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A HYBRID METHOD

Gary S.

FOR THE NUMERICAL SOLUTION OF THE ELECTRON TRANSPORT

EQUATION: THE REDUCED SOURCE METHOD

Fra

by

ey, Kenneth Lee, and M“chael A. Stroscio

ABSTRACT

The problem of correctly transRortina the suDra-
thermal electrons produced i; IaserLplasm; interactions
is complicated by the fact that the suprathermal mean
free path varies over approximately ten orders ofmag-
nitude for typical laser fusion conditions. The reduced
source method (RSM) offers a means of treating transport
under such conditions. We derive the reduced source for
the special case where the initial distribution is
determined by multigroup diffusion. This special case
represents an unnecessary restriction on the applica-
tion of RSM to suprathermal electron transport.

I. INTRODUCTION

One of the major difficulties encountered in transporting suprathermal

electrons produced by laser-plasma interaction 1-5
is due to the rapidly varying

mean free path of the suprathermal electrons. The mean free path, Amfp, is

related to the suprathermal velocity, v, and the background electron density,

n through Amfp w4/ne.e’
For typical laser-produced plasmas, Amfp varies over

ten orders of magnitude from the underdense region outside of the critical

surface to the overdense region inside of the critical surface. An adequate

treatment of suprathermal electron transport must yield accurate solutions

in the long mean free path (free streaming) limit as well as the short mean

free path (diffusive) limit.



Previous attempts to treat suprathermal electron transport have utilized

a wide variety of numerical schemes. (1) The multi group diffusion method,

where the distribution function is taken as a truncated angular expansion of

Legendre polynomials, has been utilized in several treatments of SET.6-9

These algorithms are suitable in short mean free path regions but are inadequate

in the free streaming limit. (2) In addition, Monte Carlo treatments of SET
6,10-14are available. The Monte Carlo treatment is, of course, adequate for

all mean free paths; however, it is generally acknowledged that this method

requires a relatively large number of numerical operations. (3) The method

of discrete ordinates, where the transport equation is evaluated in a set of

discrete angular directions, has been applied to SET and it is found to require

fewer numerical operations than Monte Carlo transport. 14-19 This mthod is

difficult to include in a Lagrangian hydrodynamics code. (4) Progress has

been made in SET by utilizing a two-dimensional, two-fluid diffusion treat-

ment that is certainly adequate in the diffusion regime.10 (5) A hybrid model,

which attempts to treat each velocity group in a given hydrodynamic cell by

either diffusion or free streaming equations, has been developed. 20 This model

does not provide transport solutions that are independent of the mean free

path that is chosen to separate the long and short mean free path regimes. In

addition, it is necessary to restrict the source distribution in ways that

may not be consistent with the existence of plasma instabilities such as the

Weibel instability.21’22 (6) The transport of long mean free path electrons

in the region of resonant fields has been accomplished by performing a “bounce-
,,23

average. Appropriate methods of interfacing this analysis with the transport

in the short mean free path regime are unclear. (7) A rel:;ivistic transport

equation
24

has been cast in the multigroup diffusion form.

These methods of treating SET all have their own regime of validity. The

most general method is Monte Carlo transport; however, there is a clear need to

reduce the number of required computations. A method which is capable of (a)

reducing the number numerical operations required and (b) yielding the accu-

racy of a full Monte Carlo scheme has been utilized by one of us (G.S.F. ) in

the area of radiation transport. 26,27 This method, the reduced source method

(RSM), is discussed in the context of SET.

present the transport equation appropriate

a general discussion of the reduced source

2

Specifically, in Section II we

to SET. In Section III we give

method and derive the reduced source



for a special case. In Section IV we

for the inclusion of electric fields.

II. SUPRATHERMAL ELECTRON TRANSPORT

present a preliminary iteration scheme

EQUATION

The equation describing the transport of suprathermal electrons has fre-

quently been taken to be a Fokker-Planck approximation to the Boltzmann

equation. 6,17,28 In this treatment, the Boltzmann equation for the distribution

function f(r,v,t,p) is taken

af V(l - p2)M+uv—+
at ~r r

as

1)af+l .x=g
m me av +s

Coil .
(1)

for the case of spherical geometry in one dimension. In Eq. (l), H = cosf3,

e is the angle between the velocity and radius vectors, and r, v, and t are the

radius, suprathermal velocity, and time, respectively. S is the source of

suprathermal electrons and ~ is taken as et to include the possibility of elec-

tric field generation.
6f

The collision operator, ~ ~in the limit where

collisions are dominated by small-angle scattering afi81!he suprathermal-

suprathermal interaction is assumed to be small, becomes the Fokker-Planck

operator,

(2)

In Eq. (2), ne is the cold electron density, Z is the charge of the cold ionic

background, Ln A is a coulomb logarithm, and e and me are the electron charge

and mass, respectively. We note that Ref. 17 contains a sign error in the lead-

ing term of the Fokker-Planck operator. Defining the flux of particles,

@ = vf, Eqs. (1) and (2) may be combined to give

laJ+v~+~afQ-

7 at y[:%-q=[$) $%[$)% ‘3)

,[$)~~(1-llz)f+ss

where [1
: .- 4ne:ne

m
!LnA. In our discussion of the RSM, it is convenient

e
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to cast Eq. (3) into the form

L($) = S, (4)

where

(5)

III. DERIVATIONOF THE REDUCED SOURCE FOR SPECIAL CONDITIONS

The basic philosophy of the RSM has been discussed in detail in Refs. 26

and 27. It is assumed that an approximate solution to Eq. (4) has been obtained

by~ convenient means, e.g., multigroup diffusion. Let this approximate

solution be $A. Then,

L($) - L($A) =S - SA= SR, (6)

where SR is the reduced source and SA is the approximate source corresponding

to ($A. From Eq. (6) the reduced source may be written as

Letting 6 = $ - @A, we obtain for a linear operator L,

L(d) = SR .

(The operator L of Eq. (5) is @linear since

field depends on the particle flux $. Discuss”

(7)

(8)

the self-consistent electric

on of this point is deferred to

Section IV.) From Eqs. (7) and (8) the basic idea of the RSM is apparent: an

approximate solution $A is obtained by ~ convenient method and is utilized

to calculate the reduced source, SR, which is taken as the source in Eq. (8).

Equation (8) is solved by the Monte Carlo method. For cases where @A is a good

approximation to the exact solution, it follows that SR = S - SA C< S; hence,

the Monte Carlo solution of Eq. (8) requires many fewer numerical operations

for an accurate solution than does Eq. (4). This last observation follows from

4
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the fact that the number of Monte Carlo simulation particles required for a

solution of given accuracy is proportional to the square of the source.

Multigroup diffusion generally provides an accurate solution to $ in the

short mean free path regime. In particular, the multigroup diffusion solution

is expected to be accurate in the overdense region of the plasma, but is, of

course, suspect in the plasma corona.

In the remainder of this report, we consider the special case where @A is

approximated by the multigroup diffusion method. In this case it is possible

that @A is a poor approximation to @ in the corona and we expect the Monte

Carlo solution of Eq. (8) to require essentially the same number of numrical

operations as a full Monte Carlo treatment. It is possible that an accurate

solution for @A could be obtained in the corona by the techniques of Ref. 23.

This possibility is being considered; however, this is not discussed here.

The multigroup diffusion technique in the Pi--approximation is applied

by assuming a solution of the form

@A =Oo+o, ki 9 (9)

“ where the expansion has been truncated after the PI term. Upon taking the

first moment, +f( )d~, and second moment, +f( )udsi , of Eq. (4)

with @ = $A, one obtains

, a$o , 3($
—— _+#pl
v at ‘~~r 3mv (lo)

(11)

where <S>= & JSdQ, <p.S~ = & JpSdSl , and we have used

in obtaining the moments. Equations (10) and (11) represent, respectively, the

first and second moments of the transport equation. These equations are rewritten

as

<>

-, a~o , a~l

+(
a@l @l ,Z$l + e E —

~= s . —- —— — — —
v at 3 ar 3r mv ~v v 1

(13)
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<>+4Jl[l! &+),p=3@ (14)

where -c (p) is defined by comparison with Eq. (10) [Eq.(11)]. From Eqs. (4)

and (7) with $ = @A, one obtains

[

, a~o a~l +(l-P’)o, _m——
‘R=s-

+u2_

v at ar r mv

+ T + ,,] = ,s -<s>-3,<.s>, + (,2 -.’., :-~
* [1

+ (P2- M’o)4+(:+) , (15)

where p20 = 1/3. This reduced source for the electron transport equation differs

from that derived for radiation transport
26,27

in three respects: (1) an

anisotropic source must be included as is represented by the presence of the

first three terms in Eq. (15); (2) the electric field must be included in any

self-consistent one-dinx?nsional formulation as is manifest in Eq. (15) by the

presence of the terms containing IEI; and (3) the remaining terms in Eq. (15),

other than electric field or source terms, differ from the corresponding radi-

ation transport reduced source as a result of the basic differences in the

electron and radiation transport equations. The electric fields in Eq. (15)

have been treated purely formally to this point. That is, the electric field

has been taken as given independently of the particle flux $. This is, of

course, not the case and this must be corrected by iteration of the electric

field as a function of the particle flux.

IV. A PRELIMINARYITERATIONSCHEMEFORTHE INCLUSIONOF ELECTRICFIELDS

The electric field depends on the current, JH, associated with the supra-

thermal electron flux $ and in turn on the cold return current, Jc. The first

step in the proposed iteration scheme is to utilize the multigroup diffusion

approximation to $, namely @A~ in order to calculate IE”l= IE(oA)I. This

value of IEI is then inserted into L and Eq. (8) is solved by the Monte Carlo

method. The newvalueof$, $(1) is then used to calculate IEII= lE(@(l))l.

This iteration is repeated until

6



IEnl - lEn-ll <cl , (16a)

I$’-$’-’ -2 9 (16b)

where n refers to the index defining the iteration and El and E2 represent

user-defined convergence criteria.

v. CONCLUSION AND SUMMARY

The RSM provides a consistent method of treating SET in both the short

and long mean free path regimes of a laser-produced plasma. In addition to

reducing the time required by a full (but accurate) Monte Carlo simulation,

the RSM provides a method of interfacing different methods of solution. We

have restricted our discussion to the case where an approximate solution is

obtained by the multigroup diffusion approximation. In this case the transport

solution in the plasma corona is suspect and we expect to do essentially a full

Monte Carlo treatment in the corona.

The RSM is by no means limited to this treatment. For example, a promising

approach which is being investigated is based on using a multigroup diffusion

solution for $A in the short man free path regime and a “bounce-averaged”

SOIUtiOn for $A in the long mean free path regime where resonant fields and

the reflecting plasma sheath play major roles in suprathermal electron trans-

port.

In this report, we have presented a general discussion of the RSM for SET

and have given an example that obtains when $A is determined by multi9rouP

diffusion. This

ly investigating
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