LA-8498-MS
Informal Report
C. 3

CIC-14 REPORT COLLECTION
REPRODUCTION COPY

SENSIT: A Cross-Section and Design Sensitivity and Uncertainty Analysis Code

This report was not edited by the Technical Information staff.

This work was supported by the US Department of Energy, Office of Fusion Energy.

This report was prepared us un uccounl of work sponsored by the Uniled Stales Governmeni. Neilher the Unlied Stales nor the United Siules Department of Energy, nor uny of their employees, makes uny warranty, express or implled. or assumes any legal liability or responsibilisy for the uccuracy. compleieness, or usefuiness of uny infor* mation, apparalus, product, or process disclosed, or represenis that its use would nol infringe privalely owned rights. Reference herelin to uny specific commercial product, process, or service by trade name. mark. manufucturer. or olherwise, does nol necessarily conslitute or imply in endorscment, recommendation or favoring by the Unised Stales Government or any agency thereof. The views and opinions of aulhors expressed herein do not necessarily stale or reflect those of the Unilied Siales Government or may agency thereof.

SENSIT: A Cross-Section and Design Sensitivity and Uncertainty Analysis Code

S. A. W. Gerstl

CONTENTS

ABSTRACT 1
I. INTRODUCTION 1
II. SENSIT INPUT SPECIFICATIONS 2
III. UNDERLYING THEORY 11
A. Standard Cross-Section Sensitivity Analysis (ITYP $=0$) 11

1. Pure Loss Terms 14
2. Pure Gain Terms 15
3. Net Sensitivity Profiles 16
4. Integral Sensitivities 17
5. Source and Detector Sensitivity Profiles 17
B. Design Sensitivity Analysis (ITYP = 1) 19
C. Vector Cross-Section Sensitivity and Uncertainty Analysis (ITYP = 2) 21
D. SED Sensitivity and Uncertainty Analysis (ITYP = 3) 23
IV. COMPUTATIONAL OUTLINE 25
A. Overall Program Flow 26
B. Data Management and Storage Requirements 26
C. Summary of Subroutine Functions 28
6. BPOINTR Package 30
7. Subroutine SUB1 30
8. Subroutine SNCON 30
9. Subroutine SUB2A 31
10. Subroutine SUB2B 31
11. Subroutine SUB3 31
12. Subroutine MAP 31
13. Subroutine SUB4 31
14. Subroutine SUB4V 32
15. Subroutine SUB5 32
16. Subroutine SUB5V 32
17. Subroutine SUB6 32
18. Subroutine TEXT and TEXTA 33
19. Subroutine SUB8 33
20. Subroutine SUB8V 33
21. Subroutine SUB9 33
22. Subroutine SUB9V 33
23. Subroutine COVARD 34
24. Subroutine SETID 34
V. DETAILS OF PROGRAM OPTIONS 34
A. Cross-Section Input Options 34
25. Transport Cross-Section Tables 35
a. LASL (ONETRAN, etc.) convention 36
b. ORNL (ANISN, etc.) convention 36
c. LASL-Formatted Transport Cross Sections From Cards (KXS = 1 and IXSTAPE = 0) 37
d. LASL-Formatted Transport Cross Sections From TAPE4 (KXS = 1 and IXSTAPE =1) 38
e. FIDO (ORNL)-Formatted Cross Sections From Cards (KXS $=2$ and IXSTAPE $=0$) 39
26. Vector Cross-Section and Covariance Matrix Input 39
27. Multigroup Processing of ENDF/B Covariance Data to Generate TAPE10 40
B. Geometry Input Options and Spatial Zone Descriptions 45
C. Angular Flux Input Options, Quadrature Weights, and Direction Cosines 46
D. Source and Detector Distribution Functions 48
VI. SAMPLE PROBLEMS 51
A. Problem Description for Samples 1 through 6 52
28. Sample Problem 1 54
29. Sample Problem 55
30. Sample Problem 3 56
31. Sample Problem 4 56
32. Sample Problem 5 57
33. Sample Problem 6 57
B. Problem Description for Samples 7 and 8 57
34. Sample Problem 7 58
35. Sample Problem 8 59
VII. RETRIEVING AND RUNNING SENSIT ON LASL'S AND MFECC'S CDC-7600 COMPUTERS 60
a. On MFECC's CDC-7600 (see Fig. 2) 60
b. On LASL's CDC-7600 (see Fig. 3) 63
c. Changing the FORTRAN source code (see Fig. 4) 63
VIII. REFERENCES 65
IX. APPENDIX 67

SENSIT: A CROSS-SECTION AND DESIGN SENSITIVITY AND UNCERTAINTY ANALYSIS CODE

by

S. A. W. Gerstl

Abstract

SENSIT computes the sensitivity and uncertainty of a calculated integral response (such as a dose rate) due to input cross sections and their uncertainties. Sensitivity profiles are computed for neutron and gamma-ray reaction cross sections (of standard multigroup cross-section sets) and for secondary energy distributions (SED's) of multigroup scattering matrices. In the design sensitivity mode, SENSIT computes changes in an integral response due to design changes and gives the appropriate sensitivity coefficients. Cross-section uncertainty analyses are performed for three types of input data uncertainties: (a) cross-section covariance matrices for pairs of multigroup reaction cross sections, (b) spectral shape uncertainty parameters for secondary energy distributions (integral SED uncertainties), and (c) covariance matrices for energy-dependent response functions. For all three types of data uncertainties, SENSIT computes the resulting variance and expected standard deviation in an integral response of interest, based on generalized perturbation theory. SENSIT uses angular-flux files from one-dimensional discrete-ordinates codes like ONETRAN, ANISN and DTF and reads multigroup cross-section sets in three different formats. This report gives detailed input specifications; precise definitions of all input and output arrays; a discussion of the underlying theory; and details of program flow, data management, and storage requirements. Eight sample problems are described in detail for which complete input files and selected output prints are listed.

I. INTRODUCTION

Sensitivity analysis in radiation transport theory attempts to determine quantitatively how sensitive a calculated integral response is to the input data for the transport calculation. Such input data may concern either cross-section data, geometry specifications (design data), methods approximations, or any other
input required to perform a transport calculation. In an uncertainty analysis, the sensitivity information is used, together with additional data about the uncertainty of the input data, to calculate or estimate the uncertainty of a calculated integral response which results from these input data uncertainties. In a cross-section uncertainty analysis the data uncertainties may be quantified in cross-section covariance matrices and in spectral shape uncertainty parameters for secondary energy distributions (SED's), while the resulting response uncertainty is best quantified by a variance or relative standard deviation. In a design sensitivity analysis, usually a specific design change (e.g., a material replacement or a geometry modification) and its effect on a calculated integral response is of concern. Therefore, in such cases a resulting response change is calculated based on generalized perturbation theory.

The SENSIT code is in some respects more comprehensive than earlier sensitivity codes presently in use ${ }^{1}$. Specifically, SENSIT includes the calculation of sensitivity profiles for secondary energy distributions (SED's) and performs also an SED uncertainty analysis. In addition, SENSIT also allows design sensitivity analyses and detector response uncertainty analyses to be performed in addition to the standard cross-section sensitivity and uncertainty analysis.

II. SENSIT INPUT SPECIFICATIONS

The following pages describe the input data to SENSIT in the order in which they must be entered into the code. In addition to the title card, which is always first, all input data may be categorized as control integers on cards 2 and 3 , and problem dependent data starting with card 4 . Many of the problem dependent data are required only conditionally, depending on the value of certain control integers, as indicated. Therefore, mainly depending upon values for ITYP, the sequence of problem-dependent input data may be different from case to case.

Card 1: Format (8A10)
80-column title card for job description

Card 2: Format (12I6), control parameters

Integer No.	$\begin{gathered} \text { Variable } \\ \text { Name } \\ \hline \end{gathered}$	Description and Options
1	ITYP	Type of sensitivity/uncertainty analysis: 0 - standard cross-section sensitivity analysis 1 - design sensitivity analysis 2 - vector cross-section sensitivity and uncertainity analysis, 3 - SED sensitivity and uncertainty analysis.
2	IGE	Geometrical model: 1 - slab or plane geometry, 2 - one-dimensional cylindrical geometry, 3 - spherical geometry, 4 - two-angle slab geometry.
3	ISN	Order of S_{N} angular quadrature; must be even integer.
4	IM	Total number of spatial mesh intervals.
5	IGM	Total number of energy groups.
6	NCOUPL	Number of neutron groups in case of coupled neutron/gammaray calculations, Zero if pure neutron or pure gamma-ray calculation is performed.
7	LMAX	P_{ℓ}-order of cross-sections.
8	ITAPE	Type of angular fluxes to be read from TAPE1 (PHI) and TAPE2 (PHISTAR) (see. Sec. V.C): 0 - reads flux tapes generated by DTF or ANISN, 1 - reads flux tapes in CCCC-format; e.g., as generated by ONEDANT or ONETRAN.

Integer No.	Variable Name	(Card 2 continued) Description and Options
9	IXSTAPE	Source of multigroup cross-section input (see Sec. V.A,B): 0 - expects cross sections from cards (i.e., in input stream of problem-dependent data), if ITYP $=0,1,3$, 1 - expects cross sections from TAPE4, if ITYP $=0,1,3$, 2 - expects vector cross sections and covariance data from TAPE10, only if ITYP $=2$.
10	NPERXS	Number of successive cases to be run for the same PHI/ PHISTAR, and the same perturbed zone identifications: - if ITYP $=0,1,3$: number of perturbed cross-section sets to be read from TAPE4, or from cards - if ITYP = 2: number of vector cross-section pairs with covariance matrices to be read from TAPE 10.
11	IDESIGN	Type of design sensitivity analysis (zero if ITYP $=0,2,3$): 0 - for ITYP $=1$ when 2 cross-section sets (perturbed and unperturbed) must be read per case, 1 - for ITYP = 1 when only 1 cross-section set (Σ) is read per case, and the special design perturbation of a 1% density increase is assumed ($\Delta \Sigma=0.01 \Sigma$) in all perturbed zones.
Card 3: Format (1216), control parameters		
Integer Variable		
No.	Name	Description and options
1	KSRS	Number of source zones.
2	KDET	Number of detector zones.
3	KPER	Number of perturbed zones.

Integer No.	Variable Name	(Card 3 continued) Description and options
4	KXS	Format of input cross sections if ITYP $=0,1,3$, cf. Sec.V.A.: 0 - if ITYP $=2$ (KXS is not needed), 1 - LASL format: 6E12.5, 2 - ORNL format: limited fixed field FIDO format as read by ANISN (see Sec. V.A.le).
5	IHT	```Position (row) of total cross section in multigroup cross-section tables (typically 3), 0 - if ITYP = 2.```
6	IHA	```Position (row) of absorption cross section in multigroup cross-section tables (typically 1), 0 - if ITYP = 2.```
7	DETCOV	0 - if no covariance matrix for the detector response function is provided, 1 - read covariance matrix for $R(g)$ and perform relevant uncertainty analysis.
8	NSED	```0 - for ITYP = 0,1,2, and for ITYP = 3 if no SED uncer- tainties are provided, 1 - read integral SED uncertainties if ITYP = 3.```
9	IOUTPUT	0 - print sensitivity and uncertainty output only for the sum over all perturbed zones (in case KPER >> 1), 1 - print all sensitivity and uncertainty output for each individual perturbed zone and for the sum over all perturbed zones.
10	NSUMCOV	```0- if ITYP = 0,1,3, N - number of partial sums desired of individual response variances computed for ITYP = 2.```

Integer Variable (Card 3 continued)

No.	Name	Description and options
11	ITEST	Flag to output specific test prints (which may be very voluminous) : 0 - no test printout, 1 - provide test printout including cross sections but no angular fluxes, 2 - provide test printout with angular fluxes but no cross sections. 3 - provide test printout with vector cross sections and covariance matrices if ITYP $=2$.
12	IPRINT	Flag to provide test printouts of pointers, traces, and dumps as edited from the dynamic data management module BPOINTR: 0 - no test printout, 1 - print dumps only, 2 - print traces only, 3 - print dumps and traces.

Card 4 and all successive cards: Problem-dependent input data

Input Array	Number of Name	Input	Required only	

$E_{n}(g) \quad I G M+1$ (if $6 E 12.5$ always Energy group boundaries for neutron NCOUPL=0) groups in eV, starting with highest energy (i.e., group 1). Zero is not
NCOUPL+1 (if allowed as group boundary.
NCOUPL $\neq 0$)

$E_{\gamma}(g)$	IGM+1		
-NCOUPL		$\quad 6 \mathrm{E} 12.5 \quad$ NCOUPL $\neq 0 \quad$	Gamma-ray energy group boundaries in eV,
---:			
starting with highest gamma-ray energy	(i.e., group NCOUPL+1). Zero is not allowed as group boundary.		

Input Array Name	Number of Entries	Input Format	$\begin{aligned} & \text { Required } \\ & \text { only } \\ & \text { if } \end{aligned}$	Description and conditions
$\bar{W}(\mathrm{~m})$	MM**	6E12.5	always	S_{N} quadrature weights consistent with those used in flux calculations for PHI and PHISTAR (level weights excluding starting weight).
MUE (m)	MM:-	6E12.5	always	S_{N} quadrature direction cosines (level cosines excluding starting directions).
Z(i)	IM +1	6E12.5	always	Spatial mesh boundaries for the entire system in cm.
$\begin{aligned} & \operatorname{ISFIR}(k), \\ & \operatorname{ISLAS}(k) \end{aligned}$	2	216	always	Interval number of first and last interval of k-th source zone. 1 card with two numbers must be entered for each of the KSRS source zones!
$\begin{aligned} & \operatorname{IDFIR}(k), \\ & \operatorname{IDLAS}(k) \end{aligned}$	2	216	always	KDET cards describing all detector zones (like above)
$\operatorname{IPFIR}(\mathrm{k})$, IPLAS(k)	2	216	always	KPER cards describing all perturbed zones (like above).
RHO (g)	IGM	6E12.5	always	Energy distribution of detector response function $R(g, i)$ by group, starting with $\mathrm{g}=1$ (see Sec. V.D).
RHO(j)	IDET	6E12.5	always	Spatial distribution of detector response function $R(g, j)$, per detector

$\left.\begin{array}{rl}\star) M M & =\operatorname{ISN} \text { for slab and spherical geometry (IGE=1 or } 3) \\ M M & =I S N^{*}(I S N+2) / 4 \text { for cylindrical geometry (IGE=2) } \\ M M & =I S N^{*}(I S N+2) \text { for two-angle slab geometry (IGE=4) }\end{array}\right\}$ see Sec. V.C.

Input Array	Number of Entries	Input	Required only if	

Input Array Name	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Entries } \end{gathered}$	Input Format	$\begin{gathered} \text { Required } \\ \text { only } \\ \text { if } \\ \hline \end{gathered}$	Description and conditions
GMED (g)	IGM1 ${ }^{+}$	1216	$\begin{aligned} & \text { ITYP=3 } \\ & \text { and } \\ & \text { NSED=1 } \end{aligned}$	Array of energy-group numbers which identifies the median energy group for each SED associated with the initial energy group g. Use zero if no SED is identified for a given initial energy group g.
FSED (g)	IGMI ${ }^{+}$	6E12.5	$\begin{aligned} & \text { ITYP=3 } \\ & \text { and } \\ & \text { NSED=1 } \end{aligned}$	```Integral SED uncertainty associated with initial energy group g, corresponding to GMED(g).```
ID, NUMDEN, XSNAME	3	$\begin{aligned} & \mathrm{I} 6,6 \mathrm{X} \\ & \mathrm{E} 12.5 \\ & 2 \mathrm{X}, \mathrm{~A} 10 \end{aligned}$	$\begin{aligned} & \text { IXSTAPE=1 } \\ & \text { and } \\ & \text { ITYP=0 } \\ & \text { or } \\ & \text { ITYP=3 } \end{aligned}$	ID identifies the cross-section set for the specific material for which a standard cross-section sensitivity analysis or an SED sensitivity/uncertainty analysis is to be performed. ID is the sequence number of the string of material cross sections on TAPE4, e.g., for the third XS-set on TAPE4: ID=3. NUMDEN is the number density for the material. XSNAME is an optional 10 -column name designation which will reappear in the output.
				Note: If an SED sensitivity/uncertainty analysis is desired for more than 1 material per SENSIT run

[^0]| Input
 Array
 Name | Number
 of
 Entries | Format |
| :--- | :--- | :--- | | Required |
| :---: |
| only |
| if |\quad| Description and conditions |
| :---: |

The basic theory upon which the present sensitivity and uncertainty analysis methods are based has developed over the past several years. We refer to only a few selected references here which can provide the user an overview of the: field, Refs. (2) through (6). More mathematical detail is given in Ref. (7), with special emphasis on discrete-ordinates formulations. The description of the underlying theory in this section will be restricted to as much detail as is required to understand input and output of the SENSIT code, while a general knowledge of the field is assumed.
A. Standard Cross-Section Sensitivity Aralysis (ITYP = 0)

Conventional sensitivity profiles P_{Σ} may be derived from the expression for the forward difference approximation, Eq. (36) in Ref. 7, or Eq. (17) in Ref. 3, or Eq. (26) in Ref. 4. The analytical definition of a cross-section sensitivity function F_{Σ} (E) expresses the sensitivity of a calculated integral response I to a particular cross section Σ_{x} at energy E and may be expressed as

$$
\begin{align*}
\mathrm{F}_{\Sigma_{\mathrm{x}}}(\mathrm{E}) & =(1 / \mathrm{I}) \int \mathrm{d} \underline{r} \int \mathrm{~d} \underline{\Omega}\left\{-\phi(\underline{r}, \underline{\Omega}, \mathrm{E}) \Sigma_{\mathrm{x}, \mathrm{~T}}(\underline{r}, \mathrm{E}) \phi^{*}(\underline{r}, \underline{\Omega}, \mathrm{E})\right. \tag{1}\\
& \left.+\int \mathrm{d} \underline{\Omega}^{\prime} \int \mathrm{d} E^{\prime} \phi(\underline{r}, \underline{\Omega}, \mathrm{E}) \Sigma_{\mathrm{x}, \mathrm{~S}}\left(\underline{r}, \underline{\Omega} \rightarrow \underline{\Omega}^{\prime}, \mathrm{E}^{\prime} \rightarrow \mathrm{E}^{\prime}\right) \phi^{*}\left(\underline{r}, \underline{\Omega} \underline{\mathrm{I}}^{\prime}, \mathrm{E}^{\prime}\right)\right\} .
\end{align*}
$$

In a multigroup formulation one usually prefers to identify and work with a sensitivity profile P_{Σ}^{g}, which is related to the above sensitivity function through the scaling factor Δu^{g} by $P_{\Sigma}^{g}=\bar{F}_{\Sigma}\left(E_{g}\right) / \Delta u^{g}$ and refers to a group-averaged sensitivity. $\Delta \mathrm{u}^{g}$ is the lethargy width of energy group g . The exact numerical definition of a multigroup cross-section sensitivity profile for the macroscopic cross section \sum_{x}^{g} is:

$$
\begin{equation*}
\mathrm{P}_{\Sigma_{\mathrm{x}}^{\mathrm{g}}}^{\mathrm{g}}=\left\{-\Sigma_{\mathrm{x}, \mathrm{~T}}^{\mathrm{g}} \cdot \mathrm{X}^{\mathrm{g}}+\operatorname{LMAX}_{\left.\ell=0 \quad \mathrm{~g}^{\prime}=\mathrm{g}_{\mathrm{s}, \ell}^{\Sigma^{g \rightarrow \mathrm{~g}^{\prime}} \cdot \psi_{\ell}^{g g^{\prime}}}\right\} / \mathrm{I}_{\phi} \cdot \Delta \mathrm{u}^{\mathrm{g}},}\right. \tag{2}
\end{equation*}
$$

$$
\begin{aligned}
& \text { where } \sum_{x, T}^{g}=\text { total macroscopic cross section for reaction type } x \text {, } \\
& \Sigma_{s, \ell}^{\mathrm{g} \rightarrow \mathrm{~g}^{\prime}}=\ell^{\prime} \text { th Legendre coefficient. of the scattering matrix element for } \\
& \text { energy transfer from group } g \text { to group } g^{\prime} \text {, as derived from the } \\
& \text { differential scattering cross section for reaction type } x \text {, } \\
& x^{g}=\sum_{i=1}^{\text {IPERT }} v_{i} \cdot \sum_{m=1}^{M M} \phi_{m}^{g}(i) \cdot \phi_{m}^{* g_{g}}(i) \cdot w_{m}, \\
& =\text { numerical integral of the product of forward and adjoint angu- } \\
& \text { lar fluxes over all angles and all spatial intervals described } \\
& \text { by } \mathrm{i}=1, \ldots \text {, IPERT. } \\
& \psi_{\ell} g^{\prime}=\sum_{i=1}^{\text {IPERT }} V_{i} x_{l}^{g}(i) \cdot Y_{l}^{g^{\prime}}(i), \\
& =\text { spatial integral of the product of Legendre coefficients of } \\
& \text { forward and adjoint angular fluxes. } \\
& x_{\ell}^{g}(i)=\sum_{m=1}^{M M} \phi_{m}^{g}(i) \cdot P_{\ell}\left(\mu_{m}\right) \cdot w_{m} \\
& Y_{\ell}^{g^{\prime}}(i)=\sum_{m}^{M M} \phi_{m}^{* g^{\prime}}(i) \cdot P_{\ell}\left(\mu_{m}\right) \cdot W_{m} \\
& \phi_{m}^{g}(i), \phi_{m}^{* g}(i)=\text { discrete-ordinates representations of forward and adjoint angu- } \\
& \text { lar fluxes for group g, spatial mesh point } i \text { and discrete } \\
& \text { direction m. } \\
& P_{\ell}\left(\mu_{m}\right)=\text { Legendre polynomial of order } \ell \text { at direction cosine } \mu_{m} \text {. } \\
& \left\{\mu_{m}, w_{m}\right\}=\text { discrete-ordinates quadrature direction cosines } \mu_{m} \text { and asso- } \\
& \text { ciated quadrature weights } w_{m} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& V_{i}= \text { volume of spatial mesh interval i. } \\
& \Delta u^{g}= \text { lethargy width of energy group } g, \\
&=\ln \left(E^{g} / E^{g+1}\right), \text { where } E^{g} \text { and } E^{g^{+1}} \text { are upper and lower energy } \\
& \text { group boundaries. } \\
& I_{\phi}= \text { integral response as calculated from forward fluxes only, } \\
&= \sum_{i=1}^{\text {IDET }} \sum_{i}^{I G M} \sum_{m}^{M M} V_{i} R_{j}^{g} \cdot \phi_{m}^{g}(i) \cdot w_{m} \\
& R_{i}^{g}=\text { spatially and group-dependent detector response function. }
\end{aligned}
$$

The basic Eq. (2), as well as its corresponding Eq. (1), consist of two terms on the right-hand side. The first term, which is always negative, is called the "loss term" ${ }^{(3,7)}$ and involves always the total (collision) cross section for a certain reaction type. The second term involves only the differential scattering cross section and is always positive; it. is called the "gain term ${ }^{\prime \prime}(3,7)$. Loss term and gain term, respectively, indicate a loss or a gain in (positive) sensitivity in the sense that the total cross section always indicates a neutron interaction which removes the neutron from the considered phase-space volume $\left\{\underline{r r}_{i}, \Delta \Omega_{-m}, \Delta E_{g}\right\}$ represented by $\{i, m, g\}$, while scattering interactions can transfer neutrons from other phase-space regions into the specific phase-space volume under consideration.

In order to avoid ambiguities in the interpretation of sensitivity profiles, careful consideration must be given to cases when the reaction cross section Σ_{x} is a composite cross section. Ideally, Σ_{x} should always be chosen as a partial reaction cross section of one exclusive type, like (n, α), ($n, 2 n$), (n, n^{\prime})elastic, etc. However, in practice, complete cross-section sets, including full scattering matrices, are seldom available for all desired partials. In such cases, composite cross sections must be used, such as total absorption, total inelastic or even total scattering cross sections, which complicates the interpretation of the resulting sensitivity profiles. If, for example, the ($n, 2 n$) cross section is treated as a negative portion of the total absorption cross section, which is the case in some standard transport cross-section sets, then it is possible that the loss term for the absorption cross section is positive for those groups where the ($n, 2 n$)-reaction dominates.

In order to facilitate the interpretation of sensitivity results, SENSIT prints loss and gain terms in addition to the net sensitivity profiles. In the following we give the discrete-ordinates equations which are the exact equivalents to the algorithms coded in SENSIT to produce the standard sensitivity profile output. A verbal synopsis of Eqs. (3) through (13) is printed with the SENSIT output if ITYP $=0$ or 3 .

1. Pure Loss Terms. For the neutron sensitivity profiles 4 loss terms are printed but only 3 for the gamma-ray profiles:

$$
\begin{equation*}
\text { AXS }=P_{\Sigma_{a b s, L o s s}^{g}}^{g}=-\sum_{a b s}^{g} \cdot \chi^{g} / I_{\phi} \cdot \Delta u^{g}, \tag{3}
\end{equation*}
$$

where $\sum_{a b s}^{g}$ is the absorption cross section in group g as taken from position IHA in the input cross-section tables (see Sec.V.A).

$$
\begin{equation*}
N U-F I S S=P_{v \Sigma_{\text {fiss }, \text { Loss }}}=-v \Sigma_{f}^{g} \cdot \chi^{g} / I_{\phi} \cdot \Delta u^{g} \tag{4}
\end{equation*}
$$

where $\nu \Sigma_{f}^{g}$ is the standard group-averaged product of fission cross section and number of fission neutrons per incident neutron. This "cross section" is taken from position IHA+1 of the input cross-section tables. One may note here, that if no absorption or fission cross-section profiles are desired, the data in cross-section table positions IHA and IHA+1 may be replaced with any other multigroup cross section to produce the loss-terms of sensitivity profiles for such substitute cross sections.

$$
\begin{equation*}
S X S=P_{\Sigma_{s, l o s s}^{g}}=-\Sigma_{s, l o s s}^{g} \chi^{g} / I_{\phi} \cdot \Delta u^{g} \tag{5}
\end{equation*}
$$

where $\Sigma_{s, l o s s}^{g}$ is the total scattering cross section for all group transfers within group g and out of group g :

$$
\begin{equation*}
\Sigma_{s, l o s s}^{g}=\sum_{g^{\prime}=g}^{\operatorname{GMAX}} \sum_{s, o}^{g \rightarrow g^{\prime}} \tag{6}
\end{equation*}
$$

Equation (6) is evaluated in SENSIT by summing the P_{o} component of the scattering matrix along the appropriate diagonal, where GMAX denotes either the total number of neutron groups or the total number of gamma-ray groups for neutron or gammaray profiles, respectively.

$$
\begin{equation*}
\mathrm{TXS}=\mathrm{P}_{\Sigma_{\mathrm{T}, \operatorname{los} \mathrm{~s}}^{\mathrm{g}}}=-\Sigma_{\mathrm{T}}^{\mathrm{g}} \quad x^{g} / \mathrm{I}_{\phi} \cdot \Delta \mathrm{u}^{g} \tag{7}
\end{equation*}
$$

where \sum_{T}^{g} is the total interaction cross section for group g as taken from position IHT in the input cross-section tables.
2. Pure Gain Terms. SENSIT prints 3 gain terms for the neutron profiles, but only one for gamma rays. The two additional gain terms for neutrons refer to (n, γ)-reactions and neutron secondary energy distributions as explained below.

$$
\begin{align*}
& \text { N-GAIN or G-GAIN }=P_{\Sigma_{s, g}}^{g} \\
& =\left\{\begin{array}{l}
\text { LMAX } \\
\sum_{\ell=0}^{\text {GMAX }} \\
\sum_{g^{\prime}=}^{g} \sum_{s, \ell}^{g \rightarrow g^{\prime}} \psi_{\ell}^{g g^{\prime}}
\end{array}\right\} / I_{\phi} \cdot \Delta u^{g} . \tag{8}
\end{align*}
$$

The inner summation in Eq. (8) indicates that all sensitivity gains are counted which relate to scattering transfers, within and out of group g into all other groups g^{\prime}. For the neutron profile (N-GAIN) the upper limit of the group summation, GMAX, is the total number of neutron groups, while for the gamma-ray profile (G-GAIN), GMAX is chosen as the total number of gamma-ray groups.

$$
\begin{equation*}
\left.N-\operatorname{GAIN}(S E D)=\hat{P}_{\Sigma}^{g}{ }_{s, \text { gain }} \sum_{\ell}^{\text {LMAX }} \sum_{g^{\prime}=1}^{g} \Sigma_{s, \ell}^{g^{\prime} \rightarrow g} \psi_{\ell}^{g^{\prime} g}\right\} / I_{\phi} \cdot \Delta u^{g} . \tag{9}
\end{equation*}
$$

This partial profile is only printed for neutron groups and differs from N-GAIN of Eq. (8) by re-arranging g and g^{\prime} and the group summation. N-GAIN(SED) therefore counts all sensitivity gains due to scattering transfers from all (higher) energy groups g^{\prime} into group g. Hence, this profile may be considered as an adjoint to N-GAIN; its physical interpretation relates to the importance of neutron secondary energy distributions, as described in Section D.

$$
\begin{align*}
& \text { NG-GAIN }=P_{\Sigma}^{g}(n, \gamma), \text { gain } \\
& =\left\{\sum_{\ell=0}^{\text {LMAX }} \sum_{g^{\prime}=N C O U P L+1}^{I G M} \sum_{\substack{g \\
(n, \gamma), \ell}}^{g \rightarrow q_{\ell}^{\prime}} \mathrm{gg}^{\prime}\right\} / I_{\phi} \cdot \Delta u^{g}, \tag{10}
\end{align*}
$$

where $\Sigma_{(n, \gamma), \ell}^{g \rightarrow g^{\prime}}$ is the ℓ^{\prime} th Legendre coefficient of the gamma-ray production cross section for neutron group g as taken from the input scattering matrix. The group summation in Eq. (10) indicates that all sensitivity gains are counted, which are due to transfers from neutron group g into all gamma-ray groups g^{\prime}.
3. Net Sensitivity Profiles. SENSIT prints for both, the neutron as well as the gamma-ray profiles, two net (or total) sensitivity profiles which are obtained by summing the appropriate loss and gain terms according to Eq. (2).

$$
\begin{equation*}
\text { SEN }=\mathrm{P}_{\Sigma_{s, \text { net }}^{\mathrm{g}}}=\mathrm{P}_{\Sigma_{s, \text { los }}^{\mathrm{g}}}+\mathrm{P}_{\Sigma_{s, \text { gain }}^{\mathrm{g}}}, \tag{11}
\end{equation*}
$$

where simply the partial profiles defined in Eqs. (5) and (8) are added for each group.

$$
\begin{equation*}
\text { SENT }=P_{\Sigma_{T, \text { net }}^{g}}^{g}=P_{\Sigma_{T, \text { loss }}^{g}}^{g}+P_{\Sigma_{s, \text { gain }}^{g}} \tag{12}
\end{equation*}
$$

where the partial profiles of Eqs. (7) and (8) are added.
It may be noted here that Eqs. (11) and (12) differ only with respect to which loss term is chosen. The loss term of Eq. (12) may include the effects of many more reaction types than that of Eq. (11), depending on the contents of position IHT in the input cross-section tables. In contrast, however, the net sensitivity profile of Eq. (11) may be considered self-consistent because it utilizes only the information contained in the input transfer matrix, independent of the values for \sum_{T}^{g} in cross-section table position IHT.
4. Integral Sensitivities. All sensitivity profiles printed by SENSIT are also integrated over neutron energies and gamma-ray energies separately, i.e.

$$
\begin{equation*}
\text { Integral }=\sum_{g} \operatorname{SEN}^{g} \cdot \Delta u^{g} \tag{13}
\end{equation*}
$$

where the group summation extends form $g=1$ through $g=$ NCOUPL for neutron profiles and from $g=N C O U P L+1$ through $g=I G M$ for gamma-ray profiles. As a test for the consistency of the calculation one might note that the integrals over Eqs. (8) and (9) must be identical and equal to the total neutron-scattering gain term. If any n-gamma gain terms (NG-GAIN) are calculated, they will be offset again in the net total neutron profile (SENT), because \sum_{T} includes a component due to (n, γ)-reactions which is counted in TXS as a neutron loss mechanism.
5. Source and Detector Sensitivity Profiles. All SENSIT runs (for any value of ITYP) print sensitivity profiles for the source and detector distribution functions $Q(E)$ and $R(E)$ even before any cross sections are read. These sensitivity profiles are based on the dualism ${ }^{(4)}$ that the integral response I may be calculated independently either from the forward flux alone:

$$
\mathrm{I}_{\phi}=\int \mathrm{d} \underline{r} \int \mathrm{~d} \underline{\Omega} \int \mathrm{dE} R(\underline{r}, E) \phi(\underline{r}, \underline{\Omega}, E)
$$

$$
\begin{equation*}
=\sum_{i=1}^{\text {IDET }} \sum_{m=1}^{\text {MM }} \sum_{g=1}^{\text {IGM }} v_{i} \cdot R_{i}^{g} \cdot \phi_{m}^{g}(i) \cdot w_{m} \tag{14}
\end{equation*}
$$

or from the adjoint flux alone:

$$
\begin{align*}
I_{\phi^{*}} & =\int \mathrm{d} \underline{r} \int \mathrm{~d} \underline{\Omega} \int \mathrm{dE} Q(\underline{r}, E) \phi^{*}(\underline{r}, \underline{\Omega}, \mathrm{E}) \tag{15}\\
& =\sum_{i=1}^{\text {ISRS }} \sum_{m=1}^{M M} \sum_{g=1}^{I G M} V_{i} \cdot Q_{i}^{g} \cdot \phi_{m}^{* g}(i) \cdot w_{m}
\end{align*}
$$

where R_{i}^{g} and Q_{i}^{g} are the spatially and group dependent detector response function and neutron source distribution, respectively. If it is desired to determine how sensitive the integral response I is to the energy distribution of either R_{i}^{g} or Q_{i}^{g}, Eqs. (14) and (15) can be used to define a detector and source sensitivity profile, which may then be interpreted in exact analogy to the standard cross-section sensitivity profiles:

$$
\begin{align*}
& P_{R}^{g}=\sum_{i=1}^{\text {IDET }} \sum_{m=1}^{M M} V_{i} R_{i}^{g} \phi_{m}^{g}(i) w_{m} / I_{\phi} \cdot \Delta u^{g}, \tag{16}\\
& P_{Q}^{g}=\sum_{i=1}^{\text {ISRS }} \sum_{m=1}^{M M} V_{i} Q_{i}^{g} \phi_{m}^{*} g_{(i) w_{m} / I_{\phi^{*}} \cdot \Delta u^{g}} . \tag{17}
\end{align*}
$$

For internal consistency, the detector sensitivity profile $\mathrm{P}_{\mathrm{R}}^{\mathrm{g}}$ is normalized to I_{ϕ} from Eq. (14), while the source sensitivity profile P_{Q}^{g} is normalized to $I_{\phi^{*}}$ from Eq. (15). Ideally, of course, $I_{\phi}=I_{\phi^{\prime}}$. The integrals over Eqs. (16) and (17), according to Eq. (13), must be 1.0 if the spatial integrations are carried out over all source and detector zones. However, if the control parameter IOUTPUT
is set to 1 , then SENSIT prints P_{R}^{g} and P_{Q}^{g} and their integrals for each individual source and detector zone as well. These zone-wise integral sensitivities allow a quantitative interpretation of the relative importance of the various source and detector zones to the total integral response I.

B. Design Sensitivity Analysis (ITYP = 1)

The objective in a design-sensitivity analysis is to estimate the change of an integral response I due to a given design change without repeating the transport calculation for the altered design. Methods, based on generalized perturbation theory, have been developed which allow such estimates to be made with second-order accuracy in respect to the associated flux changes ${ }^{(4,7)}$. These perturbation methods require only the forward and adjoint flux solutions to a reference case and the specification of a perturbation to this reference design, which is equivalent to a postulated design change. All such design changes can be described then by a perturbation, $\Delta \mathrm{L}$, in the linear Boltzmann operator L.

Due to the dualism of forward and adjoint formulations for radiation transport calculations, two different but equivalent expressions can be derived for the estimated integral response in the perturbed system ${ }^{(4,7)}$. These expressions are both second-order with respect to flux changes but first-order with respect to the perturbation and are denoted as the adjoint difference (AD) and the forward difference (FD) formulation. Using the convenient operator notation of Refs. 4 and 7, we obtain for the integral response in the perturbed system the two expressions

$$
\begin{align*}
& \mathrm{I}_{\mathrm{AD}}^{(2)}=\langle\mathrm{R}, \phi\rangle-\left\langle\phi^{*}, \Delta \mathrm{~L} \phi\right\rangle \equiv \mathrm{I}_{\phi}^{(1)}-\Delta \mathrm{I}_{\mathrm{AD}}^{(2)} \tag{18}\\
& \mathrm{I}_{\mathrm{FD}}^{(2)}=\left\langle Q, \phi^{*}\right\rangle-\left\langle\phi, \Delta \mathrm{L}^{*} \phi^{*}\right\rangle \equiv \mathrm{I}_{\phi^{*}}^{(1)}-\Delta \mathrm{I}_{\mathrm{FD}}^{(2)} \tag{19}
\end{align*}
$$

where <, > indicates integrations over all independent variables, and $\phi, \phi \%$ are the forward and adjoint angular fluxes for the reference design. It may be noted that the first-order terms on the right sides of Eqs. (18) and (19) are computationally identical to I_{ϕ} and $I_{\phi^{*}}$ as defined in Eqs. (14) and (15). In addition, if the operators $\Delta \mathrm{L}$ and $\Delta \mathrm{L} *$ are written down explicitly ${ }^{(7)}$, it is
noted that the second-order term in Eq. (19) is equivalent to the negative of the numerator of Eq. (2) when the cross sections Σ_{x} are replaced by crosssection changes $\Delta \Sigma$, and when an additional integration over all energies E, namely, a summation over all groups g, is performed:

$$
\begin{equation*}
\Delta I_{F D}^{(2)}=\sum_{g=1}^{\text {IGM }}\left\{\Delta \Sigma_{T}^{g} \cdot \chi^{g}-\sum_{\ell=0}^{\text {LMAX }} \sum_{g^{\prime}=g}^{I G M} \Delta \Sigma_{s, \ell}^{g \rightarrow g^{\prime}} \cdot \psi_{\ell}^{g g^{\prime}}\right\} \tag{20}
\end{equation*}
$$

The analogous expression for the seond-order term in Eq. (18) becomes

$$
\begin{equation*}
\Delta \mathrm{I}_{\mathrm{AD}}^{(2)}=\sum_{\mathrm{g}=1}^{\mathrm{IGM}}\left\{\Delta \Sigma_{\mathrm{T}}^{\mathrm{g}} \cdot \chi^{\mathrm{g}}-\sum_{\ell=0}^{\mathrm{LMAX}} \sum_{g^{\prime}=1}^{\mathrm{g}} \quad \Delta \Sigma_{s, \ell}^{g^{\prime} \rightarrow \mathrm{g}} \cdot \psi_{\ell}^{g^{\prime} g}\right\} \tag{21}
\end{equation*}
$$

The perturbation, as expressed by macroscopic cross-section changes in Eqs. (20) and (21) is calculated in SENSIT from two sets of input cross-section tables, the unperturbed or reference cross-section set $\{\bar{\Sigma}\}$ and the perturbed cross-section set $\{\Sigma\}$:

$$
\begin{gather*}
\Delta \Sigma_{T}^{g}=\Sigma_{T}^{g}-\Sigma_{T}^{g}, \tag{22}\\
\Delta \Sigma_{s, \ell}^{g \rightarrow g^{\prime}}=\Sigma_{s, \ell}^{g \rightarrow g^{\prime}}-\bar{\Sigma}_{s ; \ell}^{g \rightarrow g^{\prime}} \tag{23}\\
\Delta \Sigma_{s, \ell}^{g^{\prime} \rightarrow g}=\Sigma_{s, \ell}^{g^{\prime} \rightarrow g}-\bar{\Sigma}_{s, \ell}^{g^{\prime} \rightarrow g} . \tag{24}
\end{gather*}
$$

A design sensitivity coefficient X may be defined for both (AD and FD) formulations according to

$$
\begin{equation*}
\mathrm{X}_{\mathrm{AD}}=\mathrm{I}_{\mathrm{AD}}^{(2)} / \mathrm{I}_{\phi}^{(1)}=1-\Delta \mathrm{I}_{\mathrm{AD}}^{(2)} / \mathrm{I}_{\phi}^{(1)} \tag{25}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{X}_{\mathrm{FD}}=\mathrm{I}_{\mathrm{FD}}^{(2)} / \mathrm{I}_{\phi^{*}}^{(1)}=1-\Delta \mathrm{I}_{\mathrm{FD}}^{(2)} / \mathrm{I}_{\phi^{*}}^{(1)} \tag{26}
\end{equation*}
$$

from which the estimated fractional change of the integral response I due to the introduction of the perturbation can be easily determined.

It has been demonstrated in Refs. 4 and 7 that the AD -formulation is more appropriate for cases where the perturbation is geometrically closer to the detector than to the source, while the FD-fomulation is better suited for cases where the perturbation is geometrically closer to the source than to the detector. However, if both reference fluxes, ϕ and ϕ^{*}, are completely converged, then both formulations will give identical results.

SENSIT prints all design sensitivity information, as defined in Eqs. (18) through (26), separately for neutrons and gamma rays; also, if IOUTPUT $=1$, it prints the same information for each perturbed zone as well as integrated over all perturbed zones. If the control parameter ITYP is set to 1 , the SENSIT output will also contain a synopsis defining the variable names used to edit the design sensitivity information.

If the control parameter IDESIGN is set equal to 1 , then the special case of a design perturbation is assumed, which is equivalent to a 1% increase in all cross sections in all perturbed zones, i.e., Eqs. (22) through (24) are replaced by $\Delta \Sigma=0.01 \Sigma$. Such a perturbation may also be interpreted as if the material density in the perturbed zones were increased by 1%. In this mode only one cross-section set $\{\Sigma\}$ needs to be read into SENSIT per case.
C. Vector Cross-Section Sensitivity and Uncertainty Analysis (ITYP = 2)

The term "vector cross-section" has been chosen to identify a multigroup cross-section set which consists of a linear string of numbers with one groupaveraged reaction cross section per group, but no scattering matrix. Such a cross-section set can be described by a vector, or one-dimensional array, with IGM elements, in contrast to the two-dimensional cross-section tables, which include transfer matrices. All reaction cross sections which do not need to describe the production of secondary neutrons or gamma rays, such as (n, α), ($n, a b s$.), Σ_{T}, etc., are completely described by a vector cross section. Obviously, by definition, such vector cross-sections can only generate a loss term in a sensitivity analysis. However, existing correlations between two individual vector cross sections are easily described by a simple two-dimensional correlation
matrix. As a consequence, therefore, it is also straightforward to describe correlated cross-section uncertainties of pajrs of vector cross sections by a twodimensional covariance matrix ${ }^{(5)}$. For ITYP $=2$, SENSIT performs a complete sensitivity and response uncertainty analysis for given sets of vector cross-section pairs $\left\{\Sigma_{1}^{\mathrm{g}}\right\}$ and $\left\{\Sigma_{2}^{\mathrm{g}}\right\}$ with an associated covariance matrix $\operatorname{Cov}\left(\Sigma_{1}^{\mathrm{g}}, \Sigma_{2}^{\mathrm{g}}\right)$ attached to each pair. These pairs of vector cross sections with their covariance matrix are read from TAPE10 by identification numbers as specified in the input stream. In coupled (n, γ)-calculations, this analysis is treating only the neutron groups.

As a first step SENSIT calculates the sensitivity profiles $\mathrm{P}_{1}^{\mathrm{g}}$ and $\mathrm{P}_{2}^{\mathrm{g}}$ for each individual vector cross section according to an equation equivalent to Eq. (3), i.e., a pure loss term. Then the covariance matrix $\operatorname{Cov}\left(\Sigma_{1}^{g}, \Sigma_{2}^{g^{\prime}}\right)$ is used to compute the resulting integral response uncertainty due to the correlated cross-section uncertainties of this pair of vector cross sections according to ${ }^{(5)}$

$$
\operatorname{Var}\left(\mathrm{I}_{\phi}\right)=\sum_{\mathrm{g}=1}^{\text {IGM1 }} \sum_{\mathrm{g}^{\prime}=1}^{\mathrm{IGM1}} \mathrm{P}_{1}^{\mathrm{g}} \cdot \mathrm{P}_{2}^{\mathrm{g}^{\prime}} \cdot \operatorname{Cov} \Sigma_{1}^{g}, \Sigma_{2}^{\mathrm{g}^{\prime}}
$$

The upper limit of the double sum, IGM1, is the number of neutron groups (IGM1 = NCOUPL in a coupled (n, γ)-problem). Both, the variance $\operatorname{Var}\left(I_{\phi}\right)$ as well as the relative standard deviation

$$
\begin{equation*}
\frac{\delta I}{I}=\sqrt{\operatorname{Var}\left(I_{\phi}\right)} \tag{28}
\end{equation*}
$$

are printed by SENSIT for each vector cross-section pair. Since all cross-section uncertainties pertaining to one material may be described by a sum of several vector cross-section covariance matrices, SENSIT also prints specified sums of response variances

$$
\begin{equation*}
\operatorname{Var}\left(I_{\phi}\right)_{\text {MAT }}=\sum_{n=1}^{\text {NSUMCOV }} \operatorname{Var}_{n}\left(I_{\phi}\right) \tag{29}
\end{equation*}
$$

and the resulting standard deviation ($\delta I / \mathrm{I}$) MAT, assuming that NSUMCOV vector cross-section pairs describe the cross sections for one material sufficiently.
D. SED Sensitivity and Uncertainty Analysis (ITYP = 3)

It has only recently been recognized ${ }^{(8)}$ that sensitivity profiles for secondary energy and angular distributions are obtained as adjoints of the standard sensitivity profiles, i.e., from the differential form of the adjoint difference (AD) formulation. For ITYP $=3$, SENSIT computes and prints the double-differential and single-differential sensitivity profiles for secondary energy distributions (SED's) and performs also an SED uncertainty analysis based on the hot/cold concept of integral SED uncertainties ${ }^{(9)}$. A sensitivity or uncertainty analysis for secondary angular distributions is not implemented in this version of SENSIT. Also, the SED sensitivity and uncertainty analysis is not performed for secondary gamma rays in the case of a coupled (n, γ)-calculation.

As shown in Ref. (8), a double-differential SED sensitivity profile is described by the differential form of the gain term in the $A D$-formulation; $c f$. Eq. (21) and Eq. (9):

$$
\begin{align*}
\mathrm{P}_{\mathrm{SED}}^{\mathrm{g}}, \mathrm{~g} & \equiv \operatorname{PSED}(\mathrm{~g}-\mathrm{in}, \mathrm{~g} \text {-out }) \\
& =\left\{\sum_{\ell=0}^{\operatorname{LMAX}} \Sigma_{\mathrm{s}, \ell}^{g^{\prime} \rightarrow \mathrm{g} \cdot \psi_{\ell}^{g^{\prime}} \mathrm{g}}\right\} / / \mathrm{I}_{\phi} \cdot \Delta u^{g^{\prime}} \cdot \Delta u^{g} . \tag{30}
\end{align*}
$$

This double-differential SED sensitivity profile quantifies the sensitivity of the integral response I_{ϕ} to the scattering matrix element $\Sigma_{s}^{g^{\prime} \rightarrow g}$. Therefore, $\mathrm{P}_{\mathrm{SED}}^{g^{\prime}, g}$ is a pure gain term for the sensitivity gain due to the transfer of neutrons from the incident energy group g^{\prime} to the final energy group $g . P_{S E D}^{g^{\prime}}, g$ is double differential because it is scaled to the product of both lethargy widths, $\Delta u^{g^{\prime}}$ and Δu^{g}, of the incident and the final energy groups.

From Eq. (30), two single-differential SED sensitivity profiles may be obtained, depending upon which of the two group indices an integration is performed:

$$
\begin{equation*}
P_{S E D}^{g} \equiv \operatorname{PSED}(g-o u t)=\sum_{g^{\prime}=1}^{g} P_{S E D}^{g^{\prime}, g} \cdot \Delta u^{g^{\prime}} \tag{31}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{P}_{\mathrm{SED}}^{\mathrm{g}^{\prime}} \equiv \operatorname{PSED}(\mathrm{g}-\mathrm{in})=\sum_{\mathrm{g}}^{\mathrm{g}} \mathrm{~g}^{\prime} \mathrm{P}_{\mathrm{SED}}^{g^{\prime}, \mathrm{g}} \cdot \Delta u^{g} \tag{32}
\end{equation*}
$$

Equation (31) describes the sensitivity of I_{ϕ} to the sum of all scattering transfer cross sections which transfer neutrons from any incident energy group g' into the specific final energy group g. $\mathrm{P}_{\text {SED }}^{\mathrm{g}} \equiv \operatorname{PSED}(\mathrm{g}$-out) is identical to N-GAIN(SED), as defined earlier in Eq. (9). In complete analogy, Eq. (32) adds up all sensitivit gains due to neutron transfers originating in group g^{\prime} and transferring into any final energy group $g \geq g^{\prime} . \quad P_{S E D}^{g^{\prime}} \equiv \operatorname{PSED}(g-i n)$, when given as a function of g^{\prime} is, therefore, identical to the standard sensitivity gain term N-GAIN(g), as defined in Eq. (8), where the nomenclature for g and g^{\prime} is reversed.

In order to perform an SED uncertainty analysis based on the hot/cold concept introducted in Ref. 9, it is required to specify the median energy group of the SED for each incident neutron energy group, GMED (g^{\prime}), as well as the associated integral SED uncertainty (spectral shape uncertainty parameter), $\mathrm{F}_{\text {SED }}\left(\mathrm{g}^{\prime}\right)$, for each SED with incident energy group $\mathrm{g}^{\prime} \cdot \operatorname{GMED}\left(\mathrm{g}^{\prime}\right)$ and $\mathrm{F}_{\mathrm{SED}}\left(\mathrm{g}^{\prime}\right)$ are expected input arrays in SENSIT if ITYP $=3$ and NSED $=1$. Hot and cold integral SED sensitivity coefficients, $S_{H O T}\left(g^{\prime}\right)$ and $S_{C O L D}\left(g^{\prime}\right)$, are then computed by SENSIT according to ${ }^{(9)}$.

$$
\begin{align*}
& s_{H O T}\left(g^{\prime}\right)=\Delta u^{\prime} \cdot \sum_{g=g^{\prime}}^{\operatorname{GMED}\left(g^{\prime}\right)} P_{S E D}^{g^{\prime}, g} \cdot \Delta u^{g}, \\
& S_{C O L D}\left(g^{\prime}\right)=\Delta u^{\prime} \cdot \sum_{g=G M E D+1}^{\operatorname{IGM1}} P_{S E D}^{g^{\prime}, g \cdot \Delta u^{\prime} g} .
\end{align*}
$$

From these two components of an integral SED sensitivity, SENSIT obtains the net integral SED sensitivity cofficient

$$
\begin{equation*}
S\left(g^{\prime}\right)=S_{H O T}\left(g^{\prime}\right)-S_{\text {COLD }}\left(g^{\prime}\right), \tag{35}
\end{equation*}
$$

which quantifies how much more sensitive the integral response I_{ϕ} is to the hot component of the SED at incident energy group g ' than to its cold component. The simplest possible response uncertainty estimate due to estimated SED uncertainties is then obtained from ${ }^{(9)}$

$$
\begin{equation*}
\frac{\delta I}{\mathrm{I}_{\mathrm{SED}}}=\sum_{g^{2}=1}^{\mathrm{IGMI}}\left|\mathrm{~S}\left(\mathrm{~g}^{\prime}\right)\right| \cdot \mathrm{F}_{\mathrm{SED}}\left(\mathrm{~g}^{\prime}\right) \tag{36}
\end{equation*}
$$

Values for all SED sensitivity profiles, as defined in Ē̄s. (30) through (32), all integral SED sensitivity coefficients, Eqs. (33) through (35), and the estimated response uncertainty due to all integral SED uncertainties according to Eq. (36), are printed by SENSIT for each set of material cross sections and associated integral SED uncertainties.
IV. COMPUTATIONAL OUTLINE

Basically the SENSIT code reads angular-flux data and differential crosssection data and then performs the arithmetic calculations defined in the previous section. Therefore, no intrinsically complex computational algorithms are of concern, but an efficient management of large arrays of data is of prime importance. The code therefore employs variable dimensioned arrays throughout and uses for economical storage allocations a separate data management package (BPOINTR) subroutines. This software package has been developed by Argonne National Laboratory and is also a part of most ANL originated codes such as MC ${ }^{2}-2$ (ANL-8144) or FX2-TH (ANL-78-97). Our version of BPOINTR is described
in Ref. 10; a later, more comprehensive version of this data management package has recently been issued and its documentation is in print (11)

A. Overall Program Flow

The entire SENSIT code consists of four functionally different parts:

1. The main program which operates as a driver routine to allocate core space through BPOINTR subroutine calls.
2. Computational subroutines which evaluate the expressions defined in the previous section.
3. Data management subroutines from the BPOINTR package and standard FORTRAN functions from systems libraries.
4. Text editing routines which output the computed results.

In the following we describe the functions of all relevant subroutines in as much detail as may be required to understand the flow of computations performed in SENSIT.

B. Data Management and Storage Requirements

SENSIT uses one-, two-, and three-dimensional arrays to manage the large amount of numerical data involved in its execution. Core storage is reserved for a particular dimensioned array only during the time the corresponding data are required to be in-core; at other times, the space is made available for the storage of other data. In order to alleviate bookkeeping chores associated with such dynamic storage allocation techniques, Argonne National Laboratory developed a collection of subroutines, called the BPOINTR package ${ }^{(10,11)}$, which is incorporated in SENSIT. The user needs to know nothing about the BPOINTR routines themselves, only that they require two large blocks of workspace called "containers" for data storage during execution of a job. The container sizes are set in the main program by four FORTRAN statements as explained below, and the choice of sizes is problem dependent. The first container, the FCM (fastcore memory) or SCM (small-core memory) container, is in the CDC-7600's fast memory. The second, the ECM (extended-core memory) or LCM (large-core memory) container, is in the slower memory banks of the CDC-7600. On IBM machines, both containers are in fast memory $(10,11)$.

In SENSIT, the main program is the control routine which defines the two container arrays and makes appropriate calls to BPOINTR subroutines to control the dynamic allocation of space within these containers. Calls to calculational sub-
routines transmit pointers corresponding to array locations through the calling sequences. Detailed program documentation for the BPOINTR package, including flow charts, common block information and subroutine descriptions, is available in Ref. 11. A shorter, functional write-up is provided in Ref. 10, which gives calling sequences for the BPOINTR routines.

The SCM container is a blank common block BLK and is assigned in the main program by the two FORTRAN statements

COMMON BLK (24000)
MAXSIZ $=24000$.

The container size of 24000 words is chosen so that the SENSIT code uses all of the available small (fast) core memory on the CDC-7600 at execution, after the code itself is stored there. Only the relatively small data arrays and arrays which are being used repeatedly during execution are allocated to this SCM container. On the CDC-7600 the full SCM is always available for any job, therefore, no operational advantage is achieved by reducing this pre-programmed container size to a smaller SCM allocation.

The LCM container is a named common block, ARRAY2, and is assigned in the main program by the two FORTRAN statements

COMMON /ARRAY2/ BLKECS (80000) ,
CALL BULK (80000).

The container size (in this case 80000 words) is completely problem dependent and should be chosen before execution according to the specific problem or machine size. An advantage at execution (quicker access to the machine, shorter job turn-around time, less computer costs if the charging algorithm counts the required LCM size) is realized when BLKECS is chosen as small as possible. To achieve this, the LCM container size in the two statements, given in (38), at the beginning of the main program must be changed simultaneously. The optimal size of BLKECS is probably best obtained by trial and error.

All large data arrays (two- and three-dimensional arrays) are stored in the LCM container BLKECS at the time when they are needed for execution in one of the computational subroutines. At one specific time there are never all LCM arrays stored in BLKECS, because the BPOINTR package allows to take out unneeded arrays and re-use that space to put in new arrays. Therefore, it is very difficult to predict the minimum size required for BLKECS just on the basis of input array sizes. However, if even the maximum available LCM on a specific computer may not be large enough to accomodate the minimum required BLKECS for a specific problem, the knowledge of which arrays are stored in LCM can help to indicate how or on which input arrays the problem might be trimmed down to fit the maximum available core space.

The major input arrays assigned to BIKECS are the angular flux arrays for ϕ and ϕ^{*} in the detector, source and perturbed zones, and the cross section arrays, as listed in Table I. The lengths of these arrays are also given in Table I as a function of input control parameters. This table allows the user to identify the largest arrays, which must be stored for a specific problem. If a problem must be trimmed in size to fit into LCM, it is then recommended to attempt to first cut down on the largest arrays. For example, if the crosssection arrays are dominating the LCM container space, a reduction in array size is easily achieved by choosing a lower order of cross section anisotropy; i.e., a smaller LMAX. Or, if the angular flux arrays are overwhelming the LCM container, one can simply reduce IPER, ISRS or IDET by including only a part of all perturbed, source, or detector zones in one SENSIT run. In this case the full problem is solved by a series of smaller size SENSIT runs.

C. Summary of Subroutine Functions

Basically, all subroutines are called from the main program with a few exceptions where subroutines are called from other subroutines. Comment cards are inserted generously at the subroutine calls as well as in between executable statements in the main program and in all subroutines. Here we summarize only the general functions carried out by each computational subroutine. We use the nomenclature defined in previous sections.

Since data management, as opposed to computational complexity, is of prime concern in SENSIT, as explained above, most subroutine calls refer to the dynamic

TABLE I
ARRAYS ALLOCATED TO THE LCM CONTAINER ARRAY BLKECS

Array Name	$\begin{aligned} & \text { Length of } \\ & \text { array } \\ & \text { (words) } \end{aligned}$	Subroutine in which array is first used	Array only used if
PHI	($\mathrm{IM}+1$) \times MM	SUB2A	always
PHID	IGM*IDET*MM	SUB2A	always
COVR	IGM*IGM	SUB2A	DETCOV = 1
FISTAR	(IM+1) \because MM	SUB2B	always
FISTAS	IGM*ISRS*MM	SUB2B	always
FISS	IGM*-ISRS \div MM	SUB2B	always
PHIP	IGM* IPER*MM	SUB3	always
FISP	IGM*IPER $* M M$	SUB3	always
FISTAP	IGM*:IPER*MM	SUB3	always
XS	(IGM+IHT)*	SUB5	ITYP $=0,1,3$
	IGM (LMAX +1)		
XSBAR	(IGM+IHT)*	SUB5	ITYP $=0,1,3$
	IGM (LMAX+1)		
DSL	IGM*IGM*	SUB6	ITYP $=0,1,3$
	*NMOM (+)		
DSLFD	IGM*IGM*	SUB6	ITYP $=0,1,3$
	\pm NMOM (+)		
PSI	IGM* IGM	SUB4	ITYP $=0,1,3$
	*NMOM		
PSED	IGM1*IGM1	SUB11	ITYP $=3$
COV	IGM1*IGM1	SUB5V	ITYP $=2$

$$
\begin{aligned}
(+) \text { MMOM } & =\text { LMAX }+1 \text { for IGE }=1,3 \\
& =(\operatorname{LMAX}+2)^{2} / 4 \text { for IGE }=2 \\
& =(\operatorname{LMAX}+1)^{2} \text { for IGE }=4
\end{aligned}
$$

storage allocation scheme provided by the BPOINTR package. Since these routines are described in detail elsewhere ${ }^{(10,11)}$, we just summarize here the subroutine names which belong and refer to the BPOINTR package.

1. BPOINTR Package. Subroutines from the BPOINTR package which perform all dynamic storage allocation functions within SENSIT are:

POINTR	IPTERR	PRTIIE	ALLOC1
PUTPNT	PUTM	PRTI2E	ALLOC2
BULK	REDEF	PRTI2	IPT2
FREE	REDEFM	PRTR1E	ILAST
WIPOUT	PURGE	PRTR2	MEMGET
GETPNT	STATUS	PRTR2E	MEMGET1
IGET	PRTI1	FREE1	SQUEEZE
			SQUEEZEX

These subroutines are attached to SENS1T after the computational subroutines.
2. Subroutine SUB1. This routine reads, from input cards, the neutron and gamma-ray group structures $E_{n}(g)$ and $E_{\gamma}(g)$, the S_{N} quadrature weights $w(m)$ and level cosines MUE(m), all geometry information such as spatial mesh boundaries $z(i)$, and the interval numbers which identify source, detector and perturbed zones in the problem. SUB1 calculates the lethargy widths per group, Δu^{g}, and spatial mesh cell volumes V_{i}. The numbering sequence of the spatial mesh cells is reordered for the source, detector, and perturbed zones as described in Sec. V.C. This renumbering is achieved by three calls to subroutine MAP as described later. A somewhat elaborate editing algorithm is also built into SUB1 which prints the geometry information in one summary table that allows for easy debugging of input errors.
3. Subroutine SNCON. This routine is borrowed from the ONETRAN discreteordinates transport code ${ }^{(12)}$ and generates point directions and point weights for the input S_{N} quadrature set $\left\{\omega_{m}, \mu_{m}\right\}$. It also computes the Legendre polynomials $P_{\ell}\left(\mu_{m}\right)$ and the more general spherical harmonic functions required for cylindrical and two-angle slab geometries.
4. Subroutine SUB2A. The main function of this routine is to calculate I_{ϕ} or $I_{\phi}^{(1)}$, the integral response for the unperturbed reference case, computed only from forward fluxes from Eq. (14). For this purpose the energy and spatial distribution functions for the detector response, $\mathrm{RHO}(\mathrm{g})$ and $\mathrm{RHO}(\mathrm{j})$, are read from input cards. The forward angular flux in the detector zones is read from TAPE1. As a by-product of the calculation of I_{ϕ} according to Eq. (14), the detector sensitivity profile P_{R}^{g}, Eq. (16), is also obtained and edited. If $\operatorname{DETCOV}=1$ and a covariance matrix $\operatorname{COVR}\left(g, g^{\prime}\right)$ is provided in the input, then subroutine SUB9 is called to perform a detector response uncertainty analysis.
5. Subroutine SUB2B. This routine performs functions analogous to SUB2A, except for the adjoint fluxes. First the energy and spatial distribution functions for the source distribution, $Q U E(g)$ and $Q U E(j)$, are read from input cards. Then, the adjoint angular flux in the source zones is read from TAPE2 and its group and directional order reversed to confirm to the same ordering as used for the forward flux. The integral response $I_{\phi^{*}}$, obtained from the adjoint flux distribution alone, is calculated via Eq. (15), together with the source sensitivity profile $\mathrm{P}_{\mathrm{Q}}^{\mathrm{g}}$ via Eq. (17).
6. Subroutine SUB3. The main function of this routine is to read forward and adjoint angular fluxes from TAPE1 and TAPE2 for all perturbed zones. The adjoint angular fluxes are also reordered with respect to their group and angular variables to confirm with the ordering principle of the forward fluxes.
7. Subroutine MAP. MAP is a special utility routine which is called from subroutine SUB1 to renumber spatial mesh cells for given zones . Specifically, MAP generates an integer map for all spatial mesh boundaries, such that those mesh boundaries within specified (disjoint) zones are numbered consecutively, while those outside these zones are set to zero (Sec. V. C).
8. Subroutine SUB4. Using the forward and adjoint angular fluxes, $\phi_{\mathrm{m}}^{\mathrm{g}}(\mathrm{i})$ and $\phi_{m}^{Z_{i} g}(i)$, for spatial intervals within perturbed zones, SUB4 calculates the arrays χ^{g} and $\psi_{\ell}^{g g^{1}}$ required for the evaluation of sensitivity loss and gain terms, respectively. Two intermediate arrays, $X_{l}^{g}(i)$ and $Y_{l}^{g^{\prime}}(i)$, are used to finally compute $\psi_{\ell}^{g g^{\prime}}$ as defined in Sec. II. A.
9. Subroutine SUB4V. For vector cross-section sensitivity analyses (ITYP = 2) only sensitivity loss terms are computed. Therefore only the array χ^{g} is needed, but not $\psi_{l}^{g g^{\prime}}$. Hence, if ITYP $=2$, subroutine SUB4V is called instead of SUB4 to calculate χ^{g} as a spatial integral over all perturbed zones.
10. Subroutine SUB5. The general function of this routine is to read into SENSIT the needed differential cross sections, either from input cards or from TAPE4. SUB5 is only called for ITYP $=0,1,3$, but not for ITYP $=2$ because the vector cross-section sensitivity analysis requires a special cross-section tape, TAPE10, which is differently formatted than TAPE4. SUB5 is written in 3 different sections to read cross sections (a) in LASL format from cards, (b) in LASL format from TAPE4, and (c) in limited FIDO (ORNL) format from cards. For detailed format specifications we refer to Sec. V.A. SUB5 reads a complete crosssection table for each material, which includes LMAX Legendre components with IGM energy groups and a table length of IGM+IHT. After the (assumed) microscopic cross sections are read, SUB5 converts them immediately to macroscopic crosssections using the input number densities.
11. Subroutine SUB5V. For the case of a vector cross-section sensitivity and uncertainty analysis (if ITYP $=2$) SUB5V is called instead of SUB5 to read cross sections into SENSIT. SUB5V first reads, from input cards, the identification number and two number densities for the pair of vector cross sections to be read from TAPE10. Then subroutine COVARD is called from SUB5V, which actually reads the microscopic cross-section pair, Σ_{1}^{g} and Σ_{2}^{g}, together with the relative covariance matrix $\operatorname{Cov}\left(\Sigma_{1}^{g}, \Sigma_{2}^{g^{\prime}}\right)$. This information is printed if ITEST $=3$. Finally, SUB5V generates macroscopic cross sections using the number densities read from input cards.
12. Subroutine SUB6. This routine extracts from the full cross-section tables the vector cross-sections $\Sigma_{a b s}^{g}, v \Sigma_{f}^{g}, \Sigma_{s, l o s s}^{g}, \Sigma_{T}^{g}$, and the down-scattering $\operatorname{matrix} \Sigma_{\mathrm{s}, \ell}^{\mathrm{g} \rightarrow \mathrm{g}^{\prime}}$. For design sensitivity analyses (ITYP $=1$) these cross-section data are prepared for both the perturbed (Σ) as well as the unperturbed ($\bar{\Sigma}$) cross sections in order to then calculate the net cross-section perturbations, according to Eqs. (22) through (24). In addition, the total macroscopic scattering cross section per group is calculated directly from the scattering matrix, according to Eq. (6), by summing $\sum_{s, 0}^{g \rightarrow g^{\prime}}$ along diagonals. In coupled neutron/
gamma-ray calculations (if NCOUPL >0) the total gamma-ray production cross section per neutron group is also evaluated. If ITEST $=1$ is chosen', SUB6 will print all of the above calculated cross sections for all groups.
13. Subroutines TEXT and TEXTA. These two routines have the exclusive function to print definitions of variable names which are used when the computational results are edited. TEXT prints a list of definitions pertaining to the standard cross-section sensitivity analysis when ITYP is chosen as 0 or 3. TEXTA prints another list of definitions used for design sensitivity output (if ITYP=1).
14. Subroutine SUB8. This routine calculates and edits the final results of the sensitivity analyses for the standard (ITYP $=0$) and design sensitivity (ITYP = 1) cases. SUB8 uses the previously prepared cross-section arrays from SUB6 and the arrays χ^{g} and $\psi_{\ell}^{\mathrm{gg}}$ from SUB4 to evaluate Eqs. (3) through (5), Eqs. (8) through (15), Eqs. (18) through (21) and Eqs. (25) and (26). If IOUTPUT = 1 , all sensitivity results are printed for each individual perturbed zone and for the sum over all perturbed zones, while for IOUTPUT $=0$ a considerably shorter printout is provided by editing only the sensitivity results integrated over all perturbed zones.
15. Subroutine SUB8V. In the case of a vector cross-section sensitivity and uncertainty analysis (ITYP $=2$) all editing is provided by SUB8V instead of SUB8. First the sensitivity profiles, $\mathrm{P}_{1}^{\mathrm{g}}$ and $\mathrm{P}_{2}^{\mathrm{g}}$, for the pair of vector cross sections read from TAPE10 via SUB5V are evaluated and edited. Then the uncertainty analysis, according to Eqs. (27) and (28), for this cross-section pair is performed using the relative covariance matrix $\operatorname{Cov}\left(\Sigma_{1}^{g}, \Sigma_{2}^{g^{\prime}}\right)$, which has also been read from TAPE10 via subroutine SUB5V.
16. Subroutine SUB9. Should a covariance matrix be provided for the detector response function $R(g)$, i.e., if $\operatorname{DETCOV}=1$, then SUB9 is called to read these data and perform the relevant uncertainty analysis. Response variances are also calculated for the special cases of assumed full correlation (+1) and the completely uncorrelated case.
17. Subroutine SUB9V. This routine is called only if ITYP $=2$ and NSUMCOV > 0, i.e., when partial sums are required of individual response vari-
ances. SUB9V first reads the integers SUMSTRT and SUMEND which define the variances to be summed. Assuming no correlations between the individual vector cross-section errors specified in any or all of the NCOV covariance matrices, SUB9 then computes the total variance and relative standard deviation.
18. Subroutine COVARD. For vector cross-section uncertainty analyses (ITYP = 2), the routine COVARD is called to read into SENSIT, from TAPE10, the pair of vector cross sections with their respective covariance matrix for each specified identification number. The input ID number is correlated with ENDF/B specifications through a call to subroutine SETID. It is important to note that all arrays in subroutine COVARD are fixed-dimensioned, i.e., their field length is not dynamically allocated as is the case for all other arrays in SENSIT. In the present version of SENSIT, the 2 arrays describing the covariance matrices are restricted to a maximum size of 50 x 50 each. This is not a serious restriction of the code and may be changed at any time. The choice of 50×50 was rather arbitrary, considering our specially prepared TAPE 10 which uses only 30 neutron groups.
19. Subroutine SETID. This routine is called only from COVARD and has the sole function to translate the input ID numbers for vector cross-section pairs into ENDF/B nomenclature. It is these latter identifiers which are required to read data from TAPE10.

V. DETAILS OF PROGRAM OPTIONS

In this section we describe special details which are helpful in preparing input to SENSIT or may prove valuable if modifications of the FORTRAN coding are considered.

A. Cross-Section Input Options

If ITYP $=0,1,3$, complete transport cross-section tables are read into SENSIT by subroutine SUB5; if ITYP = 2, a specially formatted vector cross-section file is read from TAPE 10 as described later.

1. Transport Cross-Section Tables. Three options are built into subroutine SUB5 to read standard neutron (or coupled neutron/gamma-ray) cross-section sets: first, LASL format cross sections from cards; second, LASL format cross sections from TAPE4; and third, limited FIDO (ORNL) format cross sections from cards. The general structure of all transport cross-section tables is as described in the transport code literature; e.g, the ONETRAN ${ }^{(12)}$ or ANISN manual ${ }^{(13)}$.

Each nuclide is described by a cross-section table of IGM columns and length ITL = IGM + IHT. The position of a certain cross section in each of the IGM columns is specified relative to the total cross-section (pos. IHT). The following ordering is assumed in the column for group g :

XS-position in

general XS-position	XS type	typical standard XS set
1	1	
1	1	
1	,	
IHT-4	$\sigma_{\mathrm{n}, 2 \mathrm{n}}$	-
IHT-3	$\sigma_{\text {transport }}$	-
IHT-2 = IHA	$\sigma_{\text {abs }}$	1
IHT-1	$v \sigma_{f}$	2
IHT	σ_{T}	3
IHS $=1 H T+1$	$\sigma_{s}^{\mathrm{g} \rightarrow \mathrm{g}}$	4
IHS +1	$\sigma_{s}^{\mathrm{g}-1 \rightarrow \mathrm{~g}}$	5
,	,	1
1	,	,
IHT+IGM $=$ ITL	$\sigma_{s}^{\mathrm{g}-\mathrm{IGM}+1 \rightarrow \mathrm{~g}}$	IGM +3

The requirements that IHS $=$ IHT +1 and ITL $=$ IHT + IGM restricts these cross section tables to include only downscat.tering but no upscattering. The test printout in sample problem 1 contains an example of a coupled 6-group crosssection set with 3 neutron and 3 (identical) gamma-ray groups. Since this printcut is generated line-by-line, the sequence of data along lines corresponds to the ordering along columns as discussed above.

If anisotropic scattering is consjdered, then the complete cross-section set for an isotope or reaction is expected to consist of LMAX+1 cross-section tables representing Legendre exapansion coefficients. Note, however, that two different conventions are presently being used for such expansions. Omitting the energy dependence and abbreviating $\mu_{0}=\underline{\Omega}^{\prime} \underline{\Omega}^{\prime}$ we have:
a. LASL (ONETRAN, etc.) convention:

$$
\begin{equation*}
\Sigma_{s}\left(\mu_{0}\right)=\sum_{\ell=0}^{\text {LMAX }} \frac{2 \ell+1}{4 \pi} \cdot \Sigma_{s, \ell}^{\mathrm{LASL}} \cdot \mathrm{P}_{\ell}\left(\mu_{0}\right) \tag{39}
\end{equation*}
$$

so that

$$
\begin{align*}
& \Sigma_{s, \ell}^{\text {LASL }}=2 \pi \int_{-1}^{+1} \Sigma_{s}\left(\mu_{0}\right) P_{\ell}\left(\mu_{0}\right) \mathrm{d} \mu_{0} \tag{40}\\
& \frac{\operatorname{LMAX}}{\text { b. ORNL (ANISN, etc.) convention: }} \\
& \Sigma_{s}\left(\mu_{0}\right)=\sum_{\ell=0} \frac{1}{4 \pi} \cdot \Sigma_{s, \ell}^{\text {ORNL }} \cdot \mathrm{P}_{\ell}\left(\mu_{0}\right)
\end{align*}
$$

so that

$$
\begin{equation*}
\Sigma_{s, \ell}^{O R N L}=2 \pi(2 \ell+1) \int_{-1}^{+1} \Sigma_{s}(\mu) P_{\ell}\left(\mu_{0}\right) d \mu_{0} \tag{42}
\end{equation*}
$$

Due to these different conventions the higher-order components of the scattering tables differ by a factor of $(2 \ell+1)$:

$$
\begin{equation*}
\Sigma_{\mathrm{s}, \ell}^{\mathrm{ORNL}}=(2 \ell+1) \Sigma_{\mathrm{s}, \ell}^{\mathrm{LASL}} \tag{43}
\end{equation*}
$$

which is compensated for in SENSIT subroutines SUB8 and SUB11 according to KXS = 1 or 2 .

The actual formats in which the cross sections are read into SENSIT differ also according to $\mathrm{KXS}=1$ or 2 , and IXSTAPE $=0$ or 1 :
c. LASL-Formatted Transport Cross Sections From Cards (KXS $=1$ and

IXSTAPE $=0$: The standard LASL cross-section format expects a string of data which corresponds to reading the above-mentioned cross-section table columnwise in ascending group order. The format for the numerical data is a 6E12.5 data field which expects 6 numbers per card. The only difference between cross sections read from cards or from tape lies in the title cards and the number density specifications. If KXS $=1$ and IXSTAPE $=0$, the format for one complete cross-section set is:

Input Array Name	Number of Entries	Input Format	$\begin{aligned} & \text { Required } \\ & \text { only } \\ & \text { if } \\ & \hline \end{aligned}$	Description
TITLE	1 card	20A4	always	XS title card for this material
NUMDEN, JCOVAR	2 words	$\begin{aligned} & \text { 12X,E12.6, } \\ & \text { 11X,I1 } \end{aligned}$	always	NUMDEN. = number density of cross section. JCOVAR = indicator if the last $P_{\ell}-X S$ set is followed by a covariance matrix, $0 / 1=$ no/yes.
PLTITL	1 card	20 A 4	always	title card for P_{0}-component.
XS ($\mathrm{g}, \mathrm{g}^{\prime}, 0$)	IGM*ITL	6E12.5	always	microscopic cross-section set for P_{0}-component.
PLTITL	1 card	20A4	LMAX > 0	title card for P_{ℓ}-component
XS ($\mathrm{g}, \mathrm{g}^{\prime}, \ell$)	IGM*ITL	6E12.5	LMAX > 0	microscopic cross-section set for P_{ℓ}-component.

Input	Number	Input	Required
Array	of	Format	only
Name	Entries		if

				$\left.\\|$Note: For each P_{F}-component a set of $\{$ PLTITL, put, until $\mathrm{L}=\mathrm{XS}\}$ must be in- LMAX reached. \right\rvert\,
CTITL	1 card	8A10	JCOVAR $=1$	title card for covariance matrix.
$\operatorname{COV}\left(\mathrm{g}, \mathrm{g}^{\prime}\right)$	IGM*-IGM	6E12.5	$\begin{aligned} & \text { JCOVAR }=1 \\ & \text { and } \\ & \operatorname{ITYP}=0 \end{aligned}$	covariance matrix for crosssection set $X S\left(g, g^{\prime}, \ell\right)$

If a design sensitivity is required (ITYP = 1) with an independent reference cross-section $\bar{\Sigma}$ (IDESIGN $=0$), then a second complete cross-section set $\operatorname{XSBAR}\left(g, g^{\prime}, \ell\right)$, starting with a material title card, is expected.

If JCOVAR on the number density card is 1 and a relative covariance matrix is entered, then SENSIT performs a cross-section uncertainty analysis analogous to the vector cross-section uncertainty analysis, where Eqs. (27) and (28) are evaluated for the net sensitivity profile as defined in Eq. (11), i.e., $\mathrm{P}_{1}=\mathrm{P}_{2}=$ SEN.

d. LASL-Formatted Transport Cross Sections From TAPE4 (KXS = 1 and IXSTAPE = 1):

In this case the cross-section data are read from a card-image tape according to their material sequence number. It is assumed that, for ITYP $=0$ or 3 , a tape has been prepared which contains complete cross-section sets for an arbitrary number, say MAXMAT, of materials. Then each cross-section set per material is identified by its sequence number between 1 and MAXMAT, which is then the material's ID number. The card input then must specify only this ID-number and the associated number density in order for SENSIT to read the desired crosssection set from TAPE4, as described in the detailed input specifications: 1 card with (ID, NUMDEN, XSNAME) is required for each of the NPERXS cases.

TAPE 4 must then be formatted as follows:

1. record: title card (20A4) for material $1, \mathrm{P}_{0}$ component
2. record: $P_{0}-X S$ data for $I D=1$, IGMxITL words in (6E12.5)-format
```
            3. record: title card for ID = 1, P
            4. record: }\mp@subsup{P}{1}{}-XS data for ID = 1,
            n-th. rec.: title card for ID = 2, P
(n+1)st. rec.: }\mp@subsup{P}{0}{}-XS data for ID = 2
(n+2)nd. rec.: title card for ID = 2, P
    ,
    '
    !
    m-th. rec.: P P}\mp@subsup{L}{\mathrm{ LMAX }}{}-XS data for last material (ID = MAXMAT).
e. FIDO (ORNL)-Formatted Cross Sections From Cards (KXS = 2 and IXSTAPE = 0):
This option has been incorporated for convenience in cases when ANISN angu- lar fluxes are used. We transferred the cross-section input algorithm from our (rather old) version of ANISN into SUB5 of SENSIT, which allows SENSIT to read the same cross sections as ANISN when KXS is set to 2 . However, we caution the use of this option because there are a great many different versions of ANISN and FIDO routines in existence and compatibility among these different versions is not guaranteed. Moreover, we are unable to precisely date our version of ANISN from which this cross-section input algorithm was taken.
A total of \(\operatorname{LMAX}+1 \mathrm{P}_{\ell}\) cross-section tables, based on definitions given in Eqs. (41) and (42), define a complete material cross-section set, where again each \(P_{\ell}\)-table is preceded by a title card. The actual cross-section data are expected in a fixed-field FIDO format which allows blank fields and the repeat option. For a detailed description of the FIDO format we refer to Ref. 13, but stress again the limitations of our version, as mentioned above. To eliminate any remaining ambiguity, we recommend the editing of any cross sections used with ANISN and then reformatting them into the simpler LASL-formatted TAPE4 as described in the previous paragraph.
```

2. Vector Cross-Section and Covariance Matrix Input. If ITYP $=2$, SENSIT reads pairs of vector cross-sections with their associated covariance matrix from TAPE10 which, therefore, must be specially prepared as described below.
3. Multigroup Processing of ENDF/B Covariance Data to Generate TAPE 10. $\stackrel{\text {. }}{ }$ The NJOY code ${ }^{(14)}$ was used for processing the ENDF/B-V covariance data into the 30 -energy group multigroup structure used in a separate study ${ }^{(15)}$ for TAPE10. The module in NJOY that specifically does this processing is the ERRORR module. The multigroup output of the ERRORR module is in an ENDF-like format; a sample of this output is given in Table II.

The data in Table II are given in standard ENDF/B BCD records or "cards" consisting of 80 columns divided into 10 fields. The first 6 fields are 11 digits wide and are used for either floating point numbers or integers. The 7 th, 8 th, 9 th, and 10 th field are $4,2,3$, and 5 digits wide, respectively, and are used for integers only. In these latter 4 fields, that is, fields 7, 8, 9, and 10 , the digits in the field of 4 (field No. 7) represent the MAT or "material number" of the isotope or element processed; the next 2 digits (field No. 9) are the MT or "section number" that usually indicates the nuclear reaction processed; and the final 5 digits (field No. 10) are just the card sequence number. Sections are delimited by zeros in the MT fields, files by zeros in the MF fields, and materials by zeros in the MAT fields. The first card shown in Table II, with zeros in all of the last four fields, is the delimiter for the preceding material.

The next card shown in Table II is the first card for the material with MAT-1326, which is natural iron. Note that on this card the number 2.6×10^{4} appears in the first field and 55.365 is in the second field. These are the "ZA" ($1000 \times 2+A$) and "AWR" (atomic weight ratio, i.e., atomic weight of the material divided by weight of the neutron) numbers as taken by the NJOY code directly from the ENDF/B file. The fact that $1000 \times \mathrm{Z}$ is 26000 and $\mathrm{A}=0$ just means that the data is for the element Fe rather than for an isotope.

Also note that $\mathrm{MF}=1$ and $\mathrm{MT}=451$ on cards 1 to 8 . This $\mathrm{MF}-\mathrm{MT}$ combination is normally used in the ENDF/B formats for descriptive Hollerith information, but it is used here for the boundaries of the multigroup set used for the processed data to follow. On card No. 2, note the number 30 in field 3 and the number 31 in field 5 , which indicates, respectively, the number of energy groups and the

[^1]TABLE II

SAMPLE LISTING OF MULTIGROUP COVARIANCE DATA ON TAPE10

TABLE II (cont.)

SAMPLE LISTING OF MULTIGROUP COVARIANCE DATA ON TAPE 10

TABLE II (cont.)

SAMPLE LISTING OF MULTIGROUP COVARIANCE DATA ON TAPE10

number of energy-group boundaries in the multigroup set. The values of the group boundaries, given in eV from low to high energy, follow on cards 3 through 8. Cards 9 and 10 are MT and MF delimiters, respectively.

Multigroup cross-section data are given in cards 11 through 102. This file, denoted by $M F=3$, corresponds to the smooth cross-section file in ENDF/B. The MT numbers used here are exactly those defined for ENDF/B, namely:

```
MT=1 - total cross section
MT=2 - inelastic scattering cross section
MT=3 - non-elastic cross section
MT=4 - total inelastic scattering cross section
MT=22 - ( n, n'\alpha) cross section
MT=28 - (n,n'p) cross section
MT=102 - (n,\gamma) radiative capture cross section
MT=103 - (n,p) cross section
MT=104 - (n,d) cross section
MT=105 - (n,t) cross section
MT=106 - ( }\textrm{n},\mp@subsup{}{}{3}\textrm{He})\mathrm{ cross section
MT=107 - (n,\alpha) cross section
```

Note that cross sections for these 13 reactions are given in barns.
The multigroup covariance data for MAT=1326 (Fe) begin with card No. 103. This card repeats the ZA and $A W R$ numbers in fields 1 and 2, and indicates in field 6 that data for 13 reactions are to follow. The designation of $M F=33$ for this file is the same as that for analogous covariance data in ENDF/B. Note that the number " 1 " in the MT field indicates that the first set of data is for MT=1. Card 104 contains the number " 1 " in field No. 4, which indicates that the data to follow is the covariance of $M T=1$ with $M T=1$, or just the variance of the iron total cross sections. Note also that the number " 30 " appears in field No. 6 , which is a repeat of the total number of energy groups in the multigroup structure.

Because of the large volume of data in the covariance files, zero values are suppressed in the output. Thus, flags must be set to indicate the positions of non-zero data in the output covariance matrix. On card No. 105, the numbers " 8, " " $1, "$ " $8, "$ and " 1 " occur in fields No. 3, 4, 5, and 6, respectively. The
number " 1 " in field No. 6 indicates that the data to follow are for group No. 1 or row No. 1 in the covariance matrix. The number " 8 " in field No. 3 (or field No. 5) indicates that there are only 8 consecutive non-zero positions in this row, and, finally, the number " 1 " in field No. 4 means that the 8 consecutive non-zero numbers begin at row position No. 1. The 8 non-zero covariances then follow on cards 106 and 107.

This can be made somewhat clearer by taking another more general example farther down the data listing. In card No. 911, for MT=4, field No. 4 contains the number "102." This means that the data to follow are the covariances of the iron inelastic scattering reaction with the iron radiative capture reaction. The data for group No. 21 of $M T=4$, for example, are given on cards 916, 917, and 918. On card No. 916, the group number is identified in field No. 6. The number " 12 " in field No. 3 (or field No. 5) indicates that there are 12 consecutive groups for which covariances with MT=103 are non-zero, and the first non-zero value begins with group No. 19 for $\mathrm{MT}=103$, as indicated by the number " 19 " in field No. 4. In referring to the entry in the 6th field of card 917, for example, one would say that "the relative covariance of the iron inelastic cross section (MT=4) in group 21 ($1.738-2.232 \mathrm{MeV}$) with the iron radiative capture cross section ($\mathrm{MT}=102$) in group No. $24(3.68-6.07 \mathrm{MeV}$) is $-6.11663 \mathrm{x}$ 10^{-5}."

B. Geometry Input Options and Spatial Zone Descriptions

All computations in SENSIT are based on angular flux information as provided by angular-flux output tapes from the one-dimensional transport codes ONETRAN ${ }^{(12)}$, DTF ${ }^{(16)}$, or ANISN ${ }^{(13)}$. Therefore, the geomętry description in SENSIT must conform to some degree with that of the original transport problem. Particularly, the total number of spatial mesh cells, IM, must be the same in SENSIT as in the original transport problem, and it must be the same for forward and adjoint fluxes. (The same requirement holds for IGE, ISN, IGM, and NCOUPL). Also, source and detector zones should be chosen in SENSIT concurrent with those of the forward and adjoint transport calculations so that the total integral response, I_{ϕ} from Eq. (14) and $I_{\phi^{*}}$ from Eq. (15), can be computed correctly and compared with the transport code's results. However, perturbed zones may be specified in SENSIT completely independent from the transport code's zone structure.

Specifically, SENSIT expects as an input array $Z(i)$ the $I M+1$ spatial mesh boundaries for which forward and adjoint fluxes have been calculated. The angular flux values are then read from TAPE1 and TAPE2 selectively only for those spatial intervals which are identified to lie in either a source, detector, or perturbed zone. This way, the storage of the entire angular-flux arrays $\phi_{m}^{g}(i)$ and $\phi_{m}^{\star} \mathrm{g}(\mathrm{i})$ in core is avoided. Each of the angular-flux tapes is scanned three times: once to read values in source zones only, once to read values in detector zones only, and once for the perturbed zones only. The identification of source, detector, and perturbed zones follows the scheme shown in Fig. 1, which exemplifies the procedure for a total of KPER perturbed zones. The number of source, detector, and perturbed zones may be arbitrarily specified in the SENSIT input. The location of these zones on the entire spatial mesh is identified by pairs of input interval numbers, $\operatorname{IFIR}(k)$ and ILAS(k), which specify the first and last intervals for zone k. Subroutine MAP generates from this information an integer map IMAP(i) as shown in Fig. 1, which re-numbers the intervals so that all problemirrelevant intervals carry an index zero. This map is used then to read angular fluxes selectively only for values with IMAP $\neq 0$. All SENSIT printout edits this new numbering scheme for source, detector, and perturbed zone identification, which also allows an easy check of the geometry specification. The total number of intervals in all source zones, ISRS, in all detector zones, IDET, and in all perturbed zones, IPER, is computed internally by SENSIT.
C. Angular Flux Input Options, Quadrature Weights, and Direction Cosines

The input parameter ITAPE allows to read angular forward- and adjoint-flux tapes in two different formats. ITAPE $=1$ is the preferred option because the standardized CCCC-flux format is defined precisely ${ }^{(17)}$ and is recommended by the Committee on Computer Code Coordination as a code and computer independent standard interface format. (ONETRAN, e.g., generates a CCCC-formated angular flux tape on TAPE31 if both control integers IFO and IANG are set to 1.) If ITAPE = 0 , SENSIT reads TAPE1 and TAPE2 as generated by ANISN or DTF.

As described in the previous section, angular fluxes are read selectively according to the integer map IMAP(i). However, in both options for ITAPE, values for angular fluxes are actually read at spatial mesh boundaries rather than at mesh centers. Therefore, after reading these mesh-boundary values, mesh center

Fig. 1. Spatial zone identification in SENSIT.
averages are calculated by SENSIT, which are then used in all subsequent computational subroutines. These mesh-centered averages are also re-numbered according to the integer map $\operatorname{IMAP(i);~cf.~Fi.g.~} 1$.

The S_{N} angular quadrature set, $\{\omega(\mathrm{m}), \mu(\mathrm{m})\}$, which must be read into SENSIT must conform with the quadrature set used in the transport calculations that generated the angular fluxes. If these sets were different, then the angular integrations in SENSIT will not be carried out correctly. Since tables of $\{\omega, \mu\}$ are standard printout in all transport codes, it is recommended that these values be copied for use in SENSIT. Only the level weights and level cosines must be entered into SENSIT, which then internally computes the proper point weights and point directions, for cylindrical geometry, for example. Starting weights and starting directions must be excluded from SENSIT input.

D. Source and Detector Distribution Functions

The descriptions of the source distribution function Q_{i}^{g} and the detector response function R_{i}^{g} are in complete analogy. Both functions can be specified with arbitrary spatial and group dependencies such that

$$
\begin{equation*}
Q_{i}^{g}=q^{g} \cdot q_{i} \text { for } 1 \leq i \leq \operatorname{ISRS}, \tag{44}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{i}^{g}=\rho^{g} \cdot \rho_{i} \text { for } 1 \leq i \leq \text { IDET }, \tag{45}
\end{equation*}
$$

where the spatial index i runs from 1 to ISRS in Eq. (44) and from 1 to IDET in Eq. (45). Only ISRS values for q_{i} are required to describe the spatial dependence of the source distribution on the source intervals; and IDET values for ρ_{i}.

Some freedom exists with respect to how the one-dimensional arrays q^{g}, q_{i} and ρ^{g}, ρ_{i} may be chosen. For consistency, however, at least two integral conditions must be satisfied:
first: $\quad Q_{i}^{g}$ and R_{i}^{g} must be chosen so that the total integral response must be the same if computed from forward or adjoint fluxes alone:

$$
\begin{equation*}
I_{\phi}=I_{\phi^{*}}, \tag{46}
\end{equation*}
$$

which, using Eqs. (14) and (15), becomes

$$
\begin{equation*}
\sum_{i=1}^{\text {IDET }} \sum_{g=1}^{\text {IGM }} v_{i} R_{i}^{g} \phi_{0}^{g}(i)=\sum_{i=1}^{\text {ISRS }} \sum_{g=1}^{\text {IGM }} v_{i} Q_{i}^{g} \phi_{0}^{* g}(i) \tag{47}
\end{equation*}
$$

where we used the symbols ϕ_{0} and $\phi_{0}^{\dot{+}}$ for the scalar forward and adjoint fluxes.
second: If the source distribution Q_{i}^{g} is normalized to a total source strength

$$
\begin{equation*}
Q_{\text {tot }}=\sum_{i=1}^{\text {ISRS }} \sum_{g=1}^{\text {IGM }} v_{i} Q_{i}^{g} \tag{48}
\end{equation*}
$$

then the detector distribution may remain unnormalized, and so will be ϕ_{0}^{*}.

For example, in all our coupled $3+3$ group sample problems we chose to normalize the source distribution so that always 1 neutron plus 1 gamma ray are emitted per second from the source zone. Equation (48) yields then

$$
\begin{equation*}
Q_{\text {tot }}=2=\sum_{i=1}^{\text {ISRS }} v_{i} q_{i} \sum_{g=1}^{6} q^{g} \tag{49}
\end{equation*}
$$

If we choose $q^{g}=\{1,0,0,1,0,0\}$, then $\sum_{i} V_{i} q_{i}=1$ is required. The total volume of the source zone(s) is always $V_{Q}=\sum_{1} V_{i}$, and , therefore $q_{i}=1 / V_{Q}$ for all source mesh cells will guarantee $\sum_{1} V_{i} q_{i}=1$. Since there is only one source zone with
only one interval, it is easy to see that $q_{1}=1 / V_{1}$ is required, so that $q_{i}=\left\{\frac{1}{V_{1}}\right\}$. In slab geometry, therefore, $V_{1}=1 \mathrm{~cm}^{3}$ (compare sample cases 1,2 , and 4), while in cylindrical geometry (sample 3) $V_{1}=\pi\left(Z_{2}^{2}-z_{1}^{2}\right)=\pi \mathrm{cm}^{3}$, which gives $q_{1}=1 / \pi=0.31831 \mathrm{~cm}^{-3}$. As a response function for these sample cases we chose (arbitrarily) a flat energy distribution $\rho^{g}=\{100,100, \ldots, 100\}$ which then leads to the spatial distribution function of $\rho_{i}=\left\{1 / V_{9}, 1 / V_{10}\right\}$. In general, it depends on how R_{i}^{g} was entered as the adjoint source when TAPE2 was generated, whether ρ_{i} must be divided by the mesh cell volume V_{i} or not.

In this context it might be convenient to list the analytic expressions for a mesh-cell volume V_{i} in the three different geometries treated in SENSIT. A spatial mesh cell with lower boundary Z_{-}and upper boundary Z_{+}has the following volume: ${ }^{\text {(12) }}$

$$
\begin{equation*}
\text { in slab geometry: } \quad V_{i}=Z_{+}-Z_{-}, \tag{50a}
\end{equation*}
$$

in 2
in cylindrical geometry: $\quad V_{i}=\pi\left(Z_{+}-Z_{-}\right)$,
in spherical geometry: $\quad v_{i}=\frac{4 \pi}{3}\left(z_{+}^{3}-z_{-}^{3}\right)$.

A dimensional consideration might assist in deciding whether q_{i} must be divided by V_{i} or not. From Eq. (47) the units in which R_{i}^{g} must be expressed may be derived. Assuming the dimensions

$$
\text { for } \begin{aligned}
{\left[\mathrm{V}_{\mathrm{i}}\right] } & =\mathrm{cm}^{3}, \\
{\left[Q_{i}^{\mathrm{g}}\right] } & =\text { neutrons } / \mathrm{cm}^{3} \mathrm{~s}, \\
{\left[\phi_{0}^{\mathrm{g}}\right] } & =\text { neutrons } / \mathrm{cm}^{2} \mathrm{~s}, \text { and } \\
{\left[\phi_{0}^{* \mathrm{~g}}\right] } & =\text { response/neutron },
\end{aligned}
$$

it follows from Eq. (47) that

$$
\left[\mathrm{R}_{\mathrm{i}}^{\mathrm{g}}\right]=\frac{\text { response }}{\text { neutron } \cdot \mathrm{cm}}
$$

which is the unit of a macroscopic cross section. Often, however, response functions such as flux-to-dose-rate conversion factors, R_{C}, are given in units of response per flux unit, i.e.,

$$
\mathrm{R}_{\mathrm{C}}=\frac{\text { response } / \mathrm{s}}{\text { neutron } / \mathrm{cm}^{2} \mathrm{~s}}
$$

It is clear in such cases, that R_{C} must be divided by a volume of units cm^{3} so that the above derived dimensions for R_{i}^{g} are obtained.

VI. SAMPLE PROBLEMS

In this section we give a brief description of 8 sample problems, which demonstrate the capabilities built into SENSIT. In the Appendix, the complete input files and the relevant parts of the printe:' output files are reproduced for all 8 sample problems. The SENSIT code package contains all input and complete output files, together with all input angular flux and cross-section files (tape 1 , tape 2 , tape 4 , and tape 10).

All 8 sample problems have been executed on LASL's and MFECC's" CDC-7600 computers, under the Livermore Time Sharing System (LTSS). Execution times for the first 6 sample cases are all under 1 second, sample 7 required 12.9 seconds CPU (central processor unit) time, and sample 8 executed in 62 seconds CPU time. The angular-flux tapes required to run SENSIT were obtained as output tapes from independent radiation transport calculations with the LASL code ONETRAN ${ }^{(12)}$. The CCCC-formatted angular-flux tape is assigned TAPE31 after completion of a ONETRAN run. This designation must be changed to either TAPE1 or TAPE2 before SENSIT is executed. The required cross-section tapes, TAPE4 or TAPE10, have also been prepared independently before SENSIT was run. For sample cases 7 and 8 , the ENDF/B-V cross-section files were the basis for preparation of TAPE4

[^2]and TAPE 10 using the LASL cross section processing system NJOY ${ }^{(14)}$ with the post processor TRANSX ${ }^{(18)}$, which retrieves selected cross-section sets from the multigroup data base MATXS.

A. Problem Description for Samples 1 through 6

These samples are based on an artificial problem with artificial cross sections, which is ideally suited to demonstrate almost all SENSIT capabilities. The spatial mesh consists of 10 intervals of width 1 cm , subdivided into 4 zones, including two perturbed zones $\mathrm{P}_{1,2}$ as shown below:

As an energy group structure we chose 6 groups. To allow coupled neutron/gammaray calculations, we designate groups $1,2,3$ as neutron groups and groups $4,5,6$ as gamma-ray groups. A coupled multigroup cross-section set has been invented which describes the above $10-\mathrm{cm}$ long model as a scattering and absorbing medium of one mean free path (mfp) for groups 1 and 4, two mfp for groups 2 and 5, and three mfp for groups 3 and 6 . The complete P_{0} transport cross-section table as used in SENSIT and the associated ONETRAN runs is given in Table III. Note that neutron and gamma-ray interaction cross sections were chosen to be identical. Because the gamma-ray production cross sections (framed portion in Table III) are set to zero, identical numerical results should be expected for neutrons and gamma rays. Symmetrical (with respect to neutrons or gamma rays) spectral distributions for source and detector were chosen as follows:

$$
\begin{aligned}
q^{g} & =\{1,0,0,1,0,0\}, \\
\rho^{g} & =100 \times\{1,1,1,1,1,1\}
\end{aligned}
$$

and the total source strength was normalized to 2 as stated in Eq. (49). The spatial distributions q_{i} and ρ_{i} depend upon the geometry of the problem, as discussed in section V.D.

TABIE III
COUPLED 3+3 GROUP TRANSPORT CROSS-SECTION TABLE USED WITH SAMPLE PROBIEMS 1 THROUGH 6. FRAMED PORTION IS GAMMA PRODUCTION MATRIX

Table Pos.	$\begin{aligned} & \text { XS } \\ & \text { type } \\ & \hline \end{aligned}$	$g=1$	n-groups		γ-groups		
$1=1 H A$	$\Sigma_{\text {a }}^{g}$	0.02	0.05	0.1	0.02	0.05	0.1
2	$v \Sigma_{f}^{g}$	0.0	0.0	0.0	0.0	0.0	0.0
$3=14 T$	Σ_{T}^{g}	0.1	0.2	0.3	0.1	0.2	0.3
4	$\Sigma_{s}^{g \rightarrow g}$	0.05	0.1	0.2	0.05	0.1	0.2
5	$\Sigma_{s}^{g-1 \rightarrow g}$	0	0.02	0.05	0.0	0.02	0.05
6	$\Sigma_{s}^{g-2 \rightarrow g}$	0	0	0.01		0.0	0.01
7	$\Sigma_{s}^{g-3 \rightarrow g}$	0	0	0	0.0	0.0	0.0
8	$\Sigma_{s}^{g-4 \rightarrow g}$	0	0	0		0.0	0.0
9=ITL	$\Sigma_{s}^{\mathrm{g}-5 \rightarrow \mathrm{~g}}$	0	0	0	0		0.0

An exact re-calculation with ONETRAN using $\Sigma_{\text {pert. }}=0.9 \bar{\Sigma}$ in the two perturbed zones gives

$$
I_{\phi}^{\text {exact }}=\left\langle R, \phi_{\text {pert }}\right\rangle=377.540
$$

All transport calculations to generate the angular-flux tapes were carried out with ONETRAN ${ }^{(12)}$ and were converged to high accuracy, so that I_{ϕ} differed from $\mathrm{I}_{\phi:}$ by less than 0.1%.

1. Sample Problem 1. This is a standard design sensitivity problem with test printouts. Cross sections for the perturbed zones P_{1} and P_{2} were chosen such that

$$
\left.\begin{array}{l}
\Sigma_{\text {perturbed }}=0.9 \bar{\Sigma}, \\
\Sigma_{\text {unpert. }}=1.0 \bar{\Sigma},
\end{array}\right\} \quad \Delta \Sigma=\Sigma_{p}-\Sigma_{u}=-0.1 \bar{\Sigma}
$$

After the input specifications are edited in the SENSIT output, the first computational result is $I_{\phi}=365.487$ which is followed by the detector sensitivity profile integrated over both detector zones as well as for each detector zone individually. $I_{\phi \%}=365.399$ is computed next and edited together with the source sensitivity profile per source zone. Note that the first-order responses I_{ϕ} and $I_{\phi *}$ agree within 0.02% consistent with independent results from the ONETRAN calculations with $\Sigma_{\text {unpert }}$ Cross-section tables are edited next, together with test printouts for $\Delta \Sigma_{\mathrm{T}}^{\mathrm{g}}$ and $\Delta \Sigma_{\mathrm{s}, \ell}^{\mathrm{g} \rightarrow \mathrm{g}^{\prime}}$.

The actual design sensitivity results are preceded by a table of definitions for the acronyms used in the printout. The computed response perturbation is

$$
\Delta \mathrm{I}_{\mathrm{AD}}^{(2)}=\Delta \mathrm{I}_{\mathrm{FD}}^{(2)}=-11.9913
$$

which results from two equal parts for neutrons and gamma rays each. The interpretation of this result is, of course, that the integral response $I=I^{(1)}$ is predicted by perturbation theory to change to $I^{(2)}$ when Σ_{u} is replaced by Σ_{p} in both perturbed zones:

$$
\begin{aligned}
\mathrm{I}_{\mathrm{AD}}^{(2)} & =\mathrm{I}_{\phi}^{(1)}-\Delta \mathrm{I}_{\mathrm{AD}}^{(2)}| | \quad \mathrm{I}_{\mathrm{FD}}^{(2)} \\
= & \mathrm{I}_{\mathrm{FD}}^{(1)}-\Delta \mathrm{I}_{\mathrm{FD}}^{(2)} \\
& =377.4783
\end{aligned}
$$

An exact recalculation with ONETRAN using $\Sigma_{\text {pert. }}=0.9 \bar{\Sigma}$ in the two perturbed zones give

$$
\mathrm{I}_{\phi}^{\text {exact }}=\left\langle\mathrm{R}, \phi_{\text {pert. }}\right\rangle=377.540
$$

Comparing with the above perturbation theory results allows us to quantify the perturbation theory error in this case to

$$
\Delta_{\mathrm{AD}}=100\left(\mathrm{I}_{\phi}^{\text {exact }}-\mathrm{I}_{\mathrm{AD}}^{(2)}\right) / \mathrm{I}_{\phi}^{\text {exact }} \approx 0.02 \%
$$

and $\Delta \mathrm{I}_{\mathrm{FD}} \approx 0.04 \%$, which may be considered very small errors. Since IOUTPUT $=1$ has been specified for this sample problem, the individual contributions to $\Delta I{ }^{(2)}$ from each perturbed zone are also printed. Comparing the zone-wise sensitivity output $\Delta \mathrm{I}_{\mathrm{k}=1}^{(2)}=-7.994$ and $\Delta \mathrm{I}_{\mathrm{k}=2}^{(2)}=-3.997$ with the total response change $\Delta \mathrm{I}^{(2)}=$ -11.9913 shows that the total response is, in this case, exactly twice as sensitive to the zone-1-perturbation than to the zone-2-perturbation.
2. Sample Problem 2. This sample is a slightly modified version of sample problem 1 because we set IDESIGN = 1 and require, therefore, that only one cross section set is read into SENSIT. The design sensitivity results assume in this case that the perturbation consists of a 1% increase of these cross sections in all groups, which is equivalent to a 1% density increase in all perturbed zones. We chose $\bar{\Sigma}$ as the cross-section set in the perturbed zones, then

$$
\Delta \Sigma=0.01 \cdot \bar{\Sigma}
$$

The results of the analysis show

$$
\Delta \mathrm{I}_{\mathrm{AD}}^{(2)}=\Delta \mathrm{I}_{\mathrm{FD}}^{(2)}=+1.19913
$$

which is in magnitude one tenth of the result in sample problem 1 , but of opposite sign (as expected). The computational advantage of this option is that only one cross-section set needs to be stored in core during execution. It is quite possible, therefore, that a large design sensitivity problem can be executed with IDESIGN $=1$ but may exceed available core storage for IDESIGN $=0$. In the Appendix, only the first and the last page of the sample 2 printout are reproduced to avoid duplication.
3. Sample Problem 3. This sample is included to demonstrate how anisotropic cross sections are read into SENSIT from cards and how the S_{N} constants $\left\{\omega_{m}, \mu_{m}\right\}$ are specified in cylindrical geometry. For simplicity, we chose the P_{1}-component of the scattering cross-section tables to be identical to the $\mathrm{P}_{0}-$ component. This leads us, however, to a pathological case because only for a delta-function distribution are identical Legendre expansion coefficients for all orders obtained. Therefore, in order to obtain reasonable convergence of our transport calculations for ϕ and ϕ^{*}, we must choose a fairly high S_{N}-order of $\mathrm{N}=16$.

Again, only the first and last pages of the SENSIT printout are reproduced in the appendix. As final result for this sample case let's consider
$\Delta \mathrm{I}_{\mathrm{AD}}^{(2)}=\Delta \mathrm{I}_{\mathrm{FD}}^{(2)}=-0.174833$.

From an exact recalculation by running ONETRAN with $\Sigma=0.9 \bar{\Sigma}$ we obtain

$$
\Delta \mathrm{I}_{\phi}^{\text {exact }}=-0.1747
$$

which is in almost a perfect agreement with the perturbation theory estimate.
4. Sample Problem 4. The input specification for this sample case is based on the same problem as sample 1 and 2, except that now we perform a standard cross-section sensitivity analysis. Therefore, only one cross-section set needs to be entered as material specification in the perturbed zones. Only the first and the last 4 pages of the SENSIT printout are reproduced in the Appendix. The table of definitions, which is always printed for ITYP=0, summarizes the information contained in Eqs. (2) through (17), and initiates the detailed sensitivity profile printout. Because we used identical neutron and gamma-ray cross sections, the resulting sensitivity coefficients are identical. The corresponding sensitivity profiles differ from each other, however, because of the different group structure assumed for neutrons and gamma rays.

The first two sensitivity profile prints (for neutrons and gamma-rays, respectively) are for the spatial integral over all perturbed zones. If IOUTPUT $=1$, profiles are printed for the individual perturbed zones.
5. Sample Problem 5. This sample is based on the same problem as sample 4, but now we wish to perform an SED sensitivity analysis in addition to the standard cross-section sensitivity analysis. . We assume for this case that no SED uncertainties are available (NSED $=0$), but we still wish to obtain the SED sensitivity profiles defined in Eqs. (30) through (32). As an additional feature we now read LASL-formatted cross sections from TAPE4. This cross-section tape has been prepared in advance and contains P_{0} cross-section sets for 2 (identical) materials of which we read only the second set into SENSIT.

In the Appendix we reproduce only the output pertaining to the SED analysis. This is the page labeled "Double-Differential SED Sensitivity Profiles", which appears normally between the neutron and gamma-ray profiles summed over all perturbed zones. The appendix contains also a listing of the contents of TAPE4 for this sample case.
6. Sample Problem 6. This sample is a further extension of sample problem 5 to demonstrate how an SED uncertainty analysis may be added to the SED sensitivity analysis. NSED is set to 1 and the SED uncertainty information \{GMED, FSED \} must be added to the input cards.

B. Problem Description for Samples 7 and 8

These last two sample problems are taken from a comprehensive neutron cross section and secondary-energy-distribution uncertainty analysis for a fusion reactor, documented in detail in Ref. 15. The basic computational model consists of 137 spatial intervals with a 14 MeV neutron source covering the first 4 intervals and a detector zone at intervals 80 through 108 describing a superconducting toroidal field (TF) coil. Choosing an energy dependent KERMA factor as a response function in the TF coil zone identifies the integral response of interest as the total nuclear heating in this superconducting magnet. The question to be answered by this uncertainty analysis is: How uncertain is the calculated nuclear heating in the TF coil, due to all cross-section uncertainties in
the model? In the comprehensive analysis as documented in Ref. 15, additional integral responses, and many more partial cross-section and SED uncertainties, were considered than in these two sample cases.

The neutron and gamma-ray cross sections employed for this study formed a coupled transport cross-section set with 30 neutron and 12 gamma-ray groups. The transport calculations to produce the angular-flux tapes were performed with P_{2} anisotropic cross sections and an S_{6} angular quadrature. The subsequent SENSIT calculations, however, employed only isotropic transport cross-section sets. The two sample cases described here identify 2 perturbed zones: P_{1} is the TF-coil zone (intervals 80 through 108), and P_{2} is another magnet coil (the E-coil) in intervals 111 through 125. Both coils are composed mostly of copper and a stainless steel structure. Therefore, the material cross sections to be considered in these two perturbed zones are those of $\mathrm{Cr}, \mathrm{Ni}, \mathrm{Fe}$, and Cu . Sample problem 7 computes the integral response uncertainty due to the SED uncertainties in the neutron cross sections of these 4 materials in the TF and E-coils. Sample problem 8 performs an independent vector cross-section uncertainty analysis for all partial cross sections used in the generation of cross-section sets for $\mathrm{Cr}, \mathrm{Ni}, \mathrm{Fe}$ and Cu .

1. Sample Problem 7. The input file for this sample problem (as reproduced in the Appendix in its entirety) shows that a standard cross-section sensitivity analysis, together with an SED uncertainty analysis, is performed for 4 successive cases (NPERXS $=4$) and the cross sections are entered from TAPE 4 in LASL format (IXSTAPE $=1, K X S=1$). Therefore, at the end of the input file, four sets of SED uncertainty parameters and cross-section ID-cards are supplied. The identification numbers refer to the material sequence on TAPE4, which we chose to be $\mathrm{C}, \mathrm{O}, \mathrm{Cr}, \mathrm{Fe}, \mathrm{Ni}, \mathrm{Cu}$, and W.

Of the sample 7 printout, we reproduce in the Appendix only the first page and the last 10 pages which contain the relevant results for copper (material ID $=6$). A response uncertainty of about 27%, due to the estimated SED uncertainties in the copper cross sections in both perturbed zones, is calculated. It is also noted that fairly large neutron sensitivity coefficients are calculated for both the SED and standard cross-section sensitivities. In contrast,
the sensitivities to gamma-ray cross sections and to the gamma-ray production cross sections are much smaller.

At the end of the sample 7 printout we have attached two pages of a listing of the contents of tape 4 as used for this problem. Only the first page (beginning of carbon transport cross-section table) of the listing, and the last page (end of tungsten cross-section table) are reproduced to illustrate the TAPE4 format.
2. Sample Problem 8. This sample performs a vector cross-section sensitivity and uncertainty analysis for the fusion reactor design described earlier. The cross-section and covariance matrix input is from TAPE10 whose content and format are described in Sec. V.A.2. Sample 8 computes a total of 36 successive cases (NPERXS $=36$) and expects in the input file, after QUE(j), 36 identification cards for vector cross-section pairs. In addition, these 36 vector cross-section pairs with their covariance matrices describe the partial cross sections with their estimated uncertainties for the 4 materials $\mathrm{Cr}, \mathrm{Ni}, \mathrm{Fe}$, Cu , of which the two perturbed zones consist. We shall concentrate here, as in the previous sample case, only on the results for copper whose ID-numbers on TAPE 10 are from 37 through 47. Therefore, again only the first page of the sample 8 printout together with the last 12 pages are reproduced in the appendix.

In order to interpret the results of this analysis correctly, it is necessary to know which pair of partial cross sections is identified by each ID number. Such a cross reference list is contained in subroutine COVARD of SENSIT and is also reproduced in Ref. 15. The SENSIT output for all Cu cross-section pairs identifies three contributions to the response uncertainty with relative standard deviations greater than 10 per cent:

ID $=37, \operatorname{Cov}\left(\Sigma_{T}, \Sigma_{T}\right), \quad \delta I / I=26.0 \%$
ID $=38, \quad \operatorname{Cov}\left(\Sigma_{\mathrm{T}}, \Sigma_{\text {elas }}\right), \quad \delta \mathrm{I} / \mathrm{I}=25.8 \%$
ID $=39, \operatorname{Cov}\left(\Sigma_{\text {elas }}{ }^{\Sigma}{ }^{\text {elas }}\right), \delta I / I=25.7 \%$

These two cross sections, Σ_{T} and $\Sigma_{\text {elas }}$, show also the largest sensitivity profiles compared to the other Cu vector cross-sections.

On the last page of the sample 8 printout a summary of all calculated response uncertainties is printed. According to the input parameter NSUMCOV = 4, four partial sums of individual response variances are provided where the last partial sum is over all Cu cross-section contributions (according to the input for SUMSTRT = 26 and SUMEND $=36$). The total response variance due to all copper vector cross-section uncertainties is therefore computed to be 45.1 percent.
VII. RETRIEVING AND RUNNING SENSIT ON LASL'S AND MFECC'S CDC-7600 COMPUTERS

The current (March 1980) code package resides in a file named SENSIT10 and contains the FORTRAN code, the corresponding executable binary file, and all input and data files to execute sample problems 1 through 8. The contents of this code package are listed in Figs. 2 and 3, and spans a total of 27 files. The file names are self explanatory as far as possible:

SAMPLxIN and SAMPLxOUT are the input and output files, respectively, for sample problems x (for $\mathrm{x}=1,2, \ldots .$. 8) as described in Sec. VI;

TAPE1S3 is TAPE1 for sample 3;
TAPE2S7-8 is TAPE2 for sample 7 and sample 8;
SENS10 is the FORTRAN source program for the SENSIT code;
SENSIT is the executable binary file for the SENSIT code, which results from compiling SENS 10 with the FTN compiler.
Figures 2 and 3 are copies of terminal listings generated from an actual retrieval and execution of a SENSIT sample problem on LTSS.
a. On MFECC's CDC-7600 (see Fig. 2):

To retrieve the code package from MFECC's file storage system, FILEM, the following command is required:

FILEM READ 5013 SENSIT10 \$END
The file SENSIT10 which is then in the local file space is a LIX file whose contents will be listed by typing

LIX SENSIT10 \$LL SORT.
In order to execute, for example, sample problem 3 we read from this LIX file the 4 files required:

```
FILEM PEAT 5013 SENSIT10 SENT
```

1. REAR SENEITIO
File IS OH TGFE.
MFTE ALL PEPBEETS: THEN TYFE ENI Tロ GET FILES FPDM TAPE.
RERUEET SENT TQ FILE MPNAGEF
TAFE ELIELE FGEITIGN IS 4.
2. MEAIV EENEITIU
ms
mal parde
LIY EENSITIGSLL SORT.
MIIRESE LENETH NFME
25ī5 54 Ė SAMPLIIN
503011 30.5S SAMFLIOUT

SUビ心G 2TE1 தAMFLĖロUT
4541042 SAMFLSIN

15 ËS 4 リビ SAMFL 4 IN
$514 E T 0 \quad 4 E O T$ EAMFL4OUT
ci
5こウムन
¿405 273 SAMFLÉIN

ET0GO 1433 SAMFLIIN
5ご546 34343 SAMFLTOUT

44FE4!

311 こちこ アニアムT SENEIT
7ごム7 SENEIT

$3161 \quad 11252$ TAFEIES
O0505 10410 THFEIETー8
そここ ごコ TAFEご
14433 11 こ5こ TAFEE゙S3
1345011040 TAFEE゙ミTーE
ट்̈ E® TGFE4
24 06E 3 4ETOF TAFE4SAMFT
SFACE IS EOSIOU
EEGINE AT 10 OT154S
INDEY SPACE ट? 1 DECIMFL
Dt. GR. EGMFLGIN TAPEIE3 TAPEE゙SO FENEIT S END

Fig．2．Retrieval and execution of SENSIT on MFECC＇s CDC－7600 computer．
fill sane
EWITCH SAMFLZIN INFUT
ALL DONE
EWITEM TAFEIS3 TRFEI
mLl DONE
EWITEH TAFEごE3 TAFED
RLL DONE
צENEIT / 1 2


```
MASS
? GET /0:Z2190/SENSIT10
001] 80/חこ/31 11:4.3:54.139 GET SENSIT10:/082190/SENSIT10
001 (120|i|0s w|RDS) 80/03/13 14:50:06.121.
? END
    flL IONE
LIX SENSITIOELL SOPT.
        ADTAESS LENGTH NFME
            25>0.5 542 SAMPLIIN
            503001 3675 SAMPLIDUT
            26447 403 SFMPLPIN
            505676 2761 SFMPL?ロUT
                464 1042 EAMPL3IN
            511657 2411 EFMFL3ロUT
                1526 40こ 5FMPL4IN
            514270 4207 EFMPL4ロUT
                2130 253 EAMPL5IN
            520477 2707 \XiAMPLEOUT
                2403 273 SAMPL6IN
            523406 3140 \XiFMFLGOUT
                27052 1433 EFMPLTIN
            526.546 3434.3 EAMPLPロUT
            307560 1473 SFMPL8IN
            447540 33241 EFMPLEGUT
            404222 43316 5ENS10
            311253 72747 EENEIT
                23こ TAPE1
            563111 306435 TAFE1058
                3161 11252 TAPE1S3
                30505 104063 TAPE157-8
                        232 TAFE?
                14433 11252 TPPE2S3
            13457D 1040E3 TAPE2S7-8
                2676 263 TAPE4
            240653 46705 TAPE4SAMP?
                                105100
    BEGINS FT 1071546
INDEX SPACE 271 DECIMAL
                                    Fig. 3. Retrieval and execution of
                                    SENSIT on LASL's CDC-7600
                                    computer.
                    232
    ALL maNE
LIX SENSIT10:GR. SAMPLZIN TAPE1 TAPEZ SENSIT
    FLL m|NE
SWITCH EAMPLEIN IHPUT
    flL maNE
SENSIT / 1 2.5
    STAP FTN
```



```
    ALL DONE
ALLOUT INPUT QUTPUT EOX TOIMEB
ALL DONE
```

GR. SAMPL3IN TAPE1S3 TAPE2S3 SENSIT \$END .
Since the executable binary file SENSIT expects the input file to be named INPUT, the forward-flux file to be named TAPE1, and the adjoint-flux file to be named TAPE2, we change these file names accordingly with the three commands:

SWITCH SAMPL3IN INPUT
SWITCH TAPE1S3 TAPE1
SWITCH TAPE2S3 TAPE2
To execute sample problem 3, all that is required is a call to the executable binary file by typing

SENSIT .
Completion of the run is indicated by the machine's response with "STOP FTN" and the LTSS time listing. SENSIT's printed output is now contained on a file named OUTPUT which may be listed with a number of systems routines, e.g., on LASL's DEC-10 printer by typing

BANNER LSL OUTPUT COL1. BOXID OUTPUT .
The option COLI. assures the proper line and page ejects to be recognized.
b. On LASL's CDC-7600 (seee Fig. 3):

The SENSIT code package may be obtained from LASL's mass-storage system with the command

MASS GET /082190/SENSIT10
From the LIX file SENSITIO we may then obtain, e.g., the files required to execute sample problem 1:

LIX SENSIT10!GR. SAMPLIIN TAPE1 TAPE2 SENSIT .
After changing the name of the input file to INPUT, by
SWITCH SAMPLIIN INPUT
we can then run SENSIT by typing
SENSIT
and obtain an OUTPUT file which may then be listed with
ALLOUT OUTPUT CC. BOXID
c. Changing the FORTRAN source code (see Fig. 4):

If it is desired to change the FORTRAN code, for example, to execute SENSIT with another LCM container size as described in Sec. IV.B, we retrieve from the LIX file SENSIT10 the FORTRAN source program SENS 10 and recompile. Figure 4

FLL DOPE

45ご百 LIMEE. 「EMF!

1モ゙! CFLL ELILK (EDO!!

- EHII
fill IGPAE
ミWITCH ETMFLSIN INPUT
FLL IIGIE

Fitl IIITHE
FTH ! I = =ENE 1 in. LEM=I: Eロ:
- * Pirdraidis FTH CロrAFILER

Fig．4．Changing the SENSIT FORI＇RAN source code．

- IFILE:LIETFTH.
- EFILE:LIETFTr.j゚FF.
- IIFILEgFTHFEIN.

- IIFILEsfraraza .

- GロTロ:1.
- 1:EXIT.

玉TTOTFL $=$ M.1ES MINUTES
* * FINIEHEI FTN CIMFILER * *
* * LaI Eunhafirt * *
CONE ELUC EENSIT HFITTEM
FILE SIIE= 0!ワごア47
FLI LETH= けビ白!!こ 介151417
- * E\%ECUTIロr.
ミTGF FTN
EEHEIT LTEE TIME 1.EB4 EECONIS

FLL IIGIE
shows, for example, how the LCM container size is increased from 80000 to 120000 words and how sample problem 5 is executed.

First we read from LIX file SENSIT10 the input data files required to run sample 5, and the FORTRAN source code SENS10:

LIX SENSIT10 \$GR. TAPE1 TAPE2 TAPE4 SAMPL5IN SENS10 \$END Next, we search the SENS10 file for the COMMON statement which assigns the LCM container array size according to Sec. IV.B, Eq. (38):

TRIX AC\$0\$SENS $10 \$ T P \$ B L K E C S(80000)$
Then this line 14 is changed and listed again with the command RP14\$ $80000 \$ 120000 \$ \mathrm{~L}$
As explained in Sec. IV.B, we must also change simultaneously the card with CALL BULK (80000) in the main driver routine:

TP\$CALL BULK (80000)
RP120\$ $80000 \$ 120000$ \$L
At this point, all necessary source code changes are accomplished and before executing sample problem 5 we must rename the input file

SWITCH SAMPL5IN INPUT
and generate a new executable binary file by recompiling the altered FORTRAN source code SENS10. But first, the FTN compiler package must be read into our local file space which, on the MFECC, is accomplished with

LIX LASLFTN SKIPSUM\$GR* ALL.\$END
The new SENS10 can now be compiled, loaded and executed with FTN by typing
FTN ($\mathrm{I}=$ SENS 10, LCM $=\mathrm{I}, \mathrm{GO}$)
The parameter LCM $=1$ is required because more than the default value of LCM storage is requested in this case. After completion, a new OUTPUT file will be written with the results for sample problem 5. The new executable binary file SENSIT may now be saved for later use.

VIII. REFERENCES

1. D. E. Bartine, F. R. Mynatt, and E. M. Oblow, "SWANLAKE, a Computer Code -Utilizing ANISN Radiation Transport Calculations for Cross-Section Sensitivity Analysis," Oak Ridge National Laboratory report ORNL-TM-3809 (May 1973).
2. S. A. W. Gerstl, "Sensitivity Analysis in Shíelding - An Overview," Trans. Am. Nucl. Soc. 22, 791 (1975).
3. D. E. Bartine, E. M. Oblow, and F. R. Mynatt, "Radiation-Transport CrossSection Analysis - A General Approach Illustrated for a Thermonuclear Source in Air," Nucl. Sci. Eng., 55, 147 (1974).
4. S. A. W. Gerstl and W. M. Stacey, Jr., "A Class of Second-Order Approximate Formulations of Deep Penetration Radiation Transport Problems," Nucl. Sci. Eng., 51, 339 (1973).
5. S. A. W. Gerstl, D. J. Dudziak, and D. W. Muir, "Cross-Section and Uncertainty Analysis with Application to a Fusion Reactor," Nucl. Sci. Eng. 62, 137-156 (1977).
6. C. R. Weisbin et. al., Eds., "A Review of the Theory and Application of Sensitivity and Uncertainty Analysis," Proc. Seminar-Workshop, Oak Ridge, Tenn, Aug. 22-24, 1978, Oak Ridge National Laboratory report ORNL/RSIC-42 (February 1979).
7. S. A. W. Gerstl, "The Application of Perturbation Methods to Shield and Blanket Design Sensitivity Analyses," Argonne National Laboratory report AP/CTR/TM- 25 or FRA-TM-67 (October 1974).
8. S. A. W. Gerstl, "Sensitivity Profiles for Secondary Energy and Angular Distributions," R. W. Roussin et. al., Eds., Proc. Fifth Int. Conf. Reactor Shielding, Knoxville, Tenn., April 18-22, 1977 (Science Press, Princeton) pp. 101-111.
9. S. A. W. Gerstl, "Uncertainty Analysis for Secondary Energy Distributions," Proc. Seminar-Workshop on Theory and Appl. of Sens. and Uncert. Analysis, Oak Ridge, Tenn., Aug. 23-25, 1978; ORNL/RSIC-42, pp. 219-229 (February 1979).
10. L. C. Just, H. Henryson II, A. S. Kennedy, S. D. Sparck, B. J. Toppel and P. M. Walker, "The System Aspects and Interface Data Sets of the Argonne Reactor Computation (ARC) System," Argonne National Laboratory report ANL-7711 (1971).
11. C. H. Adams, Argonne National Laboratory, personal communication, March 1980.
12. T. R. Hill, "ONETRAN: A Discrete Ordinates Finite Element Code for the Solution of the One-Dimensional Multigroup Transport Equation, "Los Alamos Scientific Laboratory report LA-5990-MS (June 1975).
13. W. W. Engle, Jr., "A User's Manual for ANISN, a One-Dimensional Discrete Ordinates Transport Code with Anisotropic Scattering," Union Caribe Corporation report K-1693 (March 1967).
14. R. E. MacFarlane, R. J. Berrett, D. W. Muir, and R. M. Boicourt, "The NJOY Nuclear Data Processing System: User's Manual," Los Alamos Scientific Laboratory report LA-7584-M/ENDF-272 (December 1978).
15. S. A. W. Gerstl, R. J. LaBauve, and P. G. Young, "A Comprehensive Neutron Cross-Section and Secondary Energy Distribution Uncertainty Analysis for a Fusion Reactor, " Los Alamos, Scientific Laboratory report LA-8333-MS (May 1980).
16. K. D. Lathrop, "DTF-IV - A FORTRAN-IV Program for Solving the Multigroup Transport Equation with Anisotropic Scattering," Los Alamos Scientific Laboratory report LA-3373 (November 1965).
17. R. D. O'Dell, "Standard Interface Files and Procedures for Reactor Physics Codes, Version IV," Los Alamos Scientific Laboratory report LA-6941-MS (September 1977).
18. R. E. MacFarlane, Los Alamos Scientific Laboratory, personal communication, August 1978.

IX. APPENDIX

The following appendix contains 62 pages of selected computer printout as described in the previous section. Particularly, the complete input files for all 8 sample problems are reproduced exactly in the form in which they must be entered to execute SENSIT for these cases. Note, however, that these input listings are given with line numbers to the left of each input card, which, of course, are not a part of the actual SENSIT input.

SENSIT SAMPLE 1．$* 3+3$ GP．＊SLAB $* S-2 * P-8 * D E S I G N-S E N *$ UITH TEST PRINT


```
4 NEUTRON ENERGY GROUP BOUNDARIES READ, IN EV
4 GAMAA ENERGY GROUP BOUNDARIES READ, IN EV
```

COMPUTED LETHARGY WIDTHS PER GROUP. DELU(G)

G	DELU（G）	－ $6.931 \mathrm{E}-0$ ！
$G=2$	DELU（G）	－ $1.609 \mathrm{E}+80$
$G=3$	DELU（G）	$6.931 \mathrm{E}-01$
$G=4$	DELU（G）	2．877E－01
$G=5$	DELU（G）	$4.055 \mathrm{E}-81$

LEVEL WEIGHTS FOR DISCRETE ANGLES .500080

DISCRETE ANGLES MUE FOR LEVEL WEIGHTS
ESH BOUNDARIES READ

SENSIT SAMPLE 1，＊3＋3 GP．＊SLAB＊S－2＊P－0＊DESIGN－SEN＊d！TH TEST PRINT
 SENR（G）IS PER LETHARGY－WIDTH DELTA－U AND NORMALIZED TD THE TOTAL RESPONSE IIPHI $\Rightarrow(R . P H I)=3.654 B 7 E+92$ FOR THE SUM OVER ALL DETECTOR ZONES

FOR TH GROUP	$\begin{aligned} & \text { SUM OVER A } \\ & \text { UPPER-E } \end{aligned}$	DELTA－U	ES SENR
GROUP	1．${ }^{\text {agaetal }}$	6．93E－01	
2	$5.099 \mathrm{E}+80$	$1.61 \mathrm{E}+80$	3．957E－82
3	$1.000 \mathrm{E}+80$	$6.93 \mathrm{E}-01$	7．966E－82
4	5．000E－01	2．bEE－01	$1.327 \mathrm{E}+80$
5	4．000E＋80	4．05E－81	$1.571 \mathrm{E}-\mathrm{O}_{1}$
6	$3.000 \mathrm{E}+08$	6．93E－81	7．866E－82
INTEGR			$1.008 \mathrm{E}+80$

SENSIT SAMPLE 1．＊ $3+3$ GP．＊SLAB＊S－2＊P－Q＊DESIGN－SEN＊WITH TEST PRINT
 SENR（G）IS PER LETHARGY－WIDTH DELTA－U AND NORMALIZED TO THE TOTAL RESPONSE IIPHI＝（R．PHI）＝ $3.65487 E+02$ FOR DETECTOR ZONE K＝ 1

GROUP	UPPER－E（EV）	DELTA－U	SENR
1	$1.000 \mathrm{E}+81$	6．93E－01	2．974E－81
2	5．0日0E＋80	$1.61 \mathrm{E}+00$	2．222E－82
3	1． $\mathrm{QQ日E}+80$	6．93E－01	4．562E－82
4	5． B 昍E－81	2．8BE－91	7．166E－81
5	4． $80 \mathrm{DE}+80$	$4.85 \mathrm{E}-91$	8．819E－02
6	3．008E＋00	$6.93 \mathrm{E}-01$	4．562E－02
INTEG			$5.471 \mathrm{E}-01$

SENSIT SAMPLE 1， $3+3$ GP．＊SLAB＊S－2＊P－0＊DESIGN－SEN＊UITH TEST PRINT

 （ FOR DETECTOR ZONE K＝ 2

GROUP	UPPER－E（EV）	DELTA－U	SENR
1	1．000E＋01	$6.93 \mathrm{E}-01$	$2.534 \mathrm{E}-81$
2	$5.000 \mathrm{E}+80$	1．61E＋00	$1.735 \mathrm{E}-82$
3	1．000E＋00	6．93E－81	3．304E－82
4	$5.000 \mathrm{E}-8$ ！	$2 . \mathrm{BBE}-81$	6．105E－01
5	4．000E +90	$4.05 \mathrm{E}-01$	6．889E－82
6	$3.800 \mathrm{E}+80$	6．93E－01	3．304E－82
INTEGR			4．529E－01

```
ENERGY DISTRIBUTIDN OF FORLWARD SOURCE Q(G) BY GROUP
G = 1 O
G = 2 0
G= 3 0.00000E+00
G=4
```

SPATIAL DISTRIGUTION OF FGRURRD SOURCE QUE (I) BY SOURCE INTERVAL NUMBER
$1=1 \quad 1.00000 E+00$
FIRST ORDER RESPONSE FROM ADJOINT CALCULATION = 11FIS = (Q.FISTAR) = 3.65399E+02

SENSIT SAPPLE 1. *3*3 GP.*SLAB*S-2* $-0 * D E S I G N-S E N * d I T H$ TEST PRINT

SENSIT SAMPLE 1. $3 \mathbf{3 + 3}$ GP.*SLAB*S-2*P-0*DESIGN-SEN*UITH TEST PRINT
 SENQ (G) IS PER LETHARGY-WIDTH DELTA-U AHD NORMALIZED TO THE TOTAL RESPONSE IIFIS = (Q.FISTAR) = 3.65399E+@2 FOR SOURCE ZONE $K=1$

CASE NUMBER 1 OF NPERXS = 1 SUCCESSIVE CASES
MICRO CROSS-SECTIONS AND NUMAER DENSITY READ IN LASL-FORMAT WITH FOLL. TITLE CARD CASE 1 PERTURBED $X S$-SET (PERTURBED MATERIAL X S) NUMBER DENSITY $=$. 900000 . MAKES THE FOLLOUING MAKRO-CROSS SECTIONS. IN $1 /$ CM

UNPERTUREED REFERENCE CROSS SECTION. XSBAR, FOR CASE NUMBER 1
MICRO CROSS-SECTIDNS AND NUMBER DENSITY READ IN LASL-FORMAT WITH FOLL. TITLE CARD CASE 1 REFERENCE XS-SET (REFERENCE MATERIAL XS)
NUMEER DENSITY $=1.000000$, MAKES THE FOLLOUING MAKRO-CROSS SECTIONS, IN $1 / C M$

REFERENCE XS $2.00000 \mathrm{E}-02$	$\begin{aligned} & \text { T FOR SENSIT } \\ & 0 . \end{aligned}$		TEST PROBLEM 5.00000E-62	$\begin{aligned} & \mathrm{P}-0 \\ & 0 . \end{aligned}$	XSBAR 0.
	0.	0.		0.	$2.00000 \mathrm{E}-01$
$1.00000 E-01$	2.00000E-02	0. ${ }^{\text {a }}$ -			
$1.00000 \mathrm{E}-01$	0.	3.00000E-01	2.00000E-01	$5.00000 \mathrm{E}-02$	1.00000E-02
0.	0.	0.	$2.00000 \mathrm{E}-02$	0.	1.00000E-01
5. $000000 \mathrm{E}-02$	0.	2.00000E-01	1. $0.0000 \mathrm{E}-01$	2.00000E-02	
$5.00000 \mathrm{E}-02$	$\begin{aligned} & 0 . \\ & 0 . \end{aligned}$	2.00000E-61		2.00000e-02	
$2.00000 \mathrm{E}-01$	5.00000E-02	1.000®0E-02	日.	0.	0.

test problem values for dst(G)
$-1.00000 \mathrm{E}-02 \quad-2.00000 \mathrm{E}-02 \quad-3.00000 \mathrm{E}-02 \quad-1.80000 \mathrm{E}-02 \quad-2.00808 \mathrm{E}-02 \quad-3.00000 \mathrm{E}-02$

TEST PRINTOUT FOR DSL(G.GP,L) FOR L= 1

FOR THEORY AND DETAILED DERIVATIONS OF THESE EXPRESSIONS REFER TD

1) S.A.W. GERSTL AND W.M. STACEY JR.. NUCLEAR SCIENCE AND ENG INEERING. 51. 339(1973)
(2) S.A.W. GERSTL. ARGONNE NATIONAL LAB. TECHNICAL MEMORANDUM AP/CTR/TM-28 (1974) OR FRA-TM-67 (1974)

DUE TO THE DUALISM OF FORLARD AND ADJOINT FORMULATIONS FOR RADIATION TRANSPORT CALCULATIONS WE HAVE ALLWAYS TWO DIFFERENT. BUT EQUIVALENT. FORMULATIONS FOR ANY RESPONSE CALCULATION. AND BOTH ARE IMPLEMENTED IN THIS CODE:
IIPHI = (R.PHI)

- FIRST-DRDER INTEGRAL RESPONSE FROM FORUARD CALCULATION
- FORWARD INTEGRAL RESPONSE FOR THE UNPERTURBED REFERENCE CASE

IFIS = (O.FISTAR)

- FIRST-DRDER INTEGRAL RESPONSE FROM ADJOINT CALCULATION
- ADJOINT INTEGRAL RESPONSE FOR THE UNPERTURBED REFERENCE CASE

DELI-AD = (FISTAR.DELTA-SIGMA*PHI)

- SECDND-DRDER TERM (DELTA-I) FROM ADJOINT-DIFFERENCE FORMULATION

DELI-FD $=$ (PHI.DELTA-SIGMASTAR*FISTAR)

- SECOND-ORDER TERM (DELTA-1) FROM FORLARD DIFFERENCE FORMULATION

I2AD - SECOND-ORDER INTEGRAL RESPONSE FROM ADJOINT-DIFFERENCE FORMULATION

- APPROXIMATE INTEGRAL RESPONSE FOR PERTURBED CASE

I2FD - SECOND-ORDER INTEGRAL RESPONSE FROM FORWARD-DIFFERENCE FORMLATION

- APPROXIMATE INTEGRAL RESPDNSE FOR PERTURBED CASE

XAD - SENSITIVITY COEFFICIENT FROM ADJOINT-DIFFERENCE FORMLLATION
XFD - SENSITIVITY COEFFICIENT FROM FORWARD-DIFFERENCE FORMULATION
APPROXIMATE CALCULATIONS OF THE INTEGRAL RESPONSE FOR THE PERTUREED CASE FOLLOW DIRECTLY FROM THE AD- AND FDFORMULATIONS (C.F. REFERENCES):

$$
\begin{aligned}
& \text { I2AD }=I 1 P H!-D E L I-A D \\
& \text { 12FD }=!1 F I S-D E L I-F D \\
& \text { XAD }=12 A D / 1 P H!=1-(D E L I-A D) / 11 P H I \\
& X F D=12 F D / I I F!S=1-(D E L I-F D) / 11 F I S
\end{aligned}
$$

THE AD-FORMULATION (I2AD) IS MORE APPROPRIATE FOR CASES LHERE THE PERTURBATION IS GEOMETRICALLY CLOSER TO THE DETECTOR THAN TO THE SOURCE (C.F. THEORY).

THE FD-FDRMULATIDN (I2FD) IS MORE APPROPRIATE FOR CASES WHERE THE PERTURBATION IS GEOMETRICALLY CLOSER TO THE SDURCE THAN TO THE DETECTOR (C.F. THEORY)
IF BOTH REFERENCE FLUXES. PHI AND FISTAR. ARE COMPLETELY CONVERGED (FOR THE SAME REFERENCE CASE). THEN BOTH FORMULATIONS WILL GIVE IDENTICAL RESULTS. I. E.

$11 P H I$	$=11 F I S$
DELU-AD	$=D E L U-F D$
$12 A D$	$=12 F D$
$X A D$	$=X F D$

$\mathrm{XAD}=X \mathrm{FD}$

SENSIT SAMPLE 2, $* 3+3$ GP. $*$ SLAB $* S-2 * P-0 * D E S I G N-S E N * 1$ PER CENT PERTURBATION


```
    4 NEUTRON ENERGY GROUP BOUNDARIES READ, IN EV
    1.000E+01 5.000E+00 1.000E+00 5.000E-01
    4 GAMMA ENERGY GROUP BOUNDARIES READ. IN EV
    4.000E+00 3.000E+00 2.000E+00 1.000E+00
```

LEVEL WEIGHTS FOR DISCRETE ANGLES
DISCRETE ANGLES MUE FOR LEVEL WEIGHTS
-.5デア350 . 577350
MESH BOUNDARIES READ
0. $\quad 1.000 E+00 \quad 2.000 E+00 \quad 3.000 E+00 \quad 4.000 E+0013.000 E+00 \quad 6.000 E+00 \quad 7.000 E+00 \quad 8.000 E+00 \quad 9.000 E+00$
$1.000 \mathrm{E}+01$

SENSIT SAMPLE 2. $* 3+3$ GP.*SLAB*S-2*P-8*DESIGN-SEN*1 PER CENT PERTUREATION
*otoot RESULTS ARE FOR ASSUMED 1 PER CENT FLAT XS-INCREASE, OR 1 PER CENT DENSITY INCREASE IN PERT. ZONES ******** DESIGN SENSITIVITY INFDRMATION. INTEGRATED OVER ALL ENERGIES FOR THE SUM OVER ALL PERTURBED ZONES

CONTRIBUTION FROM NEUTRON GROUPS ONLY:
TOTAL SECOND-DRDER TERM. FROM NEUTRON+GAMM GROUPS: INTEGRAL RESPONSE FOR UNPERTURBED REFERENCE CASE:
INTERGRAL RESPONSE FOR PERTURBED CASE:
SENSITIVITY COEFFICIENT FOR TOTAL PERTURBATION:

DELI-AD (N)	$=5.99567 E-01$	DELI-FD (N)	$=5.99567 E-01$
DELI-AD	$=1.19913 E+80$	DELI-FD	$=1.19913 E+00$
I1PHI	$=3.65487 E+02$	I1F1S	$=3.65399 E+82$
I2AD	$=3.64288 E+02$	I2FD	$=3.64200 E+02$
XAD	$=9.96719 E-01$	XFD	$=9.96718 E-01$

Now RESULTS ARE FOR ASSUMED 1 PER CENT FLAT XS-INCREASE, OR I PER CENT DENSITY INCREASE IN PERT. ZONES
CONTRIBUTIONS TO DELI-AD AND DELI-FD FROM PERTURBED ZONE K = 1

| FROM NEUTRON GROUPS ONLY: | DELI-AD $(N)=3.99703 E-01$ | DELI-FD $(N)=3.99703 E-01$ |
| :--- | :--- | :--- | :--- | :--- |
| FROM NEUTRON PLUS GAMMA GROUPS: | DELI-AD $=7.99406 E-01$ | DELI-FD $=7.99406 E-01$ |

*Wonow RESULTS ARE FOR ASSUMED 1 PER CENT FLAT XS-INCREASE, OR 1 PER CENT DENSITY INCREASE IN PERT. ZONES CONTRIBUTIONS TO DELI-AD AND DELI-FD FROM PERTURBED ZONE $K=2$

| FROM NEUTRON GROUPS DNLY: | DELI-AD $(N)=1.99864 E-01$ | DELI-FD $(N)=1.99864 E-01$ | |
| :--- | :--- | :--- | :--- | :--- |
| FROM NEUTRON PLUS GAMMA GROUPS: | DELI-AD $=3.99729 E-01$ | DELI-FD | $=3.99729 E-01$ |

2	SENS IT SAMPLE						
2	12	$16 \quad 10$	$6 \quad 3$	$1 \quad 1$			CARD2
3	12	- 1	$0^{3} 1$		$0 \quad 0$	00	CARD3
4	10.0	5.0	1.0	0.5			EN(G)
5	4.0	3.0	2.0	1.0			EG(G)
6	$1.35762 \mathrm{E}-2$	$3.11267 E-2$	4.75792E-2	$6.23144 E-2$	7.47979E-2	8.45782E-2	W(M)
7	9.13017E-2	9.47253E-2	9.47253E-2	$9.13017 \mathrm{E}-2$	8.45782E-2	7.47979E-2	W(M)
8	$6.23144 E-2$	4.75792E-2	3.11267E-2	$1.35762 \mathrm{E}-2$			W(M)
9	-9.89400E-1	-9.44575E-1	-8.65631E-1	-7.55404E-1	-6.17876E-1	-4.58016E-1	MUE (M)
10	-2.81603E-1	-9.50125E-2	+9.50125E-2	+2.81603E-1	+4.58016E-1	+6.17876E-1	MUE (M)
11	+7.55404E-1	+8.65631E-1	+9.44575E-1	+9.89400E-1			MUE (M)
12	0.0	1.0	2.0	3.0	4.0	5.0	MESH 1
13	6.0	7.0	8.0	9.0	10.0		MESH2
	11						KSRS
5	$9 \quad 9$						KDET1
6	1010						KDET?
7	45						KPER1
18	$7 \quad 7$						KPER2
19	200.0	200.0	200.0	200.0	200.0	200.0	R(G)
20	$1.87240 \mathrm{E}-2$	$1.67530 \mathrm{E}-2$					RHO(J)
21	1.0	0.0	0.0	1.0	0.0	0.0	Q(G)
22	0.31831						QUE (J)
23	CASE 1 PERTUR	RBED $\times 5-5 E T$	(PERTURBED	MATERIAL XS)			XS
24	NIMMEN $=0$	0.9					X
25	PERT.XS-SET	FDR SENSIT	COUPLD-3+3-GP	P. TEST PROBL	LEM. $X S=0.9 * X$	SBAR. P-0	XS
6	. 02	0.0	0.1	. 05	0.0	0.0	GP1
7	0.0	0.0	0.0	0.05	0.0	0.2	GP1/2
28	0.1	0.02	0.0	0.0	0.0	0.0	GP2
29	0.1	0.0	0.3	0.2	. 85	. 01	GP3
30	0.0	0.0	0.0	0.02	0.0	0.1	GP3/4
31	0.05	0.0	0.0	0.0	0.0	0.0	GP4
32	. 05	0.0	0.2	0.1	. 02	0.0	GP5
33	0.0	0.0	0.0	0.1	0.0	0.3	GP5/6
34	0.2	0.05	0.01	0.0	0.0	0.0	GP6
35	PERT.XS-SET	FOR SENSIT	COUPLD-3+3-GP	P. TEST PROBL	LEM. $X 5=0.9 *>$	KSBAR. P-1	${ }^{+5}$
36	. 02	0.0	0.1	. 05	0.0	0.0	GP 1
37	0.0	0.0	0.0	0.05	0.0	0.2	GP1/2
38	0.1	0.02	0.0	0.0	0.0	0.0	GP2
39	0.1	0.0	0.3	0.2	. 05	. 01	GP3
40	0.0	0.0	0.0	0.02	0.0	0.1	GP3/4
41	0.05	0.0	0.0	0.0	0.0	0.0	GP4
42	. 05	0.0	0.2	0.1	. 02	0.0	GP5
43	0.0	0.0	0.0	0.1	0.0	0.3	GP5/6
4	0.2	0.05	0.01	0.0	0.0	0.0	GP6

45	CASE 1 REFERENCE	XS-SET ¢REF	FERENCE M	Material	XS)			XSBAR
46	NUMDEN $=1.0$							XSBAR
47	REFERENCE XS-SET	FOR SENSIT	COUPLD.	3+3-GP.	TEST	PROBLEM. P-D		XSBAR
48	. 02	0.0	0.1		. 05	0.0	0.0	GP 1
49	0.0	0.0	0.0		0.05	0.0	0.2	GP1/2
50	0.1	0.02	0.0		0.0	0.0	0.0	GP2
51	0.1	0.0	0.3		0.2	. 0.5	. 01	GP3
52	0.0	0.0	0.0		0.02	0.0	0.1	GP3/4
53	0.05	0.0	0.0		0.0	0.0	0.0	GP4
54	. 05	0.0	0.2		0.1	. 82	0.0	GP5
55	0.0	0.0	0.0		0.1	0.0	0.3	GP5/6
56	0.2	0.05	0.01		0.0	0.0	0.8	GP6
57	REFERENCE XS-SET	FOR SENSIT	COUFLD.	3+3-GP.	TEST	PROBLEM. P-1		XSEAR
58	. 02	0.0	0.1		. 05	0.0	0.0	GP1
59	0.0	0.0	0.0		0.05	$0 . \mathrm{B}$	0.2	GP1/2
60	0.1	0.02	0.0		0.0	0.0	0.0	GP2
61	0.1	0.0	0.3		0.2	. 05	.01	GP3
62	0.0	0.0	0.0		0.02	0.0	0.1	GP3/4
63	0.05	0.0	0.0		0.0	0.0	0.0	GP4
64	. 05	0.0	0.2		0.1	. 02	0.0	GP5
65	0.0	0.0	0.0		0.1	0.0	0.3	GP5/6
66	0.2	0.05	0.01		0.0	0.0	0.0	GP6

ITYP	TYPE OF SENS．－UNCERT．－ANAL．．1－XS．2－DES IGN．3－VECTOR－XS．4－SED	－ 1
IGE	GEDMETRIC MODEL： $1-$ SLAB．2－CY INDER．3－SPHERE	2
ISN	ORDER OF S－N QUADRATURE	16
IM	TOTAL NUMBER OF SPATIAL MESH INTERVALS	10
IGM	TOTAL NUMBER OF ENERGY GROUPS	6
NCOUPL	NUMEER OF NEUTRON GRDUPS IN CPL．CALC．．ZERD FOR NEUTRONS ONLY	3
LMAX	－MAX．P－L ORDER OF CROSS SECTIONS	－ 1
1 TAPE	－FORMAT OF ANG．FLX．TAPES 1 AND 2：日－ANIISN．1－CCCCC	－ 1
IXSTAPE	－SOURCE OF INPUT CROSS－SECTIONS：日－CARDS．1－TAPE4．2－TAPE10	0
NPERXS	－NUMBER OF SUCCESSIVE CASES．PLSD ND．OF INPUT XS－SETS TO BE READ	－ 1
IDESIGN	－ASSUMED 1 PER CENT DENSITY INCREASE IN PERT．ZS．FOR DES．－SEN．．0／1－NOMES	8
KSRS	－NuMber of source zones	－ 1
KDET	－NUMBER OF DETECTOR ZONES	
KPER	－NUMBER OF PERTURBED ZONES	2
KXS	－INPUT XS－FORMAT 0－IF ITYP＝2．1－LASL，2－0RNL	－ 1
1HT	－POSITION OF TOTAL CROSS－SECTION IN XS－TABLES	－ 3
IHA	－POSITION OF ABSORPTION CROSS－SECTION IN XS－TABLES	
DETCOV	－ $0 / 1$－DO NOT／DO READ COVARIANCE MATRIX FOR R（G）	8
NSED	－ $0 / 1$－DO NOT／DO READ INTEGRAL SED－UNCERTAINTIES	－ 0
IOUTPUT	－OUTPUT PRINT DETAIL：日－SUM QVER PERT．ZONES ONLY．1－ALSO INDIV．PERT．ZS．	－ 0
NSUMCOV	－ND．OF RESP，－VARIANCES SUMTED FOR ITYP＝2．ZERO FOR 1TYP＝0．1．3	
ITEST	－TEST PRINTOUT FLAG： －$^{\text {－NDNE．1－XS．2－ANG．FLXS．．3－VECTOR－XS }}$	0
IPRINT	－TEST PRINTS FROM POINTR：0－NDNE．1－DUMPS．2－TRACES．3－ALL	

4 NEUTRON ENERGY GROUP BOUNDARIES READ．IN EV
1．日日日E $+01 \quad$ 5．日日日E $+00 \quad 1.000 \mathrm{E}+00 \quad 5.000 \mathrm{E}-01$
4 GAMMA ENERGY GROUP BOUNDARIES READ，IN EV

SENSIT SAMPLE 3, *3+3 GP.*CY .GEDM.*S-16*P-1*DESIGN SEN.*SHORT PRINT
DESIGN SENSITIVITY INFORMATION, INTEGRATED OVER ALL ENERGIES
FOR THE SUM OVER ALL PERTURBED ZONES
CONTRIBUTION FROM NEUTRON GROUPS ONLY: DELI-AD(N) $=-\mathrm{B} .74164 E-1$
TOTAL SECOND-ORDER TERM. FROM NEUTRON+GAMMA GROUPS:

DELI-AD

!1PH!
I2AD
INTERGRAL RESPONSE FOR PERTURBED CASE:
SENSITIVITY COEFFICIENT FOR TOTAL PERTURBATION:
$=-1.74833 E-01$

- $1.44406 \mathrm{E}+01$

I2FD
$X F D$
$D E L I-F D(N)=-8.74164 E-02$
DELI-FD . $=-1.74833 E-01$
= $1.43925 E+01$
= $1.45674 E+01$
= $1.01215 \mathrm{E}+00$

SENSIT SAMPLE 4．$* 3+3$ GP．$* S L A B * S-2 * P-D * S E N S .-P R O F I L E S * L O N G ~ P R I N T ~$

ITYP	$=$ TYPE OF SENS．－UNEERT．－ANAL．1－XS．2－DESIGN，3－VECTOR－XS．4－SED	0
IGE	＝GEOMETRIC MODEL：1－SLAB．2－CYLINDER．3－SPHERE	
ISN	＝QRDER OF S－N QUADRATURE	$=10$
IM	＝TOTAL NUMEER OF SPATIAL MESH INTEPVALS	$=6$
IGM	＝TOTAL NUMBER OF ENERGY GROUPS	$=3$
NCOUPL	＝NUMBER OF NEUTRON GROUPS IN CPL．CALC．．ZERU FOR NEUTRONS ONLY	
LMAX	＝MAX．P－L ORDER OF CRDSS SECTIONS	
ITAPE		0
IXSTAPE	＝SOURCE OF INPUT CROSS－SECTI	
NPERXS	$=$ NUMBER OF SUCCESSIVE CNSES．ANLRERSE IN PERT．ZS．FOR DES．－SEN．，0／1＝NOAYES	$=0$
IDESIGN	＝ASSUMED 1 PER CENT DENSITY INCREASE IN PERT．ZS．FOR	
KSRS	＝NUMEER OF SOURCE ZONES	$=2$
KDET	＝NUMBER OF DETECTOR ZONES	$=2$
KPER	－NUMPER OF PERTURBED ZONES	$=$
KXS	＝INPUT XS－FORMAT 0－IF ITYP＝2，1－LASL，2－URNL	$=$
IHT	－POSITION OF TOTAL CROSS－SECTION IN XS－TABLES	$=$
IHA	＝POSITION OF ABSORPTION CROSS－SECTIDN IN XS－ABLES	$=$
DETCOV	$=~ 日 / 1=$ DO NOT／DO READ COVAR IANCE MATRIX FUR R（G）	$=$
NSED	$=0 / 1=$ DO NOT／DO READ INTEGRAL SED－UNCERTAN	$=$
IOUTPUT	$=$ QUTPUT PRINT DETAIL： $0-S U M$ OVER $P E R T Y M=2$ ．ZERO FOR ITYP＝ $0,1,3$	－
NSUMCOV		$=0$
ITEST	＝TEST PRINTOUT FLAG： 0 －NONE． $1-X S$ ．2－ANG．FLKS．． $3-V E C T O R-X S$ ＝TEST PRINTS FROM POINTR：Ø－NONE，1－DUMPS．2－TRACES．3－ALL	

> 4 NEUTRON ENERGY GROUP BOUNDARIES READ. IN EV
> 1. $000 \mathrm{E}+01 \quad$ 5.0日日E $+00 \quad 1.000 \mathrm{E}+00 \quad 5.000 \mathrm{E}-01$

LEVEL WEIGHTS FOR DISCRETE ANGLES
$.500000 \quad .500000$
DISCRETE ANGLES MUE FOR LEVEL WEIGHTE
-.577350 ． 577350

$\begin{gathered} \text { MESH } \\ 0 . \end{gathered}$	BOUNDAR IES READ $1.000 E+90$	$2.000 \mathrm{E}+00$	$3.000 \mathrm{E}+00$	$4.000 \mathrm{E}+00$	$5.000 \mathrm{E}+00$	$6.0005+00$	7．000E＋00	8．000E＋00	9．000E＋00
	90E＋01								

definitions of sensit sensitivity prof ile nomenclature

- SENSITIVITY PROF ILE PER DELTA-U FOR THE ABSORPTION CROSS-SECTION (TAKEN FROM POSITION IHA IN INPUT CROSS-SECTION TABLES). PURE LOSS TERM
- SENSITIVITY PROF ILE PER DELTA-U FOR THE CROSS SECTION IN POSITION I I
UHICH IS USURLLY NU-TIMES THE FISSION CROSS SECTIUN. PURE LOSS TERM
- PARTIAL SENSITIVITY PROFILE PER DELTA-U FOR THE SCATIERING CROSS-SEC
ENERGY GROUP AS A DIAGONAL SUM FROM INPUT XS-TABLES). LOSS TERM ONLY
- SENSITIVITY PROFILE PER DELTA-U FDR THE TOTAL CROSS SECTION (AS GIVEN IN POSITION IHT IN INPUT CROSS-SECTION TABLES). PURE LOSS TERM
- PARTIAL SENSITIVITY PROF ILE PER DELTA-U FOR THE NEUTRON SCATTERING CROSS-SECTION GENSITIVITY GAINS DUE TO SCATTERING OUT OF ENERGY GROUP G INTD ALL LOLER NEUTRON ENERGY GROUPS. COMPUTED FROM FDRWARD D IFFERENCE FORMULATION.
- PARTIAL SENSITIVITY PROFILE PER DELTA-U FOR THE GAMHA SCATTERING CROSS-SECTION. GAIN TERM FOR SENSITIVITY GAINS DUE TO SCATTERING DUT OF GAMMA ENERGY GROUP G INTO ALL LOWER GAMTA ENERGY GROUPS. COMPUTED FROM FORWARD DIFFERENCE FORMULATION.

H-GAIN(SED) - RE-ORDERED PARTIAL SENSITIVITY PROFILE PER DELTA-U FOR SCATTERING CROSS-SECTION. GAIN TERM FOR SENSITIVITY GAINS DUE TO SCATTERING INTO GROUP G FROM ALL HIGHER NEUTRDN ENERGY GROUPS COMFUTED FROM HDJOINT DIFFERNCE FORMULATION
CORREGPONDS TO SINGLE-DIFFERENTIAL SED SENSITIVITY PROFILE. PSED(G-OUT) PER DELU-OUT. INTEGRATED OVVER ALL INCIDENT ENERGY GROUPS.

PARTIAL SENSITIVITY PROFILE PER DELTA-U FOR THE GAMMA PRODUCTION CROSS-SECTION AT NEUTRON ENERGY GROUP G. PURE GAIN TERM FOR SENSITIVITY GAINS DUE TO TRANSFER FROM NEUTRON GRDUP G INTO ALL GAMMA GROUPS.

- NET SENSITIVITY PROFILE PER DELTA-U FOR THE TOTAL CROSS-SECTION (SENT=TXS+NGAIN)
- SENSITIVITY PROFILE PER DELTA-U FOR THE DETECTOR RESPONSE FUNCTION R(G)
- SENSITIVITY FROFILE PER DELTA-U FOR THE SOURCE DISTRIBUTION FUNCTION Q(G)

SENS IT SAMPLE 4．$* 3+3$ GP．＊SLAB＊S－2＊P－0＊SENS．－PROF ILES＊LONG PRINT

 PARTIAL AND NET SENSITIVITY PROFILES PER DELTA－U．NORMALMY）

 ＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊SUMMED OVER ALL PERTURBED ZONES＊＊＊＊＊＊＊＊＊ PARTIAL AND NET SENSITIVITY PRDFILES PER DELTA－U．NORMAL
FOR GAMMA INTERACTIOH CROSS SECTIONS：（GAMAR－GAMMA）ONLY

GROUP	UPPER－E（EV）	DELTA－U	＊＊＊＊＊＊＊＊＊PURE LOSS TE		TERMS＊＊＊＊木大＊＊＊＊＊＊	＊GAIN TERM＊ G－GAIN	＊＊＊＊＊NET P SEN	ILES ${ }^{\text {Sok＊＊＊＊}}$ SENT
			AXS $-1.678 \mathrm{E}-91$	－6．680E－01	－8．351E－01	$4.517 E-01$	－2．164E－01	$-3.834 E-01$
4		4.05 E －91	－2．935E－02	－8．895E－02	$-1.174 \mathrm{E}-81$	6．778E－02	－2．028E－82	－4．963E－02
6	3．80日E＋日日	6．93E－01	－2．048E－82	－4．096E－02	－6．143E－82	3．659E－02	－4．366E－03	－2．484E－02
			－7．414E－82	－2．563E－01	－3．304E－01	1．828E－01	－7．350E－82	－1．476E－01

 PARTIAL AND NET SENSITIVITY PROF ILES PER DELTA-U, NORMALIZED
FOR HEUTRON INTERACTION CROSS SECTIONS: ($N-N$) AND ($\mathrm{N}-\mathrm{GAMMA}$)

			$\begin{gathered} \text { ****** } P \cup R \\ A \times S \end{gathered}$	$\underset{N U-F I S S}{L}$	$\begin{aligned} & \text { TE R M } \\ & \text { SXS } \end{aligned}$		********* N-GAIN	PURE GAIN TERMS N -GAIN(SED)	*WK**N*** NG-GAIN
GROUP	UPPER-E (EV)	DELTA-U $6.93 E-81$	$\begin{gathered} \text { AXS } \\ -4.819 E-02 \end{gathered}$	$\begin{aligned} & \mathrm{NU} \mathrm{~F} \text { ISS } \\ & \mathrm{B.} \end{aligned}$	$-1.928 E-01$	-2.418E-01	$1.300 \mathrm{E}-01$	1 1.013E-01	0.
$\frac{1}{2}$	$5.050 \mathrm{c}+80$	1.61E+90	-4.566E-83	0.	-1.370E-02	-1.826E-82	$1.062 \mathrm{E}-02$	2 1.781E-02	9.
3	$1.080 \mathrm{E}+09$	$6.93 E-01$	-1.148E-82	0.	-2.295E-02	-3.443E-02	2.114E-02	2 3.315E-02	0.
INTEGRAL			-4.87 1E-02	0.	$-1.716 \mathrm{E}-81$	-2.203E-01	$1.218 \mathrm{E}-01$	1 1.218E-01	0.
			**** NET PROFILES *****						
GROUP	UPPER-E (EV)	DELTA-U	SEN	SENT					
1	1.00bE+01	6.93E-01	-6.277E-82	-1.110E-01					
2	5.00日E+80	$1.615+00$	-3.6B8E-03	-7.646E-03					
3	1. $\mathrm{BQ日E}+$ - ${ }^{\text {a }}$	$6.93 \mathrm{E}-01$	-1.812E-83	-1.329E-02					
INTEGRAL			-4.972E-02 -9.843E-02						

 PARTIAL AND NET SENSITIVITY PROFILES PER DELTA-U, NORMALI
FOR GAMMA INTERACTION CROSS SECTIONS: (GAMMA-GAMMA) ONLY

		**********PURE LOSS TERMS**********0*			*GAIN TERM* G-GAIN	******NET PROF ILES*****	
GROUP UPPER-E (EV)	DELTA-U	-1.16IE-01	-4.644E-01	-5.806E-01	3.132E-01	-1.512E-01	-2.673E-01
$\begin{array}{ll}4 & 5.000 \mathrm{E}-01 \\ 5 & 4.000 \mathrm{ta0}\end{array}$	$2.88 E-81$ $4.85 E-81$	-1.161E-01	-5.437E-82	-7.249E-02	$4.214 \mathrm{E}-82$	-1.223E-02	-3.035E-02
6 3.000E+00	6.93 E -81	-1.148E-02	-2.295E-02	-3.443E-02	$2.114 \mathrm{E}-02$	-1.812E-03	-1.329E-02
INTEGRAL		-4.871E-02	-1.716E-81	-2.203E-01	1.218E-01	-4.972E-02	-9.843E-82

 PARTIAL AND NET SENSITIVITY PROFILES PER DELTA－U．NORMALIZED TO IIPHI＝（R．PHI）＝ $3.65487 E+\varnothing 2$ FOK NEUTRON INTERACTION CROSS SECTIONS：（ $\mathrm{N}-\mathrm{N}$ ）AND（ $\mathrm{N}-\mathrm{GAMMA}$ ）

$\begin{gathered} \text { GROUP } \\ 1 \\ 2 \\ 3 \end{gathered}$	$\begin{gathered} \text { UPPER-E (EV) } \\ 1.0 日 0 E+\theta 1 \\ 5.000 E+\theta 0 \\ 1.00 日 E+\theta 0 \end{gathered}$	$\begin{aligned} & \text { DELTA-U } \\ & 6.93 E-\theta! \\ & 1.61 E+\theta 0 \\ & 6.93 E-\theta 1 \end{aligned}$					＊＊＊＊＊＊＊＊PURE GA IN TERMS		＊＊혀혀＊추 NG－GAIN
			－2．113E－02	Q．	－8．450E－82	－1．056E－01	$\xrightarrow{\text { N－GAIN }}$	N－GAIN（SED）	
			－2．829E－83	0.	－8．486E－03	－1．856E－81	S．746E－02	4．100E－02	
			－9．001E－03	Q．	－1．800E－82	－2．700E－02	$\begin{aligned} & 6.458 \mathrm{E}-03 \\ & 1.545 \mathrm{E}-82 \end{aligned}$	$\begin{aligned} & 9.822 E-03 \\ & 2 . \\ & 49 \mathrm{~F}-92 \end{aligned}$	
INTEGRAL			－2．543E－02	0.	－8．471E－02	－1．101E－01	6．093E－02	6．093E－02	0.
GROUP UPPER－E（EV）DELTA－U			＊＊＊＊NET PROF ILES＊＊＊＊＊						
GROUP	UPPER－E（EV）	DELTA－U	SEN	SENT					
2	1．00日E＋80	$6.93 \mathrm{E}-01$ $1.61 \mathrm{E}+00$	$-2.705 E-02$ $-2.028 E-03$	$-4.817 E-02$ $-4.857 E-03$					
3	$1.080 \mathrm{E}+80$	6．93E－01	－2．554E－03	－1．155E－02					
INTEGR			－2．37BE－82	－4．922E－02					

＊＊
 PARTIAL AND NET SENSITIVITY PROFILES PER DELTA－U．NORMALIZED TO IIPHI＝（R．PHI）＝ $3.65487 E+02$ OR GAMMA INTERACTION CROSS SECTIONS：（GAMMA－GAMM）ONLY

GROUP	UPPER－E（EV）	DELTA－U
4	5．000E－01	$2.88 E-81$
5	$4.000 \mathrm{E}+00$	4．05E－81
6	3．000E＋00	$6.93 \mathrm{E}-0 \mathrm{l}$

		＊10木＊＊＊＊＊0k
AXS	SXS	TXS
5．090E－02	－2．036E－01	－2．545E－01
1．123E－02	－3．368E－02	－4．49］E－02
－9．001E－03	－1．800E－02	－2．700E－02
2．543E－02	－8．471	－1

＊GAIN TERM＊	＊＊＊＊＊NET PROFILES＊＊＊＊＊	
G－GAIN	SEN	SENT
$1.384 E-\theta 1$	$-6.516 E-02$	$-1.161 \mathrm{E}-01$
$2.563 \mathrm{E}-02$	$-8.051 \mathrm{E}-03$	$-1.928 \mathrm{E}-\theta 2$
$1.545 \mathrm{E}-02$	$-2.554 \mathrm{E}-03$	$-1.155 \mathrm{E}-02$
$6.093 \mathrm{E}-02$	$-2.378 \mathrm{E}-02$	$-4.922 \mathrm{E}-02$

> 4 NEUTRON ENERGY GROUP BOUNDARIES READ, IN EV1.000E+01 5.000E+00 1.000E+0日 5.000E-01
> 4 GAMMA ENERGY GROUP BOUNDARIES READ. IN EV

LEVEL WEIGHTS FOR DISCRETE ANGLES

$$
.500000 .500000
$$

DISCRETE ANGLES MJE FOR LEVEL WEIGHTS
$-.577350 \quad .577350$

MESH BOUNDARIES READ

 DOUBLE-DIFFERENTIAL PROFILES PER DELTA-U-IN AND PER DELTA-U-DUT, NORTALIZED TO IIPHI=(R,PHI)= $3.65487 E+82$ FOR NEUTRON GROUPS ONLY

G-OUT DELU-DUT
$\begin{array}{cc}\text { G-OUT DELU-OUT } \\ \frac{1}{2} & .693147 \\ 2 & 1.609438\end{array}$.693147
2.05E-01 0.
.12E-82 B.02E-03
$1.58 \mathrm{E}-02$ 6.01E-03 $5.28 \mathrm{E}-02$
*** SINGLE-DIFFERENTIAL PROFILES. PSED ***
*** SINGLE- $\operatorname{PSED}(G-D U T)$ PSED (G-IN)
G-IN OR G-OUT
$\frac{1}{2} \quad 1.423 \mathrm{E}-\theta$
$1.423 E-0$
$2.764 E-0$
5.724E-82 3.659E-92

TDTAL INTEGRAL
$1.828 \mathrm{E}-811.828 \mathrm{E}-0$

NO SED UNCERTAINTY ANALYSIS WAS PERFORMED FOR LACK OF INPUT DATA NSED IS ZERD ON INPUT FILE

MATERIAL 1 *** . 02	MICROSCOPIC	CROSS-SECTION	SET $\underset{\text { *** }}{\text { \% }}$ P-0	0.0		XS GP 1
0.0	0.0	0.0	0.05	0.0		GP1 GP1/2
0.1	0.02	0.0	0.0	0.0	0.0	GP2
0.1	0.0	0.3	0.2	. 85	01	GP3
0.0	0.0	0.0	0.02	0.0	0.1	GP3/4
0.05	0.0	0.0	0.0	0.0	0.0	GP4
. 05	0.0	0.2	0.1	. 02	0.0	GP5
0.0	0.0	0.0	0.1	0.0	0.3	GP5/6
0.2	0.05	0.01	0.0	0.0	0.0	GP6
MATERIAL 2 ***	MICROSCOP IC	CROSS-SECTION	SET *** P-0			XS
. 02	0.0	0.1	. 05	0.0	0.0	GP1
0.0	0.0	0.0	0.05	0.0	0.2	GP1/2
0.1	0.02	0.0	0.0	0.0	0.0	GP2
0.1	0.0	0.3	0.2	. 0.5	.01	GP3
0.0	0.0	0.0	0.02	0.0	0.1	GP3/4
0.05	0.0	0.0	0.0	0.0	0.0	GiP4
. 85	0.0	0.2	0.1	. 92	0.0	GP5
0.0	0.0	0.0	0.1	0.0	0.3	GP5/6
0.2	0.05	0.01	0.0	0.0	0.0	GP6


```
    4 NEUTRON ENERGY GROUP BOUNDARIES READ. IN EV
    1.000E+01 5.000E+00 1.0日日E+00 5.000E-01
    4.0日QE+Q0 ENERGY GROUP BOUNDARIES READ. IN EV
    4.000E+00 3.0日0E+00 2.0ЄロE+00 1.000E+00
LEVEL LEIGHTS FOR DISCRETE ANGLES
    .500000
        .500e00
DISCRETE ANGLES MUE FOR LEVEL LEIGHTS
MESH BOUNDARIES READ
lllllllllll
```

SED MEDIAN ENERGY GROUPS (GMED) AND INTEGRAL UNCERTAINTIES (FSED) INPUT FOR SED UNCERT. ANALYSIS

G-IN	GMED	FSED
1	1	$1.000 E+00$
2	2	$5.000 E-01$
3	0	0.

CASE NUMBER 1 OF NPERXS $=1$ SUCCESSIVE CASES
MATERIAL 2 *** MICROSCOPIC CROSS-SECTION SET *** P-0 NUMBER DENSITY= 9.00000E-01 ID2 P-0 XS
 DOUBLE-DIFFERENTIAL PROF ILES PER DELTA-U-IN AND PER DELTA-U-OUT. NORMALIZED TO $11 \mathrm{PHI}=(R . P H I)=3.65487 E+82$ FOR NEUTRON GROUPS ONLY

 $G-I N=1 \quad G-I N=2 \quad G-I N=3 \quad G-I N=4 \quad G-I N=5 \quad G-I N=6 \quad G-I N=7 \quad G-I N=B \quad G-I N=9 \quad G-I N=10$

G-OUT DELU-DUT
.693147

$693147 \quad 1.58 \mathrm{E}-82 \quad$ 6.01E-03 $\quad 5.28 \mathrm{E}-02$
*** SINGLE-DIFFERENTIAL PROFILES. PSED ***
PSED (G-OUT) PSED (G-IN)
G-IN OR G-OUT PER DELU-DUT PER DELU-1N

TOTAL INTEGRAL

$\begin{array}{r}1.423 \mathrm{E}-01 \\ 2.764 \mathrm{E}-02 \\ 5.724 \mathrm{E}-02 \\ \hline\end{array}$

1.875E-01
1.7日7E-82
$\begin{array}{r}1.659 \mathrm{E}-82 \\ \hline\end{array}$
$1.828 \mathrm{E}-01 \quad 1.828 \mathrm{~B}-01$

SENSIT SAFPLE 6, $3+3$ GP.*SLAB*S-2*P-0*SS FROM TAPEA*SED SEN. +UNCERT. ANALYSIS

G-1N	$\begin{gathered} \text { MEDIAN } \\ \text { G-DUT } \\ \text { OF SED } \\ \text { (FROM INPUT) } \end{gathered}$	INTEGRAL SED-UNCERT. F (FROM INPUT)	HOT INTEGRAL SENS. COEFF.	$\begin{aligned} & \text { COLD INTEGRAL } \\ & \text { SENS COEFF. } \\ & \text { S-COLD } \end{aligned}$	NET INTEGRAL SED SENS.-CDEFF. (SHOT ${ }^{\text {S }}$ - SCOLD)	$\begin{gathered} \text { RESPONSE UNCERT. } \\ \text { DR R } \\ \text { DUE TO SED-UNCERT. } \\ (F * S) \end{gathered}$
$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 0 \end{aligned}$	$\begin{aligned} & 1.0000 \\ & 0.5000 \\ & 0.0000 \end{aligned}$	$\begin{aligned} & 9.862 E-02 \\ & 2.878 E-82 \\ & 0 . \end{aligned}$	$\begin{aligned} & \text { 3. } 131 \mathrm{E}-02 \\ & 6.703 \mathrm{E}-03 \\ & \mathrm{B.} \end{aligned}$	$\begin{aligned} & 6.73 \mathrm{IE}-02 \\ & 1.49 \mathrm{E}-02 \\ & 0 . \end{aligned}$	$\begin{aligned} & 6.731 E-02 \\ & 7.03 \mathrm{BE}-\mathrm{\theta 3} \\ & 0 . \end{aligned}$
TOTAL INTEGRAL			1.194E-01	$3.801 \mathrm{E}-02$	B.139E-02	$\begin{array}{r} 7.435 \mathrm{E}-02 \\ 7.435 \mathrm{PER} \end{array}$

	SENSIT SAMPL	7. *FUSION ${ }^{\text {R }}$	ACTOR*KS + SED	SENS. *RUUN	6SED: l CR, ${ }_{4}^{\mathrm{N}}$	FE. CU	CARD2
2		$2 \quad 13$	421	$\square 1$	$0{ }^{-1}$	$0 \quad 0$	CARD3
4	1.700E+7	$1.500 \mathrm{E}+7$	$1.350 \mathrm{E}+7$	$1.200 \mathrm{E}+$?	$1.000 \mathrm{E}+7$	$7.79 \mathrm{E}+6$	EN(G)
5	6.070E+6	$3.680 \mathrm{E}+6$	2.865E+6	$2.232 \mathrm{E}+6$	$1.738 \mathrm{E}+6$	$1.353 E+6$	EN(G)
6	$8.230 \mathrm{E}+5$	5.096E+5	$3.639 \mathrm{E}+5$	$1.840 \mathrm{E}+5$	$6.760 \mathrm{E}+4$	2.489E+4	EN(G)
7	$9.120 \mathrm{E}+3$	3.358E+3	$1.235 \mathrm{E}+3$	$4.540 \mathrm{E}+2$	$1.670 \mathrm{E}+2$	$6.140 \mathrm{E}+1$	EN(G)
8	$2.260 \mathrm{E}+1$	B.328E+0	$3.860 \mathrm{E}+8$	$1.130 \mathrm{E}+8$	4.140E-1	$1.520 \mathrm{E}-1$	EN(G)
9	$5.000 \mathrm{E}-2$						
10	$2.000 \mathrm{E}+7$	9.000E+6	8.000E+6	7.000E+6	6.000E+6	5.000E+6	EG(G)
11	4.000E+6	3.000E+6	$2.000 \mathrm{E}+6$	1.080E+6	$5.000 \mathrm{E}+5$	1.808E+5	
12	$1.000 \mathrm{E}+4$						EG(G)
13	0.0856623	0.1803808	0.2339578	0.2339570	0.1803888	0.0856623	W(M)
14	-0.9324695	-0.6612094	-0.2386192	日. 2386192	6612894	98.93469	MESH
15	0.0	24.25	48.5	72.75	97.0	987.0	MESH
16	99.0	180.8	101.0	10	104.5	110.0	MESH
17	107.5	188.8	188.5	1	109.5	114.0	MESH
18	110.5	111.0	111.5	112.0	115.8	129.0	MESH
19	115.8	115.8	117.0	118.8	123.5	124.0	MESH
20	121.8	122.8	122.5	123.8	129.8	130.0	MESH
21	125.8	125.8	127.8	128.8	135.0	136.8	MESH
22	131.8	132.8	139.8	140.8	141.0	142.0	MESH
23	137.8	138.8	145.8	146.0	147.0	148.0	MESH
24	143.8	144.8	151.0	152.8	153.0	154.0	MESH
25	149.8	154.8	157.0	158.0	159.0	168.8	MESH
26	155.8	152.8	163.0	164.8	165.0	165.5	MESH
27	161.9	168.0	171.8	174.0	177.0	180.0	MESH
28	183.0	186.0	189.0	192.0	195.8	198.8	MESH
30	201.0	204.0	207.0	210.0	213.0	216.8	MESH
31	219.0	222.0	225.0	228.0	231.0	234.0	MESH
. 32	237.0	240.0	243.8	246.0	249.0	252.8	MESH
33	255.0	256.0	257.0	259.067	261.133	263.2	MESH
34	265.267	257.333	269.400	271.357	273.533	278.6	MESH
35	277.667	279.733	281.809	283.867	285.933	388.8	MESH
36	290.0	291.0	294.0	296.0	298.0	313.0	MESH
37	302.0	304.0	306.0	308.333	310.667	313.8	SRS
38	14						DET
39	89108						
40	80108						PER2
41	111125						R3(G)
42	. 184E+07	. $200 \mathrm{E}+87$. 197E+07	-222E+a7	-159E+87		R3(G)
43	. $567 \mathrm{E}+86$	-28-4E+86	-190E+86	- $116 \mathrm{~L}+85$	- $167 \mathrm{~F}+05$. $118 \mathrm{E}+85$	
44	. $640 \mathrm{E}+85$	- $485 E+85$. $340 \mathrm{E}+85$. $2124 \mathrm{E}+85$	-305E+04	. $473 \mathrm{E}+84$	
45	. $214 \mathrm{E}+85$. $284 \mathrm{4}+85$. $936 E+85$. $562 \mathrm{E}+85$	-102E+06	. $289 \mathrm{E}+86$	
46	. $875 \mathrm{E}+84$. $208 \mathrm{E}+85$. $334 \mathrm{E}+85$	-142E+08	. $118 \mathrm{E}+88$. $956 \mathrm{E}+87$	
47	. $307 \mathrm{E}+08$	-197E+8B	. $169 \mathrm{E}+88$. $14207 \mathrm{E}+87$. $138 \mathrm{E}+07$. $692 \mathrm{E}+07$	
48	. $737 \mathrm{E}+07$. $539 \mathrm{E}+87$	$1.357 \mathrm{E}+87$	$1.2000{ }^{\text {. }}$	$1.000{ }^{-1385}$	1.6000	RHO (J)
49	1.0000	1.0808 1.0808	1.0000 1.0800	1.0808 1.0909	1.0008	1.0000	RHO (J)
50	1.0008	1.0000 1.0000	1.8080 1.0809	1.08008	1.8080	1.8098	RHO (J)
52	1.8000		1.0808	1.8008	1.8808	1.0000	RHO(J)
53	1.0000	1.9008	1.8000	1.0000	1.8080		RHO (J)
54	0.9	1.00000	0.0	0.0	0.0	0.8	Q(G)
55	0.9	0.0	0.0	0.0	0.8	0.8	Q(G)
56	0.0	0.0	0.0	0.0	0.0	0. 0	Q(G)
57	9.0	0.0	8.8	0.0	8.0	0.0	O(G)
58	0.0	0.0	8.8	0.8	8.8	0.0	O(G)
59	0.0	0.0	0.0	0.0	日. 0	0.0	Q(G)
60	0.0	0.0	0.0	0.0	0.0	0.0	Q(G)

61 62	0.010	5	0.01031	4	0.010316	0.010	8	9	10	11	12	QUE（J）
63	13	0	\square	0	0 0	0	0	0	0	0	0	GMED2
G4	\square	0	0	0	0							GMED3
65	0.15		0.14		0.12	0.10		0.018		0.07		FSED 1
66	0.00		0.05		0.05	0.04		0.03		0.02		FSED2
67	0.02		0.0		0.0	0.0		0.0		0.0		FSED3
68	0.0		0.0		0.0	0.0		0.0		0.0		FSED4
69	0.0		0.0		0.0	0.0		0.0		0.0		FSED5
76	3		0.90502		CR－MIC PG							MAT1
71	2	2	3	4	$5 \quad 6$	7	8	9	10	11	12	GMED 1
72	0	0	0	0	$\square \square$	0	\square	\square	0	0	0	GMED2
73	0	0	D	0	θ 日							GMED3
74	日． 12		0.10		0.10	0.69		0.08		0.08		FSED 1
75	0.07		0.06		0.05	0.04		0.03		0.02		FSED2
76	0.0		0.0		0.0	0.0		0.0		D．$\square^{\text {a }}$		FSED3
77	0.0		0.0		0.0	$\theta \cdot \theta$		0.0		0.0		FSED4
78	0.0		0.0		0.0	0.0		0.0		0.0		FSED5
75	5		0.0032		NI－MIC PG							MAT2
90	7	7	4	4	56	7	9	9	10	11	12	GMED 1
81	13	14	0	0	$0 \quad 0$	\square	\square	0	0	0	0	GMED2
82	\square	\square	0	0	$0 \quad 0$							GMED3
83	0.08		0.075		0.075	0.07		0.07		0.06		FSED 1
84	0.06		0.05		0.05	0.05		0.04		0.03		FSED2
85	0.02		0.02		日． 0^{1}	0.0		0.0		D．$\square^{\text {a }}$		FSED3
86	0.0		0.0		0.0	0.0		$\theta \cdot \square$		0.0		FSED4
87	0.0		0.0		0.0	0.0		0.0		0.0		FSED5
88	4		0.0189		FE－MIC PD							MAT3
89	8	θ	7	4	56	7	8	9	10	11	12	GMED 1
90	13	14	15	16	0 O	0	\square	\square	0	0	\square	GMED2
91	\square	0	\square	0	0							GMED3
92	0.09		0.072		0.07	0.07		0.07		0.06		FSED 1
93	0.06		0.05		0.95	9.05		0.04		0.04		FSEDZ
94	0.02		0.02		0.02	0.02		0.0		0.0		FSED3
95	0.0		0.0		0.0	0.0		0.0		0.0		FSED4
96	0.0		0.0		0.0	$\theta \cdot \square$		0.0		0.0		FSEDS
97	6		0.0407		CU－MIC PG							MAT4

SENSIT SAMPL 7. *FUSIDN REACTOR*XS+SED SENS,*RUN 76SED: CR. NI. FE, CU

$31 \text { NEUTRON }$ $\text { 1. } \mathrm{FODE}+07$	ENERGY GR $1.500 E+07$	UP BOUNDAR $1.350 \mathrm{E}+07$	$\begin{aligned} & \text { ES READ. IN } \\ & 1.200 E+07 \end{aligned}$	EV $1.080 \mathrm{E}+97$	7.790E+06	6.078E+86	$3.680 \mathrm{E}+06$	2.865E+86	$\begin{gathered} 2.232 E+06 \\ 3.350 E+83 \end{gathered}$
1.738E ${ }^{\text {a }}$ (96	1.353E+06	$8.230 \mathrm{E}+85$	$5.000 \mathrm{E}+85$	$3.030 \mathrm{E}+85$	$1.849 \mathrm{E}+85$	6.760E+84	$2.480 \mathrm{E}+84$ $1.130 \mathrm{+} \times 8$	4.120E-81	$1.520 \mathrm{E}-01$
$1.235 \mathrm{E}+83$	$4.540 \mathrm{E}+02$	$1.670 \mathrm{E}+82$	$6.140 \mathrm{E}+01$	2		3.060E+b			
5.000E-82									
$\begin{aligned} & 13 \text { GAMMA E } \\ & 2.000 E+07 \end{aligned}$	ENERGY GROU $9.0 \mathrm{DE}+86$	BOUNDARIE 8.000E+06	$\begin{aligned} & \text { READ, IN } \\ & 7.009 E+06 \end{aligned}$	$6.000 E+06$	$5.000 \mathrm{E}+06$	4.000E+06	$3.000 \mathrm{E}+06$	$2.000 E+06$	$1.000 \mathrm{E}+06$

LEVEL LEIGHTS FOR DISCRETE ANGLES LEVEL WEIGHTS FOR . 180381 . 233957	. 233957	. 180381	. 085662
DISCRETE ANGLES MUE FOR LEVEL WEIGHTS $-.932470 \quad-.661209-.238619$. 238619	. 661209	. 932470

SED MEDIAN ENERGY GROUPS (GMED) AND INTEGRAL UNCERTAINTIES (FSED) INPUT FOR SED UNCERT. ANALYSIS

G-IN	GMED	FSED
1	0	9.000E-02
2	8	7.200E-02
3	7	7.000E-02
4	4	7.000E-02
5	5	- GOEE-62
6	6	6.000E-02
7	7	6.g日be-az
8	8	6.000E-02
9	9	$5.000 \mathrm{E}-02$
10	10	$5.000 \mathrm{E}-02$
11	11	4.000E-02
12	12	4.000E-02
13	13	2.000E-02
14	14	2.000E-02
15	15	2.000E-02
16	16	2.000E-02
17	0	0.
18	0	0.
19	0	0.
20	0	0.
21	0	0.
22	0	0.
23	0	0.
24	0	0.
25	\bigcirc	0.
26	0	0.
27	0	0.
28	0	0.
29	0	0.
30	\square	0.

CASE NUMBER 4 OF NPERXS = 4 SUCCESSIVE CASES
CU-MIC Pg 45×42 TABLE NUMBER DENSITY=4.07000E-02 CU-MIC PO

DEFINITIONS OF SENSIT SENSITIVITY PROFILE NOMENCLATURE

N-GAIN(SED) - RE-ORDERED PARTIAL SENSITIVITY PROFILE PER DELTA-U FOR SCATTERING CROSS-SECTION. GAIN TERM FOR SENSITIVITY GAINS DUE TO SCATTERING INTO GROUP G FROM ALL HIGHER NEUTRON ENERGY GROUPS. COMPUTED FROM ADJOINT DIFFERNCE FORMULATION CORRESPDNDS TO SINGLE-DIFFERENTIAL SED SENSITIVITY PROFILE. PSED(G-OUT) PER DELU-OUT. INTEGRATED OVER ALL INCIDENT ENERGY GROUPS.

- PARTIAL SENSITIVITY PROF ILE PER DELTA-U FOR THE GAMMA PRODUCTION CROSS-SECTION AT NEUTRON ENERGY GROUP G. PURE GAIN TERM FOR SENSITIVITY GAINS DUE TO TRANSFER FROM NEUTRON GRDUP G INTO ALL GAMMA GROUPS.
SEN - NET SENSITIVITY PROFILE PER DELTA-U FOR THE SCATTERING CROSS-SECTION (SEN-SXS+NGAIN)
- NET SENSITIVITY PROFILE PER DELTA-U FOR THE TOTAL CROSS-SECTION (SENT=TXS+NGAIN)
- SENSITIVITY PROFILE PER DELTA-U FOR THE DETECTOR RESPONSE FUNCTION R(G)

SENSIT SAMPL 7．＊FUSION REACTOR＊KS＋SED SENS．＊RUN TESED：CR，NI，FE CU

PARTIAL AND NET SENSITIVITY PROFILES PER DELTA－U．NORMALIZED TO IIPHI＝（R．PHI）＝ $1.1227 B E+84$

GROUP	UPPER－E（EV）	DELTA－U	＊＊＊＊＊＊＊＊P U AXS	$\text { R E } \underset{N U-F I S S}{L O S}$	S TERM	S＊xoktotatition TXS	＊＊＊＊＊木木＊＊PU N－GAIN	PURE GAIN TERMS N－GAIN（SED）	＊木10\％10\％＊＊＊＊ NG－GAIN
	$1.700 E+87$	1．25E－81	0.	日．	0.	0.1			
2	$1.500 \mathrm{E}+87$	1．85E－81	7．432E＋00	0.	$-3.698 \mathrm{E}+00$	－3．173E＋80	$1.987 E+80$	1．191E＋日0	5．850E－01
3	$1.350 \mathrm{E}+87$	1．18E－91	$2.074 E+80$	0.	$-1.146 E+80$	$-1.052 \mathrm{E}+80$	6．730E－81	5．178E－01	2．809E－91
4	$1.200 \mathrm{E}+07$	1．82E－01	$6.0115-01$	0.	－3．614E－01	－3．677E－81	2.27 IE－81	$1.753 \mathrm{E}-81$	$7.446 \mathrm{E}-82$
5	$1.990 \mathrm{E}+07$	2．59E－61	3．635E－01	0.	－2．589E－01	－2．666E－81	$1.756 \mathrm{E}-81$	$1.367 \mathrm{E}-81$	5．120E－02
6	7．790E＋96	2．49E－01	$2.6615-01$	0.	－2．181E－01	－2．231E－81	$1.557 \mathrm{E}-81$	$1.280 \mathrm{E}-81$	3．816E－02
7	$6.070 \mathrm{E}+06$	$5.00 \mathrm{E}-91$	$1.688 \mathrm{E}-91$	0.	－1．733E－81	－1．762E－81	$1.361 \mathrm{E}-81$	$1.289 \mathrm{E}-81$	2．502E－02
8	$3.680 \mathrm{E}+06$	$2.50 \mathrm{E}-01$	$1.857 E-01$	0.	－2．334E－81	－2．364E－81	$1.944 \mathrm{E}-81$	$1.846 \mathrm{E}-81$	2．724E－02
9	$2.865 E+06$	$2.50 \mathrm{E}-01$	$1.943 \mathrm{E}-01$	0.	－3．053E－01	－3．081E－81	$2.645 \mathrm{E}-81$	2．404E－81	2．778E－02
10	$2.232 E+06$	$2.50 \mathrm{E}-01$	$1.921 \mathrm{E}-01$	0.	－3．842E－01	－3．864E－81	3．434E－81	3．145E－81	2．616E－02
11	1．738E＋06	$2.50 \mathrm{E}-01$	$1.953 \mathrm{E}-01$	0.	－5．293E－01	－5．315E－81	$4.869 E-81$	$4.501 \mathrm{E}-8 \mathrm{I}$	2．806E－02
12	$1.353 \mathrm{E}+86$	4．97E－01	$1.196 E-01$	0.	$-1.241 \mathrm{E}+80$	－1．246E＋8日	1．197E＋80	1． $158 \mathrm{E}+80$	$2.057 \mathrm{E}-82$
13	$8.230 E+05$	$4.98 \mathrm{E}-81$	$2.667 \mathrm{E}-02$	0.	－3．164E＋80	$-3.173 E+88$	3．132E＋80	$3.097 E+80$	1．613E－82
14	$5.000 \mathrm{E}+05$	5．01E－01	1．760E－02	0.	－5．445E＋80	$-5.462 E+88$	$5.436 E+08$	5． $380 \mathrm{E}+80$	2．327E－02
15	$3.030 \mathrm{E}+05$	$4.99 E-81$	$1.537 \mathrm{E}-02$	0.	$-4.536 \mathrm{E}+80$	－4．551E＋80	$4.529 E+88$	$4.628 \mathrm{E}+00$	1．963E－02
16	$1.840 \mathrm{E}+85$	$1.00 \mathrm{E}+00$	$2.587 E-02$	0.	－6．228E＋日0	－6．255E＋00	$6.235 \mathrm{E}+80$	6．197E＋00	3．194E－02
17	$6.760 E+04$	1．00E＋0日	2．279E－02	0.	－4．494E＋80	－4．517E＋00	$4.496 \mathrm{E}+80$	$4.446 E+00$	2．670E－02
18	$2.480 \mathrm{E}+84$	$1.00 \mathrm{E}+80$	3．488E－92	0.	$-4.486 \mathrm{E}+88$	$-4.522 \mathrm{E}+80$	$4.486 E+80$	$4.546 \mathrm{E}+80$	4．009E－02
19	$9.128 \mathrm{E}+83$	$1.00 \mathrm{E}+\mathrm{O}$	7．308E－02	日．	$-5.339 E+88$	－5．415E＋00	$5.338 \mathrm{E}+80$	5．457E＋00	$8.174 \mathrm{E}-02$
20	$3.350 \mathrm{E}+83$	9．98E－81	7．857E－02	θ.	－5．323E＋80	－5．406E＋80	$5.321 \mathrm{E}+00$	$5.355 \mathrm{E}+00$	8．721E－02
21	$1.235 \mathrm{E}+03$	$1.00 E+00$	8．431E－02	0.	－5．820E－8！	－6．703E－81	5．787E－01	6．147E－0！	9．278E－02
22	$4.540 \mathrm{E}+82$	$1.00 E+80$	8．781E－03	0.	－3．471E－8！	－3．563E－81	3．461E－01	3．481E－01	$1.062 \mathrm{E}-02$
23	$1.678 \mathrm{E}+82$	1．89E＋80	$1.845 \mathrm{E}-03$	0.	－3．511E－01	－3．530E－81	3．508E－01	3．504E－01	2．236E－03
24	6． $140 \mathrm{E}+0$ ！	9．99E－81	$2.339 \mathrm{E}-03$	0.	－2．982E－01	－3．006E－01	2．984E－01	3．093E－01	$2.682 \mathrm{E}-03$
25	$2.268 \mathrm{E}+8 \mathrm{\theta}$	$9.99 E-91$	$2.989 \mathrm{E}-03$	0.	－2．061E－01	－2．092E－01	$2.064 E-01$	$2.087 E-01$	$3.193 \mathrm{E}-03$
26	B． $320 \mathrm{E}+80$	1．00E＋80	3．826E－03	0.	－1．297E－01	－1．337E－01	$1.299 \mathrm{E}-01$	$1.332 \mathrm{E}-01$	4．069E－03
27	$3.068 \mathrm{E}+80$	9．96E－0］	$2.956 \mathrm{E}-03$	0.	－6．019E－02	－6．329E－02	$6.020 \mathrm{E}-02$	$6.243 \mathrm{E}-02$	$3.108 E-03$
28	$1.130 \mathrm{E}+80$		$1.754 \mathrm{E}-83$	0.	－2．149E－02	－2．333E－02	2．145E－02	$2.268 \mathrm{E}-02$	1．828E－03
29	$4.148 \mathrm{E}-\mathrm{O}_{1}$	1．0日E +80	7．978E－04	0.	－5．918E－03	－6．754E－03	5．888E－03	$6.384 E-03$	8．254E－84
30	$1.520 \mathrm{E}-81$	$1.11 \mathrm{E}+80$	4，086E－04	0.	－1．078E－03	－1．506E－03	1．061E－03	$1.230 \mathrm{E}-03$	4．127E－84
INTEGR			2．085E＋80	0.	$-3.624 E+81$	$-3.656 \mathrm{E}+01$	$3.584 E+01$	$3.584 E+81$	5．904E－81
GROUP	UPPER－E（EV）	DELTA－U	＊＊＊＊＊NET PRO SEN	$\begin{aligned} & \text { OF ILES *otown } \\ & \text { SENT } \end{aligned}$					
$!$	$1.700 E+07$	1．25E－01	0.	Q．					
2	$1.500 \mathrm{E}+07$	$1.05 \mathrm{E}-01$	－1．710E＋80	$-1.186 E+98$					
3	$1.350 \mathrm{E}+07$	$1.18 \mathrm{E}-81$	－4．732E－81	－3．786E－81					
4	$1.200 \mathrm{E}+07$	$1.82 \mathrm{E}-81$	－1．343E－91	－1．405E－81					
5	$1.000 \mathrm{E}+97$	$2.50 \mathrm{E}-81$	－8．337E－82	－9．185E－82					
6	7．790E＋06	2．49E－81	－6．233E－82	－6．739－82					
7	$6.070 \mathrm{E}+06$	5．0日E－81	－3．714E－82	－4．084E－82					
8	$3.680 \mathrm{E}+06$	$2.50 \mathrm{E}-81$	－3．902E－82	－4．203E－82					
9	2．865E＋06	$2.50 \mathrm{E}-81$	－4． Q77E－82 $^{\text {a }}$	－4．359E－82					
10	$2.232 \mathrm{E}+06$	2．58E－81	－4．1872E－82	－4．298E－82					
11	1．738E＋86	2．50E－81	－4．240E－82	－4．458E－82					
12	$1.353 \mathrm{E}+86$	$4.97 \mathrm{E}-81$	－4．461E－82	－4．889E－82					
13	8．230E＋85	$4.98 \mathrm{E}-81$	－3．152E－82	－4．071E－82					
14	5．000E＋05	5．01E－01	－9．411E－83	－2．611E－02					
15	$3.030 \mathrm{E}+85$	$4.99 E-01$	－6．458E－03	－2．146E－82					

16	1.840E +05	1. $00 E+00$
$i 7$	6.760Er94	$1.00 E+00$
18	$2.480 E+04$	1. $00 E+00$
19	$9.120 E+03$	$1.00 E+00$
20	$3.350 E+03$	9.98E-01
21	$1.235 E+0.3$	1. $00 E+00$
22	$4.540 \mathrm{E}+02$	$1.00 E+00$
23	$1.670 \mathrm{E}+02$	$1.00 E+00$
24	6.140E+ 11	9.99E-01
25	2.260E+91	9.99E-01
26	$8.320 E+00$	1.0日E+ 0
27	$3.060 E+00$	9.96E-01
28	1.130E+00	1.00E+00
29	4.149E-01	1.00E+00
30	1.520E-01	1.11E+80

$6.860 E-03$	$-1.948 E-02$
$2.593 E-03$	$-2.105 E-02$
$5.615 E-04$	$-3.585 E-02$
$-7.364 E-04$	$-7.720 E-02$
$-1.849 E-03$	$-8.409 E-02$
$-3.310 E-03$	$-9.166 E-02$
$-1.007 E-03$	$-1.021 E-02$
$-2.897 E-04$	$-2.224 E-03$
$1.727 E-04$	$-2.279 E-03$
$3.068 E-04$	$-2.742 E-03$
$1.599 E-04$	$-3.850 E-03$
$2.556 E-06$	$-3.096 E-03$
$-3.715 E-05$	$-1.875 E-03$
$-2.948 E-05$	$-8.656 E-04$
$-1.684 E-05$	$-4.451 E-04$
$-2.985 E-01$	$-7.235 E-01$

G－OUT DELU－OUT											
		G－IN	$G-1 N=2$	$\mathrm{G}-1 \mathrm{~N}=3$	$G-I N=4$	$G-I N=5$	$G-I N=6$	$\mathrm{G}-\mathrm{IN}=$	G－IN＝ 8	$\mathrm{G}-\mathrm{IN}=9$	$G-1 N=10$
1	． 125163	0.	0.	0.	0.	0.	0.	${ }^{0}$	0.	0.	$0 \cdot$
2	． 105361	0.	$1.13 \mathrm{E}+81$	0.	0.	0.	0.	0.	0.		
3	．117783	0.	$7.94 \mathrm{E}-01$	$3.69 \mathrm{E}+00$	0.	0.	${ }^{0}$	0.	0.	Q．	${ }^{8}$
4	． 182322	0.	$2.65 \mathrm{E}-02$	1．22E－81	8．68E－91	0.	${ }^{8}$	0.	Q．	0.	${ }^{\square}$
5	． 249744	0.	6．78E－02	2．44E－82	2．52E－02	4．89E－81	0.	0.	0．	0.	日．
6	． 249482	9.	$1.89 \mathrm{E}-81$	$3.53 \mathrm{E}-02$	7．16E－93	2．45E－82	$4.24 E-81$	9．${ }^{\text {a }}$	9．	0.	g．
7	． 500446	0.	$1.98 \mathrm{E}-01$	5．92E－02	1．94E－02	1．34E－82	$1.85 \mathrm{E}-82$	1．79E－01		日．	日．
8	． 250344	0.	2．68E－81	8．53E－02	2．97E－02	2．35E－82	1．91E－82	$2.65 \mathrm{E}-02$	$4.71 \mathrm{E}-01$		
9	． 249678	0.	$2.49 E-91$	8．37E－82	$3.21 E-02$	2．67E－62	2．36E－02	2．13E－02	$4.58 \mathrm{EE-02}$	$8.482 \mathrm{E}-02$	8．85E－81
10	． 250163	0.	2．38E－81	7．36E－02	3．10E－02	2．60E－82	2．48E－82	2．28E－02	4．24E－02	$6.39 \mathrm{E}-02$	1．02E－91
11	． 250411	9.	2．28E－81	6．62E－02	2．63E－02	$2.29 \mathrm{E}-82$	1．78E－92	2．14E－02	2．58E－02	$6.58 \mathrm{E}-82$	$7.55 \mathrm{E}-02$
12	． 497123	9.	2．03E－81	5．48E－82	1．77E－02	1．63E－82	1．78E－92	1．33E－82	2．36E－02	1．88E－02	6．16E－82
13	． 498348	8.	$1.62 \mathrm{E}-01$	4．67E－92	$1.03 \mathrm{E}-02$	4．30EE－03	4．92E－03	$7.36 \mathrm{E}-03$	1．81E－02	2．82E－02	3．68E－02
14	． 500875	0.	1．18E－01	3．58E－82	6．22E－03	4．12E－03	2．29E－03	3．51E－93	9．09E－03	1．26E－02	1．30E－02
15	． 498797	0.	7．77E－02	2．50E－02	$3.94 \mathrm{E}-03$	1．98E－83	2．29E－03	9．89E－04	2．62E－03	3．79E－03	2．88E－93
16	1.001328	0.	2．88E－02	1．04E－02	$1.61 \mathrm{E}-03$	5．78E－04	6．18E－84	9．89E－94	1．39E－84	$2.16 \mathrm{E}-04$	3．86E－04
17	1.082764	0.	3．88E－03	2．21E－03	4．23E－84	4．47E－05	$6.15 \mathrm{E}-86$	5．40E－85	5．35E－65	8．30E－65	6．32E－05
18	1．9693P4	0.	$1.48 \mathrm{E}-93$	8．43E－64	1．61E－64	1．715－65	2．14E－97		2．06E－95	3．19E－05	1．09E－05
19	1.001509	0.	5．67E－04	3．24E－04	6．21E－85	6．57E－06	3．46E－97	3．02E－06	7．77E－06	1．20E－85	1．98E－06
28	． 997889	0.	2．14E－04	$1.22 \mathrm{E}-84$	$2.35 E-85$	2．48E－06	3．46E－87	$3.02 E-86$ $1.16 E-86$	2．98E－06	4．62E－06	$3.92 \mathrm{E}-07$
21	1.696729	9.	8．24E－65	4．71E－65	9．04E－66	9．58E－07	1．33E－07	1．16E－86	2．98E－日6	1．48E－06	0．
22	1.880183	Q．	2．62E－05	1．50E－85	2．8BE－86	3．05E－日7	$4.24 E-88$	1．34E－日7	$3.46 E-97$	5．38E－07	0.
23	1.800584	0.	9．47E－06	5．44E－06	1．84E－06	1．18E－07	1．53E－08	1．34E－98	1．34E－日7	2．99E－97	0.
24	． 999468	Q．	3．68E－06	2．11E－06	$4.85 \mathrm{E}-87$	4．29E－88	9．96E－09	－．22E－ロ8		8．	0.
25	． 999288	9.	1．42E－06	B．12E－07	1．38E－87	0．	－	日．	B．	0.	0.
26	1.608247	0.	5．46E－07	3．13E－07	5．31E－88	${ }^{8}$	${ }^{0}$	0.	B．	θ.	0.
27	． 996197	${ }^{\square}$	0.	0.	${ }_{0}^{0}$	日．	Q．	0.	B．	日．	0.
28	1.884197	9.	${ }^{0}$	0.	Q．	日．	Q．	日．	0.	日．	0.
29	1.081985	®．	0.	0.	日．	日．	0．	0.	日．	0.	0.
30	1.111858	0.	0.	0.	0.	日．	0.	0．	－		
1	． 125163	9.	0.	0.	0.	日．	0.	0.			
2	． 105361	0.	0.	0.	0.	ด．	0.	0.	g．	0.	9．
3	． 117783	0.	0.	0.	0.	ロ．	0.	0.	\square.	0.	0.
4	．182322	0.	日．	0.	0.	日．	0.	0.	0.	9.	0.
5	． 249744	0.	日．	0.	0.	0.	0.	0.	0.	0.	0.
6	． 249482	0.	日．	0.	0.	0.	0.	0.	0.	${ }^{0}$	0.
7	． 500446	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
8	． 250344	0.	0.	0.	0.	0.	Q．	0.	${ }^{9}$	${ }^{\text {a }}$	日．
9	． 249670	0.	0.	0.	0.	0.	8.	日．	0.	9．	日．
10	． 250163	0.	0.	0.	0.	6.	${ }^{8}$	Q．	0.	${ }^{0}$	日
11	． 250411	$1.35 \mathrm{E}+00$	0.	8.	0.	0.	免．	0.	0.	日	日
12	． 497123	$1.08 E-01$	2．09E＋08	8.	0.	0.	${ }^{0}$	${ }^{0}$	0.	${ }^{\circ}$	日
13	． 498348	7．84E－02	$1.56 \mathrm{E}-81$	5．90E＋00	0.	8.	${ }^{0}$	0.	．	日	
14	． 500875	4．98E－02	5．72E－02	3．49E－91	$1.02 \mathrm{E}+01$	8． 535	${ }^{0}$	0．	－		日．
15	． 498797	2．76E－82	5．48E－02	0．105－92	6．32E－01	8． $235 \mathrm{E}+90$	6． $83 \mathrm{E}+80$		日．	日．	日．
16	1.901328	$1.24 \mathrm{E}-82$	$1.98 \mathrm{E}-02$	1．16E－02	${ }^{0}$	2．75E－81	6．a3E＋00		日．	日．	日．
17	1.002764	3．70E－03	4．15E－83	5．82E－03	0.	0.	2．01E－01	$4.23 E+80$	－		

10	3.145E-01	3.434E-01
11	$4.501 \mathrm{E}-01$	4.869E-01
12	$1.158 \mathrm{E}+00$	1.197E +00
1.3	3.097E+00	3.132ET00
14	$5.380 \mathrm{E}+00$	$5.436 E+00$
15	$4.628 E+00$	$4.529 E+00$
16	6.197E+00	6.235E+00
17	4. $446 \mathrm{E}+00$	4.496E+00
18	$4.546 E+60$	4. 45GEr00
19	$5.457 \mathrm{E}+00$	$5.338 E+00$
20	$5.355 \mathrm{E}+30$	5.321E+00
21	$6.147 E-01$	5.7ETE-01
22	$3.481 \mathrm{E}-01$	$3.461 \mathrm{E}-01$
23	3.504E-01	3.508E-01
24.	$3.003 \mathrm{E}-01$	2.984E-01
25	$2.087 \mathrm{E}-01$	2.064E-01
26	1.332E-01	1.299E-01
27	6.243E-012	6.020E-02
28	2.268E-02	$2.145 \mathrm{E}-02$
29	6.384E-03	5.888E-03
30	1. $230 \mathrm{E}-03$	1.061E-03
TOTAL INTEGRAL	$\Xi .584 E+01$	$3.584 E+01$

SENSIT SAMPL 7．＊FUSION REACTOR＊XS＋SED SENS．＊RUN 7GSED：CR．NI，FE CU

G－IN	$\begin{gathered} \text { MEDIAN } \\ \text { G-OUT } \\ \text { (FROM SED } \\ \text { INPUT) } \end{gathered}$	$\begin{gathered} \text { INTEGRAL } \\ \text { SED-UNCERT. } \\ \text { (FROM INPUT) } \end{gathered}$	HOT INTEGRAL SENS．COEFF． S－HOT	COLD INTEGRAL SENS．COEFF． S－COLD	NET INTEGRAL SED SENS．－CDEFF． （SHOT ${ }^{\text {S }}$ SCOLD）	$\begin{gathered} \text { RESPONSE UNCERT. } \\ \text { DRRR } \\ \text { DUE TO SED-UNCERT. } \\ (F * S) \end{gathered}$
	8	． 0900	0.	0.	๑．	0.
2	8	． 9729	1．576E－01	5．179E－02	$1.058 \mathrm{E}-81$	7．617E－83
3	7	． 0708	5．899E－02	$2.028 \mathrm{E}-02$	$3.871 E-82$	$2.718 \mathrm{E}-03$
4	4	．8798	2．884E－02	$1.257 E-82$	1．628E－82	1．139E－03
5	5	． 0780	3．048E－02	1．337E－92	1．711E－02	1． $198 \mathrm{E}-83$
6	7	．868日8	$2.641 E-62$ $4.481 \mathrm{E}-82$	1．244E－02	2．150E－02	$1.298 \mathrm{E}-83$
8	8	． 0688	$2.950 \mathrm{E}-82$	$1.917 \mathrm{E}-82$	$1.033 \mathrm{E}-02$	$6.198 E-84$
9	9	． 8598	4． $\mathrm{P} 38 \mathrm{E}-82$	$2.566 \mathrm{E}-82$	1．472E－02	？．358E－84
10	10	．8588	5．538E－02	$3.054 \mathrm{E}-02$	$2.484 \mathrm{E}-82$	$1.242 \mathrm{E}-83$
11	11	．8488	8．475E－02	3．717E－02	$4.758 \mathrm{E}-82$	1．903E－03
12	12	． 8498	5．164E－81	7．853E－02	$4.378 \mathrm{BE}-81$	$1.751 E-82$
13	13	． 8208	1．464E＋8日	$9.655 \mathrm{E}-02$	$1.368 \mathrm{E}+08$	2．${ }^{3} 36 \mathrm{E}-82$
14	14	． 8288	$2.565 E+08$	$1.578 \mathrm{E}-01$	$2.497 \mathrm{E}+08$	4．914E－82
15	15	． 8298	2．122E＋8日	$1.374 \mathrm{E}-81$	$1.984 E+00$	3．969E－82
16	16	． 8208	6．042E＋8日	2．017E－81	$5.840 \mathrm{E}+00$	1．168E－01
17	－	0.0080	日．	日．	θ.	0.
18		0.8990	日．	日．	${ }^{0}$	${ }^{9}$
19	8	0.0000	日．	日．	${ }_{0} 0$.	$\stackrel{0}{9}$.
21	${ }_{8}^{8}$	－． 0.800 ¢	日．	日．	0.	Q．
22	－	0.8998	日．	日．	Q．	0.
23	8	0.0000	0.	ө．	0.	9.
24	－	0.0000	0.	日．	0.	0.
25	－	0.8080	θ.	日．	0.	${ }^{0}$
26	8	0.0008	${ }^{0}$	日．	${ }^{\text {a }}$	${ }_{\text {a }}$
28	8	๑．อөอ日	${ }^{\text {a }}$ ．	日．	0.	®．
29	8	0．8000	θ.	${ }^{8 .}$	0.	Q．
38	8	0.0000	0.	0.	0.	0.
TOTAL INTEGRAL			1．327E＋01	9．183E－91	1．235E＋01	$\begin{gathered} 2.688 E-01 \\ 26.879 \mathrm{PE} \end{gathered}$

 PARTIAL AND NET SENSITIVITY PROFILES PER DELTA-U. NORMAL
FOR GAMMA INTERACTION CROSS SECTIONS: (GAMMA-GAMMA) ONLY

GROUP	UPPER-E (EV)	DELTA-U
31	5.80日E-92	7.99E-81
32	2.000E+87	$1.18 \mathrm{E}-81$
33	9.000E+86	1.34E-01
34	8. g ¢9E+86	$1.54 \mathrm{E}-81$
35	7.000E+06	$1.82 \mathrm{E}-81$
36	6.000E+86	2.23E-01
37	5.000E+06	$2.88 \mathrm{E}-01$
38	$4.000 E+06$	$4.05 \mathrm{E}-01$
39	3.900E+06	$6.93 \mathrm{E}-01$
40	2.690E+06	$6.93 \mathrm{E}-91$
41	$1.000 \mathrm{E}+06$	$1.61 \mathrm{E}+80$
42	$5.000 \mathrm{E}+05$	$2.30 \mathrm{E}+80$

INTEGRAL

KGIN TE G-GAIN
$2.397 E-83$ SEN SEN

ROF ILES****** 2.397E-03 -2.273E-02 SENT 3.550E-02 -2.263E-02 -6.529E-03 $4.971 \mathrm{E}-91-2.685 \mathrm{E}+8 \mathrm{O}-7.206 \mathrm{E}-02$ $\begin{array}{lll}1.435 \mathrm{E}-91 & -6.554 \mathrm{E}-\mathrm{O} 1 & -8.981 \mathrm{E}-81 \\ 1.347 \mathrm{E}-01\end{array}$ $1.018 \mathrm{E}-01 \quad-3.869 \mathrm{E}-81-1.514 \mathrm{E}-01$
$9.633 \mathrm{E}-92 \quad-2.930 \mathrm{E}-81 \quad-1.303 \mathrm{E}-01$
$9.178 \mathrm{E}-82-2.123 \mathrm{E}-01-1.154 \mathrm{E}-0$
8.984E-92 -1.435E-81 -1.031E-0
$\begin{array}{lll}1.031 \mathrm{E}-01 & -9.798 \mathrm{E}-02 & -9.350 \mathrm{E}-92 \\ 2.163 \mathrm{E}-01 & -1.245 \mathrm{E}-01 & -1.391 \mathrm{E}-01\end{array}$
$2.163 \mathrm{E}-01 \quad-1.245 \mathrm{E}-01 \quad-1.301 \mathrm{E}-01$

$1.534 \mathrm{E}-91$	$-9.807 \mathrm{E}-03$	$-6.228 \mathrm{E}-02$
$1.395 \mathrm{E}-94$	$-1.175 \mathrm{E}-07$	$-1.164 \mathrm{E}-03$

6.660E-01 -9.295E-01 -5.594E-0

LPTSPL Version 6(34420) Running on EPLO 10
START User SIG 5013 [77.5913] Job BANNER Seq. 3756 Date 15-Føb-80 15:35:54 Monttor LASL/CTR 603A(66)-8TS *START*
Request created: 15-Fob-80 15:35:22
QUEUE Sw
COPIES:1 SPACING:1 LIMIT:7B FORMS:NORMAL
Fle will be dsleted after printing

$\begin{gathered} \text { C-MICR PQ } \\ -7.62694 E-02 \end{gathered}$	45×42 TAbLE 0.	1．37000E＋00	4．45473E－81	0.	0.	0
	0.		0.	Q．	๑．	2
0.	0.	0.	日．	θ.	0.	3
0.	9.	0.	日．	0.	日．	4
0.	9.	0.	0.	0.	θ.	5
Q．	0.	0.	0.	0.	9．	6
9.	0.	9.	0.	0.		$?$
0.	0.	0.	－1．36327E－01	${ }^{0}$	1．28262E＋00	8
4．28130E－01	2．14476E－01	0.	0.	θ.	${ }^{1}$	9
0.	0.	0.	0.	0.	0.	19
日．	0.	0.	0.	9.	0.	11
日．	0.	0.	0.	0.	0.	12
日．	日．	0.	0.	0.	0.	13
0.	日．	0.	0.	0.	0.	14
0.	${ }^{8}$	0.	${ }^{0}$			15
－1．86899E－01	0.	1．35622E＋09	5．24605E－01	1．70995E－01	1．41896E－01	16
${ }^{0}$ ．	${ }^{0}$	${ }^{1}$	${ }^{\theta}$	${ }^{8}$	${ }^{0}$ ．	17
0.	日．	0.	${ }^{0}$	${ }^{0}$	${ }^{0}$ ．	18
日．	园．	${ }_{\text {日．}}^{\text {日．}}$	${ }^{\text {日．}}$	$\stackrel{0}{0 .}$	${ }^{\text {a }}$	19
日．	${ }^{\text {日．}}$	${ }^{\text {a }}$ ．	${ }^{0}$ ．	®．	${ }^{\text {® }}$ ．	21
Q．	0.	－	0.	0.		22
		日．	－2．60497E－01	0．	$1.29799 \mathrm{E}+80$	23
5．39639E－01	$2.21484 \mathrm{E}-01$	1．51653E－01	1．17480E－01	θ.	0.	24
θ.	日．	θ.	0.	0.	0.	25
อ．	－	日．	$日$.	0.	0.	26
0.	0.	日．	0.	9.	0.	27
0.	0.	0.	日．	ө．	0.	28
0.	0.	${ }^{\text {日，}}$	日．	0.	0.	29
${ }^{0} \cdot$	${ }^{8}$	${ }^{\text {日．}} 37670 \mathrm{C}$ 明	${ }^{\text {日．}}$ 32913E－91	0．9234E－01	${ }^{0}$ ． $44156 \mathrm{E}-01$	30
－1．5693E－81	6．27837E－82		Q．${ }^{\text {a }}$（		日．${ }^{\text {a }}$	32
0.	ด．	日．	日．	0.	0.	33
0.	0.	ロ．	0.	0.	0.	34
日．	0.	0.	日．	0.	0.	35
0.	0.	0.	日．	0.	0.	36
0.	0.	0.	0.	0.		37
0.	0．15502E－91	0．13325E－91	－2．33089E－01	0．1561E－02	1．22144E＋08	38 39
5．26689E－01	3．15502E－01	1．13325E－01	1．26888E－81		8．${ }^{\text {a }}$	40
－．	0.	0.	0.	θ 日	${ }^{\text {日．}}$	41
Q．	0.	0.	0.	0.	日．	42
0.	0.	0.	0.	0.	${ }^{\text {日．}}$	43
0.	0.	0.	0.	0.	0.	44
0.	${ }^{\text {日 }}$	9． 2150	0． 1303 C －90	Q．${ }^{\text {a }}$ 8		45
－3．17644E－02	同．${ }^{\text {a }}$－	1．70150E＋00	$1.01383 \mathrm{E}+00$	4．38871E－01	1．44221E－81	47
2．52084E－91．	6．78060E－02	1．90679E－02	5．01360E－02			47
日．	$\stackrel{\text { ®．}}{\text { 日．}}$	$\stackrel{\square}{\mathrm{a}}$ ．	${ }_{\text {Q }}$ Q．	${ }^{\text {日．}}$	日．	49
0.	日．	9.	0.	0.	${ }^{\text {日．}}$	59
0.	日．	日．	0.	0.	日．	51
9.	日．	${ }^{0}$	0． 245035	${ }^{0}$		52
	${ }^{10}$	${ }^{0}$ ． $39500 \mathrm{E}-03$	－4．24503E－03	0．a7888E－03	2．20203E＋80	53 54
8．71494E－01	5．26786E－01	5．39588E－03	$1.17404 \mathrm{E}-01$	4．07888E－03	1．43615E－02	54
2．74íf5E－02	4． $15946 \mathrm{E}-02$ 0．	9．	$\stackrel{\text { 日．}}{\text { 日．}}$	$\stackrel{\theta}{9}$ ．	日．	55
日．	日．	日．	0.	0.	θ ．	57
${ }^{\text {a．}}$	日．	0.	0.	Q．	θ.	5
日．	0.	ด．	日．	0.	日．	59

1	6．31638E－81 4．66563E－81	3．68487E－91	$3.04701 \mathrm{E}-11$	2．85893E－91	264
2．74843F－01	9．52587E－02 5．58104E－02	3．1225「E－02	$1.6444 \mathrm{PE}-82$	8．43918E－93	265
3．43304F－03	1．42434E－81 8．79830E－81	$2.19033 \mathrm{E}-01$	$1.44356 \mathrm{E}-91$	5．29304E－02	6
$2.65533 \mathrm{E}-82$		8．69159E－93	B．40226E－03	1．07889E－82	257
$1.56518 \mathrm{E}-82$	$1.54475 E-021.42737 E-ด 2$	1．2858AE－02	$1.07162 E-02$	8．47441E－02	258
$3.63676 E-81$	3．37196E－01 1．27826E－01	$9.98615 \mathrm{E}-02$	1．73168E－01	$2.63296 \mathrm{E}-0.1$	269
0	9． 0 ，	Q．	0.	1.	270
－1．12692E＋01	日． $1.21494 \mathrm{E}+01$		9．48693E－01	6．65584E－91	271
5．31724E－01	4．16934E－01 3．53053E－01	2．47719E－81	5．51875E－81	$1.94742 \mathrm{E}-0$ ！	272
1．14095E－81	6．38363E－02 3．351日7E－02	1． T B793E－82	1．07176E－02	4．04294E－01	273
2．7060 IE＋0日	6．98TアAE－81 4．765irse－01	1．70112E－01	B．26233E－02	$5.32172 \mathrm{E}-02$	274
$4.19549 \mathrm{E}-02$	2．44292E－82 2．21590E－02	2．62629E－82	3．5233FE－02	3．36688E－82	275
3．08739E－92	2．75054E－82 6．49815E－02	4．70662E－01	9．26393E－01	7.65152 E －91	276
$2.56318 E-91$	3．34852E－81 5．70348E－81	6．74610E－01	${ }^{0}$	0	7
	0． 0 ．	5．77258E＋00	9．${ }^{\text {a }}$	1．25590E＋81	278
$1.43890 E+00$	$1.58675 E+001.03835 E+00$	F．76225E－0	6．24295E－01	5．24999E－91	279
$4.54965 \mathrm{E}-\mathrm{D}$ ！	$3.30348 \mathrm{E}-011.09612 \mathrm{E}+80$	3．79309E－01	$2.22582 \mathrm{E}-01$	$1.24534 \mathrm{E}-01$	289
$6.5584 \wedge \mathrm{E}-02$	3．583 ${ }^{\text {PRE－82 }} 2.61397 \mathrm{E}-82$	$8.93251 E-01$	$6.31534 E+88$	1．70592E＋80	281
$1.16155 \mathrm{E}+00$	4．13932E－01 $2.00175 E-01$	$1.27512 \mathrm{E}-91$	9．78414E－02	$5.44993 E-92$	282
$4.6696{ }^{\circ} \mathrm{E}$－ค̣2	5．10617E－02 6．35154E－82	5．87495E－92	6．22055E－02	2．78120E－01	283
7．75134E－91	$1.19430 \mathrm{E}+801.83594 \mathrm{E}+80$	1．49737E＋80	5．85522E－01	9．62993E－01	4
$1.39881 \mathrm{E}+80$	$1.32013 \mathrm{E}+80$	Q．	0.	0.	285
6．59739E－91	$0.1 .54952 \mathrm{E}+81$	3．79757E＋00	$3.22888 E+00$	$1.94283 \mathrm{E}+00$	286
$1.42596 \mathrm{E}+00$	$1.14951 \mathrm{E}+80 \mathrm{C} 9.56828 \mathrm{E}-81$	8．27287E－01	7．30366E－01	5.44647 E－${ }^{\text {d }}$	287
$17953 \mathrm{E}+00$	4．0®B18E－日1 2．39519E－91	$1.34910 \mathrm{E}-01$	$7.05749 E-82$	4． $\mathrm{g} 246 \mathrm{E}-92$	288
$4.09893 \mathrm{E}-02$	$1.33348 E+809.81299 E+$ 99	2．79853E＋00	$1.91580 \mathrm{E}+00$	6．82502E－01	289
$3.23484 \mathrm{E}-01$	$2.08254 \mathrm{E}-011.56853 \mathrm{E}-01$	8．48237E－02	7．02023E－92	7．23812E－82	299
1．22253E－01	$5.36 \div 90 \mathrm{E}-011.14439 \mathrm{E}+80$	$1.60691 E+09$	$1.98285 \mathrm{E}+00$	2．19665E＋80	291
2．88368E＋日0	$2.15034 E+001.62456 \mathrm{E}+80$	$2.14958 \mathrm{E}+09$	$2.43458 \mathrm{E}+00$	$2.26696 \mathrm{E}+80$	2
2.88368 E	0．${ }^{\text {0．}}$	$7.89355 \mathrm{E}+80$		$2.71201 \mathrm{E}+81$	293
$7.71765 E+00$	$6.32030 E+801.09978 E+81$	$1.72603 E+81$	$2.26472 \mathrm{E}+01$	$2.698945+81$	294
3.03678 E＋81	$3.37519 \mathrm{E}+813.7856 \overline{\mathrm{E}}+81$	$4.59001 \mathrm{E}+81$	$4.74023 \mathrm{E}-\mathrm{Q} 1$	$1.64293 \mathrm{E}-01$	295
9.62565 E －92	5．30552E－02 2．8ड622E－92	1．75268E－02	$2.31194 \mathrm{E}-92$	7．8528，${ }^{\text {E－}}$－ 1	296
$5.69524 E+99$		$3.89197 \mathrm{E}-\mathrm{O} 1$	$1.87814 \mathrm{E}-01$	1． $18625 \mathrm{E}-61$	
8．92329E－82	$4.82661 \mathrm{E}-023.79711 \mathrm{E}-02$	4．12505E－02	$4.29084 \mathrm{E}-01$	$1.27678 \mathrm{E}+80$	298
$1.6205 \mathrm{E}+$＋9 ${ }^{\text {d }}$	$1.79885 \mathrm{E}+90$ 1．79987E＋00	$1.85646 E+00$	2．15305E＋09		
$1.77152 \mathrm{E}+90$	$1.88117 \mathrm{E}+001.81255 \mathrm{E}+00$	1．64227E＋80	0.	0.	－
．74873E＋92	9． $2.11916 \mathrm{E}+02$	$3.51564 E+01$	$1.15989 \mathrm{E}+01$	4．72659E＋80	301
$2.66604 \mathrm{E}+$－${ }^{\text {¢ }}$	$1.87369 \mathrm{E}+801.44586 \mathrm{E}+$ ¢ ${ }^{\text {a }}$	$1.17749 E+80$	9．92931E－ 11	8．58633E－01	2
$7.56580 \mathrm{E}-01$	$5.59539 E-014.92237 E-01$	1．70606E－81	$9.99551 \mathrm{E}-02$	$5.59245 \mathrm{E}-02$	303
$2.94520 E-82$	$1.98966 \mathrm{E}-023.44014 \mathrm{E}-02$	$1.27229 E+80$	8．88958E＋80	$2.369660+00$	304
$1.61214 E+80$	$5.74122 \mathrm{E}-012.77219 \mathrm{E}-01$	$1.75858 \mathrm{E}-81$	$1.62891 \mathrm{E}-01$	$2.70373 \mathrm{E}-01$	305
$4.22657 E-81$	$7.13155 E-81$ 9．00363E－01	8．92412E－01	$1.16971 E+98$	$1.42649 E+90$	396
1．59919E＋80	$1.57040 \mathrm{E}+00 \mathrm{I}$ 1．57187E＋00	$1.68881 \mathrm{E}+9 \mathrm{O}$	2．29546E＋89	$2.25455 \mathrm{E}+09$	397
$2.01919 \mathrm{E}+80$	$1.80105 \mathrm{E}+000$.	$2.2535 \mathrm{IE}+83$	0.	$2.39146 \mathrm{E}+03$	398
1．37951E＋02	$1.88649 \mathrm{E}+80$ 0．	0.	日．	0.	309
		日．	0.	0.	310
2．41627E－01	8．37464E－02 4．90656E－02	2．74520E－82	1.445 T3E－82	8．87725E－03	31
1．16225E－82	$4.29530 \mathrm{E}-012.98159 \mathrm{E}+00$	7．87313E－91	5．35117E－01	1．95558E－01	312
9．2月222E－82	5．84285E－02 4．45142E－02	2．4559BE－92	2．98765E－02	$2.2480 \overline{1} E-92$	313
$2.30116 \mathrm{E}-01$	5．06148E－01 5．35248E－01	$5.57696 E-01$	5．9月526E－91	5．99734E－01	14

1	SFMSIT SAMPLE	8．＊FUSION	REACTOR＊VEC 42	R－XS ．SEN＋UN		CR，NI．FE，	$\underset{\text { CAFD2 }}{\text { CAT }}$
3	1 1	20		Q ${ }^{\text {a }}$	04	ロ ロ	CARD3
4	1．70＠E＋7	$1.500 \mathrm{E}+$ ？	$1.359 \mathrm{E}+7$	$1.200 \mathrm{E}+\bar{\square}$	$1.889 \mathrm{E}+7$	$7.79 \mathrm{E}+6$	EN（ r_{3} ）
5	6．070E＋6	3．689E＋6	$2.865 \mathrm{E}+6$	$2.232 \mathrm{E}+6$	$1.73 \mathrm{EE}+6$	$1.353 \mathrm{E}+5$	EN（G）
6	$8.238 \mathrm{E}+5$	5．8®9E＋5	$3.038 \mathrm{E}+5$	$1.840 \mathrm{E}+5$	$6.769 \mathrm{E}+4$	$2.480 \mathrm{E}+4$	EN（ $\mathrm{C}_{\text {c }}$ ）
7	9．12ロE＋3	$3.350 \mathrm{E}+3$	$1.235 E+3$	$4.549 \mathrm{E}+2$	$1.570 \mathrm{E}+2$	$5.149 \mathrm{E}+1$	EN（G）
8	2．25日E＋1	$8.320 \mathrm{E}+8$	3．060E＋8	$1.13 \mathrm{EE}+0$	$4.140 \mathrm{E}-1$	1．520E－1	EN（G）
9	5．มีคE－2						EN（G）
10	2．ออดE＋7	$9.800 \mathrm{E}+6$	B．000E＋6	$7.900 \mathrm{E}+6$	$6.000 \mathrm{E}+6$	5．000E +6	FG（G）
11	$4 . \mathrm{BPEE}+6$	$3.800 E+6$	$2.009 \mathrm{E}+6$	1．099E＋6	5．909E＋5	1．0ดดE＋5	EG（G）
12	1． D Q日E＋4						EG（G）
13	0．8856623	0.1893888	0.2339570	0.2339570	0.1803898	0.0856623	W（M）
14	－0．9324695	－0．6612094	－0．2386192	0.2386192	0.6612094	0.9324695	MLEE（M）
15	日． 9	24.25	48.5	72.75	97.0	98.0	MESH
16	99.0	189.8	101.0	102.0	104.5	107.0	MESH
17	107.5	198.0	188.5	189.0	103.5	110.9	MESH
18	110.5	110.0	111.5	112.0	113.9	114.8	MESH
19	115.0	116.0	117.9	118.0	119.0	120.0	MESH
20	121.0	122.8	122.5	123.8	123.5	124.0	MESH
21	125.8	125.8	127.8	128.8	129.0	130.0	MESH
22	131.8	132.0	133.0	134.8	135.9	136.9	MESH
23	137.0	138．0	139.8	140.0	141.0	142.9	TESH
24	143.9	144.0	145.8	146.0	147.0	149.0	MESH
25	149.0	159.0	151.0	152.8	153.0	154.9	MESH
26	155.0	156.0	157.8	158．0	159.0	1 16．0	MESH
27	161.0	162.0	163.0	164.0	165.0	165.5	MESH
28	166.0	168.0	171.0	174．0	177.9	180.9	MESH
29	183.0	186.0	189.0	192.0	195.0	198.0	MESH
30	201.0	204．	297.0	210.0	213.9	216.0	MESH
31	219.0	222.0	225.0	228.0	231.0	234.0	MESH
32	237.0	249.0	243.0	246.0	249.9	252.8	MESH
33	255.0	256.0	257.0	259．967	261.133	263.2	MESH
34	265.267	267.333	269.400	271.357	273.533	275.6	MESH
35	277.667	279.733	281．800	283．857	285.933	288.9	MESH
36	290.0	291.0	294.0	296.9	298.8	309．0	MESH
37	392.0	394.0	306.0	308.333	310.667	313.0	MESH
38	14						SRS
39	80108						DET
40	80188						PERI
41	111125						PER2
42	．184E＋97	．209E＋87	－197E＋07	． $222 \mathrm{E}+97$	． $159 \mathrm{E}+07$	． $186 \mathrm{E}+87$	R3（G）
43	． $567 \mathrm{E}+86$	． $284 \mathrm{E}+86$	． $190 \mathrm{E}+86$	． $116 \mathrm{E}+86$	． $735 \mathrm{E}+85$	． $738 \mathrm{E}+85$	
44	． $640 \mathrm{E}+85$	． $485 \mathrm{E}+85$	． $340 \mathrm{E}+95$	． $216 \mathrm{E}+85$	－167E＋85	． $113 \mathrm{E}+85$	
45	． $214 \mathrm{E}+85$	． $294 \mathrm{E}+05$	． $936 \mathrm{E}+05$	． $124 \mathrm{E}+05$	． $305 \mathrm{~F}+84$	． $473 \mathrm{E}+94$	
46	． $875 \mathrm{E}+84$	．29PE＋85	． $334 \mathrm{E}+85$	． $562 \mathrm{E}+05$	－192E＋86	． $2895 \mathrm{E}+96$	
47	． $307 \mathrm{E}+98$	．197E＋88	． $169 \mathrm{E}+88$	． $142 \mathrm{E}+88$	． $118 \mathrm{E}+08$	． $956 \mathrm{E}+97$	
48	． $737 \mathrm{E}+97$	． 53 EE＋87	． $357 \mathrm{E}+07$	． $207 \mathrm{E}+87$	$.130 \mathrm{E}+07$	． $692 \mathrm{E}+87$	
49	1．0คูอ	1.0909	1.0000	1．2090	1. ดคออ	1.00 日	RHO（ J ）
50	1.0900	1.8009	1.0900	1.9090	1.8009	1.8009	RHD（J）
51	1.0909			1.8909	1.0990	1.8099	RHD（J）
52	1.9000	1.0009	1.0090	1.0000	1.0909	1.0008	RHO（J）
53	：．0000	1．9ดดด	1.0090	1.8090	1.0009		RHO（J）
54	0.0	$1.009 ค$	0.0	0.0	0.0	0.0	Q（G）
55	0.0	0．0	0.0	0.0	0.0	9.0	$Q(G)$
56	0.0	0.0	9.9	0.9	0.0	0.0	Q（G）
57	0.0	0.0	0.0	0.0	0.0	0.0	Q（G）
58	0.0	0.9	0.0	9.9	9.0	0.0	Q（ $5_{\text {S }}$ ）
59	0.0	0.0	0.0	0.0	0.0	0.0	Q（G）
60	0.0	0.0	ロ．ロ	0.9	0.0	9.0	Q（G）

61	0.81031	10.01031	0.01031	0.01031	QUE (5)
62	12	0.00582	0.00592		1D1
63	13	8.805p2	0.00502		JD2
64	14	ต. 10959	0.00502		ID3
65	15	日. 1 ค559	0.80592		ID4
66	16	0.90592	0.09502		ID5
67	17	9. 18592	0.90502		ID6
68	18	ด. 113502	0.00592		ID7
69	32	0.0032	0.0032		1D8
70	33	0.0032	0.0032		109
71	34	0.0932	0.0932		1DI9
72	35	0.0032	0.9032		1D11
73	36	¢.0032	日. 0032		1D12
74	19	0.8183	9.9189		1D13
75	20	0.0189	0. 0189		1DI4
76	21	0.8189	9.8189		1D15
77	22	0.0189	0.9189		1D16
78	23	0.9189	0.0189		1 d 17
79	24	0.8199	0.8189		1 D 18
80	25	0.0189	0.0189		1D19
81	26	0.0189	0.0189		1020
82	27	9.8189	0.9189		1 D 21
83	28	0.8189	9.8189		1022
84	29	0.0189	0.8189		1 123
85	30	0.8189	9. 8189		1 D 24
86	31	0.0189	ค. 0189		1 D 25
87	37	0.8497	9.9407		ID25
88	38	0.0407	0.9497		ID27
89	39	0.0407	0.0407		1 108
99	40	0.0487	0.8407		ID29
91	41	0.0487	0.9497		1 D 30
92	42	0.0487	0.0407		1D31
93	43	0.0407	0.0407		ID32
94	44	0.8407	0.0487		1 D 33
95	45	0.1407	0.0407		ID34
96	46	0.0407	0.8407		1 135
97	47	0.0407	0.0407		1 D36
98	1	7			SUMI
99	B	12			SUM2
$19 \mathrm{\square}$	13	25			SUMS
101	26	36			SUM4

SENSIT SAMPLE B．＊FUSION REACTOR＊VECTOR－XS．SEN＋UNCERT．＊RUN76：CR．NI，FE，CU

31 NEUTRON ENEPGY GROUP BOUNDAPIES READ IN EV									
$1.738 \mathrm{E}+06$	$1.35 \overline{3 E+66}$	8．230E＋05	5．0̇0日E＋05	3．03 3 EE＋95	1．840E +85		2．489EE＋84	${ }^{2} .1265 \mathrm{E}+06$	${ }^{2} .232 \mathrm{E}+86$
$1.235 \mathrm{E}+03$	$4.540 \mathrm{E}+82$	1．679E＋02	$6.140 \mathrm{E}+81$	$2.260 \mathrm{E}+81$		$3.050 E+09$	1．130E＋90	4．140E－91	$1.520 \mathrm{E}-01$
$5.000 \mathrm{E}-02$									
5．อออE＋	1． $\mathrm{CO日E}+85$	1． DQE ¢ +94			S．000E＋86	$4.000 \mathrm{E}+06$	$3.000 \mathrm{E}+06$	$2.80 \mathrm{be}+06$	1．000E＋06
LEVEL WEIGHTS FOR DISCRETE ANGLES									
DISCRETE ANGLES MUE FOR LEVEL LEIGHTS $-.932470-.661209-.238619 \quad .238619$ ． 651299 ． 932470									
MESH BOUNDAP．IES READ									
	2．425E＋01	4．858E＋${ }^{\text {d }}$	$7.275 E+01$	9．70EE +81	$9.000 E+01$	$9.900 \mathrm{E}+81$	1．09DE + al	$1.019 \mathrm{~F}+82$	$1.020 \mathrm{E}+82$
1．045E＋02	1．970E＋02	$1.075 E+82$ $1.138 E+92$	$1.088 \mathrm{E}+92$ $1.140 \mathrm{E}+92$	1． $085 \mathrm{E}+82$	1．990E＋02	1．995E＋82	1．18日C＋02	1．195F＋+12	1．190E +82
1.21 㫙 +02	$1.220 \mathrm{E}+92$	$1.225 E+82$	1．230E＋02	$1.2355+02$	1．2．19E＋日2	1．25日E 1 ＋82	$1.198 E+02$ $1.250 E+82$	1． $1.9 n \mathrm{~F}+\mathrm{+} \times 22$	$1.29 R E+02$ $1.28 \cap \mathrm{~F}$ 1.92
$1.290 \mathrm{E}+02$	1．309E＋62	1．310E＋02	$1.320 \mathrm{~F}+82$	1.33 EE +82	1．340］+82	1．350E＋82	$1.350 \mathrm{E}+82$	1.37 ¢F．t日2	1.3 ¢ 1 EF＋82
$1.399 \mathrm{E}+02$	$1.49 \mathrm{EE}+82$	1．419E＋日2	1．420E＋02	$1.439 \mathrm{E}+92$	1．449E＋82	1．459E＋82	$1.460 \mathrm{E}+82$	$1.47 \mathrm{Bli}+0$ ？	$1.480 \mathrm{E}+82$
$1.490 \mathrm{E}+02$	1．5919E＋a2	$1.510 \mathrm{E}+\mathrm{D}^{2}$	$1.529 \mathrm{E}+82$	$1.530 \mathrm{E}+62$	1．543E＋82	1．550E＋82	$1.550 \mathrm{E}+02$	$1.570 \mathrm{~F}+02$	$1.580 \mathrm{E}+02$
1．590E＋02	$1.690 E+82$ $1.749 E+92$	1．510E－02	$1.620 \mathrm{E}+02$	$1.630 \mathrm{E}+82$	1． $649 \mathrm{~F}+\mathrm{Hg} 2$	1． 55 DE +82	$1.655 \mathrm{E}+02$	1．6EAE＋ 02	$1.680 \mathrm{~F}+\mathrm{t} 22$
2．010E＋92	2．040E＋ヶ2	2．070E＋02	2．109E＋日2	－ $2.1381{ }^{\text {a }}$＋82	1．9E． $9 \mathrm{Ec}+82$	$1.096 E+82$ $2.190 E+日 2$	$1.92 \mathrm{AE}+82$ $2.220 \mathrm{E}+82$	1．950．0．02	1．980F＋62
2．319E＋02	$2.349 \mathrm{E}+02$	2．378E＋02	$2.490 \mathrm{E}+02$	$2.430 \mathrm{E}+82$	2． $46005+02$	2．490E＋92	$2.520 \mathrm{E}+02$	2，550E＋號	$2.560 \mathrm{E}+02$

SENSIT SAMPLE B, *FUSION PEPRTOR*VFETOR-XS.SEN+UNCEPT.*PUNFF: CR, NI. FE, CL

 FRACTIOHAL PESFONSE UNCERTAIHTY DLIE TO XS-UHCERTAINTIES SFECJFIED IN THE COVARIANCE MATPIX FGR THIS ID:

SENSIT SAMPLE B. *FUSION REACTOR*VECTOR-XS.SEN+UNCERT.*RUN76: CR. NI. FE. CU
 P1(G) AND P2(G) ARE PER LE THARTY WIDTH DELTA-U AND NORMALIZED TD THE RESPONSE $11 P H I=$ (R, PHI) $=1.1227 B E+\square 4$

GRDUP	UPPER-E (EV)
	$1.700 \mathrm{E}+07$
2	$1.509 \mathrm{E}+07$
3	1.35月E+97
4	$1.200 \mathrm{E}+07$
5	$1.009 \mathrm{E}+07$
6	7.790E+06
7	$6.070 \mathrm{E}+86$
8	$3.6 \mathrm{BOE}+86$
9	2.865E+95
10	$2.232 \mathrm{E}+86$
11	$1.738 \mathrm{E}+06$
12	$1.353 E+86$
13	8.230E+05
14	$5.000 \mathrm{E}+85$
15	$3.030 \mathrm{E}+05$
16	$1.848 \mathrm{E}+85$
17	6.769E+04
18	2.480E+84
19	$9.129 \mathrm{~F}+83$
20	$3.350 \mathrm{E}+03$
21	$1.235 \mathrm{E}+03$
22	$4.549 \mathrm{E}+02$
23	$1.6 \overline{\mathrm{r}} 0 \mathrm{E}+02$
24	$6.148 \mathrm{E}+81$
25	2.260E+ +1
25	8.32¢E+80
27	$3.050 \mathrm{E}+80$
28	1.130E +8 ด
29	4.149E-01
39	$1.529 \mathrm{E}-01$

INTEGRAL

FRACTIONAL PESPONSE UNCERTAINTY DUE TO XS-UNCERTAINTIES SPECIFIED IN THE COVARIANCE MGTRIX FOR THIS ID:
RELATIVE STANDARD DEVIATIDN
$=D P / R$

- $6.6 \mathrm{B2E}-02$
$2.585 E-01$
$=2.585 E+01$ PER CENT

SENSIT SAMPLE B．＊FUSION REACTOR＊VECTOR－XS．SEN＋UNCEPT．＊PUNTFG：CR．NI，FE，CU

P1（G）AND P2（G）ARE PER LETHAPGY WIDTH DELTA－U AND NOPMALIZED TO THE RESPDNSSE 11PHI＝（R．PHI）＝1．1227BE＋Q4 FOR THE SUM OVER ALL PERTUPBED ZONES．LHERE EOTH CROSS SECTIONS WITH THIS ID ARE PRESENT IN THE MODEL THE NUMBER DENSITIES FOR THIS XS－PAIR ARE NDENI＝4．070日gE－02 AND NDEN2 $=4.07000 E-02$					
GROUP	UPPER－E（EV）	DELTA－U	P1（G）	P2（G）	
	$1.709 \mathrm{E}+07$	1．25E－91	0.		
2	$1.590 E+07$	$1.05 \mathrm{E}-01$	$-1.478 \mathrm{E}+00$	$-1.478 \mathrm{EE}+80$	
3	$1.350 \mathrm{E}+07$	$1.18 \mathrm{E}-91$	－5．142E－91	－5．142E－81	
4	$1.290 \mathrm{E}+07$	1．82E－61	－1．861E－01	－1．861F－91	
5	1． B －${ }^{\text {a }}$＋87	$2.50 \mathrm{E}-81$	－1．439E－01	－1．439E－01	
6	$7.799 \mathrm{E}+86$	$2.49 \mathrm{E}-1$	－1．261E－01	－1．261E－91	
7	6．878E＋86	5．00E－01	－1．019E－01	－1．019E－01	
8	3．6B8E＋96	$2.50 \mathrm{E}-81$	－1．385E－01	－1．385E－01	
9	2．865E＋86	$2.50 \mathrm{E}-91$	－1．985E－81	－1．905E－01	
10	2．232E＋86	$2.50 \mathrm{E}-01$	－2．536E－81	－2．596E－01	
11	1．738E＋85	$2.50 \mathrm{E}-01$	－3．849E－81	－3．849E－01	
12	$1.353 \mathrm{E}+86$	$4.97 \mathrm{E}-81$	$-1.062 \mathrm{E}+80$	－1．062E＋09	
13	B． $230 \mathrm{E}+45$	$4.98 \mathrm{E}-01$	－2．923E＋80	－2．92？ $\mathrm{E}+0 \mathrm{D}$	
14	5．89日E＋85	5．01E－01	－5．056E＋00	$-5.956 \mathrm{E}+80$	
15	$3.838 \mathrm{E}+85$	$4.99 \mathrm{E}-01$	－3．983E＋80	－3．98？	
16	$1.840 \mathrm{E}+85$	$1.09 \mathrm{E}+50$	－6．958E＋09	$-6.050 \mathrm{~F}+80$	
17	$6.760 \mathrm{E}+84$	1． $09 \mathrm{E}+00$	$-4.439 \mathrm{E}+80$	$-4.439 \mathrm{E}+80$	
18	2．489E＋94	$1.00 \mathrm{E}+90$	$-5.129 \mathrm{E}+98$	－5．129E＋9日	
19	9．120E＋93	$1.00 E+80$	－6．629E＋80	－6．629E＋80	
29	$3.350 \mathrm{E}+83$	9．98E－01	$-5.773 E+80$	－5． $733 \mathrm{E}+80$	
21	$1.235 \mathrm{E}+83$	1．00E＋90	－6．102E－81	－6．102E－01	
22	$4.540 \mathrm{E}+82$	1．00E＋00	－3．7日4E－81	－3．704E－01	
23	$1.6705+02$	$1.00 \mathrm{E}+\mathrm{Qa}$	－4．012E－81	－4．012E－91	
24	$6.140 \mathrm{E}+81$	9．99E－01	－3．513E－81	－3．513E－01	
25	$2.260 \mathrm{E}+81$	$9.99 \mathrm{E}-81$	－2．382E－01	－2．382E－01	
26	8．320E＋80	1．0日E +00	－1．296E－81	－1．296E－01	
27	$3.060 \mathrm{E}+80$	9．96E－91	－6．91rE－02	－6．01＇E－02	
28	$1.130 \mathrm{E}+8 \mathrm{D}$	1．0日E＋00	－2．148E－82	－2．148E－02	
29	$4.140 \mathrm{E}-81$	1．09E＋00 $1.11 \mathrm{E}+00$	$\begin{aligned} & -5.916 \mathrm{E}-03 \\ & -1.019 \mathrm{E}-03 \end{aligned}$	$\begin{aligned} & -5.916 E-03 \\ & -1.079 E-03 \end{aligned}$	
30	$1.528 \mathrm{E}-81$	$1.11 \mathrm{E}+8 \mathrm{~b}$	－1．0．9E－03		
INTEG			$-3.735 E+81$	$-3.735 E+0!$	

[^3]SENSIT SAMPLE B．＊FUSION REACTOP．＊VECTDR－XS．SEN＋UNCERT．＊RUNT6：CR．NI，FE，CU
 P1（G）AND P2（G）ARE FER LETHARGY WIDTH DELTA－U AND NORNALIKED TO THE RESPDNSE 11 PHI $=$（R．PHI）$=1.1227 B E+04$ THE NUMBER DENSITIES FOR THIS XS－FAIR ARE NDEN1＝ 4 SROSGADENS WITH THIS ID ARE PRESENT IN THE MODEL

GROUP	UPPER－E（EV）	DELTA－1．	P1（G）	P2（G）
1	1．709E＋07	1．25E－81	0.	
2	$1.500 \mathrm{E}+0 \mathrm{P}^{\text {P }}$	1．05E－91	－1．478E＋00	－6．757E－91
3	$1.350 \mathrm{E}+87$	1．18E－91	－5．142E－01	－3．22rE－01
4	$1.200 \mathrm{~F}+\square$ ？	$1.82 \mathrm{E}-\mathrm{O}_{1}$	－1．861E－91	－1．501E－a1
5	$1.009 \mathrm{E}+97$	2．59E－81	－1．439E－01	－1．132E－01
6	$7.790 \mathrm{E}+86$	$2.49 \mathrm{E}-81$	－1．251E－01	－9．24FE－02
7	6．079E＋86	5．80E－91	－1．019E－01	－7．401E－92
8	3．689E＋86	2．58E－D1	－1．385E－81	－9．692E－02
9	2．865E＋85	2．59E－${ }^{1}$	－1．905E－01	－1．16こE－01
10	$2.232 \mathrm{E}+86$	2．5日E－01	－2．596E－81	－1．256E－81
11	$1.738 \mathrm{E}+86$	2．50E－91	－3．849E－81	－1．306E－01
12	1．35jE＋06	4.97 E －91	－1．052E＋00	－1．0：9E－01
13	B．230E＋85	$4.98 E-81$	－2．923E＋80	－1．736E－92
14	5．009E＋85	5．01E－01	$-5.056 \mathrm{E}+80$	0.
15	$3.030 \mathrm{E}+05$	$4.99 E-01$	－3．983E＋90	0.
16	$1.848 \mathrm{~F}+85$	1．0日E＋00	－6．05QE＋80	ロ．
17	6．160E＋04	1． $\mathrm{AQE}+90$	－4．439E＋90	日．
18	2．480E +84	1． $\mathrm{CDE}+90$	－5．129F＋98	g．
19	$9.129 \mathrm{E}+03$	1．0日E＋ด日	－6．62）E＋8日	0.
21	$3.350 \mathrm{E}+93$	9.98 C － 1	$-5.775 \mathrm{E}+80$	θ.
21	$1.235 \mathrm{E}+03$		－6．192E－81	0.
22	4．549E＋02		－3．704E－91	0.
23	$1.670 \mathrm{E}+02$	1． $\mathrm{COE}+3 \mathrm{~B}$	－4．012E－91	9．
24	6．149E＋81	9．99E－ค1	－3．513E－91	9.
25	$2.260 \mathrm{E}+81$	9．99F－01	－2．J82E－91	9.
26	$8.329 \mathrm{E}+80$		－1．396E－01	9.
27	$3.060 \mathrm{E}+90$	9．96F－81	－6．017E－02	0.
28	$1.136 E+89$	1．00E＋80	－2．148E－82	0.
29	4．149E－91	$1.09 \mathrm{E}+90$	－5．916E－83	θ.
30	1．520E－91	1．11E＋80	－1．0＇9E－03	0.
INTEGR			$-3.735 \mathrm{E}+81$	－4．040E－01

THE DOUbLE SUM FOR DR／R－SQuare RESULTED IN A NEGATIVE NUMBER
DROVRSO $=-8.34913 E-B 5$
ANALYSIS TERMINATED ETR THIS IR－NUMER
Variance is set to zero for later total variance calculation

SENSIT SAMPLE B．＊FUSION REACTOR＊VECTOR－XS．SEN＋UNCERT．＊PUNT6：CR．NI，FE，CU

 THE NUHBER DENSITIES FOP THIS YS－PAIR ARE NDEN1 $=4$ ．OTO日RE－日2 AND NDEN2 $=4.0702 \theta E-g 2$

GROUP	UPPER－E（EV）	DELTA－U	P1（G）	P2（G）
	$1.709 \mathrm{E}+07$	1．25E－01		
2	$1.509 \mathrm{E}+07$	$1.05 \mathrm{E}-01$	－6．75TE－91	－6．767E－91
3	$1.3585+87$	1．18E－01	－3．2つら下－01	－3．227E－01
4	1．200E＋07	1．82E－81	－1．581F－01	－1．501E－91
5	1．060E＋67	2．59E－ด1	－1．132F－01	－1．132E－81
6	7．799E＋06	2．49E－П！	－9．247E－82	－9．24PE－G2
7	6．070E＋06	5．QDE－01	－7．401E－82	－7．401E－92
8	3．639E＋86	2．50E－G1	－9．692F－02	－9．692E－02
9	$2.865 E+96$	2.50 E －91	－1．16 5 －01	－1．16うE－01
10	$2.232 \mathrm{~F}+96$	2．5＠E－T1	－1．255E－01	－1．256E－01
11	1．738E＋96	2．59E－01		－1．306E－01
12	$1.353 \mathrm{E}+06$	4．97E－81	－1．859F．－01	－1．859E－81
13	8．230E＋05	4．98E－81	－1．786E－82	－1．786E－02
14	$5.900 \mathrm{E}+45$	5．01E－01	0.	9.
15	$3.039 \mathrm{E}+85$	4．99E－81	0.	0.
16	$1.840 \mathrm{~F}+85$	$1.00 \mathrm{E}+00$	0.	0.
17	6．i68E＋84	$1.00 \mathrm{E}+90$	0.	0.
18	2．480F＋84	$1.8 \mathrm{ME}+80$	0.	0.
19	9．120E＋93		0.	9.
20	$3.350 E+03$	9．99E－01	0.	0.
21	$1.235 \mathrm{E}+03$	1． $\mathrm{DQE}+8 \mathrm{O}$	0.	0.
22	4．540E＋82	$1.0 \mathrm{AE}+\bigcirc 0$	9．	0.
23	$1.670 \mathrm{E}+82$	$1.00 \mathrm{E}+80$	0.	θ.
24	6．140E＋91	9．99E－91	9.	0.
25	2．260E＋01	9．99E－91	0.	0.
25	$8.320 \mathrm{E}+$ ¢80	1．09E＋89	0.	0.
27	3．0ヶ9E＋80	9．96E－81	0.	9.
28	$1.13 \mathrm{E}+80$	1．0日E＋80	0.	9.
29	$4.14 \mathrm{EE}-81$	1． $\mathrm{BRE}+8 \mathrm{O}$	0.	0.
30	1．520E－01	$1.11 \mathrm{~F}+80$	8.	0.
INTEGR	RAL		－4．940E－81	－4．040E－81


```
VARIANCE. (DELTA-P OVER R)-SQUARE = (DR/R)SQ. = 4.974E-04
PELATIVE STANDARD DEVIATION = DRR = 
```

＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊SENSITIVITY PROFILES FOR CROSS－SECTIDN PAIRS WITH ID＝ 42 ＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
 FOR THE SUM OVER ALL PEPTUPRED ZONES，WHERE BDTH CROSS SECTIONS WITH TH IS ID ARE PRESENT IN THE MONEL THE NUIGEE DENSITIES FDP THIS $X S-P A I R$ ARE NDENI $=4.070$ OOE－Q2 AND NDEN2 $=4.0$ AREQE－g2

GROUP	UPPER－E（EV）	DELTA－U	P1（G）	P2（G）
	$1.100 \mathrm{C}+$（1）	1．25E－0．	0.	
2	$1.500 E+$ nt	1．185E－91	－6．767E－91	－2．464E－03
3	$1.350 \mathrm{E}+07$	1．18E－9！	－3．227E－81	－8．154E－84
4	$1.209 \mathrm{E}+97$	1．82E－a！	－1．591E－01	－2．78BE－04
5	1．090E＋97	2． $58 \mathrm{E}-\mathrm{BI}$	－1．132E－01	－2．022E－04
6	$7.790 \mathrm{E}+06$	2．49E－日	－9．24i E－02	－1．798E－94
7	$6.970 E+96$		－7．401E－92	－1．727E－64
8	$3.680 E+96$	2．5PE－ด！	－9．692E－92	－3．194E－04
9	2．065E＋86	2．5月E－ด1	－1．153E－0！	－5．229E－84
10	$2.232 \mathrm{E}+86$	2．50E－91	－1．256E－01	－8．115E－04
11	$1.738 \mathrm{E}+06$	2．50E－81	－1．306E－91	－1．397E－93
12	$1.353 \mathrm{E}+86$	4．97E－81	－1．959E－91	－3．834E－03
13	B．230E＋${ }^{\text {c }}$	4．98E－91	－1．786E－02	－9．181E－93
14	5．000E＋05	5．91E－ค1	0.0	－1．674E－82
15	$3.036 \mathrm{E}+85$	$4.99 E-81$	0.	－1．498E－82
16	$1.040 \mathrm{E}+05$	1．0QE＋00	0.	－2．526E－02
17	6．760F＋04	$1 . \mathrm{DQE}$ ¢	0.	－2．296E－E12
18	$2.480 \mathrm{E}+04$	1． AQE ＋ 9 ¢	0.	－4．05 ${ }^{\text {E }}$－ 02
19	9．120E＋03	$1.00 E+99$	0.	－9．979「－62
28	3． $359 \mathrm{E}+03$	$9.98 \mathrm{E}-81$	0.	－1．112E－Q1
21	$1.235 \mathrm{E}+93$	1．00E＋M0	0.	－1．084E－01
22	$4.540 \mathrm{E}+02$	1．09E＋90	9.	－1．212F－92
23	1． $5 \overline{\text { ¢ }} 0 \mathrm{E}+92$	1．0日E＋g日	0.	－2．591E－83
24	$6.149 \mathrm{E}+91$	9．99巨－01	0.	－3．591E－83
25	2．260E＋01	9．99E－91	0.	－4．093E－03
26	8．329E＋80	1．00E＋99	9．	－3．840E－03
27	$3.069 \mathrm{E}+80$	9．96E－81	日．	－2．973E－03
28	$1.130 \mathrm{E}+89$	1．99E＋80	9.	－1．75\％E－93
29	$4.149 \mathrm{E}-91$	1． $1.110 \mathrm{C}+9 \mathrm{O}$	0.	－9．036E－ค4
30	$1.520 \mathrm{E}-01$	1．11E +90	0.	－3．7ジeE－94
INTEGRAL			－4	－4．641E－9

$$
\begin{aligned}
\text { VAR IANCE. (DELTA-R OVER R)-SQUARE } & =(D R / R) S Q . \\
\text { RELATIVE STANDARD DEVIATION } & =1.804 E-95 \\
& =1.343 E-83 \\
& =1.343 E-81 \text { PER CENT }
\end{aligned}
$$

SENSIT SAMPLE B, *FUSION REACTOR*VECTOR-XS.SEN+UNCERT.*RUNT6: CR. NI. FE, CU

GROUP	UPPER-E (EV)	DELTA-U	P1 (G)	P2 (G)
1	1.7AOE+97	$1.25 E-81$	0.	
2	$1.500 \mathrm{E}+07$	$1.05 \mathrm{E}-91$	-6.767E-81	-2.89TE-02
3	1.35 E +07	1.18E-81	-3.227E-81	-1.232E-02
4	$1.290 \mathrm{E}+87$	1.82E-81	-1.501E-81	-5.231E-03
5	$1.0 \mathrm{D日E}+87$	2.50E-01	-1.132E-01	-3.845E-03
6	$7.790 \mathrm{E}+96$	$2.49 \mathrm{E}-91$	-9.247E-02	-2.878E-03
7	6.878E+96	5.00E-91	-7.40IE-02	-1.956E-03
8	3.689E+06	2.50E-01	-9.692E-82	-2.115E-03
9	$2.865 \mathrm{E}+86$	2.5PE-01	-1.163E-81	-2.034E-03
10	2.232E+06	2.5日E-01	-1.256E-81	-9.537E-94
11	$1.738 \mathrm{E}+96$	$2.59 \mathrm{E}-\mathrm{M}$	-1.396E-01	-2.470E-84
12	$1.353 \mathrm{E}+06$	$4.975-81$	-1.95.9 -01	-1.185E-84
13	B.230E+ ${ }^{\text {a }}$	$4.98 \mathrm{~F}-81$	-1.786E-92	-7.011E-85
14	$5.09 \mathrm{E}+85$	5.91E-01	0.	-5.68i6E-05
15	3.030E+85	4.99 F -01	0.	-2.431E-05
16	1.849E+05	$1.09 \mathrm{E}+90$	0.	-1.449E-85
17	6.760E+04	$1.00 \mathrm{~F}+89$	0.	-2.604E-86
18	$2.489 \mathrm{E}+94$	-1.00E+60	0.	-7.225E-07
19	9. $128 \mathrm{E}+83$	1.09E+00	0.	-3.303E- R $^{\text {P }}$
20	$3.350 E+03$	$9.98 E-$ ¢ 1	${ }^{0}$.	-7.82.3E-08
21	$1.235 E+83$	1.00F+ +90	0.	-7.554E-99
22	$4.549 \mathrm{E}+92$	$1.90 \mathrm{E}+9 \mathrm{O}$	0.	-1.91 4E-89
23	$1.670 \mathrm{E}+02$	$1.00 \mathrm{E}+80$	0.	-6.579F-10
24	6.149E+0.	9.99E-01	0.	-1.976E-10
25	2.269E+01	9.99E-01	0.	-4.81GE-11
26	8.329E+98	1. $29 \mathrm{E}+8 \mathrm{~A}$	0.	-9.934E-12
27	3.968E+80	$9.96 E-81$	0.	-1.691E-12
28	$1.130 \mathrm{E}+80$	1.00E+09	0.	-2.223E-13
29	4.149E-8!	$1.09 \mathrm{~F}+8 \mathrm{~g}$	0.	-2.24EE-14
30	1.520E-91	$1.11 E^{+}+90$	0.	-1.105E-15
NTEGRAL			-4.040E-81	-9.604E-03

 FRACTIDNAL PESPONSE UNCERTAINTY DUE TO XS-UNCERTAINTIES SPECIFIED IN THE COVARIANCE MATPIX FOR THIS ID:
VARIANCE, (DELTA-P OVER R)-S
PELATIVE STANDARD DEVIATION
$=(D R / R) S Q$
$=D P R$
$1.533 \mathrm{E}-96$
$1.238 \mathrm{E}-83$
$=1.238 E-01$ PER CENT

SENSIT SAMPLE B．＊FUSION PEACTMP＊VECTOR－X5．SEN＋UNCFPT，＊PIUN＇G：CR．N！．FE．EU

GROUP	UPPER－E（EV）	dELTA－U	$P 1(G)$	P2（G）
1	$1.700 E+8$ P	1．25E－81	0.	
2	$1.500 \mathrm{E}+87$	1．05E－01	－6．767E－01	－3．099E－92
3	$1.350 \mathrm{E}+87$	1．18E－01	－3．227E－01	－1．025E－02
4	$1.200 \mathrm{E}+87$	1．82E－91	－1．501E－0！	－3．614E－03
5		$2.50 \mathrm{E}-91$	－1．132E－01	－1．519E－93
6	7．790E＋06	2．49E－71	－9．247E－02	－3．874E－04
7	6．070E＋05	5．00E－Q1	－7．491E－02	－9．308E－06
8	3．689E＋05	2．50E－91	－9．693E－02	－4．664E－98
9	2．865E＋85	2．50E－91	－1．163E－01	－2．590E－ －$^{\text {c }}$
10	$2.232 \mathrm{E}+86$	$2.50 \mathrm{E}-01$	－1．256E－91	－2．595E－88
11	$1.738 \mathrm{E}+86$	2．50E－81	－1．395E－01	－2．73¢E－08
12	$1.353 \mathrm{E}+86$	$4.97 E-01$	－1．959E－81	－4．119E－88
13	8．239E＋85	4．98E－01	－1．736E－02	－5．486E－88
14	5．QRAE＋85	5．01E－01	日．	－5．087E－88
15	$3.030 \mathrm{E}+05$	$4.99 E-81$	θ.	－2．176E－00
16	$1.840 \mathrm{E}+05$	1．90F＋00	B．	－1．2BEE－98
17	6．760E＋04	1． $20 \mathrm{E}+8 \mathrm{O}$	0.	－2．330ㅌ－89
18	2． $400 \mathrm{E}+04$	1．0日E +80	0.	－6．45＾E－10
13	9．120E＋0？		0.	－2．35¢E－10
20	$3.350 \mathrm{E}+03$	9．98E－01	0.	－7．0n9E－11
21	$1.23 .5 \mathrm{E}+93$	1． $\mathrm{P日E}+80$	0.	－6．759E－12
22	$4.540 \mathrm{E}+82$	1． 1 OEE＋80	0.	－1．713E－12
23	$1.678 E+02$	1．G日E＋${ }^{\text {a }}$	0.	－5．897E－13
24	$6.140 \mathrm{E}+81$	9．99E－G1	0.	－1．7K8E－13
25	2．260E＋01	9．99E－01	0.	－4．399E－14
26	8． $329 \mathrm{E}+80$	1． D ¢E＋80	0.	－8．889E－15
27	$3.069 \mathrm{E}+80$	9．96E－6！	0.	－1．513E－15
28	$1.130 \mathrm{E}+80$	$1.00 \mathrm{E}+80$	0.	－1．989E－16
29	$4.140 \mathrm{E}-81$	$1.00 \mathrm{E}+00$	9.	－2．011E－17
30	$1.520 \mathrm{E}-01$	$1.11 \mathrm{E}+0 \mathrm{D}$	Q．	－9．885E－19
INTEGR			－4．040E－01	－5．51ヶE－03

 FRACTIONAL PESPONSE UNCERTAINTY DUE TO XS－UNCERTAINTIES SPEEIFIED IN THE COMARIANCE MATRIX FOR THIS ID：

```
VARIANCE (DELTR-R OVER P)-SQUARE = (DR/R)SQ. - 9.404E-07
RELATIVE STANDARD DEVIATIDN = DR/R =9.697F-04
    - 9.697E-02 PER CENT
```

SENSIT SAMPLE B，＊FUSION REACTOR＊VECTOR－XS．SEN＋UNCERT．＊PUN76：CR，N1．FE，CU
 PI（G）AND P2（G）APE FER LETHAPGY NDDH DELTA－U AND NOPMALIZED TO THE RESPONSE AR FPESENT IN THE MODEL

GPDUP	UPFER－E（EV）	dELTA－U	PI（ C_{2} ）	P2（G）
1	1．79日E＋07	1．25E－01	0.	0.
2	$1.509 \mathrm{E}+07$	1．05E－0！	－2．46ヘE－03	－2．454E－93
3	$1.350 \mathrm{E}+97$	1．18E－01	－8．1545－84	－8．154E－94
4	$1.20 \mathrm{AE}+07$	1．02F－91	－2．789E－94	－2．r80E－04
5	$1.000 E+07$	2．50゙ー01	－2．म22E－84	－2．022「－044
6	7．790E＋06	2．49E－01	－1． $\mathrm{T} 93 \mathrm{E}-84$	－1．79eE－94
7	6．070E＋06	5．00E－91	－1．7ア．TE－04	－1．727年－04
8	3．680E +86	2．59E－91	－3．194E－04	－3．194튼
9	$2.865 \mathrm{E}+06$	$2.50 \mathrm{E}-01$	－5．22PE－04	－5．229E－24
19	$2.232 \mathrm{E}+06$	2.50 F －91	－8．115E－94	－8．115E－04
11	$1.738 \mathrm{E}+06$	$2.50 \mathrm{E}-01$	－1．397E－03	－1．397E－93
12	1．35．3E．96	4．97E－01	－3．83AE－03	－3．8．7．4E－03
13	8．230E＋85	$4.38 \mathrm{E}-\mathrm{Cl}_{1}$	－9．IT1E－83	－9．181区－03
14	5．909E＋枵	5．01E－91	－1．5，AE－82	－1．67－4E－02
15	3．038E．95	4．99E－01	－1． 49 ？${ }^{\text {c－02 }}$	－1．49A宥－62
16	$1.849 \mathrm{E}+85$	1．anctag	－2． 5 a゙ら－02	－2．526E－02
17	6． $760 \mathrm{C}+84$		－2．2？5¢－82	－2．296F－92
18	$2.188 \mathrm{E}+94$	1．CDE＋Ma	－4．055 ¢－82	－4．055E－02
19	$9.12 \mathrm{BE}+93$	1． R $_{\text {¢ }}$	－9．979E－02	－9．9－9E－132
20	3．35＠E＋93	9．99E－01	－1．112E－91	－1．112E－a1
21	$1.235 E+03$	1．TPE＋AD	－1． $2845-01$	－1．0กAE－ 11
22	$4.549 \mathrm{E}+02$	1． $1.00{ }^{\text {a }}$	－1．212E－92	－1．217E－ 2
23	1．678E＋82	1．0kets	－2．591E－03	－2．591E－03
24	$6.149 \mathrm{E}+81$	9．93E－n1	－3．591E－93	－3．591E－03
25	2．260E＋${ }^{\text {d }}$	9．99E－91	－4．993E－93	－4．033E－63
26	$8.329 \mathrm{~F}+8 \mathrm{O}$	1．90E＋90	－3．84nE－93	－3．24RE－03
27	$3.960 \mathrm{E}+8 \mathrm{~B}$	9．9「逐－81	－2．973E－03	－2．973E－C13
28	$1.139 \mathrm{E}+8 \mathrm{D}$	$1.00 E+90$	－1．762E－03	－1．752E－03
29	4．140E－81		－8．0ЗคูE－84	
3.9	1．529E－91	1．11E＋${ }^{\text {a }}$	－3．$-38 \mathrm{E}-84$	－3．738E－84
NTEGRAL			－4．641E－01	－4．541E－01

VARIANCE，（DELTO－R OVER R）－
PELATIVE STANDARD DEVIATION
$=(D R / R)$
$=D R / R$
1．869E－03
GLATIVE STANDARD DEVIATION $=$ OR $=4.323 E-82$ PER CENT

SENSIT SAMPLE B，＊FUSION REACTOR＊YECTOR－XS．SEN＋UNCERT．＊RUN76：CR．NI，FE，CU

GROUP	UPPER－E（EV）	DELTA－U	P1（G）	（G）
	1．709E＋97	1．25E－91		
2	$1.500 \mathrm{E}+87$	1．05E－01	－2．897E－02	－2．897E－02
3	$1.350 E+87$	1．18E－9！	－1．232E－02	－1．232E－02
4	$1.280 \mathrm{E}+87$	1．82E－8！	－5．2ミ1E－03	－5．231E－93
5	1．80日E＋87	2．59E－91	－3．845E－03	－3．8ム5E－03
6	7．$\overline{\text { ¢ } 98 E+86 ~}$	2．43E－81	－2．878E－03	－2．878E－83
7	6．0，9E＋06	5．00E－91	－1．956E－03	－1．956．F－03
8	3．680E＋86	2．59E－01	－2．115E－93	－2．115F－03
9	2．865E＋86	2．58E－91	－2．034E－03	－2．034E－83
19	2．232E＋96	$2.59 \mathrm{E}-01$	－9．537E－94	－9．53iE－04
11	$1.738 E+96$	2．59E－01	－2．4TME－84	－2．478E－ 14
12	$1.353 \mathrm{E}+06$	4．975－91	－1．185E－04	－1．195E－94
13	B．230E＋05	$4.99 \mathrm{E}-91$	－7．911E－85	－7．011E－05
14	$5.000 \mathrm{E}+05$	5．91E－01	－5．686E－85	－5．686E－85
15	$3.030 \mathrm{E}+05$	$4.99 \mathrm{E}-01$	－2．431E－85	－2．431E－65
16	$1.840 \mathrm{E}+05$	$1.09 \mathrm{E}+00$	－1．44JE－85	－1．440E－95
17	6．760E＋04	1．9日E＋ 1 O	－2．624E－06	－2．69AE－06
18	2．189E＋94	1．6日E +00	－7．22 ${ }^{\text {cie }}$－97	－7．225E－97
19	9．12¢E＋03	$1.00 \mathrm{E}+90$	－3．3913E－87	－3．3ค̣ㅌ－97
20	$3.359 \mathrm{E}+83$	$9.98 \mathrm{E}-81$	－7．ḞTE－08	
21	$1.235 \mathrm{E}+93$	1． $\mathrm{BRE}+80$	－7．55ME－89	－7．554E－99
22	$4.540 \mathrm{E}+82$	1． $\mathrm{\square} \mathrm{E}$ E＋日も	－1．314E－99	－1．914E－39
23	1．64＇0E＋82	1． $\mathrm{BQE}+80$	－6．5P3E－19	－5．5P9E－19
24	$6.149 \mathrm{E}+81$	$9.99 E-81$	－1．9－5E－10	－1．9P6E－19
25	$2.260 \mathrm{E}+9 \mathrm{l}$	$9.99 E-81$	－4．816E－11	－4．816E－11
26	$8.320 \mathrm{E}+89$	1．80E＋80	－9．93AE－12	－9．934E－12
27	$3.969 \mathrm{E}+90$	$9.96 \mathrm{E}-81$	－1．69IE－12	－1．591E－12
28	$1.130 E+80$	1．00E＋90	－2．223E－13	－2．22？［－13
29	4．149E－81	$1.00 \mathrm{E}+9 \mathrm{O}$	－2．249E－14	－2．248E－14
30	1．520E－81	$1.11 \mathrm{E}+00$	－1．1ASE－15	－1．105E－15
INTEGR			－．9．594E－03	－9．69AE－03

 FRACTIONAL RESPONSE UNCERTAINTY DUE TO XS－UHICERTAINTIES SPECIFIED IN THE COVARIANCE MATRIX FOR THIS ID：

RELATIVE STANDARD DEVIATIDN
－2．B37E－อ2 PER CENT
 PI（G）AND P2（G）ARE PER LETHARGY WIDTH DELTA－U AND NOPMAL IZED TO THE RESPONSE 11PHI＝（R．PHI）＝ $1.12278 E+04$ FOR THE SUM OVER ALL PERTUPEED ZONES．LHERE BOTH CROSS SECTIONS WITH THIS ID ARE FRESENT IN THE MODEL

GROUP	UPPEP－E（EV）	DELTA－U	P1（G）	P2（G）
	1．790E＋07	1．25E－01		
2	$1.500 E+07$	1．05E－01	－3．9日9E－02	－3．009E－02
3	$1.350 \mathrm{E}+97$	1．18E－01	－1．025た－92	－1．025E－82
4	$1.200 \mathrm{E}+97$	1．82E－91	－3．614E－03	－3．614E－03
5	$1.000 \mathrm{E}+97$	2．50E－91	－1．519E－03	－1．519E－03
6	7．790E＋96	2．49E－01	－3．8T4E－94	－3．874E－04
7	6．070E＋86	5． $20 \mathrm{E}-01$	－9．313E－96	－9．3EEE－96
8	$3.689 \mathrm{E}+86$	2．50E－01	－4．654E－08	－4．664E－98
9	2．865E＋06	2．50E－91	－2．5P日E－98	－2．580E－08
10	$2.232 \mathrm{E}+86$	$2.59 \mathrm{E}-91$	－2．595E－88	－2．5．35－98
11	$1.738 \mathrm{E}+86$	$2.50 \mathrm{E}-91$	－2．738E－98	－2．736E－98
12	1． $353 \mathrm{E}+86$	$4.97 E-91$	－4．119F－08	－4．119F－88
13	B．230E＋85	$4.985-81$	－5．496E－08	－5．48EF－08
14	5．00อE＋85	5．01E－01	－5． $\mathrm{DO}^{-\mathrm{E}-08}$	－5．037E－08
15	$3.030 \mathrm{E}+85$	4．99E－01	－2．175E－0日	－2．176E－08
16	1．94DE＋85	1．00E＋80	－1．2A．3E－88	－1．289E－8B
17	$6.760 \mathrm{E}+84$	$1.06 \mathrm{E}+$ 明	－2．33AE－89	－2．33195－99
18	2．480E＋04	1． $\mathrm{P日E}+8 \mathrm{O}$	－6．454E－10	－6．464E－10
19	$9.129 \mathrm{E}+93$	1．0日E＋80	－2．955F－10	－2．953E－10
20	$3.350 \mathrm{E}+03$	9．98F－81		－7．009E－11
21	$1.235 \mathrm{E}+03$	1． $\mathrm{OPF}+\mathrm{CQO}$	－6．759E－12	－6．759E－12
22	$4.540 \mathrm{E}+82$	$1.80 \mathrm{E}+9 \mathrm{O}$	－1．713E－12	－1．713E－12
23	$1.670 \mathrm{E}+82$	1． $\mathrm{DOE}+\mathrm{OQ}$		－5．83．5－13
24	$6.140 \mathrm{E}+81$	9．99E－81	－1．7SSER－13	－1．768E－13
25	$2.260 \mathrm{E}+8$ I	9．99E－81	－4．3＠กE－14	－4．309E－14
26	$8.320 \mathrm{E}+80$	1．0日E＋80	－8．P99E－15	－8．839E－15
27	$3.960 \mathrm{E}+98$	9．96E－01	－1．513E－15	－1．51］E－15
28	$1.138 \mathrm{E}+89$	1． OgE $^{\text {cog }}$	－1．9R9E－16	－1．989E－16
29	4．140E－9！	1． $\mathrm{CQE}+8 \mathrm{O}$	－2．811E－17	－2．011E－17
30	1．520E－01	1．11E＋00	－3．885E－19	－9．805F．－19
INTEGRAL			－5．51PE－03	$-5.517 E-03$


```
YARIANCE. (DELTA-R DVER R)-SQUARE = (DR/P)SQ. : 4.145E-07
RELATIVE STANDARD DEVIATION = DR/P = 6.438E-04 % % = %.438E-82 PER CENT
```


*************************** PARTIAL SUNE OF P.ESPDNSE UNCEPTAINTIE

\qquad
THE RESPONSE UNCERTAINTIES DUNG THE STRING OF IMPUT COVAPIANCES
PARTIAL SUM OF VARIANCES
RELATIVE STANDARD DEYIATION
$=9.648 \mathrm{E}-0$
$9.822 \mathrm{E}-51=9.822 \mathrm{E}+91 \mathrm{PER}$ CENT

ASSUMING NO CORRELATION AMONG THE STRING OF INPUT COYARIANCES
NUTEERS 8 THROUGH 12 have been summed and yield
RELATIVE STANDARD DEVIATION

$$
\begin{aligned}
& =6.151 \mathrm{E}-92 \\
& =2.430 \mathrm{E}-01=2.480 \mathrm{E}+91 \text { PER CENT }
\end{aligned}
$$

ASSUMING NO CORRELATION AMONG THE STRING OF INPUT COVARIANTES.
PARTIAL SUM OF VARIANCES
RELATIVE STANDARD DANCES
$=2.475 \mathrm{E}-02$
$=1.573 \mathrm{E}-91$
= $1.573 E-01=1.573 E+91$ PER CENT

ASSUMING NO CORPELATION AMONG THE STRING OF INPUT COVARIANCES
PARTIAL SUM OF YARIANCES
RELATIVE STANDARD DEVIATION
$=2.932 \mathrm{E}-0$

- 4.507E+8I PER CENT

THIS CDMPLETES THE INDIVIDUAL VECTOR CROSS-SECTION UNCERTAINTY ANALYSI
ASSUMING THAT ALL SPECIFIED $\times S$-COVARIANCES ARE UNCORPELATED (TOTAL VARIANCE, (DELTA-R OYFR R)-SQUARE TDTAL RELATIVE STANDARD DEVIATION
$1.1296+89$

- 1.12gE +82 PER CEN

Prinled in the Uniled Slales of America. Availahle from
Nitional Technical Informalion Servie
US Deparimiens of Conimertic
S285 Purl Royal Road Springtikid. VA 22I6I

$001-025$	4.00	$126-150$	7.25	$251-275$	10.75	$376-400$	13.00	501.525	15.25
$026-050$	4.50	$151-175$	1.00	$276-300$	11.00	401.425	13.25	526.550	15.50
$051-075$	5.25	$176-200$	9.00	301.325	11.75	$426-450$	14.00	551.575	16.25
$076-100$	6.00	$201-225$	9.25	326.350	12.00	451.475	14.50	$576-600$	16.50
$101-125$	6.50	$226-250$	9.50	351.375	12.50	476.501	15.00	$601-u p$	

Note: Add \$2.50 lint cash additional IOR-rage inctement from 601 puger up.

[^0]: +) IGMI = Number of neutron groups in the problem:
 IGM1 = IGM if pure neutron calculation is performed (NCOUPL $=0$), IGM1 = NCOUPL if coupled neutron/gamma-ray calculation is performed.

[^1]: * The author is indebted to R. J. Labauve of LASL (T-2) who provided this section and cooperated with the author in supplying needed data for many practical applications of the SENSIT code.

[^2]: * Magnetic Fusion Energy Computer Center at Lawrence Livermore Laboratory (LLL) in Livermōre, Californiā.

[^3]: VARIANCE．（DELTA－R OVER P）－SQUARE＝（DR／R）SQ．$=6.626 E-82$
 RELATIVE STAMDAPD DEVIATION \quad DR $\quad=2.574 E-\theta 1$ PER CENT

