velocity is given by

v = 2/%;
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Fig. 6 Cross-sections for ionization by impact between two argon atoms or an argon atom and an argon ion. (Ref,49)

#2: A+At=>=prentee #£1: A+A ->=A+pAt+e
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where ﬁ is the relative kinetic energy and M is the mass of an argon
atom.

The adiabatic condition then becomes

a AR
3 T M >>/€_

8

or, using a = 2 x 10" cm, h = 6.62 x 10~27 erg sec, and expressing

energies in electron~volts, the conditions becomes

164E >> JE
If AE is the ionization energy, then for argon  <<62 kev. However,
this is far from being-a good criterion since for helium é <<15 kev
indicating the near-adiabatic region for argon should extend to about
four times that of helium whereas experiment shows that it is less
(cf Ref 52, p 530).

Since there is no reliable theory for the near-adiabatic region,
one would be inclined to believe, on the basis of the above argument,
that the ionization <:roés-section Oy should increase with é up to a
rather flat maximum of the order of the gas-kinetic cross-section at
é = 62 kev at which energy the velocity of relative motion is comparable
with the velocity of the atomic electrons concerned in the tramsition.
It should then fall off perhaps with some v-power law. ¥For the fol-
lowing reasons, however, the high-energy region need not concern us.
First, the experimental values available extend only up to about 25 kev
and, second, we are working with temperature distributions for which

the number of particles in the high end of the maxwell tail is negligible.
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In comparing the observed cross-sections as given in Fig. 2, it is
evident that the results of two different observers may be off by a
factor of two or more. The previously discussed experimental diffi-~
culties probably account for the discrepancies, with the error in
measurement of the incoming flux being chiefly responsible. In view of
the correspondence principle argument given above, the results of Berry
showing e decrease in cross-section with increasing relative ion energy
in the range 1 to 5 kev seem somewh;t unlikely (Ref 52).

In order to obtain an integrable function approximating Rostagni's
results, the curve (Fig. 6) was fitted in the following way. The zero-
value was obtained by simply extrapolating the experimental values. The
maximum cross-section was assumed to be at é 2 62 kev at which point the
slope is zero. In Table I, c7i and C72 are the cross-sections for reac-

Yy
tions (1) end (2), ésa is the initial relative kinetic energy in

electron volts and v is the relative velocity in cm per sec where

v = 3.106-10° éal/z

Table I
ﬁa(ev) v Z—:%) O’l( cm2) O’z(cmz)
60 2.406- 106 0 o}
100 3.106-10° .119+10°16 .129-10"16
500 6.9&5-106 1.140 1.280
1000 9.822- 1o6 1.801 2.174
62000 T.T34- 107
Y5




A cubic equation was fitted to these values where

a3 2,
O'l(v) = a,v” + blv + v+ dl (12)
O.(v) =a v+ bVE + .V + d (13)
2 2 2 2 2

with the constant factors being given in Table II.

Table IT

a b c d
10t6. o, | -2.9uBx103 [ 1.897x20"1% | 2.355x1077 -.5T72
10t6. o, | -5.602x10"3 | k.ouox10"1% | 2.397x1077 -.6045

Above éa = 62 kev O, vas assumed to drop off as 1/v which is
perhaps incorrect but not important anyway, as will be shown below. In
the neighborhood of éa = 62 kev the cross-section should have approxi-
mately its gas-kinetic value. Equations (12) and (13) give for this

16 em® and o, = 21x10'16 cm2, valuee of the same

energy, O = 15x10°
order of magnitude as the gas<kinetic values.

By carrying out the integration in (11) using (12) it was found
that energies above 1000 ev give no contribution. Hence we only need
to use the cross-sections over their experimentally determined energy
range. This is because the number of particles in the high end of the
maxwell distribution is insignificant above 1000 ev for the range of

temperatures involved. (Actually, 100 ev is probably high enough. )
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Rostagnl's results have been used for two reasons. First, his
measurements on other gases are in agreement with other observers, indi-
caeting his method is good. And second, his measuremenis are in the
lowest energy range, which is desirable for our problem.

In the very low energy range, say below 100 ev, the measurement of
the cross-section is particularly difficult because the chance of energy
transfer is so minute that it is not easy to reduce background effects to
an unimportant magnitude. Waylaﬁd (Ref T72) found a low energy tail with
a threshold value of 48 ev; however, this has not been incorporated into
our computations. This should be done because of the maxwellian distri-
butions involved. But, as yet, there is no satisfactory theoretical
calculation available (Ref 75). The values we use in this range will
not have much effect on the actual shock structure but are important in
determining the shock width (cf Part’III, section 7). As will be shown
in the next section, reaction (3) offers the most important contribution
to the electron production as soon as e sufficient number of free
electrons are produced from reactions (1) and (2).

Inserting the expressions for the distribution functions into (11),

mv 2 mv 2
1 2

e 2kT e 2kT

a=A O(v)vev, av (14)

2

where A is the normalizing factor. Change to relative coordinates v,V,

the relative velocity and the center of mass velocity respectively:

- e

1
<
'

<

V= % (3 +v.).




Since the Jacobian 1s unity,

av. dv. = 4avav.
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We then have

: )
f f e S 2 o (v)vavav (15)

or, integrating out the center of mass,
[~ -4
2
mv

) 3 -
q = kma rﬁﬂ)/ e T 0’(v)v3dv (16)

Vi

The integration over v is carried from the minimum ionizing velocity to
infinity although, as pointed out above, 1000 ev is sufficient for the
upper limit.

The normalizing €actor A is determined from
2 2

) mv, ) mv,

?/2A e 2KT e 2kT dvldv2 = ]

or

3
(=) an)

where V is the volume per particle. If n is the number density of

particles at an arbitrary point in the shock front then

o° 2
r \3/2 - =
2 TKT
. v
i

where we have now written ql , since this derivation holds for reaction
(1).
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Only a minor change is necessary in (18) to write the corresponding
expression for q,. For reaction (2) the normalizing factor, eq (17),

becomes

/ 3/2
v () ()

Zf+, mf, T+ are the volume, mass, and mean temperature of the argon ions;

however, under our assumptions T+ = T. Also mf = m and

Ul»-'

+ 1
U =-—-’:=
n e

vhere nf is the number density for the argon ions and n, that for the

electrons. Hence

co 2
- a\¥2| - TE 3
4, = Fmn, G_k_T) e op(vIviav (19)
v
i

In the relations for 9y, 9 the quantities n,n,, end T occur
outside the integral and T also occurs inside each integral. These

quantities all vary mcross the shock front as shown in the following

table:




Table III

Position on thez Shock Veloclty, U = 6 x 10° cm/sec
q

Shock Front

cf Fig. 1) 1 A B

T (degr) : 285 32741 18400

7 = (°/(’1 1 3.967h T.123

ne(cm'3 ) 0 0 .160n = 1.971;-1019

g 5/3 5/3 1.3216 |

\

S 1 456 523

(¥ is the ratio of specific heats, and é the pressure ratio.)

2.2 Collisions between Electrons and Atoms.

Once electrons have been produced by the A+A reaction, then reac-
tions between electrons and atoms take place. We consider reactions(3),
(4), and (5), although, as pointed out previously, (3) is by far the
most important reaction. It is sufficient to discuss q3 in detall as
Q, and qs may be written immediately from q3.

As in (11),q3 may be written

9, = B‘f]of(vl)f(vz)cfé(v)vdVid$é (20)

where B is the normalization factor, v, is the electron velocity, auua

1
Vo the veloclity of the neutral atoms. The relative and center-of-mass

velocities are

b5




<
1
<}
'
<

and

e m >
vﬂ'-ﬁvl'l'-ﬁ'\?é, Mume-!-m.

Substituting these relations in (20) and remembering tvhat the Jacobian

for the transformation is one,

1 2 2
- Fg (M) "
a = B e or3(v)vdvdv.

M- is the reduced mass,

. m m
Yalals wi (21)
Integrating over V,
(-~ ~4
2
5 /2 A
q = 16w B/?é'? (% e 2kT o’3(v)v3dv.
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‘*he normalization factor is obtained as before and is

(m )2 (22)
B = [ 22
e? (2mrkr)3

A1 is the minimum ionizing velocity, which, in this case, corresponds

to the first ionizatilon potential. n, is the number density for

electrons and n is the number density for the argon atoms. Thus we

have
. - K ”
3/2 e
a = \E_ n n (ﬁ) e T oy(v)viav (23)
v
- 1




Similarly,

o0
— 3/2 A
q, = -1‘-; nen(»ﬁ) e KT O‘u(V)VBGV (24)
. V"
1
and S
—~ 3/2 e
q = _;.‘r n.n {‘T) e KT O'5(V)v3dv (25)

"
Vi
1]
5 corresponds to the second ionization potential, 44.0 ev, and vi"

to the third ilonization potential, 88 ev. The observed cross-sections,

v

Cjé, Oj,» and CTB are shown in Fig. 7 (Ref 53). Because of the greater
weight attached to the low energy cross-sections, values for (73 and
O}, near the threshold are shown in Figs. 8A and 8B (Ref 54).

3. Recombination Processes.

After some electrons have been created by lonizing impacts between
heavy particles, electron production increases with extreme rapidity
due to the processes discussed in section 2.2. However, there are op-
posing processes, viz, recombination between electrons and ions. These
are the following:

(a) Dielectronic recombination

A+ + e —pp" (doubly excited atom, i.e., two electrons are
excited)

A ————-9‘A+ + e

SA' + hy (A' = singly excited atom)

L
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Fig. 7 Cross-sections for ionization by impact between an argon atom and an electron. (Ref. 53)
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(v) Dissociative recombination

A2+ + e——)A' + A'
(c) Radiative recombination
AY + e—A" + by
(d). Three-body recombination
At + e + A —A + A.
The first three processes, béing two-body processés, are most important
at low pressures whereas the fourth process becomes most important at

higher pressures.

The recombination term p in equation (4) becomes
. =2 Py
.1

where Py is summed cver all possible processes, i.e.,

dielectronic recombination

P =
Py = dissocliative recombination
p3 = radiative recombination

ph = t@ree-body recombination.

3.1 Dielectronic Recombination.

When an electron recombines with an ion some energy is released.
If this energy is taken up by a second atomic electron, a doubly ex-
cited atom will be formed,‘
+ "
A" +e—>A .
Because of the length of the lifetimes involved, we will probably not be

interested in how A" decays. That is, A" will either revert to its ini-
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tial state, ejecting one _electron and leaving the other excited electron
in its initial bound state,.
A" —at + e,
or, the doubly excited atom will undergo a radiative transition going
over to a stable, singly excited sﬁate, ’
A"—>a' + hy.

We have then

/A++e
\A'+h>}

It has not been possible to obtain an accurate cross-section for

At + e —3a"

this process but we can gain some information by using a computetion

of Massey and Bates (Ref 22). There is a chance that the lifetime of

A" for decay to A+ + ¢ is much greater than the time required for a
radiative transition, i.e., 10-8sec. Assuming such a possibility, then
ve may compute the contribution in the following way: The Saha equation

may be written

3/2 "
R 1 12 z (A")
+ K | 2mmkT

n, o z (e) Zn(A+)

where K is the equilitrium constant and the Zn are the partition func-
tions described in Part I. This of course assumes the process is one
of equilibrium which is not strictly true.

Each time an electron disappears a doubly excited complex appears,
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hence

vhere T 1is the lifetime. 1n case there is more than one state for A"

then
E
- 2
= kT
v e

2 \3/2 2 2

h 3 5 2 (since n n+)

P, = ‘n =
1l 277/‘uk'r 2w+ e e

LA is the statistical weight of the collision complex A", wh is the
statistical weight ofithéiion, and E8 is the energy excess of A" above
at*.

Substituting numerical values and assuming U = 10"8 sec.,
T= 20,000°, and that the statistical weights are of the order of unity

then

n

E
8
-14 22 - kT
pl 10 n, - e

E
The lowest state fcr A" will have an energy such that (%é) is about 5,

hence

As will be seen later, this term can be neglected compared to p3 and ph.
If the cross-section for this case is C7;1 then, neglecting the

velocity distribution,

2

pl = (7;1 vne

and, for T = 20,0007,

23




24 2

c7‘1 = 10 cm .

r
On the basis of the above computation and because the concentra-
tions of the reactants is small, this reaction will not be included in

the final calculations of Part III.

. 3.2 Dissociative Fecombination.

An argon atom and an argon ion may unite in a triple impact to form
a molecular ion, Agf. Because of the short duration of the time of forma-
tion, the process

+

Ay

+ e—>A' + A'

could be of considerable importance. And, iIn fact, at low temperatures
this is thought to be the case (Ref 30, 31, 32). However, molecular
binding energies arz low and since the mean temperatures we are consider-
ing are in the rangs from 2 to 3 electron volts, it is probably safe to

assume that the concentration of A2+ is negligibly small.

3.3 Radiative Recombination.

In the previous sections two types of recombimation processes have
been briefly considered and it was indicated that their contribution to
the total recombination process could be neglected. This will be veri-
fied by the discussion of the present and the following sections.

Radiative capture of an electron by an argon ion is a two-body
process and may be represented by the reaction

A" + e——A' + hy (26)




where A' may be the ground state or any excited state of an argon atom.
This can be regarded as a radiative transition of an electron from an un-
quantized (free) state to a bound state.

There is also the possibility of the attachment of an electron to
an argon atom to form a negative ion. However, the cross-section for
such a process is smell, particularly for inert gas atoms (Ref 52),
hence will be ignored.

So far observations of recombination ratés have not been very success-
ful for two reasons. First, as has been pointed out before, it is dif-
ficult to separate the various mechanisms involved. At low pressures and
temperatures dissociative recombination occurs. As the temperature in-
creases radlative recombination plays an increasingly important role
and with increase in pressure, the three-body process enters.

The second difficulty lies in the order of magnitude of the effects
produced. This may be indicated by the following consideration. The
lifetime of an excited state of an atom is observed to be approximately
. 10"8 sec. This means that an electron must remain in an excited state
in the neighborhood of an ion as long as 10'8 sec before there is con-
slderable chance of its undergoing a radiative collision. Then if
T sec is the collisicn time, 17/10-8 is the chance of emission of radia-
tion during an encounter. Collision times are of the order of a/v where
a is the range of interaction and v is the relative velocity of the in-
coming electron. Taking a = 10'8 cm and v = 10° cm/sec givesT= 10'16 sec,
hence the chance of capture to & particular quantum state is 10’8, i.e.,

108 encounters are required before an electron is captured.
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In the first experiments in which recombination was studied
(Ref 35, 55) a discharge Lube was employed. After short-
circuiting the discharge the decay of electron density in

the afterglow was investigated by visual intensity, by spectro-
photometric measurements, and by probe measurements. Recently,
a microwave technique has been employed (Ref 24, 26, 30, 32).
The gas in a microwave cavity is ionized by the microwaves and
the decay time for the electrons measured by observing the
change in the 1esonant wave-length of the cavity. However,

the recombination coefficients as measured by the microwave
method are 10 fo 100 times greater than those measured by

the probe technique. This is probably due to dissociative
recombination, as the experiments were done at relatively low
temperatures.

Since experimental cross-sections are not available, it 1s neces-
sary to develop a theoretical expression for the radlative reaction
(26). What is needed is é relation for oL as a function of temperature
for the range T < 3 ev where

dn
—_—
dt

) = - <7(3(T)ne2
radiative

and 0(3(T) = O,v; or, if maxvwell distributions are used, 0‘3('2) = o.v.
v is the relative velocity of the incoming electron and c&_is the cross=
section for radiative capture.

It would be possible to use the inverse process, viz, photb-ionization,

n+ A—at + e (27)

by applying the theory of detailed balancing. But this reaction has
neither been computed or measured (see, however, Part III, section 6).

An accurate theoretical derivation has been made only for hydrogen
(Ref 36, 42). An approximate (classical) theory has been given by Kramers
(Ref 41) and epplied by Eddington (Ref 27) and Biondi (Ref 24). Biondi

found that Kramers' theory gave a result for argon that was higher than
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the experimental value by a factor of fen; however, 1t has been pointed
out that the measured fecombination coefficients may include several
processes whose contribution is unknown. Hence the theory could well
be in error by several'drders ofrmaghitude.

To restate the problem, we have a plasme consisting of free electrons
and neutral and singly;ionized argon atoms in various states of excita-
tion with respective éonééntrations n, n and nf where n+ =ng and the
velocity distributions are maxwellian. The radiative capture cross-
section for an electron by an argon ion, reaction (26), is to be esti-
mated.

Classical Theory. When an electron passes through an electric

field in which the charge distribution is uniform, it loses energy at
a réte dependent upon the square of the acceleration. If the accelerat-
ing force is exerted by a positive charge, the path of the electron will
be hyperbolic and such that the greatest acceleration, and consequently
the greatest energy loss, will be at the point of closest approach to
the positive charge. Kramers used this classical picture to develop
the following theory for radiative recombination. Let us assume a uni-
form charge distribution to surround each a;éon nucleus. This charge
distribution may be obtained by taking the self-consistent field cal-
culations of Hartree (Ref,43) for a neutral argon atom and reducing the
outer orbital charge by un;ty with appropriate adjustment of the radius
and charge density. The result is shown in Figs. 9, io;lll. When the

electron penetrates this charge distribution, it radiates energy at a
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rate given by

SR
3c 3c
vhere'ﬁ is the dipole momént. For a spherical charge distribution the
dipole moment is zero, hence the only contribution to D is from the in-
coming electron, i.e.
} ﬁ'; er (29)
where T is the distance bet;éen the center of the atom and the impinging
electron.
The equation of motion is
R
r’ . (30)
Ze is the effective éharge as seen by the electron as it passes through
the charge cloud. This has been estimated on the basis of the Thomas-
Fermi model to be between lle and 13e (Ref 24). The self-consistent -
field gives the distribution shown in Fig. 12.

From (28) - (30),
6, 2
2 e Z
R = — -—{}-
3c3 /Azr .

Since the incoming electron and the atomic ion are oppositely

(31)

charged, the path of the electron through the charge cloud will be an

hyperbola, the equation of which is

A

= TEcosg (32)

r

where A and € are constants, € being the eccentricity.
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If ﬁr and PQ}, are unit vectors in the direction of increasing r

and q, then

Substituting in (30) the radial equation of motion is

MEr@?) = o 2

r
For the angular momentum

L =/<r21'? = constant.

Let
1 s 1 du
r = T’ r=e - 'u_z' 3t
then, from (35),
2 2
SAETIREEST PREEN IR
Substitute in (34) obtaining,
2
du, u = e2Ze ,% .
P .
From (32)’
2
- € d
u=1 'EOS‘P, d?‘2"=§coscy.
Hence, from (38) and (39),
2
L
A= 2Z )
e e/*
63

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)




and, for the equation of path,
2,

e Ae/“
u=-—l—2—-— (l-écosq). (41)
We now assume the total radiative energy loss to be given by
[
<Y ?O
W= Rdt
+Q
where 2?2 is the angle between the asymptotes. Actually, if the electron
loses energy, the incoming angle must differ from the outgoing angle;
however, the assumption of equality is approximately justified classically

as will be seen below. And, quantum mechanically, the assumption is even

better. Substituting {31), (37), and (41) in W,

L elozeh/_‘ €2 2
W= 3c3 =5 1+ — (r- %) + 2€ sin@ - - sin 2Q_ (42)

If v is the initial velocity and b the impact parameter, the angular

momentum is

L = b,
The total energy of the system is \
w2 222 e
E —%5(1‘4«‘ ) - = .
From (41),
du _ ('.ezze}*

-— = + —————— gin
3% 2 g




and, using (37),

éezzesincy ] . ezl.

1":- -ﬁ ) rq: Le (1-écos?).

Substituting in E,

Y 2
E = e Z (é 2-1)
}‘_b2v2 2

Since
2
E = ‘% MV,
and, from (32),
'_ 1
€ = cos ?o ’
2,
b = 5 tang@ . (43)
MV _
Eliminating € and L in (42),
10, u
-'% [(sec P2 r-g) + 3 tanqao] (44)

Substitution of (h3) into (44) shows that for our range of tempera-
tures (T <3 ev) ?o is close to zZero, hence, to this approximation,
2".eloz y

W= _T""' . ) (45)
C3jl bsvs

The assumption is now made that if the energy lost by radiation W
is greater than the initial kinetic energy of the electron, then capture
takes place. Quantum mechanically this means that if the incoming angle

differs from the outgoing angle, the electron falls into some gquantum
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state n, L.

Let W ='%}Lv2 and solve for b:

(m) JL/5:"eW5 217.68ze“/ >

b = =
£175 ¥o 5 (46)
where
e
e v
- A-z.
The cross-section is
. 5 1.&885-105z88/ > -
O(v) =b™ = — T
vlh/S

in agreement with Ref 2.

Up to now the variation of Ze has not been taken into account.
Combining equation (465) and Fig. 12, Z, may be obtained as a function
of v. This is plotted in Fig. 13. Similarly o(v) is shown in Fig. 14.

The recombination term p3 is

Py = f:( f(vl)f( v2)0f(v)wnﬁ?ld\7‘2

where the notation is the same as in section 2.2. Changing to rela-

tive coordinates, from equation (23)

2
2 3/2 2 -% v3
p3=\/; (ﬁ) n2 | e o(v)v3av. (48)
(o}

It will be shown iIn Part III that the above result is incorrect;
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hence, we present below the quantum theory which should give the cor-
rect answer but for which accurate computations have not been made.

Quantum Theory. Following the radiative capture of an electron by

an argon ion, as indicated by (26), the resulting argon atom may be in its
ground state which is a 3p6 level with an occupation number 1/Z(A) (cf
Table IV, Part III), or in any one of its discrete excited states. The
reaction is a transition of a free electron of energy 1/2/&2 to a bound
state for which quantal xf.heory gives an effective cross-section of

3_hvc3

%( n).t) =

The bound state is specified by the quantum numbers n,f, and v is the
initial relative velocity, )/ the frequency of the emitted radiation and
ei' the dipole moment where
D=eM =~°S‘l[’fe? lPi*d'U.

The distance between the incoming electron and the center of the atom is
T, dlf is the normlized.x;vave function for the bound state, and l//i is the
wave function for the initial free state which is normalized to have the
asymptotic form of a modified p}.a.ne wave and the corresponding scattered
wave. The amplitude of the plane wave is normalized for a flux of one

electron/cmz/sec in the direction of the wave so that

ikr
N ikz L e
‘l’i = :]:75. [e + "-—r f(e)]

is the normalization factor, k = mv/H, e1X% 35 the plane
ikr
wave travelling in the z-direction, _e_r__ £(©®) represents the scattered

where N/vl/ 2
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wave and f(6) gives the angular dependence of the scattered wave. The

total radiative capture cross-section will then be
o = Zc’e(n,l)
Y
where the summation is over all possible bound states of the argon atom.
In Part I we saw that the number of bound states is limited by pressure
ionization such that, for our range of temperature and pressure, there
is no state for which n > 8.

We now assume (Bates et al, Ref 78) that for all excited states
the wave functions ({Jf may be taken as those of the hydrogen atom since,
for the excited states » the effectlve core charge is about one. How-
ever, the ground state wave function and the initial wave function must
be evaluated numerically. The wave function for the ground state of the
argon atom has been computed by Hartree using the method of self-

consistent fields and is tabulated in Ref 8.

The initial wave function may be represented by

4’1 = %_ (20+1) (PiL(r)PL(cos o).

Ifa(cos @) is the £th Legendre coefficient with ,5 the orbital quantum
number. The ground state of argon, being a 3p level, can combine only
with an 8 or a d state, hence only (// io and ()[112 need be determined.

L .
The wave functions l//i may be found by solving the Schrodinger equation

2 " 2 j)
= (rqjil) + 3 [(E‘V) ‘%}l] (rtfy ) =0
dr ‘ i 2ur
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where E is the kinetic ggergy of the incident electron and V the poten-
tial energy of interaction betﬁeen an electron and an argon atom. In
Ref 78 computations weré ﬁade for hydrogen and oxygen, and for the latter
the unmodified potential energy of the ionic field as given by Hartree
was used. However, for argon, as well as other inert gas atoms, polari-
zation effects are important (compare the discussion of the diffusion
cross-section in sectlon 3.4), hence the Hartree field should be cor-
respondingly modified. Using such a modified V the above equations

could be integrated numerically. :

Normalization of the argon wave functions has not been considered;
however, this is discuséed fér oxygen iﬁ tﬁe above reference. Once the
normalized vave functions () and (/,, have been obtained the cross-
section for capture into the ground state, (7;(3p), may be computed by
performing another numerical integration.

In the self-consistent field approximation used by Hartree the com-
plete wave function is the product of wave functions for each separate
electron. In evaluatimg'ﬁ'the integral is over the coordinates of the
incoming electron and this is independent of the other electronic co-
ordinates. In obtaining ¢7é(3p) above the effect of the other electronms
was omitted. Bates has shown that thls omission may be approximately
corrected for by multiplying by a numerical factor which for oxygen is
-93. .”.

The ground state cross-section for both hydrogen and oxygen amounts
to about one-fourth of the total cross-section. The two cross-sections

are not far different, that for oxygen being slightly smaller than that
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for hydrogen. We will use these facts in estimating the total cross-
section for aigon. 7

In evaluating the cross-sectiohs for capture into excited states
the assumption is made'that the wave“functions are hydrogen-like. 1If
the energy E of the incqming électronris small, then this assumption
is good. This is because, for small E, the phase shift produced by
the inner field of the ionriq also small. Hence if gbf for an excited
state is large, then 901 will not differ much from the corresponding
function for atomic hydrogen. This point was considered in Part I.

The computations made by Bates were for energies of less than
.28 ev. His results are plotted in-Fig. 18 of Part III where it is
seen, that for this energy range, ¢ decreases with energy. This is
to be expected becausé the wave-length of the incoming electron is
large compared to the dimensions of the atomlic system upon which it
impinges. However, for our energy range, i.e., one to three electron
volts, the electron wave«length becomes comparable to the size of the
atomlic system. In such a case one or more complete wave-lengths of
zero angular momentum may ba obtained within the range of the potential
well without affecting waves"of higher angular momentum. This means
that at an energy of approximatxely one electron volt, the capture cross-
section should show a sharp increase (Ref T9). In Part III, section
6, a method of detalled balancing is used to compute the capture cross-
section for energies between .1 and 3.0 electron volts. The results

are plotted along with those of Bates, where it may be seen that the
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predicted increase of crosse-section with energy is not obtained.

Unfortunately, experimental velues are unavailable for either
oxygen or argon. Also, computaéioné have not been made for energies
greater than .28 ev for oxygen and noné for argon. However, the method
of detailed balancing used to obtain the argon cross-sections has re-
ceived a fair amount of verification in its application to the shock
front. This will be'discussed in greater detail in Part III.

It has been suzgested by Morse and Stueckelberg (Ref 28) that the
cross-section <J}(Z,n,£,v) for capture of electrons of velocity v by a
heavy ion of charge Ze into a state Qf quantum numbers n,gﬂ is related

to that cy;(l,n,[Lv) for capture into the corresponding state for a

hydrogen atom by (see also Ref 52)

O;.(Z,n,l,V) = z° o (1,n,4,v).

This formula daes not apply to the ground state for which separate
computations must be mide as explained previously. In order to apply
this formula to our case the computations fof hydrogen need to be ex-
tended to higher energies. In addition, as will be pointed out in
Part 111, the argon calculations for the equilibrium region need to be
extended; however, this ié at present limited by the equation of state

usea here.

3.4 Three-body Recombination.

There are two ways in which electrons can be lost from the plasma:
(1) by the electron being captured in a two-body collision,

the excess energy being removed by photons, or by excita-
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tion of the atom, and
(2) by the electron being captured in a three-body collision,
the excess éhergy being given to the third particle.
The first of these has been discussed in the previous sections and the
cross~-sections given. The secondryill be considered in the present
section.

Theory of J. J. Thomson. We consider first the theory developeud

by Thomson for a plasma of oppositely charged.ions A and B and neutral
atoms C, and later modify the theory to apply to our plasma of ions,
electrons, and atoms. We wish to find the condition that an ion B
should, after making a collision with a neutral atom, proceed to des-
cribe a closed orbit around A. Assume that Jjust after the collision
the kinetic energy of the B ion is equal to the mean kinetic energy of
an atom at the temperature of the gas. If ml, m, are the masses of the
A and B ions, then if B makes a collision at a distance r from A, the

ions will describe cloused orbits around each other if r is less than r

o}
where ro is prescribed by
2’. ml!ng N v2 = -e_2.
2 ml+m2, I‘o ( 1‘9)

and v is the relative velocity of the lons at a separation ry- This
follows since a bound orbit is one for which the total energy, E = T4V,
is negative.

The inherent assumption here that the attractive energy e2/r for

r>rg is lost upon collision with a neutral atom seems rather drastic;
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however, in support of this is the moderate agreement between theory
and experiment under conditions for which the theory seems valid. In
addition, we have previously adopted the concept of a local temperature,
hence

AL
r = ge_
.70 3kT . (50)

Draw a sphere of radius r_ about ion A (cf Fig. 16). Then the
number of times per second that ion B comes within a distance r, of an

3

A ion is 1rr°2vn where n nB are the number of A,B ions per cm”. Ion

A A’
B will have acquired an additional amount of kinetic energy equal to
e2/r° by the time it approaches ion A within a distance r_, i.e., if

éoo represents the kinetic energy of B at a distance r = ¢ from A

and {_ is the kinetic energy of B at r = r_, then

2
e
geo:: éo T
(o] .
But 6= % KT and from(50), 2/ r, = 3/2 kI, hence & = 2@" kT)'

Thus, for recombination to take place, we require that B lose an
amount of energy of order kT when within a distance r, of A. We have
assumed that this amount of energy is lost upon collision with a neutral
atom. If B and C have equal masses, then, on the average, this assump-
tion is exactly obeyed, which can be shown as follows: Let ml, m, be
two particles where, initially, m, is at rest and m, has velocity vl.

' and is moving at an

After the particles collide, m, has velocity v

1
angle 8 with its original direction. m, has final velocity v

1

> and
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m.v mz,v2=0
Before collision o

mlavl
\\9
After collision /-¢
mz Vo
Fig. 15
angle q Then, from conservation of energy,
1 2 _1 2,1 2
™M TamN tamY (51)

and, from conservation of momentum,

mlvl' sin @ = ' sin ?,

mv, = mlvl' cos 6 + mv, cos ?

Eliminating ? ,
2| 2 2 2 2 2 ' __ 2 .2
m |}l sin © + vl + vl cos 06 - 2\rlvl cos 6] = m, v2 .

Combine this with (51) obtaining
2 s .2

2 ' ! t _
ml(vl - 2v1vl cos 8) - m2(vl -V, ) =0, (52)
from which,
\ 2 1/2
v m. m,
Lo L os e+ —2 1 - L (1-cose) .
v +m, 2
1 Wty 1 m,




: 2
If m)<<m,, then, to the order of terms in (ml/mg) ,

t R —
v1 ) mlcos 6+m2
vl ' ml+m2
Since -
AE _24v
E v o,
' ]
2(vl-vl ) v, 2m1

AE _ -
E T, T2\l-

) v = mTm (1-cos ©), (m1<< m2).

The average energy loss is, since cos 6 = o,

2E . ™

E m.l-!-m.2

This follows also from (52), i.e.,

— 1 2
AE 2TV

E T

'_% myvy N I
-é- mlvl2 Y1 m+my

(53)

(54)

(55)

Hence we need 45 calculate the chance that ion B suffers an elastic

collision with a neutresl atom C within a distance ro of A and such that

B loses an appreciable amount of energy and recombines in a closed orbit

with A, Let this chance be sB and let SA be the chance for A collid-

ing with C and recombining with B. Th chance that ion B should be at

a8 distance between /0 and L+ d‘o from a line drawn through A parallel



Fig. 16

to the relative veloci_ty of the two ions 1is Qfdf/roz and the chance
that B will go through the sphere of radius r, drawn about A at this
distance without a collision is
] 5 /roz_ /02

e ]B
where lB is the mean free path for ions B in a collection of atoms C.
If B and C are of approximately equal masses equation (55) and the
preceding argument show that, since, on the average, the energy lost
in a collision is about kT, the energy-loss mean free path l% is, to
a sufficient degree of approximation, equal to the geometric mean free

path. Thus the chance that ion B should pass without making a colli-

sion is
r°2- 2 er o 1/2
r - 1 - (1-2%)
o 7 7
Q = e B .gﬁéﬂ= e B e 22zdz
o o o
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1/2 £ 2yay

o 2 B
where z = ,O/ro. Let y =‘Z——-(1-z ) , 2zdz = = s— , then
B 2r
o
,E 2 o
Q= -2 e Jyay.
2r°
; e
Let
Yy
3=\ ey =z (1),
o
5 Yy
J _ -8y - .1 -8y ¥ .-y,
55 = - e dy = - =5 (1- )+ e
o a
hence
Q=-—2§[gBegB+egB-l].
€
Thus the chance that ion B will make a collision is
A T T
sp=1+2 2+gB- 5 (56)
€y 5]
with a similar expression for N and where
2r° 2r°
BT QL (57)

It should be kept in mind that 1&, Z% are really the energy mean free
paths and not the geometric mean free paths. The relation between the

two is, from (55),
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(m,+m,)
4 energy —2_ml—— 'egeom. (58)
AE

This is because 1 < collisions are required for the particle m, to
lose an amount of energy about equal to E.

If A,B are of approximately equal masses then,as they approach
each other they each aéquire additional kinetic energy due to their
attraction which is then lost upon collision. Hence the chance that
wvhen the two ions come wiéhin a distance r, one or the other of them

should make a collision within this distance is

3, + 8p = 8, Sp
where Sy 8p is the chance that they both make collisions within this
distance, and this has been included in both s, and s,. In case the

A B
mass of the incoming ion B is much greater than the mass of A most of

the attractive energy will go into increasing the kinetic energy of A
and the velocity of B will remain about the same; hence, upon colli-
sion only A will lose energy. Therefore,in this case, the chance

of making a recombining collision is simply By, Or s where

) -8
_ e e 1
g g

and, from (57), (58),

o e _ d (60)

where
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m, = mass of electron,
M=m+m,

e
m = mass of argon atom,

Oy ¥ diffusion cross-section (see below) ,
n = number of gas atoms,

and, the geometric mean free path is

i L. (61)

geon. ngoy

Finally, then, the rate at which electrons recombine with argon
ions by three-body collisions is given by the number of times per
second an electron comes within a distgnce r, of an argon ion,
7rr°2vn+, times the chance ?f making a regombining collision, s,

times the number of electrons, n,, or

P = 1rr°28vnen+ = 1Tr°25vn82 (62)
where -
+ 3
n = number of argon ions per cm”,
n, = number of electrons per cm3;
and
+
n = n .
e
In case g <<},
s = ég_ - § romeHO"d
3 3 M
and T -
_8wr_ 3 menod 2 6
BTF Yo T e (63)




from which

m no.
o, = .81’r03 =2, (g<<1). (64)

3
At a temperature of 3030000 and a compression ratio of 5,(7L = ZLO“22 cm2
which is much less than the claséical cross-section for radiative cap-
ture (see, however, Part III, secti&n 6).

To complete the discussion of the Thomson theory its limitations
should be considered and, in addition, use of the diffusion cross-
section, O, should be justified.

No allowance has been made for the possibility of more than one
collision while the electron is still within a distance ry of the ion
and before it has recombined. If such a collision could restore the
original hyperbolic motion and if the chance of such an occurrence vere
high, then the above theory would not give the correct result. This
is born out experimentally since theory and experiment agree at low
pressures where cyh shows an increase with pressure. However, at
high pressures the theory breaks down and since pressures are high
in a shock front (in cur case between 100 and 1000 atmospheres), it
is necessary to obtain a pressure limit for the theory. This is done
by defining a saturation condition such that ry ==4£. The corres-
ponding saturation pressure then lies at the upper limit of the con-
ditions considered in this report.

Langevin's Theory. Thomson's theory verifies the increase of the

three-body recombination coefficient oLu with pressure in the low-
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pressure region; however, at high pressures c(u drops off with pressure.
Hence we consider a theory due to Laﬁgevin (Ref 52, 58) which predicts
c%h nicely in this 1region. In this theory the electrons are attracted
toward the ions by the respective coulomb fields. They attain a relative
drift velocity which is inhibited by collisions with neutral gas atoms.

Ir kA and kB are the respective mobllities of ions and electrons,

then the relative drift velocity at a distance r will be

: £
(ﬁ”&a) 5 -
, r
The number of electrons drifting radially inwards across a spherical

surface of radius r about an ion is then

hunBe(kA+kB).
The electrons will drift up to and néutralize the lons unless deflected
by collisions with other cﬁarged particles. Assuming small ion density
and isotropic distribution, this possibility can be neglected, hence

the rate of recombination is given by

hne(kA+kB)nAnB

and
L = .
ot) kwe(kA+kB)
Evaluation of the mobilities for the plasma state behind the shock
front has not been made, However, for normal conditiomns it is found that

k drops off with pressure, verifying the decrease of of with pressure

(a2t high pressures).

83




The Diffusion Cross-Section. As indicated above, we wish to

Justify use of the diffusion cross-gsection in the Thomson theory. If
velocity distributions are used, the recormbination rate would be ex-

pressed as

B, = f f o'h(v)fe(?r‘l)f(#z)di?ldw‘?z

vwhere fe('\'?l) is the maxwellian velocity distribution for electrons and
+ >

f (v2) that for the argon ions. O'h_ is given by (64) and contains the
diffusion cross=-section oa(v). It would be convenient if an analytic
expression for oa(v) were available, hence we examine this possibility.

The elastic scati.ering cross-section may be written as

&=

™

2
= =0 E of {
(o4 2 (2£+1)sin 72

L
where
2m E
and ‘71' is the phase shift produced in the de Broglle waves of angular
1/2

momentum [,F. (,Z-i-l)] /4. We with an analytic expression for O which is
explicit in v. However, %l will depend on the scattering potential
V(r) which, for argon, is quite complicated. This was discussed in
section 3.3. Holtsmark (Ref 16), using the Hartree field modified by a
polarization effect, was able to obtain a theoretical value for o which

agreed well with the observed ¢ in the low energy range, i.e., his re-

sults led to the Ramsauer-Townsend effect. He was able to show that
L2=2

O = Otheor =é6 (?1+l)sin27)£ (for .3 ev< é’213 ev);

expt
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but in order to obtain values for 7£’Lﬂ-= 0,1,2,+++) a numerical inte-
gration was necessary.

Thus it is possiblg to obtain an empirical relation for 2¢(v) but
not an analytic expression. Hence we may fit an empiricel curve directly
to the observed values for O (cf Fig. 17). There is some disagreement
between observers, particularly in the region below 1 ev, so an ap-
proximate curve is used.

The value for the cross-section at zero energy is given as about

16 cm2 (Ref 18, 19) while Wahlin (Ref 20) measured

16

7 x 10”
Oy = -T3x10° em® at &= .03 ev. Again because of the nature of the
maxwell distribution, it is somewhat immaterial what t?a(O) is; so we
use O‘d(O) = 1x10-16 cm2.

The interest here is only in low-energy cross-sections hence we do
not need to discuss inelastic, superelastic, or radiative cross-sections,
i.e. only elastic collisions are to be considered. A superelastic col-
lision occurs between an electron and an excited atom where the electron
gains energy from the internal motion of the atom. Collisions involving
radiation are rare ccmpared with other types of collisions and have been
previously considered.

If C’b is the total elastic cross-section and Io(e) the differential

cross-section for elastic scattering then
Tremw

= Io(e)sin eded?.
oJ o
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Ir is the total ccllision cross-section where
.
o-2 o,

is summed over all types of collision, then in the energy range of in-
terest o’o = .

The total collision cross-section may be measured by the
following method (cf Fig. 18). Electrons are ejected photo-

electrically from a source
F into a circular collimate
ing channel with a magnetic
field directed perpendicu-
lar to the paper. Electrons
which suffer no collision
enter a collector at C,
while those which are scate
tered fall to pass through
the slits and those which
collide inelastically move
in new circular paths of
smaller radii. S

~<~light

If ic is the current to C
alone and iB the current

to B alone then ic1 =

-dp,x Fig. 18
e 1 where 1 =
a1 b gy
iBl + 1Cl,<x is the absorption coefficient, and P, is the pres-

Sz

sure. Similarly at a pressure p2,

- -¢p2x
1o = 1pcp ©
\
and
’ 1o igo
%(py-py)x = dn = K2
Bc2 Ic1 .

Hence ¢ may be determined and consequently O°.

el
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In case the electrons are very slow (say ~1 ev) it is possible
to use the Townsend method (Ref 21) (cf Fig. 19) in which a
swarm of electrons is introduced

into a diffusion chamber

through a slit A across

which an electric field F

is directeua as shown. The

current may then be measured b E
at Cl’ B, and 02. Guard . VA

rings 2, 3, 4 may be adued
to insure uniformity of the
field. , CzB G ¢

o

Now, as the electrons dif-
fuse through the chamber
they gain energy firom the
field but, in the steady
state, this galn in energy
is equal to the loss in energy by collision with the gas atoms.
(We are assuming the electron energy so low that only elastic
collision with gas atoms need be considered). Let the drift
velocity be u in the direction x of the field and assume a
definite mean energy € for the electrons.

Fig. 19

Let the mean free path4l and the fractional energy loss A be
constant. Then, if ¢ is the mean velocity of the random motion
of the electron, the actual path length is cx/u and the number
of collisions made in travelling a distance x is cx/uf . Then,
from conservation ¢f energy,

Aé % = Fex,
or, if € = 1/2 mec‘,
Ac” 2 Eﬁg
u m_
e

If 48t is the time between collisions then udt is the mean dis-
tance travelled in the direction of the field in this time. As-
suming isotropic scattering then

UJt = ‘% 'F_I'i (ét)zy

or, if Jt = /Z/c, © . -
) " 2uc = Fed/m.




Now ‘llvl/p where p is the pressure, hence u should be a
linear function of F .

P
u may be determined by directing a magnetic field H per-
pendicular to the electric field F. Then the stream of
electrons will be deviated through an angle © such that

. Hu
tan 6 ~ F .

If u is plotted against F/p, the mean free path £ may be
computed from the slope of the curve.

In this discussion the effect of diffusion is neglected;
however, the method is discussed in more detail in Ref 52,
Chapter I.

If we assume that in the electron swarm the mean energy is

80 small that inelastic collisions with gas atoms do not

occur, then the only energy loss will occur in elastic col-

lisions and will be due to the finite ratio of the masses,

m /M. Also, we assume the electron concentration in the

stream to be so small that interaction between electrons can

be ignored. -

Considering only elastic impacts between electrons and atoms, then
since m, <<m, the fractional energy loss per impact by an electron is

(cf eq (54))

Te
2(1-cos ©) =

where terms of order (me/m)2 have been dropped.

If p(e)dfz is the probability that the electrun will be scattered
into a solid angle dJ?.-then the mean fractional energy loss per impact
will be

2 -m—-; (1-cos ©)p(0)df2.

But the differentlal cross-section for elastic scattering into the

solid angle af) 1is given by




‘Io(e)dﬂ = O'Op(e)d.(l.

where <>6 is the total cross-section for elastic scattering. The mean

fractional energy loss per impact then becomes

o e Ca
m O,
where _
™ nom
Oy = Io(e)(l-cos 8)sin eded? .
(o} o]

(7& is the diffusion or momentum transfer cross-section.
The fractional amount of energy lost by an electron in moving &

distance x 1s then

m o m
9 -3 ——g . = -—e . .
@ — CZ; nxc;a 2 - noa X.

Hence for elastic collisions the mean free path should be Z = ]_/no‘d and

the mean fractional energy loss M\ = 2me/m.

4, Summary.

In the above sections the individual atomic interactions that take
place in an argon shock front have been detailed. It has been indicated
that the production of electrons is a‘two-stage process. First, starte
ing from a state of translational equilibrium where only argon atoms
exist, electrons are produced by ionizing collisions between the argon
atoms. Once a sufficient number of electrons have been proauced, then
ionizing collisions between argon atoms and electrons predominate. If

maxwell distributions are replaced by averages, then the two production
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coefficients for the above reactions may be written asggi =?;iv and

)?; =]§;§ where /g& and /43 are functions_of temperature only. Theoreti-
cal values for these cross-sections hafe not been derived, hence we have
used the experiment croés-sections. Othér.production reactions have
been considered and assumed to be unimportant.

As soon as electroné have been produced in quantity, recombiﬁation
processes must be considered. It was shown that, for the pressure and
temperature conditions ekisting in a shock front, onl& two recombination
processes are of importance. The first is radiative recombination which
depends on temperature only, and the second is three-body recombination
which depends on temperature and pressure. |

Experimental values for the cross-sections corresponding to the two
recombination reactions éie unavailaﬁle, hence theoretical derivatlons
have been made. Radiative capture of electrons by argon ions has been
considered both classically and quantum mechanically. It is indicated
that the classical theory gives too large an answer by several orders of
magnitude. Thomson's theory for the three-body process has been pre-
sented and its limitations discussed.

If we combine the above processes the source term which expresses

the rate of production of electrons may be written as

dn
e 2 2
S = T = /61n + /f%nne - c:(n.e .

Quantitative evaluation of xéa(T), /f%(T) and (n,T) is made in

Part III.
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PART III: COMPUTATIONS AND RESULTS

1. Introduction.

In Parts I and [I the éhéoretical basis for the computations ine
volved has beeh presented in some deiailg In Part III the theory will
be applied to a few special cases. It should be remembered that the
theory is somewhat limited, viz, there is an upper limit to the tempera-
ture because doubly ioniied argon has been ignored and there ié a lower
limit to the pressure and temperature due to effects discussed in the
sections on recombination. Also, as pointed out in Part I, if the
degree of ionization is too high, the method used to calculate the
partition functions breaks down. The theory as presented is probably
good for shock velocities in argon between 3 and 9 times 105 cm per sec.

If higher shock velocities are of interest then doubly ionized
argon must noﬁ be neglected which means a different equation of state
than the ome used here (cf Ref 69). However, one would still be
limited because there is not sufficient cross-section data available
for reactions involving multiple-ionized atoms.

The extension to lower shock velocities is not difficult for argon
because, below about 3.105 cm per sec the ionization is negligible,
i.e., only translational degrees of freedom are important. This case

has been thoroughly treated as we have previously indicated.

2. Egquation of State of Argon.

Using the method of Part I, sections 2-4, we write down the com-

plete equation of state for argon for a rather wide range of density
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and temperature. Tne partition functions are given by egs I: (22) to
I: (24). The energy levels and multiplicites for the low states of
the neutral argon atom A and the argon ion A+ are listed in Teble 11I.
This table enables us to calculate Zlow(T) and Zion(T)' There are a
number of higher levelé for the argon ion which are not listed in the
Table. These levels are fairly closely spaced with an average number

of levels per degree, W, and an average multiplicity g. Then, for

ion ’
n(E2) s E3
. . —_ E T
Zion = EE; gne n + ng / aE
n(El) E2

where the energies are expressed in dégrees. For argon we have used

3

E, = 0, E, = 268920, E, = 320800 and Bg = 4.05°10™". The integral on

1 3
the right represents a correction to the higher states which is small
but is easy to make. Because the ion is more tightly bound than the
atom, pressure ioniZaéion will not be important and no correction has
been made for this. )

Zyign’ 2 I: (24), is not only a function of temperature but is
also a function of density. Values of the energy Enl' and the effective
multiplicity are listed in Table III.

Using Tables II and III the partition functions for the atoms and
ions have been calculated andrare listed in Table IV as functions of

the temperature and density ratio. The equilibrium constent K, eq I:

*
(17), is given in Tatle IV for the initial condition of 59.38 cm Hg,

*
Actually, K divided py the partition function for electrons is listed,
or, for our case, K/2.
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which is local atmospheric pressure at Los Alamoé, (see Table I).

From equations (16) and (17) in Part I it is clear that the equilib-
rium constant for an initial pressure of h cm Hg can be obtained from
the value of K in Table IV by multiplying by 59.38/h. (Although, the
internal partition functions may change slightly due to the cut-off
criterion.) The concenfrations, [A] and [ﬁf], of course depend upon the
initial conditions through the equilibrium constant.

The energy content of the neutral argon atoms is given by

Aa) =2.5+5

and that for the argon ions by

W
+
B, = 2.5+ 7=
ion .

3. Shock Conditions ln the. Equilibrium Region.

It has been shown in Part I, section 6, that heat conduction and
viscosity do not enter into the shock conditions in the equilibrium re-
gion. It has already been indicated that the equations to be used are
those of Part I, section 5, and specifically, equations (L42) and (43)
of that paragraph. These two equations are solved simultaneously for
7 and T with the shock velocity U as a parameter. The quantities g
and /7 occur in these equétions and are rather complicated functions of
7Z and T. They are obtained from the equation of state as explained in
Part I. -

It is possible to simplify the computation of /econsiderably by the
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following epproximation. The ionization ratio x is given by

B . n_/n
x = n+z = lin /n (1)
B - e
and the average number of particles per original) atom by
g = l+x. (2)

X may be computed directly from the equilibrium constant (listed in

Table IV) by the relation

Since the temperaturesrwe are conéidering are low enough so that
the number of singly ionized argon atoms in higher excited states is
small, it is a good assumption that

ABa%) = 2.5,

Then, from eq I: (10),

€ = Aa)1-x) + K(A+)x+/3(_r§l) T x4+ 'IkTr' *x
or '

€ = A(a)(1-x) + 5.0x + ﬁ%@-’i - x (3)
where /f(éil) = 2.5 and the first ionization potential for argon is

I = 183,000 degrees. If we knew /f(A), we could obtain € and hence

/4 from
_ /8 ) % .

/g(A) has been calculated and a good fit is

Awr =L (22), (4)
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If (k) is substituted in (3),

€ = 2.5+5.5% + 12320 183000 X,
or
2.5+5.5x + 183000
/ = l'hx ® (5)

If we substitute the relations for /f (A) and /3 (a*) given in

section 2 into € ,

ea(25+ )(1-x)+ 25+ i°n x+25x+i,r
ion

or

kT Z Z 2

' ’ W
€ =2.5+2.5x+-I—x+°-’--x(E- ion 1
ion

Thus we see that our approximation is that

W
ion W
x=gtxlg— -3z
ion
or
< = W2
3+H_:ion
ion
It
¢ =2 L
= .5+2.5x+-k71,-x
then
t
€ = € + 3x.

t
The term 3x is less than 10% of € 1in even the most extreme case.

Hence, as shown in the following table, the maximum error made in com=
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puting € by this method is not more than .5% and will, in most cases,

be far less.

. W
W ion
T A Zion x (correct) | x (approximate )
16000 .12 Ol .05 Ol
19000 45 .04 .12 .13
22000 <97 .05 .22 .24
24000 1.46 .08 .28 .33

Results of the computations for the two initial conditions,

p, = 59.38 cm Hg and pi = 1 cm Hg are plotted in Figs. 1 to 6 and
listed in Table V.

Some measurements have been made on strong shocks in argon at Los
Alamos (Ref T4). The shocks were produced by high explosives for which
the detonation velocities are known and the material velocity u behind
the shock front was measured. The results are plotted along with the

theoretical curve in Fig. 1.

4. Electron Balance in the Shock Front.

The equation for the rate of electron production, i.e., the source
term, is given in Part II, section 1. In order to apply this equation
to the non-equilibrium part of the shock front, we need to incorporate a
term that expresses the change in macroscopic density. This comes about

as follows: Let S represent the source term, i.e.,
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S = q-p,
or,
s = f(1)® + f(Than -ol(T)n 2. (6)
1l 3 e e
(Note that o has been written as a function of temperature only.
This is not quite correct but is discussed further in section 6.)
S is the number of electrons produced per cm3 per sec by interatomic
collision processes. If AX is the Eulerian element of displacement
perpendicular to the shock
front, then the number of

electrons in the volume ele-

ment AXAA is

'<"'AX = A
N, = n°AXAA I
and the number of argon . A
atoms is
Y
N = n-AXAA. u u+Au

Hence the electron flux
through AA is
Ag Ne/AA)

Dividing through by AX and taking limits, we obtain the ordinary con-
tinuity equation expressed in terms of electron density

c’ne . a(une) s

ot o X ’

or,
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1911 én

. e _g Ju
2t o%X " ° "B DX

If x is the Lagrange coordinate, then

and

To an observer on the shock front the shock wave appears stationary,

hence we may make the similarity transformation,

£()—>£(T) = £(t - T ) (7)
and obtain
weses Beser B @
where
M=p U

The Rankine-Hugoniot equations may also be transformed as follows:

/°l—3-—= -%-E tecomes —% =-g-% ,

f év__gau becomes M-d—v-=-
1 9%t Oox av

ale
-

2 2
Il l ,/ol-g? (E'"'u_g')":‘-gg;{'(pu) becomesm%v<g+.‘ﬁz.>_dg’%{1)

where v is the specific volume. These last three equations lead to the
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ordinary shock conditions discussed previously, viz,
M(v-vl) = - u,

and

2
' M(E-Eo + g—) = pu.

From the ¥ -law equation for the energy,

E =§@-_1 ,

and the three shock equations we obtain the foliowing relations given

in Part II, section 1:

2p. U2
L h L (9)

g B pl(T'i'l) ) 700
and _ ,
. +1
5+ o
where s )

T+1
Too =51 .

From the equation of state
P = gR*oT
we have that )

7 T
T:-%\-A. _%. (11)




These relations enable us to calculate queT as vell as other
quantities at any point in the shock front provided ¥ is known (assum-
ing the shock velocity q‘and the initial conditions in front of the
shock to be given). To-calculaté ¥ we return to the equation for the

electron balance (8) into which we first substitute

1 du_ _dv
M dat at .
This gives
1 P 1 ogv_ s
n d v dt n
e e .

Using (6) we obtain

afn(n v) 2
T = (D) 2= + f5(Dn-ol(T)n,,. (12)
e

n is the number density of argon atoms at temperature T and n, is the
corresponding value at Tl. Also, n, is the number density of electronms,
vhich, of course, is equal to the ion density. Conservation of mass

may be written

(n+ne)V =n,V, = k. | (13)

From (1) and (13)

. _ k(1=x)
neV = kx, n‘ == . (14%)

Substituting in (12),

ax "ilf - Bx-28k
v

T 5V +

NUASTASES
AT v /. (1)
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This equation can be integrated by completing the square. Let

. (gl-,ej-d,)k; . 553-2,51)1; ' /Ik
& == > b ==, c' =5
Then . -
X5 X2
dx 1 dx
At = . BV Nz 1§ °
X a'x " tb'x+c x + p___ - b _cl
1 {2+ =) -\&) - =
Let
_[( b,)z c,]l/2 [ o ,]1/2
a=\|ls7 =av = b ==
2a a
and
bl
b=,

The integral then becomes

x%.+b x.+b
an' At = ta.nh-l(-—lz—)- tanh‘l( 2a )

or

-1 xl+b
x2 = = bta tanh [tanh -/ - as' At | .

This equation enables us to compute the degree of ionization Xp at a

point specified by an interval At seconds behind a point at which the

degree of ionization x, is known. In this time interval /4., /5’3, and
ol are assumed to be constant. In the integration one iteration was

used.
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5. Production of Eleciréns in the Shock Front.

We have previously discussed how electrons are produced (Part II,
section 2). It remains here only to evaluate the electron production
coefficients, /1 and /?3

Initially there are no electrons, hence the only means by which
electrons are produced :I:s? I;y ;l.c;nizing collisions between argon atoms.
The cross-section for this réaction has a relatively high threshold
value, hence the coefficient /éa is quite small for the temperatures
we are considering. This means that ¥ remeins eséentially constant
until a sufficient number of electrons are present for the ionizing

collisions between electrons and atoms to predominate. This point is

called the onset of ionization.

From eq (18), Part II, ,61 is given as

> -]

3/2 - =
/1 "1‘5 (ﬁ%"\ e WET O’l(V)VBdV (17)
v
i

and is plotted in Fig. 7. As will be shown in section 7 /5’1 is the most
important quantity in determining the actual width of the shock front.

Once the onset of ionization has been reached reactions between

electrons and atoms talie over and /93 becomes the important production

coefficient. /53 is def'ined from eq (23), Part II, to be
= /)32 e ;
/3 "‘/—:"’r_ (ﬁ) e okT 0’3(v)v dv. (18)

oo
~ vi
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A graph of /3('2) is shown in Fig. 8.

In the computations to follow only the two reactions discussed
above have been considered. In a more refined analysis some of the
other reactions listed in Pgtt IT might be included; however, because
of the approximate nature of some of the quantities involved and be=-

cause their contribution is small, this was not done.

6. The Recombination Coefficient.

There appear to be no experimental measurements of the recombina-
tion coefficient in the temperature aqd density regions of impo;tance
in the shocks we are considering. We therefore consider the theoretical
formulae for radlative reéoﬁbination derived by Kramers, and for three-
body recombination as given by the Thomson theory. These formulae were
discussed in sections (3.3) and (3.4) of Part II. We shall see later
in this section, however, that the region of validity of the Thomson
theory does not include the conditions of interest, hence its use would
be suspect. Moreover, we will also show that the Kramers' theory gives
values for the radiative recombination coefficient which are much too
large to permit the equilibrium degree of ionization behind the shock.
We must therefore proceed in a different manner to obtain the recombina-
tion coefficients. Our method will be to use recombination coefficients
determined by detailed balancing from the inverse reactions.

We can readily see that Kramers' formula for the radiative recom-
bination coefficient gives values which are too large. His values,

which we denote by <x3(c1), as discussed in Part II, are considerably
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larger than the corresponding values obtained from the theoretical
three-body recombination coefficient dh—( theor). If Kremers' formula
were correct, we could neglect 0(11- and simply replace of by 0(3 where

o0

2
-

3/2
0{3 sﬁ (f%) e ¥ o'r(v)v3dv, (19)
o

o‘r(v) being the cross-section for radiative capture of electrons by
argon ions given by Kramers' classical relation (eq II: (47) or

Fig. II: 13). A plot of 0(3(c1) is shown in Fig. 9. With our assump-
tion that ol may be replaced by c13(cl) in eq (15), the production and
recombination coefficients, / 1? /3 and o are all known as functions
of temperature and the §quation could be numerically integrated across
the shock front. If this is done, we obtain a degree of ionization in
the steady state region behind the shock (region 4 of Fig. I1I; (1))
which is smaller than that computed in section 3 by a factor of about
th.

In view of the failure of Kramers' classical theory for the
radiative recombination coefficient, we turn to the quantum theory for
this process. Usually the cross-section % h for the inverse process;
that is, photoelectric absorption, is what is calculated. This causes
but little difficulty, for the radiative capture croés-sectioﬁ o’r can
be obtained from it by detailed balancing. In fact (Ref 82)

2
Oy - Pph - (hl’)2

o 2
ph ?el 2mc2E |

, (20)
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vhere P = hv/c is the photon momentum and P, = V2mE 1s the electron
momentum, E being the electron”kinetic energy.

It 1s possible to use arrather simple approximation for the photo-
electric cross-section, for we ;re intefested in processes where the
kinetic energy of the electron in the ionized state is small compared
to the ionization energy. For this caée it is valid to expand the
continuum wave function occufring in the matrix elements of the transi-
tion probability about the function for zero energy. If 2 similar ex-
pansion {(which is a priori much less Justified, but which nevertheless
gives good numerical results) is used for the bound state functions,
and the resulting cross-section averaged over all values of the orbital

angular momentum of the bound state, we obtain the cross-section derived

by Menzel and Pekeris {Ref 80) and discussed by Mayer (Ref 81, p 12),
)
*

5 2 2 Z
2 3 2 mc“(Rhe) n
0., (n—>f) === o> a .
rh 33 ° (ny)3 n’

Here of = e2/ﬁc ~ 1/137 is the fine structure constant,

8, is the first Bahr radius,

Rhc is the Rydberg energy (13.61 ev),

n is the principle 9uantum numbér of the photoelectron in its
bound state, and

Z: is the effective nuclear charge which the photoelectron feels.
This formula is derived using the approximation to hydrogenic wave
functions, and the only adjustment possible to take into account the

*
actual form of the wave functions is Zn.
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Using (20) the radiative capture cross-section for an electron
of kinetic energy E in its initial state making a transition to a

bound state of principle quantum number n is

L
*
" 2 gz
- 2r 3 _ 2 (Rhe) n
C}(f-—ﬁn) ——3{3_ ol ao é-(TIFﬂ ——ns ’ (21)

vhere we have substituted hy = In+E, In being the ionization potential
of the electron in its bound state. We are interested in capture from
states near the ionization limit, and hence we can neglect E compared

to In. Further, putting

A
n
In = - Rhe,
n

(21) vecomes

) o
2% 3 2 Rhe Zn
r 3IG;' o E n3

To get the total radiative capture cross-section, we must sum (22) over
all available bound states. For the argon ion it is possiﬁle to capture
an electron into one 3p orbital, or into 2n2 orbitals of n greater than
3. For the latter ortitals we use an effective nuclear charge Z: = 1.
For the 3p orbital, the device of the effective nuclear charge is only
approximate, since the orbital'is far ffom hydrogenic. However, we
will not be making order of magnitude érrors if we choose Z;p = 5,

a value gotten by using the screening constents in Mayer's paper.
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Finally, we apply the quantum cut-off, equation (19) of Part I,
in summing (22). For our range of shock strengths and for a fore-
pressure plnl60 cm Hg we can, to a good approximation, assume that
states for which n 3 7 are non-existent. This cuts the series off so
that it is finite and thus convergent. However, convergence of the sum
is only an apparent difficulty of our formule (22). For higher values
of n the approximation that hy 2 In is no longer valid, and we must
keep the kinetic energy term, as included in (21). In this case the
sum over n even if it were infinite clearly -converges.

Making the above substitutions in (33) we obtain for the total

capture cross-section

_3.08a07 2

o, = 2:800 (23)

r

with E in electron volts. Values for O, are plotted in Fig. 18 where
it is seen that they are in good agreement with values for argon ob-
tained by adjusting Bates' results on hydrogen and oxygen as discussed
in Part II, section 3.3.

If we substitute (23) into (19) we obtain the coefficient for
radiative recombination a% where

: =11
of . = 2:1Thx10

3 0z ! (24)

with T in degrees absolute. This relation is plotted in Fig. 19. Com-
parison with c¥3(c1) of Pig. 9, shows our new result to be smaller by

a factor of about 105. This invalidates our previous integration of
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the ionization density through the shock’front in which cx3(cl) was
used.

With this new value of the radiative recombination coefficient,
we can no longer neglect fhe three-body recombination process. We
therefore consider the range of applicability of Thomson's theory of
three-body recombination. On the low pressure side the pressure must
be sufficiently high so“that the chance for the neutral atom involved
in the collision to be in the neighborhood of the interacting ion and
électron is large enough. This means that the distance between an ion
and a neutral atom must be less than r_ = 2e2/3kT; e.g., at T = 12000°
and p1 = 5G.3 cm Hg the compression 7* must be greater than about
60 ()]* of course increases as T3). In terms of the atom density n
this says that, for our range of temperatures and pressures, n must
be greater than about 1022 atoms per cm3. On the high pressure side
we have already indicated that Thomson's theory breaks doﬁh for atom

densities greater than navloau in the temperature range of 1 to 3 ev.

Whereas the Thomson theory is applicable for atom densities per cm3

1022211210?h, the atom densities achieved in the shocks we are treat-

ing lie in the range 1018 to 1020 per cms.

In view of the inapplicability of the Thomson theory, we turn to
another method aimed at finding the recombination coefficient «. To
do this let us reconsider the derivation of the source term, equation

(6). We assume the only important reactions occurring in our plasma,

vhich consists of argon atoms A, argon ions A+, and electrons e, are
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the following:

A

A+ === p+p e, (25)
%y
A.

Ate i?}\"‘@e, (26)
o5
'g 9

A+hw2§§:2nA++e. (27)

The electron production rates are given by the ,3 's and the recombina-
tion rates by the o('s. From these reactions we write the source term

as

dn
2
af = ﬂln + /3nne+ jgnny
(28)
3 2

] 2 '
- dh oo~ - 0(5 n, -0(3ne

wvhere all the coefficients are functions of temperature only and where
t t

X, = o(h/n and L = o(s/n. The atom density is n, electron density

n,, photon density ny, and electron and ion densities are equal. If

we compare eq (24) with eq (6) we see that
o =cly'n +o(5'ne +ol5. (29)

In the equilibrium state dne/dt = 0 or, from (28), using the asterisk

to denote equilibrium values,

* ] [ ' *2 ne* ny*
A =O(un*+0(5 ne'*+d3=-:?*? /1+A3?+ /9? .
e
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From eq (1)

- 1%
X

Pla e

hence

*
2 n 2
* "% ' 1=x 1=X YV (1-
oA =dy'n +dg n, +a<3=,5’1(_x) +/43(_x)+/9_n* (T) . (30)

By the principle of microscopic reversibility, not only must the
overall production of electrons be zero in the equilibrium state, but

each individual reaction (25) to (27) must be balanced. Hence we have

"_/l(l-x ,
| 1-
oL g ’:?/3(‘::5),

e

T/g(l-x .

We can therefore obtain the non-equilibrium recombination rate of of

(29) from knowledge of the equilibrium concentrations, and A and /f3

1] 1]
(giving o‘h and 0(5 ) end from the quantum formule for radiative recombi-

nation (giving 0(3), i.e.,
A =2 /1 1-x)‘-+__33( )+o(3 (31)

Actually it is unnecessary to use this general formule for many

of the conditions with which we are dealing. The main point here is
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that in the region in wpich the ionization is relatively low the re-
combination rate o(n@2 is negligible, hence the value of of is unimpor-
tant. The recombination rate does become important after considerable
ionization has taken place. ‘I'hen,‘ hovever, the coefficients of the
terms 4 and /3 in (31) become comparable at least to within several

1 o 10 times [1

orders of magnitude and since //3 is between 10l
(see Figs. 7 and 8), we may neglect the term in /1. Moreover, as can
be seen from Figs. 11, b and ¢, for temperatures of 15,000° and 18,000°
the radiative recombination term 0(3 is small compared to /3 (-]-'-;-:-t—) for
a considerable range of densities. Hence in (31) we can neglect o 3
for values of n, in the neighborhood of ne*. (For the 12000° case »

Fig. lla, the radiatiwve recombination term is dominant and the approxi-

mation we make here does not apply.) Hence over a considerable range

19

of densities and temperatures (n35-10"7 and T3 16000%) we can approxi-

mate oL by

0 .

e 1=

x o~ 22y g (k). (32)
n
e
Actually in the integrations following the degree of ionization

through the shock front the value o = /3 (1—;5> was used (cf section
7). This is satisfactory in the most important region near equilibrium

®
where ne/ne is close to unity, and makes some allowance for the other

terms in (31) for regions far from equilibrium.
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T. Structure of the Shock Front.

The main purpose of this report is to describe quantitatively the
structure of a shock front in argon when the shock strength is high
enough so that ionization takes place. The previous sections have
prepared us for such & computation and in this section we present the
results. v Co-

All conditions at the peak of the shock (point A, Fig. 1 of Part
II) may be obtained from the ordinary shock equations with & = 5/3 s pro-
vided we know the shock velocity U and the conuitions in front of the
shock. The conditione thus obteined will be expressed in terms of com-
pression 7, shock strength g and temperature ratio T/Tl. Thus,
knowing the conditions at point A and in front of the shock and numeri-
cal relations for /l’ /3' and . we may integrate equation (15) across
the shock front. The method of integration is outlined in section 4
with the relations for /l s [3 and A being given in sections 5 and 6.
Since specific volume V and temperature T which occur in equation (15)
are slowly varying functions of time, they were replaced by an average
constant value across the small :Lnterva; of integration At = t2-tl.
The average was determined by an iteration procedure and one iteration
was sufficient. The criterion used in determining the interval A%t
was that the corresponding temperature change .AT must be less than
100°. This integration carried out in equation (16) gives a value for
the degree of ionization x at t2 knowing conditions at tl. From x at

t, we computed / , equation (5), and hence ¥ . The shock equations
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(9), (10) and equation (11) then give g, » and T respectively at
the time t2, and the Eulerian increment of distance in this time inter-
val is given by 44X = UArt/ Y[ . Starting at the head of the shock
(point A) we thus proceed by successive small steps At until weA are
rive at what is sensibly the equilibrium condition B (Fig. 1 Part II).

The electron production coefficients Xfl and /f% are given as
functions of temperature in Figs. 7 and 8 but, for purposes of calcula-
tion, exponential type empirical formulas were fitted to these curves.
The recombination coefficient o, equation (31) depends on the atom
and electron densities n andine; as well as on the temperature. This
could be incorporated into the integration where, to even a better ap-
proximation than for V used above, n could be considered as constant
across the integration interval At. Actually equation (31) was not
used, but instead the quantity /3 (]._;_x) plotted in Fig. 10 was used
for the recombination coefficient o . This gives substantially the
correct value for ol in the region near the equilibrium position B
where recombination hai the greatest effect on the shock structure.
In the less important regions away from the equilibrium position ol is
incorrectly represented byi /3(-1?:5 both because of the neglect of
radiative and other recombination proceeses, and because the density
dependence of this function is incorrect.

The numerical work of this integration (as well as all other com-
putations in this paper) was done on the IBM card programmed electronic

computer (CPC) through the courtesy of Los Alamos Group T-l. A typical
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integration through the shoék front may téke from 2 to 3 hours.

The structure of the shock obtained froam this integration is given
in Table VI and is plotted in Figs. 12 to 17.

We have previously described the sort of behavior to be expected
in a shock front and now, on the basis df tﬁe above computations, we
review this description. First let us recall that our calculations
apply to a monatomic géé, viz, argon, dﬁere the initial pressure is
59.38 cm Hg and for which the shock velo;ipy is high enough so that
some ionization takes place but low enough so that the number of
doubly ionized atoms nay be ignored.

When such a shock wave ﬁasées a point X the translational degrees
of freedom of the gas are first excited and translational equilibrium
is achieved within about two collisions. This point is referred to
here as the peak of the shock. The time required for translational
equilibration is smal)l compared to that for the remaining processes
involved in the shock front;rhence is not includea in our computations.
The local temperature at the peak of the shock is high enough so that
a significant amount of energy may be transferred from the translational
degrees of freedom to those of electronic éxcitation and ionization.
This is clearly indicated in Fig. 12 where it is seen that the equilib-
rium temperature T* is considerably lower than that at the peak of the
shock ?A' This is particularly true for increasing shock velocity

as shown in the folloving table:
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¥(cm per sec) TA/T*

5.0-10° 1.46
5.5-10° 1.60
6.0-10° 1.78

The only reactions available at first are collisions between argon
atoms for which the corresponding ionization cross-section is quite
small. This means that the transfer of energy takes place rather

slowly until the point we have called the onset of ionization is reached.

Thus the values at the peak of the shock remain approximately unchanged
for some distance, resulﬁing in a rather flat region in the shock front.
This is true for all the shock parameters as Figs. 12 to 17 show (Ff
the table below). We refer to this distance as the onset width. If

we call the relaxation point tha£ point at which 63$ of the equil%brium
iohization is achieved”hii maf be se;n that the onset width offers the
most important contribu&;pgwfg the total relaxation width.

In determining the oﬁset"ﬁidt{{ 4, is the most significant qu:antity
because the degree of ionization x is small in this region. Hence; by
considering the leading term in eq (15), we see that the onset vi@th
scgles inversely“with initial density 6 (or pressure pl) at con;tant

initial temperature 21.

Once the onset of ionization is reached transfer of energy from

translational degrees of freedom to electronic excitation and ioniza~

tion proceeds quite rapidly. This results in a sudden change in the
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shock parameters, especially the temperature (Fig. 12) and the degree
of ionization (Fig. 16). Again we see that the effect is more violent
for higher shock velocities, e.g, if the distance iﬁ which this sudden
change takes place is AX, then fox; U= 6-]_05 cm per sec, AX = .001 cm, -
while for U = 'j-lO5 cm per sec, AX = .007T cm. At first the electron
production term involwving 'jB is most important but soon the recombina-
tion term takes over zapd equilibrium is quickly achieved. The shape
(or profile) of this region is rather sensitive to the value of o but
because the region is relg.tively narrow & does not have much effect
on determining the total ;'élaamtion width of the shock front.

If ’\x is the relaxation width for the shock front, A, the
relaxation time, and xr the corresponding degree of ionization, we find

>

the following approximate values for the case P, = 59.38 cm Hg:

U(%:lc-) Onset width (em) ’\x( cm) A t( sec) X
5.0-105 10.5-10‘3 13.7-10‘3 1.15-10‘7 .0L5
5.5-10° 1.6.10°3 2.45-1073 | 2.0°1078 .065
6.0-10° Ae1073 - .58-1073 | 3.8-10~7 .088

It is seen that the onset width is about 70% of the relaxation width.
We also see that in these shocks we could assume that processes involv-
ing radiative transitio.ns can be ignored in determining the width of
the shock front since such times are of the order of 10-8 sec whereas

once a significant amocunt of ionization is reached so that radiative
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transitions could take place, the main iart of the shock front has
pessed. For lower shock Yg}qs;pies, however, the relaxation widths
will be considerably larger, and radiatiyé processes assume importance.
(As we have previously stated, they may also be important for lower
densities.) N

It is interesting to note that theré is a range of shock velocities
in which the width of hhershock front may ve significant, i.e., in
which the conditions in the shock front are considerably different
from the equilibrium conditions behind the shock front. At low shock
velocities, i.e., for our ﬁase below abogt 3-105 cm per sec, there is
no ionization behind the shock ffﬁnt,'hence Y remains constant and the
conditions at the peak of the sﬁock reﬁain ﬁhchanged. As th; shock
velocity U increases above 3-105 cm per sec, ¥ decreases and & long
and relatively low temperature bump appears behind the head of the
shock. (This is an indentation in terms of pressure and density.)
As U becomes greater the bump becomes progfessiVely higher but shorter
until at 106 cm per sec it is approximately 10'6 cm thick but has a
peak temperature of about 90,000° where the equilibrium temperature is
about 26000°. However, for U n/lO6 cm per sec we can no longer ignore

the number of doubly ionized atoms. This picture of the shock fromt

is qualitatively the same if the fore-pressure is 1.0 cm Hg.

-

8. Effect of Impurities.

Impurities such as oxygen or other molecules in the argon would

have a strong influence on two pafts of our computation. In the case
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of the equilibrium calculation the additional degrees of freedom, i.e.,
rotation, vibration, dissociétion, and molecular excitation, due to
their lower energy levels, will soak up a considerable amount‘of energy
vhich is then not available for excitiné (or ionizing) the argon atom.
Calculations show that a small percentage (between about 1 to 10%) of
oxygen in the argon will keep the argon from ionizing.

The second place in which impurities play an important part is in

determining the onset of lonization. If the ionization cross-section

between argon and O2 or O is large then, even though the amount of
oxygen is.sﬁall, enowzh electrons may be furnished for the A+e reaction

to take over,resulting in an effective decrease in the onset width.

9. Comparison with Experiment.

In previous sectlons we have referred to some of the experimental
measurements made on shock fronts for the energy range considered in
this report. In this section we review these measurements as well as
others. In general, the experimental work is quite meager although
this field is now being explored, particularly by Kantrowitz and Lin
at Cornell University, by Laporte at the University of Michigan and by
various workers at Los Alamos. As mentioned previously, the shock
velocity is the one well-determined quantity for a shock wave; and,
of course, it may be sssumed thét the conditions in front of the shock
are known.

Material Velocity. Shreffler, Christian, and others have measured

the material velocity in a shock wave immediately behind the shock
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front (Ref T4). Their measurements correspond to the velocity in the
equilibrium region and are plotted in Fig. 1. It is seen that experi-
ment and theory are in good agreement in this region.

Electric Effects. Unpublished measurements at Los Alamos have

shown that a strong (positive) potential rises behind the shock

front. Aﬁd for a given shock velocity the potential is much smaller
if the gas is diatomic. This latter effect, as explained in section 8,
is due to the presence of the additional degrees of freedom in the di-
atomic gas which absorb energy that otherwise would have gone into ex-
citing or ionizing the atom.

Cowling (Ref T77) has shown that diffusion can be more important
than viscosity or thermal—conductivity in its effect on shock propaga-
tion, particularly if the gas is composed of two constituents having a
large mass difference and ifvthe pressure gradient is large, the direc=-
tion being such that the heavier particles tend to move toward the
regions of greater p?eusure. In our case such a sitﬁation exists im-
mediately in front of the equilibrium region (cf Figs. 14 and 16),
hence, a separation of ions and electrons should take place which could
possibly account for the measured potential gradient in the shock front.

Shock Width. Measurements oﬁ the structure of the shock front in
argon have been made at Cornell. The pbint at which the onset of
ionization occurs is determined by a conductivity measurement and the
equilibrium region is specified by the luminosity. The Cornell measure-

ments are in fair agreement with our computations, although it is likely
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that impurities affect their measurements such that thelr shock width
*
is slightly less than ours .

Spectral Distribution. Observations on spectra in shock waves

show that at low shock velocities distinct lines exist whereas at

high shock velocities‘a continuous spectrum is seen. This is because
of the following reasons. First, at io; shock velocities, transitione
from the continuum to bound states do not occur because there are no
free electrons, or at most, very few. Thefe will, however, be many
excited states of the atoms, thus one would expect a discrete spectrum
to be observed. |

For a high shock velocity and, consequently, a high degree of
ionization, there are many electrons in free states. Since for the
range of energies considered in this report these free states are in
approximate maxwellian distributions with energies centered between one
and three electron volts, one would expec£ the radiated energy to be
continuously distributed. This is the ordinary recombination spectrum
which is observed in shock fronts.

In addition to the continuous recombination spectrum in a shock
front one might expect to observe a line spectra because of the presence
of excited atoms. However the pressure and temperature are high enough
so that Stark, collision, and Doppler broadening should be quite large
and the spectral lines smeared out to such an extent that they are

masked by the continuous recombination spectrum. Also, when the degree

¥*
Private communication from S. C. Lin to R. E. Duff.
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of ionization is high, the occupatigh number for a particular excited
state is quite low and hence the line it emits is weak and more easily
merges with the continuous background. For example, at 7 = T and
T = 20,000° the occupation number for the excited state 3p5(2P$/2)hs,
which emits the persistent argon line, \ = 1048 A°, is only .003.
That is, out of 1000 plasma particles at these‘conditions, 140 will be
electrons, 140 will be argon ions, 666 argon atoms in the ground state,
only 2 atoms in the above excited state, and the remaining 52 particles
in various other excited states. Finally, there are many closely spaced
lines in the argon spectrum and because of the .broadening of the lines
they may be expected to overlap. As the initial pressure is lowered,
however, the spectral lines do begin to stand out against the continuous
background. This is because, for a given shock velocity, the temperature
and pressure behind a shock front decrease with decrease of initial
pressure. And the lower the temperature and pressure, the sharper and
more pronounced the spectral lines will be. Also, the recombination
coefficient decreases with decreasing temperature and pressure, resulte-
ing in a weaker recombination spectrum, although this effect may be
balanced by the increase in ionization which occurs for smaller fore-
pressures.

Luminosity. As discussed previously, because of the small number
of degrees of freedom available in a monatomic gas compared to a di-
atomic gas, much of the energy can go directly into ionization. Thus

one obtains a high degree of ionization behind a shock front in an inert
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gas. Consequently, an argon shock of sufficient strength will emit a
brilliant flash and, because of the continuous distribution of energy
in the spectrum; may be used in certain physical applications where

such an energy distribution is desirable, e.g., in flash photography
(Ref 84).

10. Summary and Critique.

A convenient method for determining the equilibrium conditions be-
hind a shock front in argon has been presented. However, two factors
1imit its applicability. First, since double ionization has been
neglected, there is an upper limit to the temperature. And, second,
there is an upper limit to the degree of ionization due to the approxi-
mations involved in computing the partition functions. Neither of these
limits has received a quantitative treatment. Nﬁmerical calculations
of the equilibrium conditions have been made for shock velocities from
3 to 9x105 cm/sec at fore-pressures of 59.38 and 1.0 cm Hg.

The shape of the non-equilibrium part of the shock front has also
been calculated. It was shown that the region between the front of the

shock and the onset of ionization largely determines the shock width.

In this zone the ionizing A+A reaction plays the dominant role. Hence,
more accurate values for the A+A cross-section, particularly in the
neighborhood of the threshold, should be obtained. Also, the effectA
of excitation reactions should be re-examined. Our reasons for
neglecting these have been discussed qualitatively but a quantitative

analysis 1s desirable.
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Finally, a recombiﬁation coefficient A was derivea from a method
depending on the balance of the prodqction and recombination of electrons
in the equilibrium region behind the shock front. It was shown that
ol depends on temperature as well as on the atom density n and that
Kramers' theory for radiative recombination, which was based on classi-
cal assumptions, is incorrect.

The two fore-pressures we have used in our calculations corres-
pond to those used in experimental work at Cornell by Kantrowitz and
his co-workers, and at, Lgs Alamos. As pointed out previously, im-
purities exist in argon which have an important effect on both the

equilibrium conditions and on the onset of ionization. In order to

compare the above theory with the experimental fesults, the impurities

should be included in the computations.
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TABLE I CONSTANTS AND CONVERSION FACTORS
Boltzmann's constant k =
Planck's constant h=
Charge of electron e =
Gas constant ‘R =
Avogadro's number No =
First Bohr radius ao =
Tas =

Volume of ideal gas (NTP) v, =
Classical electron radius r, =
Mass of electron me =
Electron volt levs=

-h_c. =

k

*

R =
Mass of argon atom m=
Atomic weight of argon =
Jonization potential of A I
Jonization potential of A II
Total ionization potential of A II
Atmospheric pressure (Los Alamos) P,=
Normal temperature (Los Alamos) T,=
Corresponding density for argon J°l=
Number of argon atoms per cm3 n1=




TABLE II  ATOMIC CONSTANTS FOR ARGON

State g, E, (cm-l) ©E) (degrees)
Argon atom, A
3p6 15 1 Y , .0
3p° 4 60 _ 113,000 162,500
Tonization energy 127,110 183,000
Argon ion, A+
382 3p5 4 0] 0
2 1432 2062
3s 3p6 2 1108723 156560
382 3pu(3P) 3d 8 132328 190550
6 132482 190770
y 132632 190990
2 132739 191140
(3p) ks 6 134243 193310
4 135087 194530
2 135603 195270
(3P) 4s L 138245 199070
2 139259 200530
(3p) 34 10 142187 204750
8 142718 205510
6 143109 206080
L 143372 206460
3p) 3q 2 144711 208380
L 145670 209760
3p) 3a 2 i 147229 212010
4 - 147504 212410
6 147877 212940
(‘p) 4s 4 148621 214010
6 148843 214330
(3P) 3d 8 148180 214820
6 150149 216210
3p) 3q 4 150476 216690
6 151088 217570
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TABLE TI  ATOMIC CONSTANTS FOR ARGON (continued)

State 8, E_ (ecn™) E_ (degrees)

(3p) 4o 6 155044 223260
b 155352 223710

2 155709 224220

3p) 1p B 157235 226420
6 157674 227050

b 158169 227760

2 158429 228140

(3P) 4p 6 158731 228570
4 159394 229530

(3p) up 2 159707 229980
L 160240 230750

) up L 161050 231910
(3P) 4p 2 161090 231970
(%s) ks 2 167309 240920
('p) up 6 170402 245380
8 170531 245560

(‘) up L 172215 247990
2 172817 248860

('p) 3¢ 6 172336 248160
b 172831 248880

(‘) up L 173349 249620
6 173394 249690

(‘p) 3q L 174411 251150
2 174822 251740

4 179593 258610

2 179933 259100

(3P) 58 6 181595 261500
_,4 182223 262400

2 182952 263450

3p) 5e 4 183092 263650
-2 183916 264840

(3p) ua 8 183676 264490
6 183798 264670

L 183987 264940

2 184193 265240

1k8




TABLE JI ATOMIC CONSTANTS FOR ARGON (continued)

State g, E (cm'l) E (degrees)
(1p) 3¢ 2 184094 265100
(3p) e 10 185094 266530
8 185625 267300
6 186075 267950
4 186341 268330
3p) 4 2 186172 268090
L 186471 268520
6 186892 269120
(*s) 3¢ 6 186728 268890
R 186751 268920
Ionization energy 320800

222820

TABLE III HIGH EXCITED STATES OF ARGON

‘Effective statistical weights g nL(‘Q)

State En;! g\ 12345678 910152
s 18,500 2 2 2 2 2 2 2 2 2 2 2 2 1
4p 30,400 6 6 6 6 6 6 6 6 6 6 6 6 2
58 19,500 2 222211000000
5p 14,600 6 6 6 6 6 2210000 0
4d, 4t 10,700 2k 24 24 24 24 24 24 24 24 24 24 24 9
6s 10,700 2 2 0000 0 0 O0O0O0O0OTUO
6p 8,500 6 6 L. 0000 O0O0O0OO0O
5d, £, g 6,600 _ 42 4242424231711 5 1 0 0 O O
Ts 6,700 T2 0 000 O0OOOOUO0GO 0O
6d, £, g, h 4,500 64 6413 O 0 0 0O 0 0O 0 0 O O
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TABLE IV  PARTITION FUNCTIONS AND FQUILIBRIUM CONSTANT FOR ARGON

Density Temp.( abs.)
Ratio

n T Z40n Z K/2(p,= 59.3 cm. Hg)

7500 1.0000 5.4475 (-9)*
3.6317 "
2.7238 "
2.1790 "
1.8158
1. 5564 "

=~ O\ F W

8000 5.5456 1.0000 5.5416 (=8)
- 2.7708
1.84y72
- 1.3854
1. 1083 "
9.2361 (-9)
7.9166 "
6.9270 "
6.1574 "
5.5416 "
3.6944 "
2.7708 "

ol
VIO =10\ £FW =

N
o

8500 1.0000 1.170% (-
' 7.8025 (-

5.8519 "

4.6815 "

3.9013 "

3.3439 "

=~ O\ W

2 9000 1.0000 4,2332 (-7)

3 2.8221 "

L 2.1166 "

5 1.6933 "

6 : l.4111

7 1.2095 "

8 1.0583 "

9 9.4071 (-8)
10 8.4664 "
15 5.6443 "
20 . - . h.2332 "

2 9500 5.6098 1.0000 1.3432 (-6)
3 8.9549 (-T)
L 6.7162 "

5 5.3730 "

6 b.hr7s

1 3.837r8 "
8
9
10
15

20 1.3433 v
, 150




“  (continued)

TABLE IV  PARTITION FUNCTIONS AND EQUILIBRIUM CONSTANT FOR ARGON

Density Temp.(oabs.)

Ratio
n T 2y z K/2(p1= 59.3 em. Hg)

1 10,000 5.6273 1.0000 7.6249 (-6)

2 3.8125 "

3 2.5457 "

4 1.9062 "

5 1.5250 "

6 1.2708 "

7 1.0893 "

8 9.5313 (-7)

9 8.4723 "
10 T.6251 "
15 . 5.0834 "
20 3.8126 "

2 10,500 5.6434 1.0001 9.8326 (-6)

3 1.0001 6.5551 "

4 1.0001 4.9263 "

5 1.0001 3.9331 "

6 1.0001 3.2776 "

7 1.0001 2.8094 "

8 1.0001 2.4582 "

9 1.0001 2.1850 "
10 1.0001 1.9666 "
15 1.0001 1.3110 "
20 1.0000 9.8331 (-7)

2 11,000 5.6581 1.0002 2.3341 (-5)

3 1.0002 1.5561 "

4 1.0002 1.1671 "

5 1.0001 9.3367 (-6)

6 1.0001 7.7806 "

T 1.0001 6.6691 "

8 1.0001 5.8355 "

9 1.0001 5.1867 "
10 1.0001 L. 668 "
15 1.0001 3.1123 "
20 1.0001 2.3343 "

2 11,500 5.6717 1.0003 5.1544 (-5)

3 1.0003 3.4364 "

4 1.0003 2.5773 "

5 1.0003 2.0619 "

6 1.0003 1.7183 "

T 1.0003 1.4728

8 1.0002 1.2887 "

9 1.0002 1.1454 "
10 1.0002 1.0310 "
15 1.0002 6.8733 (-6)
20 1.0001 5.1555 "
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(continuéd)

TABLE IV  PARTITION FUNCTIONS AND EQUILIBRIUM CONSTANT FOR ARGON

Density Temp.(°avs.)

Rﬁ%i° T 2y VA K/2(p,= 59.3 cm. Hg)
2 12,000 5.6842 1.0006 1.0684 (=k4)
3 1.0005 7.1226 (-5)
4 . 1.0005 5.3419 "

5 1.0005 h,2139 "

6 1.0004 3.5616 "

T 1.0004 3.0529 "

8 1.0004 2.6713 "

9 1.0004 2.3738 "
10 1.000L 2.1371 "
15 1.0004 l.h2yr
20 1.0002 1.0687 "

2 13,000 5.7067 1.0016 3.9047 (-4)

3 1.0015 2.6034 "

y 1.0015 1.9525 "

5 1.0013 1.5624

6 1.0012 1.3022 "

7 1.0011 1.1161 "

8 1.0011 9.7668 (-5)

9 1.0011 8.6723 "
10 1.0011 7.8134 "
15 1.0011 5.2089 "
20 1.0006 3.9087

2 14,000 5.7262 1.0039 1.1941 (=3)

3 1.0036 T7.9625 (=4)

N 1.0036 5.9719 "

5 1.0030 L. 7807 "

6 1.0029 3.9844 v
T 1.0027 3.4159 "

8 1.0025 2.9893 "

9 1.0025 2.6487 "
10 1.0025 2.3914 "
15 1.0025 1.5943
20 1.0013 1.1971x "

2 15,000 5.7434 1.0084 3.1607 (-3)

3 1.0079 2.1083 "

y 1.0079 1.5812 "

5 1.0063 1.2669 "

6 1.0060 1.0560 "

T 1.0056 9.0559 (-4)

8 1.0053 7.9259

9 1.0053 7.0456
10 1.0053 6.3450 "
15 1.0053 h.2274 "
20 1.0028 3.1784 "
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- (continued)

TABLE IV  PARTITION FUNCTIONS AND EQUILIBRIUM CONSTANT FOR ARGON

Density Temp.(oabs.)

R%%;o T Z40n 2 K/2(p1= 59.3 cm. Hg)
2 15,500 5.7512 1.0119 4.9106 (-3)
3 1.0111 3.2764 "

4 ©1.0111 2.4573 "

5 1.0089 1.9702 "

6 1.0085 1.6425 "

T 1.0078 1.4088 "

8 1.0075 1.2331 "

9 1.0074 1.0962 "
10 1.007T4  9.8655 (-4)
15 1.0074 6.57T70 "
20 1.0039 4b.94g9

2 16,000 5.7587 1.0166 T.4237 (-3)

3 - 1.0154 h.9549

4 1.0154 3.7161 "

5 1.0123 2.9822

6 1.0117 2.4866
7 1.0108 2.1333 "

8 1.0101 1.8678 "

9 1.0101 1.6603 "

2 17,000 5.7727 1.0304 1.5758 (-2)

3 1.0281 1.0529 "

N ~1.0281 7.8965 (-3)

5 1.0221 6.3545 "

6 1.0210 5.3000 "

T 1.0193 4,5515

8 1.0182 - 3.9865 "

9 1.0181 3.5442 "
10 1.0181 3.1898
15 * 1.0181 = 2,1265 "
20 1.0096 1.6083 "

2 18,000 5.7857 1.0547 3.057T1 (-2)

3 ~1.0480 2.0511 "

L 1.0480 1.5383 "

5 1.0374 1.2433

6 1.0354 1.0380 "

7 1.0324 8.9238 (-3)

8 — 1.0306 7.8219 "

9 1.0302 6.9549 "
10 1.0302 6.2594 "
15 1.0302 4.1730 "
20 1.0161 3.1733 "
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(continued)

TABLE IV  PARTITION FUUNCTIONS AND EQUILIBRIUM CONSTANT FOR ARGON

Density Temp.( abs.)

Rﬁé}° T Z,.. Z2  K/2(p,= 59.3 cm. Hg)
3 19,000 . 5.7981 1.0777 3.7016 (-2)
4 ' 1.0777 2.7762 "

5 1.0599 2.2583 "

6 1.0567 1.8877 "

T 1.0516 1.6259 "

8 1.0486 1.4267 "

9 1.0480 1.2688 "
10 1.0480 1.1419 "
15 1.0480 7.6129 (-=3)
20 1.0256 5.8346 "

3 20,000 5.8106 1.1200 6.2398 (-2)

N 1.1200 4.6799 "

5 1.0918 3.8401 "

6 1.0866 3.2157 "

T 1.0786 2.7770 "

8 1.0738 2.4405 "

9 1.0730 2.1711 "
10 . 1.0730 1.9540 "
15 1.0730 1.3026 "
20 1.0389 1.0090 "

3 21,000 5.8235  1.1780 9.8903 (-2)

L 1.1780 T.4278 "

5 1.1352 6.1581 "

6 1.1273 5.1675 "

7 1.1152 Yyrrr "

8 1.1080 3.9433 "

9 1.1067 3.5093 "
10 1.1067 3.1584 "
15 — 1.1067 2.1056 "
20 _ 1.0569 1.6536 "

L 22,000 1.2551 1.1120 (-1)

5 1.1925 9.3632 (-2)

6 1.1810 7.8718 "

7 1 1.1632 6.8565 "

8 1.1528 6.0538 "

9 1.1508 5.3902 "
10 1.1508 4,852 "
15 1.1508 3.234%1 "
20 1.0805 2.5835 "
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. (continued)

IABLE IV~ PARTITION FUNCTIONS AND EQUILIBRIUM CONSTANT FOR ARGON

Density Temp.(%abs.)

ko T . Z  X/2(p,= 59.3 cm. Hg)

4 23,000 ..5.8531 1.3547 1.5854 (-1)

5 . 1.2661 1.3572 "

6 1.2497 1.1457 "

T 1.2247 1.0022 "

8 1.2099 8.8759 (-2)

9 ©1.2072 7.9075 "
10 1.2072 7.1168 "
15 1.2072 h,Thlys "
20 ; 1.1105 3.8680 "

4 24,000 5.8712 1.4804 2.1610 (-1)

5 1.3585 1.8839 "

6 1.3359 1.5965 "

T 1.3015 1.4046

8 1.2812 1.2485 "

9 1.2774 1.1131 "
10 1.2774 1.0018 "
15 1.2774 6.6784 (-2)
20 1.1480 5.5736 "

4 25,000 5.8925 1.6357 2.8312 (-1)

5 1.4721 2.5165 "

6 14417 2,144 "

7 - 1.3957 1.8960 "

8 1.3684 1.6921 "

9 1.3633 1.5097 "
10 1.3633 1.3587 "
15 1.3633 9.0582 (-2)
20 1.1937 7.7589 "

4 26,000 5.9178 1.8242 3.5831 (-1)

5 1.6095 3.2489 v

6 1.5693 2.7T71671 *

7 1.5091 2.4750 "

8 1.4732 2.2184 "

9 1.4665 1.9810 "
10 1.4665 1.7829
15 : 1.4665 1.1886
20 - 1.4665 1.0470
% (-9) =107
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TABLE V  EQUILIBRIUM CONDITIONS BEHIND THE SHOCK FRONT
+
U T u A A g
T S B G o B
Bec abs. sec
A. P = 59.38 cm. Hg.
3.0 10° 3.91 8322 114.07 2.2327 10 1.6580 2.5198 .000 1.000 1.000
3.5 " 4.08 10913 157.11 2.6422 ¢ 1.6285 2.5911 .005 <995 1.005
L.,o " 4.55 13018 211.73 3.1209 " 1.5487 2.8225 .019 981 1.01
Lz " 5.17 11450 276.72 3.6296 " 1.4700 3.1277 .Ok1 559 1.043
5.0 " 5.82 16023 350.51 Lh.1ko9 " 1.4069 3.4576 LOT1 .929 1.071
5.5 " 6.483 17250 432.88 4.6516 " 1.3585 3.7894 .103 .897 1.103
6.0 " 7.123 18400 523.40 5.1577 " 1.3216 4.1095 .138 .862 1.138
6.5 " 7.722 19480 621.86 5.6582 1.2934 4.4083 .,  .178 .822 1.178
7.0 " 3.264 20551 728.05 6.1530 " 1.2718 4.6792 .222 T8 1.222
7.5 " 8.79 21602 842.53 6.6463 " 1.2538 4.9401 .265 .T35 1.265
8.0 " 9.17 22777 963.57 7.1276 " 1,2422 5.1288  .315 .685 1.315
8.5 " 9.59 23880  1093.48 7.6137 " 1.2306 5.3365 .361 .639 1.361
9.0 " 9.925 25072  1239.60 8.0932 " 1.2221 5.5025 409 .591 1.409
B. 120 1.0 cm. Hg.
3.0 10° 3.983 8200 114.78 2.2468 10° 1.6416 2.5536 .002 .998  1.002
3.5 " L.491 10066 161.75 2.7207 “ 1.5536 2.8064 .020 .980  1.020
.o " 5.330 11304 220.42 3.2495 " 1.L4487 3.2287 .043 .957 1.043
4.5 " 6.226 12250 287.9% 3.7772 " 1.3731 3.6802 .076 .92k 1.076
5.0 " 7.20 12987 364.41 4.3056 " 1.3153 4.1716 L1111 .889 1.111
5.5 " 8.03 13768 448,06 4.8151 " 1.2787 }.5881 .155 .845 1.155
6.0 ' 8.95 14381 540.82 5.3296 " 1.2470 5.0486 .198 .802 1.198
6.5 " 9.815 14989 641.56 5.8377 " 1.2231 5.4323 243 T57 1.243
7.0 " 10.57 15630 T49.92 6.3377 " 1.2057 5.8614 .294 .T706 1.294
7.5 " 11.35 16224 866.90 6.8392 " 1.1905 6.2493 342 .658 1.342
8.0 " 11.97 16802 991.13 T:3317 " 1.1799 6.5586 o4 .596 1.40k
8.5 " 12.63 17401 1124.09 7.82710 " 1.1699 6.8858 458 .542 1.458
0.0 " 13.05 18072 1263.59 8.3103 " 1.1641 7.0938 .527 LT3 1.527




TABLE VI THE NON-EQUILIBRIUM REGION (p, = 59.38 cm. Hg.)

A. U =5.0:10° cm./sec.

i) T %abs. £ u cm./sec. [A+] X cm. t sec.
3.9532 22801 316.27 0 0 3 0 g
3.9532 22801 316.27 0 g 9 6916- 10 4.50 1o
3.9532 22800  316.27 3.7351 105 2.5&6-10’ 6.0078 4,75
3.9532 22800 316.27 3.7351 6.366 "7 6.3240 " 5.00 "
3.9532 22800 316.27 3.7351 " 1.400 :6 6.6402 " 5.25 "
3.9532 22800 316.27 3.7352 " 3.475 -5 7.9049 " 6.25 "
3.9550 22791 316.31  3.7354 " 8.539 -3 9.1692 s T.25 "
3.9925 22609 317.32  3.7425 " 1.821 1.0421 8.25 "
4.1572 21842 321.50 9.052 ", 1.1624 " 9.25 "
4.2686 21338 324.15 3.8155 " 1.423 °© 1.1917 " 9.50 "
4.3240 21098 325.42 3.8364 " 1.657 " 1.2032 " 9.60 "
4.3799 20859 326.67 ~3.8513 " 1.806 " 1.2146 9.70 "
4.4366 20622 327.90 3.8659 " 2.135 " 1.2259 " 9.80 "
4.4928 20391 329.09 3.8802 " 2.369 " 1.2370 " 9.90 "7
4.5481 20169 330.23 3.8940 " 2.596 " 1.2480 " 1.00 ~
4.6742 19673 332.73 3.9170 " 3.118 " 1.2748 " 1.025 "
4.7915 19233 334.94  3.9L44k " 3.579 " 1.3009 " 1.05 "
4.8963 18854 336.83 3.9682 " 3.979 " 1.3264 " 1.075 "
4.9863 18540 338.38 3.9883 " 4,323 " 1.3515 " 1.0 "
5.0648 18273 339.69 4.0051 " L.600 " 1.3761 " 1.125 "
5.1334 18046 340.81 4.0193 " L.846 " 1.4005 " 1.15 "
5.1935 17851 341.76 4.0315 " 5.058 " 1.4246 " 1.175 "
5.3571 17332 344,24 4,0545 " 5.659 " 1.5179 " 1.275 "
5.4742 16982  345.93 4.0775 " 6.045 " 1.6092 " 1.375 "
5.6491 16515 348.31 4.1433 " 6.398 1.8305 " 3.875 "
5.7231 16294 349.28 4.1369 " 6.7T42 " 2.0489 " 6.375 "

5.8200 16023 350.51 o 071 oo




TABLE VI THE NON-EQUILIBRIUM REGION (p1 = 59.38 cm. Hg.)

B. U=5.5 -10°

L

7 7%bs. E u cm. /sec, X om % sec:
0 0

3.9587 27571 382.73 O 7 641610~ 5.50+10™2

.9587 27571 382.73 T 9 " 6.50 "
3500 21556 3273 b5k’ 1223 Y6 9 3 %
3.9612 2753 362, " o " 1.1806 " 8.50 "
3.9613 27535 382.7h Y, 1059 " T. ggl -5 1.319h " 9.50 "8
3.9621 27530  382.76 4.1061 iy J- -l " 1.05 -
T R B B
3.9971 2731 . . " ) " " 1.2 "
L1200 2o 0 el T 8o VT8 v Legs ¢
4.1930 261 . . " : 1 " 1.285 "
b mo WT LEmom o orme 1oam
4.257T1 25829 . y " ‘% " 1.8005 "  1.305 "
4.2918 256h0 392.66 h-2075 " 1'893 " 1.8132 " 1.315 "
4.3282 254k 393.66 Lh.2180 " 1. (ER 1.6258 "  1.328 "
h.3660 252&3 39&.68 4.2290 | 2.05 " . " 1.33 "
L.LOU 25040  395.71  k.2400 " 2-ﬁ“g iy i'gggg " 1.3&? "
vy S el il D243 0 LG ] 1.355 "
L.48Ly 24631 397. : " 2821 " 1.8750 " 1.365 "
o216 2uma8 39679 hepst o282 v 871 " 1.375 "
L.648 24229 399.76 Lh.2639 M 3.000 ' L. "o 1,385
4. Zou7 2hosh  koo.75  k.29h4 M 3.196 " i'S?%é " 1.393 "
h.Gi1 238Mh  hOL.6O L.3046 " 3.379 " 1.9227 " 1.h05 "
L. 6829 23659 402.60 h.31h6 " 3'531 " 1'9515 " 1.h3 "
hoS b3 Mot ik ¢ g v Loe v Mds v
4.8608 22839 ol - " * 1" 2.0076 " 1.48 "
h.ok27 22480  408.33 L4.3720 " k731 . mo J.s05 M
o-OM8T 22135 .90 h3%6 T 5058 T 2.0350 133
oo My Mo Lines + SER v sioesr v L o

.1540 21597 12.5 . " ) " : " 1.58 "
;.21u1 21358 413.7L  L4.4327 . Z'ggg " 2 ;iZS " 1.28 "
e ap MIE bimofem o otmp noam

.5515 20085 . " X " "o1.88 "
3.27uo 19661 421.65 4.5138 " 3.712 " g-gégg " 1.98 "
5.7737 19328  L423.20 4.5326 " 8'220 . 202 0 198
5.8540 19067 Lok k1) L.5hTh . 8.8 o 2.8315 " 2'38 "
R TRET oo e+ v+ SR - R - S
6.1019 18295 427.96  4.5841 " ) o7 " 3.27193 " 2.83 "
6.1808 1806k  1429.03 k.5979 " A h.u87 " 3.83 "
6.3262 17645 430.92  L.6161 " .021 " 5.0087 " 4.83 "
6.3954 17459  431.80  L.6294 1.103 o oo
6.483 17250  432.83 .
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TABLE VI THE NON-EQUILIBRIUM REGION (p1 = 59.38 cm. Hg.)

C. U= 6.0-10° cm./sec.

! T %aps. § u cm./sec. [A+] X cm t sec
3.9674 32724 455,54 0 0 L 0 _10
3.9674 32724 455,54 5 0 7 1.3611°10" 9.oo-1o:9
3.9674 32723 455.54 4. 4876- 1o 1.336-10 1.7391 " 1.15
3.9674 32723 455.54  4.4876 7.957 g 22172 " 1.0 "
3.9674 32722 455.54%  4.4876 " 4.723 5 2.4953 " 1.65 "
3.9678 32719  u55.55 L4877 " 2.80k TP 2.8733 " 1.90 "
3.9701L 32702 455,64  L4.4882 1.658 3.2512 " 2.15 "
3.9836 32602 456.16 L4.4913 " 9.612 "3 3.62r7 " 2.40 "
4.0522 32102 458.74 4.5080 " 4.999 '2 3.9979 " 2.65 "
4.2699 30591 466.39 4.5741 " 1.756 ° 4.3491 " 2.90 "
4 4227 29597 471.30 L4.6223 " 2.609 " 4. 4848 " 3.00 "
L.4687 29314 y72.72  4.6503 " 2.842 " 4,518y 3.025 "
4.5125 29044 y7h.0h  4.6638 " 3.018 " 4.5516 " 3.05 "
4.5567 28775 k75.35 4.6767 " 3.315 " 4.5845 " 3.015 "
4.6014 28508 476,64 4.6896 " 3.552 " L.6171 " 3.10 "
4.6461 28245 ¥77.91  4.7022 " 3.787 " L.64oy " 3.125 "
4.6908 27986 479.16  L4.7146 " 4,020 " 4.681y 3.15 "
4.7351 27733 480.37 4.7267 " h.250 " 4,713 " 3.175 "
4.7790 27486  481.55 4.7385 " L.yrs L.Thys " 3.20 "
4.8223 27246 482.69 4.7500 " 4.695 " 4. 7756 " 3.225 "
4.9787 26400 486.65 L4.7768 5.517 " 4.8961 " 3.325 "
5.1292 25635 490.23 4.8134 " 6.251 " 5.0131 " 3.425 "
5.2649 24980 493.28 4.8457 " 6.8091 " 5.1270 " 3.525 "
5.3857 24421 495.87 4.8732 " T.hys " 5.2384 " 3.625 "
5.4929 23944 498.08 4.8966 " 7.925 " 5.3477 " 3.725 "
5.5883 23533 499.96 L4.9167 " 8.344 " 5.4550 " 3.825 "
5.6735 23177 501.60 4.9340 " 8.711 " 5.5608 " 3.925 "
5.7501 22865 503.02  L4.9491 " 9.036 " 5.6651 " 4,025 "
5.8991 22268  505.69 4.9699 "  9.707 U, 5.919% " L2275 "
6.0297 21778 507.92 4.9937 " 1.023 6.1682 " 4.525
6.1379 21386 509.70 5.0133 " 1.065 " 6.4125 " h.775 "
6.2284 21069 511.14 5.0291 " 1.100 " 6.6534, " 5.025 "
6.3051 20807 512.33 5.0421 " 1.129 " 6.8913 " 5.275 "
6.4941 20169 515.13 5.0630 " 1.208 " 7.8152 " 6.275 "
6.6381 19721 517.16 5.0859 " 1.258 " 8.7190 " 7.2715 "
6.7403 19415 518.55 5.1026 " 1.292 " 9.6092 :3 8.275 "s
6.8678 19038 520.22 5.1182 " 1.339 " 1.1793 1.0775
6.9482 1881k 521.25 5.1313 " 1.363 " 1.3952 " 1.3275 "
7.0327 18582 522.30 5.1432 " 1.389 " 2.2483 2.3275 "
7.0485 18544  522.49 5.1479 " 1.392 " 3.0996 "  3.3275 "
7.123 18400 523.40 .139 oo oo
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