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ABSTRACT

Let R be closed, bounded, simply connected

region in the plane. Let P denote the Dirichlet

problem Auxx + 2Bu
XY

+ Cu = G on R in which A, B,

C, G depend on x, y, u, u: UYe It is assumed that

A,B,C satisfy a uniform ellipticity condition and a

condition (see L. Bers, F. John, and M. Scheichter,

“Partial Differential Equations,” Interscience Publ.,

1964, pp. 262-264) which enables uniqueness of the

solution of P to be established by means of a maximum

principle; also it is assumed that R and the coeffi-

cient functions are such that u ~ C4 on R. Several

finite difference analogues of P are studied which

use, essentially, central differences except near

the boundary. One such scheme uses the method of

J. H. Bramble and B. E. Hubbard, “Contributions to

Differential Equations,” 2, 319-340, 1963, to treat

the term 2BuXY. It is shown that the solutions of

the finite difference analogues converge, with de-

creasing mesh width h, to the solution of P. Moreover,

the error is o(hp) with p either one or two depending

on which particular combination of difference equations

in the interior and at the boundary of R is used.
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In this paper, we are

theoretical justification for

tain numerical approximations

CNAPTER I

INTRODUCTION

concerned with the problem of extending the

using the method of finite differences to ob-

to solutions of Dirichlet problems involving

second

in two

region

order, quasilinear, uniformly elliptic partial differential equations

independent variables on a closed, bouncled,and simply connected

R.

The use of the method of finite differences results, through a pro-

cess of “discretization,” in numerical approximations to values of the so-

lution of a given problem at a discrete set of points In the region asso-

ciated with the problem. The points, called mesh points, at which numerical

approximations are calculated are separated by a characteristic distance

called the mesh width. The use of a finite difference method is theoreti-

cally justified if it can be shown Chat solutions of the resulting finite

difference analogues corresponding respectively to successively smaller

mesh widths converge to the solution of the continuous problem.

Until recently, the investigations of the

ing mesh width, of finite difference analogues of

elliptic partial differential equations have been

convergence, with decreas-

Dirichlet problems for

concerned with linear equa-

tions. A brief review of the results of these investigations is helpful in

placing similar studies for quasilinear equations in proper perspective.

1
Some of the results

nounced in Abstract 66T-287,
contained in this dissertation were first an-
Notices, Amer. Math. Sot., 1.3,496 (1966).

1



2

Studies of the convergence of solutions of finite difference ana-

logues of linear elliptic partial differential equations can be roughly

classified into two groupe. The principal objective of the studies in the

first of these two groups is to prove that the solutions of a finite dif-

ference analogue of ● given continuous problem converge, aIIthe mesh width

is decreased to zero, to ● solution of the given problem. Me of”the first2 of

these studies is reported in Courant, Friedrichs, and Lewy [1928].3 In

this, it is shown that solutions of a finite difference approximation to

the Dirichlet problem for Laplace’s equation converge, with decreasing mesh

width, to the solution of the given problem.

nonconstructive in the sense that it provides

in ● solution of ● finite difference analogue

value of the mesh width can be estimated.

The studies included in the second group

extensive results in that explicit estimates for

in terms of the boundary values and the shape of

However, the proof given is

no means by which the error

corresponding to a finite

provide considerably more

the error, expressed either

the region ●ssociated with

.

‘

the problem or by means of the solution of the continuous problem, are given.

However, in order to get these “better” results, more conditions must be im-

posed on the coefficient functions, the boundary values, ●nd the shape of

the region. The usual requirement is that the solution of the continuous

problem possess bounded partial derivatives up to fourth order. Of these

studies, one of the earliest and best known is Gerschgorin [1930].4 Gersch-

gorin establishes convergence, with decreasing mesh width, of solutions of

.

[1954],

2See, ●lso, Downing [1960].

3
‘The use of brackets, [ ], indicates reference to the bibliography.

4
See ●lso Laasonen [1957], Rosenbloom [1952], Walsh and Young [1953],

and Wasow [1952], [1957].

.
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*

.

the finite difference analogue of the Dirichlet problem for Laplace’s equa-

tion considered by Courant, et al. [1928], by showing that the error in a——

solution of the finite difference approximation Corresponding to ● finite

5
value of the mesh width is majorized by a function whose modulus is pro-

qwttional to the product of the square of the mesh width and the maximum of

the moduli of the fourth partial derivatives of the solution of the continu-

ous problem. Gerschgorin also considers Dirichlet problems involving some-

what more general elliptic partial differential equations than Laplace’s

equation; however, fairly eevere restrictions are placed on the coefficients

in these equations.
6

The investigations reported in this paper concerning finite differ-

ence analogues of Dirichlet problems for quasilinear elliptic partial dif-

ferential equations ●re in the second of the two groups described ●bove,

whereas, bbher published results for quasilinear equations ●res for the

most part, in an intermediate position between these two groups.

Although the method of finite differences is widely used to obtain

approximate solutions of Dirichlet problems for quasilinear elliptic par-

tial differential equations, the theoretical justification for such proced-

ures is very limited. The earliest published proof of the convergence, with

decreasing mesh width, of such approximations is given in Bers [1953]. In

this investigation, the use of the finite difference method for obtaining

●pproximate solutions of the problem given by

5
A function f is majorized by a function g in ● region R if

ifI s g at every point in R.

6
A more detailed discussion of Gerschgorin’s results is given in

Chapter XI where ● comparison is made between these results and the results
obtained in the sequel.



4

(1.1) AU - F(x,y,u,bu/bx,bu/bY)s (X,y) E

(1.2) u - 8(%Y) s (%Y) ~

where A denotes the Laplace operator a2/ax2 + a2/*2,

connected, bounded region in the plane with boundary S,

continuous function on S is studied. It is shown that

derivative of F with respect to

derivatives of F with respect to

then the Dirichlet problem for the

u is nonnegative and

R

s

R is ● simply

●nd g “is ● given

if the partial

if the partial

?h@x ●nd au/@ are uniformly bounded,

finite difference equation obtained by

replacing the derivatives of equation (1.1) with central divided differ-

ences has a unique solution and that the solution of this problem tends to

a solution of the given problem as the mesh width is decreased.

Studies of the Dirichlet problem given by equations (1.1) and (1.2)

where F =’F(x,y,u) ●re reported in Ablow and Perry [1959], Pohozaev [1960],

Douglas [1961], Levinson [1963], McAllister [1964c], Parter [1964], ●nd

Greenspan ●nd Parter [1965].

Ablow ●nd Perry and Pohozaev consider the existence of a nonnegative

solution of this problem where F.uz ●nd g is nonnegative. The exis-

tence of ● unique solution of the continuous problem is demonstrated. Mc-

Allister studies ● discretized version of the same problem and proves con-

vergence for an iteration scheme given by Ablow ●nd Perry.

Douglas [1961] presents an

of algebraic equations which ●rise

by equations (1.1) and (1.2) where

●lgorithm for solving the nonlinear system

from discretization of the problem given

F = F(X,y,U) which utilizes the ●lter-

.

.

.

.
nating direction implicit iteration method. The region R is

the unit square in this study, ●nd convergence of solutions of

problem with decreasing mesh width is proved provided

taken to be

the discretizad
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~ (X,Y,U) 2 A >- m , (X,y) e R.

In Levinson [1963], the problem studied by Douglas [1961] is tr&ed

analytically for a more

tions and the condition

1im

general region subject to certain smoothness condi-

inf - 2 0, (x,y) c R.
[Ul+.ea

u

Levinson proves that the given problem has a bounded solution u of class

C2
in R ●nd of class C in R+ S.

The results reported in Parter [1964)

[1965] consist of extensions ●nd applications

and in Greenspan ●nd Parter

of Levinson~s results. The

behavior of solutions of finite difference analogues of the problem con-

sidered by Levinson are studied, and convergence of these solutions, ●s the

mesh width is decreased, to ● solution of the continuous problem is estab-

lished provided the continuous problem is ●ssumed to have a unique solution

,,7,
and the finite difference equations ●re of “positive type.

The solution of a finite difference ●nalogue of a Dirichlet problem

involving an elliptic partial differential equatd.~n containing a different

type of nonlinearity from those listed above is reported in Young and Wheeler

[1964]. The use of the Peaceman-Rachford method to solve the linear systems

which arise together with the use of “natural iteration
,,8is investigated

as a means of solving ● finite difference ●nalogue of the problem given by

3For a definition of finite difference equations of “positive type,”
see Forsythe and Wasow [1960] or Chapter III of the sequel.

,.,

8
The method of “natural iteration” is described in Chapter IV.
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(~/~).(lf &.I/~x) + (~/~y)(W?Iu/ay)+ 1 - 0, (x,y) E R

w= r(au/ax)2+ (au/ay)21@-1)’2, O<nS 1, (x,Y) E R

11

JJ
U(X$Y) dxdy = 1

00

U(x,y) = o, (X,y) e s

where R is the unit square with boundary S. However, no convergence

proofs are given in this paper.

There are two closely related papers, McAllister [1964a], [1964b],

in which the convergence, with decreasing mesh width, of solutions of finite

difference approximations to Dirichlet problems for equations of the formg

A(x,y,u,?h/ax,au/ay)a2u/bx2 + 2B(---)b2bx~x~ + C(---)b2by2y2

- 7(---)U = o

iS studied. The coefficients are Lipschitz

A. dpd: C , satisfy relations of the form

functions of their arguments,

K. z II(---), C(---) z ~>o

uniformly in the arguments, and

IBI <y/2.

In McAllister [1964a], ~ = O and the boundary values are required

9
The notation used here of denoting the arguments of a function

by (---) will be used frequently when several functions of the same set
of arguments occur in an equation or series of termn.

.

.

.

.
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Lo
to satisfy a three-point condition. In McAllister [1964b], B = O, and the

arguments of the coefficients are (x,y,u), and if d is the diameter of

the regionof the problem, it is necessary that d2 < p/2.

There are many more individual results which are concerned with the

solutions of particular problems.

In this paper, we consider finite difference analogues of the Diri-

chlet problem for the following quasilinear partial differential equation

(1.3) A(x,y,u,~u/ax,au/~y)a2u/ax2 + 2B(---)~2?)x~y~y

+ c(--- )a2u/ay2- G(---)

which is assumed to be

The techniques

11
uniformly elliptic.

and results presented include the following:

Two finite difference approximations to equation (1.3) are given

constructively which agree with the differential equation to terms which

are ~(h2)li?
where h is the mesh width. The existence of the first of

these two approximations, which is of nonnegative type, is proved in Bramble

and Hubbard [1963]. The second approximation presented is more convenient

for practical use for some problems than the one due to Bramble and Hubbard

but is not necessarily of nonnegative type.

19
A three-point condition on the boundary values is defined in

Chapter XI, part 3.

11
Equation (1.3) is uniformly elliptic if there exist

‘o ‘
kl such that

k1(~2+q2) z A~2 + 2B3q+ C~2 z ko(~2+q2)

for all real ( and q and for all permissible values of the arguments of
A, B, and C.

12
Here, as usual, we say that f(t) = O(g(t)) as t - a if there ex-

ists a number M such that if(t)/g(t)l < M for all t sufficiently close
to a.



TWO methods for formulating finite difference approximations at

mesh points near the boundary are considered. These include a linear inter-

polation scheme due to Collatz [1933] and asymmetric approximations to equa-

tion (1.3) which agree with the equat$nn

Two finite difference analogues of

tion (1.3) are analyzed. These two finite

to terms which are O(h).

the Dirichlet problem for equa-

difference boundary value prob-

lems utilize the approximation due

points and differ according to the

the boundary. They are denoted as

to Bramble and Hubbard at interior mesh

approximations used at mesh points near

problems PI and P~.
& L

The principal reeults”obtained are the theorems, for sufficiently

small mesh width, of the existence of solutions of each of the finite dif-

ference problems and the derivation of bounds for the errors in these solu-

tions.

Error bounds are derived which are proportional to the product of

hp, p 2 1, and the maximum of the moduli of the fourth partial derivatives

of the solution of the continuous problem for each of the finite difference

analogues considered.

Those aspecta of the analysis which are believed to be new are:

(i)

(ii)

(iii)

The partial differential equation studied is more general than

previously reported investigations of finite difference approxi-

mations to quasilinear elliptic partial differential equations.

Convergence, with

finite difference

problem is proved

decreasing mesh width, of solutions of the

analogues to the solution of the continuous

by means of error bounds which are O(hp).

‘F.heonly restrictions placed on the region of the problem are

that it be closed, bounded, and simply connected and that the

boundary of the region be sufficiently smooth that the solution

.

.

w

.
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of the continuous problem has bounded and continuous fourth

partial derivative.

(iv) This is the first study in which the Brouwer Fixed Point

.Theorem is used to obtain error bounds directly.

The principal limitations of the study are:

(i) The smoothness requirements on the boundary of the region of

the problem are frequently not met in practical applications.

(ii) It is required that the functions A, B, C, and G in equa-

tioM-”’(1.3)satisfy a condition which is sufficient to guarantee

that the solution of the continuous problem satisfies a maxi-

mum principle.

problem itself;

these functions

This condition involves the solution of the

thus, it is sometimes necessary to examine

after a solution is obtained in order to veri-

fy that all requirements are

A brief outline is given below of

satisfied.

the arguments and techniques t?hi&-

are used in this study.

First, the mixed

by the introduction of a

such a way that a finite

derivative term is eliminated from equation (1.3)

third independent variable z. This is done in

difference analogue of the continuous problem which

is of nonnegative type can be formulated. The variable z is specified by

specifying the angle T between the z and x axes at each mesh point.

The transformed equation has the form

A’(x,y,u,~u/&,bu/by)b2u/bx2 + 2B’(---)b2bz2z2

(1.4)

The

for

+ c’(---)a2ay2y2 = G(---).

finite difference boundary value problems, PI and P2, are formulated

the transformed equation (1.4), Next, finite difference equations are
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clerivedfor the error E which iS defined by

E-U-U

where U denotes a solution of one of the finite difference analogues of

the continuous problem and u denotes the solution of the continuous prob-

lem. The functions U are replaced by (u+E) in each of the finite dif-

ference equations comprising each of the problems PI and P2. In each case

the finite difference equation for the error has the form

A’(Xi,Yj,(Ui,j+Ei,j),Dx(ui,j+Ei,j)@(ui,j+Ei,j ))D~(ui,j+Ei,j)

(1.5)

+ 2Bt(-- )$ui,j+Ei,j)+@ (---)D;(ui,j+Ei,j) ‘G(---)

~, D~$ etc. denote applicable finite difference approximations towhere D

#~x and a2/ax2 respectively, etc.

fie finite “difference equatione for the error are rewritten by repre-

senting the functions A’, B’, C’, and ~ in equation (1.5) in term8 of a

definite integral. We illustrate the technique used by considering the

function

)sDx(ui,j+Ei,j)~Dy(ui,j+Ei,j))”-i’yj’(ui,j+%,j

Assume that the first partial derivatives of A’ are continuous and let

A(e) -A’(x y (U
i’ j’ i9j

+dEi j),Dy(ui,j+Ei j)).-E~,jMxbi,j ,
$

.

.



●

✎

),Dx(ui,j+Ei,j)sDy(ui,j+Ei,j)
“(xi’yj’(ui9j+E~9j

I
1

= A’(x ,Y
i j’ui,j’Dxui,j’Dyui,j)+ (dX/d(?)d(3

o

(1.6)

J
1

‘*’ (Xi,Yj,Ui,j,IIxUi,jSDyUi,j) +Ei,j O*; ‘e

J
1

1
1

A’de+D E A’ de
+ ‘xEi,j o p y i,j Oq

a

“(x@’r(ubj+-i,jwxq,j *Ei,jMy@i,j
~(ui,j*Ei,j)

+=i,j)),

a A’( ---), and A;=
a A’(---).

~Dx(ui,j*Ei,j) bDy(ui,j*Ei,j)

By using expansions such as equatim (1.6) together with the linearity of
..

the difference approximations to the derivatives and relations of the form

Du
x i,j

- auij/aX+O(hp)
s

and

D2U
x i,j

- a2ui j/ax2+o(hp),
s

the finite difference equation for the error is written in the form

2 2 2

ai,jDxEi,j
+ 2b

i,jDzEi,j + ci,jDyEi,j
+d

i,jDxEi,j

(1.7)

+e
i,jDyEi,j + ‘i,jEi,j - gi,j

where the coefficients are functions of xi, y , u
j

~,j, and Ei,jO
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By using previously designated bounds on the coefficients in equa-

tion (1.3) and on the solution of the continuous problem, equation (1.7) is

shown to be uniformly elliptic. Moreover, the function g ie O(hp) where

p is either one or two depending on the difference approximations to the

derivatives which are used.

Next, we linearize the error equation (1.7) by

it occurs in the coefficients, by a given function w.

the boundary value problem for the linearized equation

replacing E, where

We then consider

(1.7) with boundary

values which are identically zero. We show that this problem has a unique

solution which, for sufficiently small mesh width, is majorized by the

function

= max lgi,jlJi$j(1.8)
‘isj ~

where J ia a nonnegative, bounded function which depends on the ellipti-

city constants for equation (1.7) and the size of the region R. The method

used to establish the estimate (1.8) and the resulting generality of the

finite

in R

where

difference equations to which it applies are believed to be new.

We let W denote the set of functions defined on the mesh points
P

such that if w e Wp; then

my lw~,jl ~ Yhp

y = mu Igi ~ lJi,jh-p and p is either one or two.
R s

The Dirichlet problem for equation (1.7) is now considered as a

transformation T:

(1.9) ‘h-e.

.

.

.



.

.

.
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The function w in equation (1.9) iS the function which is used to linearize

equation (1.7), and the function s is the solution of the Dirichlet problem

for the linearized equation. By virtue of the bound provided by equation

(1.8), the transformation T transfo~ a function w from the set Wp

into a function II which is also in the set W .
P

T is continuous, the Brouwer Fixed point Theorem

that the transformation T has a ,fixed point in

function # e W
P

such that

W.*;

mex l~,jl S Yhp.
R

consequently

Since the transformation

can be applied to show

Wp, i.e., there exists a

Dirichlet problems for the error in the solutions of each of the

problems PI and P2 are formulated by using the appropriate difference quo-

tients in equation (1.7). The results of the analysia described above are

applied to these finite difference problems to e~tablieh the existence of

the error functions E and to establinh error bounds in term of the mesh

width.

The organization of the remaining chapters is as follows:

Chapter II consists of a description of the continuous problem

studied. Consideration of sufficient conditions to establish uniqueness

for the solution of the continuous problem leads naturally to sufficient

conditions for the analysis of the finite difference

Chapter 111 is devoted to the formulation of

mations. The transformation used to eliminate mixed

the finite difference approximations used to replace

@rsare described.

analogues which follow.

finite difference approxi-

derivative terms and

the differential opera-



In

‘2‘
of the

of some of

i4

Chapter IV, the finite difference analogues, problems PI and

continuous paoblem are formulated.

the more conmonly used methods for

simultaneous algebraic equations which result

finite difference problems.

Brief discussions are given

solving the sets of nonlinear

from the formulation of the

Chapter V consists of the derivation of finite difference

for the error in the solutions of the finite difference analogues

equations

of the

continuous problem.

In Chapter VI, bounds are established, u~ing majorant functions,

for the solutions of the Dirichlet problems for the linearized error equa-

tions.

In Chapter VII, the Brouwer Fixed Point Theorem is applied to the

Dirichlet problemz for the error equations to establish bounds for the

error in the solutions of the finite difference ●naloguee of the continuous

problem.

In Chapter VIII, the existence an~ uniqueness of solutions of the

finite difference analogaes of the continuous

made of the results obtained in Chapter VI to

to be used.

problem is proved. Use is

enable a fixed-point argument

Chapter IX consists of a further analysis of the error in the solu-

tion of

term at
.

a finite difference analogue which utilizes finite difference opera-

mesh points near the boundary which have O(h) accuracy. It ia

shown that the bound established in previous sections for the error in the

solution of this problem can be improved from O(h) to 0(h2).

In Chapter X, a new finite difference operator i- proposed which i-

more convenient for use for some problems than the finite difference opera-

tors which were deacr~ed in Chapter 111. ~ia new operator d%ffera from

.

.

.

.
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previou8 operatore only in the menner in which te~ containing partial

derivative- with respect to z are treated. The new operator is not neces-

sarily of nonnegative type, and thio leads to some difficulty in establishing

some of its properties. It iS neceatary to make an assumption, which has

been verified by direct calculation for a number of cases, in order to =hov

that the error analysis presented in previous chapters applies.

In Chapter XI, a comparison is ~de between the results achieved in

this investigation and Gerschgorin’s earlier results. Also, the applications

of the reaulte of this investigation are dimcussed with reference to specific

problems.



CHAPTER II

DIRICHLET BOUNDARY VALUE PROBLEM FOR A QUASILINEAR

EL13PTIC PARTIAL DIFFERENTIAL EQUATION

In this chapter, we describe the Dirichlet problem which we study.

The smoothness requirements which are placed on the coefficients in the

differential equation, on the region of the problem, and on the boundary

values are stated, and the existence and uniqueness of the solution of

this problem are discussed.

Let R denote a simply connected, bounded region in the plane, and

let S denote the boundary of R. We assume, without loss of generality,

that R lies in the strip O S x S X and that !Yl ~ y. The boundary s

is assumed to consist of a set of points with coordinates x,y which can

be regarded as functions of arc length s. The functions x(s), y(s) are

assumed to have fourth derivativea which are H61der continuous.1

Let A, B, and C represent real-valued functions with Wdlder con-

tinuous partial derivatives of second order of the five variables

(x,y,r,p,q); (x,y) cR+S, -@<r,p,q <@.

We consider the following quasilinear operator

(2.1) LU =A(x,y,u,wbx,way)a2u/ax2+ 2B(---)a2axayay +q---)a2ay2y2.

The operator L is assumed to be uniformly elliptic, i.e., there exist

constants ko, kl > 0 such that

1
A function g(x,y) is said to be H61der continuous in a region if

for any two points (Xl,yl) and (x2,y2) in this region, there exist positive

.

.

.

.

constants K, C%such that (X S 1 and such that lg(xl,yl)-g(x2,y2)] S

2Q!
xl-x2j2+(y1-y2) I .

16
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(2.2)

for all real ~ and q and for all x,y,r,p,q such that (x,Y) c R + s,

-~ < r,p,q <m.

The Dirichlet problem which we study is

Problem P : Problem PO consists of finding a function d which

has continuous derivatives Up to second order in R, is continuous in R + S

and satisfies in R + S

(2.3) LU = G(x,y,u,au/?h@u/3y), (XSY) E R

(2.4) u = O(x,y) , (x$y) e s

where G(---) and O(x,y) are given functions with H61der continuous deri-

vatives of second and fourth order respectively.

The existence of the solution of problem
‘o

can be established

with weaker conditions on the coefficients and the functions G and @

than those indicated above. We have from Bers, John, and Schechter [1964],

Part II, Chapter VII, the following

THBmm 2.1. Let equation (2.3) be uniformly elliptic and let the co-

efficients A, B,

Let the function

H61der continuous

Dirichlet problem

and C be H61der continuous in their five variables.

G be bounded by a constant K and the function 0 have

first partial derivatives. Then the solution of the

for equation (2.3) exists.

In order to guarantee that the solution of pxoblem
‘o

is unique,

a condition is placed on the coefficients and the function G in equation

(2.3) which, for some problems, involves the solution of the given problem.
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This condition is stated as follows:

Let v = v(x,y) be an arbitrary function defined on R + S which

has continuous second-order partial derivatives in R and which is equal

to zero on S, and let u be the solution of problem
‘o “

A sufficient

condition that:a”solution of’problem’ PO:is’unique, IS khht . “., ‘ “

J
1 1 1

(2.5) a2u/ax2 twar de + 2a2uhay
J

aB/& df3+82u/ay2
J

M/& de

o 0 0

-J
1
*/& de S O for all (x,y) E R

o

where

J
1

J

1
aA/& de = aA(x,y,(u#v),a/ax(u+Ov),a/ay(u+Chi))/& de

o“ o

etc. ‘l?enow prove

THEOREM 2.2. Let the coefficients A, B, and C and the function

G satisfy condition (2.5). Then the solution of problem
‘o

is unique.

Proof:
2

We assume that problem PO’ has two distinct solutions

‘1
and U2 and show that this assumption leads to a contradiction. Let

A(x,y,ul,aul/&,&@y) be denoted by Al, A(x,y,u2,8u2/ax,au2/ay) w

‘2 ‘
etc. Then, we have

(2.6) Aia2ui/&2 + 2Bi82ui/~8y + Ci82ui/ay2 = Gi, (x$y) ER

1

i = 1,2

‘i
= 0, (X,y) e s

.

.

. . ! “ ‘...‘-2” ‘:”2; (. :..:.::i.>]} (:~’o ), j. : 0 ,:]~:1:,1 .: .{ :;::. ,,, (:~.””; , .“. .: . “;, ,.
‘.,.>

The proof of Theorem 2.2 is given in a somewhat abbrevi~ted form

in.~er.s,~~ohn, an$ Se4echterl::[1964],part 11, ’”ChapterVII.
,:



.

.

By subtracting equation (2.6), i = 2, from equation (2.6), i = 1, and de-

noting
‘1-U2

by v, we obtain

A1a2V/~X2 + 2B#2v/?lxby + C1a2v/~2 + [A1-A2]a2U2/~X2

(2.7)

-I-2[B1-B2]a2u2/axay + [C1-C2]a2u2i~y2

The differences [A1-A21, etc. can be evaluated by means

illustrated by equation (1.6). Thus,

= k2@2] .

of the technique

A1-A2 = tL(X,y,U2+V, b(U2+V)/~X, b(U2_h7)/~y) - A(x,y,u2,au2/~xs ?ht2/bY)

where

We set

J’
1

= dA(x#Ysu2+43% ~(u2+~)/ax, a(u2+*)/ay)/d0 de
o

1

1

J

1

J

1

=V dA/& d9+av/ax 3A/ap d@+bv/ay aA/aq d@
o 0 0

bA/& = aA(x,y,u2+W,a(u2+*)/ax, i3(u2+0v)/i3y)/~r,etc.

J
1

J

1 1

D= a2u2/ax2 aA/ap d@+ 2a2u21axay aB/ap de+ a2u2/hy2
1

~C/~p dQ

o 0 0

-J
1.
aG/ap de

o

J
1

E= a2u2/ax2 aA/aq de+ 2~2u2/axay ~laB/aqd@+&@y 2~1aC/aq d@

o 0 ‘0

-J
1
aG/aq de

o

and
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J
1 1 1

F = ~2~2/b~2 ~A/& de + 2d2u2/&ay
J

hB/& de + a2u2/*2
J

&/& de
o 0 0

-J
1
aG/& de

o

Equation (2.7) can now be written in the form

where

Since

value

(2.8)

(2.9)

k7 = Al a2v/ax2 + 2B1 a2v/axay + Cl a2v/ay2 + D &/ax + E

the coefficients depend on x,y, and the assumed solutions

Vu-u
12

is zero on the boundary S, we can formulate a

problem for v as follows:

Ev = o, (x$y) e R

v-o, (X,y) e s.

&d?Iy+Fv= O

‘1 and u .
2

boundary

We now make use of a maximum principle as given in Courant and Hil-

bert [1962], p. 326.

Maximum Principle: Let v satisfy equation

ous in R i-S, and let F 6 0, then v is less than

mum of zero and the maximum of v on S.

(2.8) in R, be continu-

or equal to the maxi-

By condition (2.5), F s O. Therefore, by applying the maximum

principle to both the solution v of the problem given by equations (2.8)

and (2.9) and to the negative of the solution of this problem, we conclude

that both v s O and -v s O. Thus, v m O, and -u.
‘1 2

Various subsidiary conditions which insure that condition (2.5) is

satisfied are obvious from its definition. This condition is satisfied,

‘for instance, if the coefficients A, B, and C do not depend on u, and

.

*/~r is nonnegative. If A, B, or C does depend on u, it is necea8arY
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to verify, after a solution is obtained, that condition (2.5) is satisfied.

In order to enable the error analysis of finite difference approxi-

mations to problem pO which follows to be carried out, we need a slightly

stronger condition than condition (2.5). We let u and v be defined as

above, and require that there exist a positive number A such that

r

1 1
a2u/ax2 ?)A/& dO+ 2a2u/axay r aB/& de

(2.10)

J

1
I-a2u/ay2 aclar

o

where

do

J
1

de - aG/& de~Av for all (x,y) e R
o

The error bounds, which are derived in the sequel, for solutions

of finite difference approxi~tions to problem P. depend on the partial

derivatives up to fourth order of the solution of the continuous problem.

We therefore assume that the solution of problem P. possesses bounded and

continuous partial derivatives up to fourth order. The boundedness and

continuity of partial derivatives of solutions of elliptic partial differ-

ential equations can be established by means of the a priori estimates of

Schauder3. Sufficient conditions to insure the existence, by means of

Schauder estimates, of bounded and continuous partial derivatives up to

fourth order of the solution of problem P. ares

(i) the operator L is uniformly elliptic,

‘(ii) the functions A, B, C, and G have Ifdldercontinuous second-

order partial derivatives,

3Schauder estimates are discussed in Bers, John, and Schechter [1964]
and in Courant and Hilbert [1962].
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(iii) the function @ has H?flder continuous partial derivatives

up to fourth order, and

(iv) the boundary S of R is sufficiently smooth, i.e., S con-

sists of a set of points with coordinates X,y which can

be regarded as functions of arc length s, and tl~efunctions

x(s), y(s) have Hblder continuous derivatives of fourth

order.

.

●



FINITE

CHAPTER III

DIFFERENCE OPERATORS

In this chapter, finite difference analogues of equation (2.3) are

given. We first describe a finite difference analogue of equation (2.3)

which is applicable at points in R which are not near the boundary S.

This finite difference analogue was first presented in Bramble and Hubbard

[1963] foruse with linear elliptic partial differential equations. Bramble

and Hubbard [1963] proves the existence of such an approximation but does

not provide a method for obtaining it in practice. A practical method for

obtaining It is given here.

Two methods are given for formulating finite difference approxima-

tions near the boundary.

Theoretical estimates of the error in finite difference approxima-

tions to solutions of problems involving elliptic partial differential

equations are not generally obtainable unless the finite difference opera-

.
tors are of nonnegative typeL and are diagonally dominant. A finite differ-

ence operator Lh , when operating on an approximate solution U(xi,yj) of

problem PO, can be written in the following form

LhU(xi,yj) =
E

u(xi,yj ;xm,yn)u(xm9yn)

(rn,n)

where the points (Xm,yn) comprise a given set of points in R + S. If

1
Exceptions to this rule are given in Bramble and Hubbard [1962]

and in Rockoff [1964].

23

..
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‘(x~#yj;x~Syj ) <0, (XiSYj) ~Rs

dxi$Yj;xmjYn) = 0s (Xm,yn) 6 R+S, (Xm,yn) + (Xi,yj),

and

l“(x~.YjJx~$Yj)] 2 I U(xi,yj;xm,yn) ,

(m,n)
(m,n)+(i,j)

then Lh is said to be of nonnegative type and to be diagonally dominant.
2

Elliptic partial differential operators are readily approximated

by finite difference operators with the above properties provided the differ-

ential operators do not contain mixed derivative terms. Finite difference

approximations, other than the one described below, which are of nonnegative

type and are diagonally dominant have been formulated for differential opera-

3.
tors containing mixed derivative terms., however, these approximations re-

quire that either the magnitude of the coefficient of the mixed derivative

term be severely restricted or that unequal mesh widths be used.

The method of approximating differential operators containing mixed

derivative terms which is presented below is an elaboration of a method

which is given in Bramble and Hubbard [1963].

forming the differential operator, by means of

tional derivative, into a form which is easily

ference operator with the desired properties.

only on the requirements that the operator L

This method consists of trans-

the introduction of the direc-

approximated by a finite dif-

The transformation depends

be uniformly elliptic and that

2
Forsythe and Wasow [1960], p. 181.

3See Greenspan [1960], Greenspan and
and Pucci [1958].

.

.

Jain [1964], McAllister [1964a],
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the coefficients be continuous functione of their arguments. The resulting

finite difference operator has an 0(h2) truncation error.

Let (x,y) be a point in R and

let z denote a line through the point Y+

(x,y) such that the angle between the line

z and the x axiu is equal to T, O<T<TD

T # 7r/2 (see Figure 3.1). Let u be any

function which has continuous partial deriva-
/

tives of second order. Then the second

/

z?

-Y_-
(X,y) x+

directional derivative of u with respect FIGURE 3.1

to z exists and is given by

(3.1) a2u/az2 s COS2T a2u/&2 + 2 sin ~ C08 T a2u/ikay + sin2T a2u/ay2.

From equation (3.1), the mixed derivative term is given by

(3.2) 2 a2u/axay = (2/sin2f)b2u/&2 - cOt T a2u/ax2 - tan r a2u/ay2.

This expression for b2u/bxby iS substituted into equation (2.1) to obtain

(3.3) Lu = A’ b2u/ax2 + 2B’ b2U/bZ2 + C’ b2U/aY2

where

A’ = A(x,y,u,bu/bx,bu/~) - B(---)c0t T

(3.4) B’ = B(---)/sin 2~

c1 = C(---) - B(---t anan ~.

The principal result of Bramble and Hubbard [1963] relating to the

above procedure is summarized by the following theorem.
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THEOREM 301. Let the coefficients in equation (2.1) be continuous

functions of the indicated variables, and assume that condition (2.2) is

satisfied. Lettan’c=y=

lsq<rn, such that 7(x,y)

(305)

7

7(x,y). Then there exist constants k; and q, O<k~,

can be specified at each point in R and

sA’, C’

5 B’

- t c%/f3

where a and f3 are relatively prime integers and

A proof of this theorem is sketched in Bramble and Hubbard [1963].

A complete proof is given in the Appendix of “thispaper.

The angle ‘r is specified at each point in R such that conditions

(3.5) are satisfied. A method for doing this in practical applications is

described later in this chapter.

The set of mesh points, at which numerical approximations are cal-

culated, are the intersections of two families of straight lines called

mesh lines. These two families of mesh lines are given by ‘i
=ih, i=O,

1, 2, .*.B I and y
j

=jh, j =0, *1, ?2, ....*J where I and J are

positive integers such that (1-l)hS XS Ih and JhzY.

With each mesh point (XiSYj) ~ R, there is associated a pair of

points, either (xi+@h# Yj+*) and (xi- f3h,yj- *) or (Xi- @h, Yj+*)

and (xi+ @h, yj-~h). Since a ●nd $ are relatively prime integerg,

these points will be mesh points (though not necessarily mesh points in R).

These mesh points ‘are called the diagonal neighbors of the mesh point

I (xi$Yj)D The distance between the mesh point (xi.Yj) and either of its

.

.

.
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.-

diagonal neighbors is given by

(3.6) ~ h(a2+ ~2)%0
‘i,j

The four mesh points (xi+h~yj)~ (xi-h~yj)> (xi,yj+h), and (xi,yj-h) are

called the rectangular neighbors of the mesh point (X4SY.)* The diagonal

neighbors

N(xi~yj)

A

J. J

plus the rectangular neighbors are called the neighborhood

of the point (xpYj).

mesh point (x.,y.) e R is called a regular mesh point if each
1.-J

of the mesh points in N(XiSYj) is in R. All mesh points in R that

are not regular mesh points are called irregular. The disjoint sets of

regular and irregular mesh points in R are denoted by ~ and ~ re-

spectively.

For each mesh point (Xi,yj) e R, let the portion of the line z

which connects the point (xi,Yj) with its diagonal neighbors be denoted

by Zi,jO The points on the boundary S which are at the intersections

of the lines z
i9j

and the mesh lines
‘i

and y.
J

are called boundary

mesh points (see Figure 3.2). The set of boundary mesh points is denoted

by, RS. We assume that the mesh width

Y
h is sufficiently small that, for each

Yj+1 ,+2..

mesh point (Xi,yj) e R, at least one ..i,j

“\\
of the mesh points on each line xi, ~~i.i

‘j Y \ I

Yj $ and

also in

tion to

defined

(xi,yj)

u
i,j’

‘i,j ‘hich are ‘n ‘(xi’yj) ‘s

R+S.

‘j-lx#
The finite difference approxima-

te solution of problem PO is o- Boundary mesh points

in R only at the

and is denoted by

mesh points FIGURE 3.2

u(xi9Yj) =
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(3.7)

and

(3.8)

At regular mesh points, we use the usual central difference quotients:

Similarly,

(3.9)

(3.10)

and

(3.11)

Au = (Ui+l,jx i,j
- Ui,j)/h

vu = (Ui,j- ‘i.l,j)/hx i,j

(Ui,j)x= @+ ~x%,j

= (Ui+l,j- Ui-l,j
)/2h

(Ui,j)xx = (@xui,j

= (Ui+l,j- 2u~Dj+u i.l,j)/h2

(Ui,j)y = @ + ~y”i,j

= (u
i,j+l- Ui,j-1)/2h,

“(”i,j)yy= @myui,j

= (Ui,j+l- 2ui9j+u i,j-1)/h2

(Ui,j)zz = @7)zu~,j

= @i*p, j+cl!- 2ui,j+ ‘Qp,j-a
)/k2.

The finite difference operator ‘h
is defined at regular mesh

points by the following finite difference equation.
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I

‘h”i ,j = A’(xi,yj,Ui,j,@+V)x”i,j~ @~)y”i,j)@V)xui,j

(3.12)
+ 2B’(--- )(llv)z”i,j+ c’ (---)@v)yui, j

The differences between the approximating difference quotients de-

fined above and the corresponding exact derivatives can be estimated by

means of Taylor’s Theorem with remainder. We have

[
2 (~3U/~x3)i*,j(3.13) (&/ax)i,j - (A+V)xUi,j ‘h 1/6, 0s(3S1,

and

(a2u/~x2)i, j - (Awxui, j = h
[ 12(i34dh4)i*@,j(3.14) /12, 0s0s1.

Similar relationships hold between the derivatives and difference quotients

with respect to y and z.

Two alternate finite difference operators are defined at irregular

mesh points. They are denoted by ‘bl and ‘b2°

The finite difference operator
‘bl

is an adaptation of a linear

interpolation scheme originally given in Collatz [1933]. Consider the

configuration of mesh points given in Figure 3.3a

have been determined as indicated. The operator

point (X.,YX) by
L J

(3.15)

where Ah is

boundary mesh

where T is assumed to

‘bl
is defined at the

L U.
bl l,j

= il/(A+’Ol”i+~,j + [l/(A+l)lup,q - ‘i,j

the Euclidean distance between the point (Xi,yj) and a

point (xp,yq).
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For the configuration given in Figure 3.3b, r = 3r/4, and a diagonal

neighbor of the point (xi9Yj) is not in R + S. For this configuration, .

(3.16) Lb~Ui,j = [W+l)lui+l,j.l+ [W+OIUp,q - Ui,jO
.

The general case for which a diagonal neighbor is not in R+ S ‘is illustra-

ted by Figure 3.4. For this configuration, Y.i,j = ~/~, and the diagonal

neighbor (xi.@tYi.a) ~ R+ S; therefore, (xi.Yj) is an irregular mesh point.

Then there exists a point (xi- Ak con ‘c,yj- Ak sin 7) = (Xi-APO Yi-~a) e ‘so

In this case,

(3.17)
‘bl”i,j

= [A/(A+l)luiw,j+p+[l/(~+l)lui.~B,j-~a - Q“

A generalization of either (3.15), (3.16), or (3.17) is applicable

to any mesh point in Rb, In case more than one mesh point in N(XiSYj) is

not in R + S, there is a choice regarding the precise definition of HI

(b)

s

(a)

Figur8 3.3
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at (xi$yj). Insofar as the considerations here are concerned, the choice

is arbitrary.

The operator ~. utilizes formal approximations to the partial
UL

derivatives. Consider an irregular mesh point (Xi,yj)

the point (Xi-l,Yj) # RS i.e., the configuration given

Then the term b/~x in equation (3,3) is approximated

by

1,

and assume chat

in Figure 3.3a.

at the point (Xi,yj)

.~i

.; 1’(xit~,yj~al
*

s

——
(x~,yj) x—

+

(3.18) (Wa)i,j * (Ui,j)x = [li(~+l)hl[ui+.l,j- ui-A, jl

and the term b2u/ax2 by

(3.19) (&/ax2)i,j = (Ui,j)= “

= (2/h)[(l/(A+l))Ui+l,j - (l/A) u~,j+ (L/A(A-i-l))ui-~,jl*

Similar expressions are used

(XiSYj+l), (Xi,yj-l) do not

when one or more of the mesh points (xi+pYj)9

belong to R i-S.
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Next, assume that (xi,Yj) is the irregular meal- point given in

Figure 3.3b. In this case, the term ~2u/~z2 is approximated by

(3.20)

and for

by

(3.21)

used to

(a2u/az2)i,j 5 (Ui,j)zz

= (2/h)[(l/(A.i-l))Ui-E1,j-1- (l/h)Lli,j “

-;-(l/h(A-:l))ui-A j-;-A],
D

the configuration given in Figure 3.4, a2u/az2 is approximated

(a2u/az2)i j = (Uij)zz
# #

= (2/k2)[ (1/(A+l))Ui..rP,jW- (l/A)Ui,j

+ (l/A(A+l))ui-Ap,j-k].

Approximations such as those given by equations (3.18)-(3.21) are

replace the partial derivatives in L to form the operator
‘b2”

The differences between the finite difference quotients defined

above and the corresponding exact derivatives are given below.

The for operator ‘bl
and the mesh point configurations given in.

Figure 3.3a,b, we have respectively

U(xi,y ) -
.i

[A/ (A+l)lu(xi+l,yj ) - [l/(Ai-l)]u(xp,yq)

(3.22)

and



‘(xi’%) - [A/(A+l)]u(x
1+1’yj-1) - [l/(A+l)]u(xp,yq)

(3.23)

- -[Ah2/(A+l)][A(a2u/az2)i-ej+o+ (?12U/&2)iw j.O]D
9 s

‘os@,Qjsa

For the configuration given in Figure 3.4, we have

‘(xm) - [A/(x+l)lui*, ,+P,-[lt(~+l)lui.~p,j.Aa

(3.24)

=~Ak2/2(li-~J[7@2u/~z2)i-@,j-0 I-(~2u/aZ2)i~,j+&

Osesp, ososa.

For the operator %2 and the mesh point configuration given in

Figure 3.3a,

(b/ax)i, j- [1/h(A+l)][u(x
i+l‘Yj) - U(xi-h,yj)l

(3.25)

= [h/2(A+l)][h2(a2u/ax2)i-@,j.(a2u/ax2)i~j]
9

and

33

.

(a2u/~2)
iPJ {

-2[1/(A+l)]u(x i+lsYj) + [l/A(A+l)lu(x~-~Dyj)

(3.26) ‘

}
- [l/~] U(Xi,Yj)] /h2= .[h/3(~+l)][a3u/ax3)i*,j. A2(a3u/ax3)i-e j],

8..

0s0,0s1.

For the mesh point configuration given in Figure 3.3b,
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(3.27)

(a2u/az2)i,j - [1/(Ao+l)]u(x
i+l’yj-1)

- [l/A(A+l)]u(xp,yq)

+ [1/h]u(xi,yj)]/h2= -[@ h/3(~+1)][(~3U/&)i+ ~,j.~

- A2(a3u/a22)i.@,j+el~ Osf?),,esfi,

and a similar expression holds for the difference between a2u/az2 and the

difference quotient given by equation (3.21).

We now describe a procedure by which the angle ‘c can be chosen at

each mesh point in R. We assume that an iterative method is used to solve

the finite difference analogue of problem P. and that the finite difference

approximation to equation (2.3) is linearized in some manner so that the

coefficients can be evaluated at each mesh point prior to each successive

iteration.

We first require that the value of the angle ‘c corresponding to a

mesh point (xi9Yj) be chosen such that tan T has the same sign as the

coefficient B1 .. This insures that B: , is nonnegative. If

Aij-lBijl>O, and
9 9

(3.28)

Ci,j - lBi j! >0,
s

T is chosen to be either r/4 or 3Tr/4 depending on

positive or negative respectively.

If condition (3.28)is not satisfied, we resort

whether B
is.1 ‘s

to the following

procedure. We know from Theorem 3.1 that a value of ~ = T[x,y) exists

such that condition (3.5) is matisfied at each mesh point. From condition

(3.5), we have for such avalue of T
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I

.

and

or

(3.29)

and

(3.30)

‘Ah‘Au - ‘M cotT>o

c’
~$j“= Cisj - ‘isj ‘anT>o

,Ci,j/B5,j < tan T ~ Bi ~/Ai,j if Bi j <0.
# s

1

‘alues‘f ‘h ‘and“h are indicated schematically in Figure 3.S as

functions of y = tan T
‘0= ‘he case ‘i$j ‘o” ‘0= ‘he case ‘~$j

< 0,

the curves in Figure 3.5 are reflected about y = O. From condition (3.5),

we know that the curves in Figure 3.5 intersect at a point such that A’i,j’

c’ 2k~>0. ‘
SSj

Therefore, if condition (3.28) is not satisfied, Yi,j can

be chosen from

-\

. . Y~

Figure 3.5
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or

(3.31)
Yi, j

= (1/2Bi,j)[ci j- ‘i j+ (c: j- 2ci, jAi, j+ A:, j+ 4Bf#2].? 9 s

According to Theorem 3.1, y
i,j

can be chosen as the ratio of rela-

tively prime integers O! and P. The procedure outlined above will not,

in general, result in such a choice. However, the value of Yij obtaineds
from equation (3.31) can be approximated as closely as desired by a ratio

of relatively prime integers.

We now show that the coefficients A’
i,j’ c~,j’ and B;,j in the

transformed operator (3.3) are bounded. From condition (2.2), the coeffi-

cients A.
c~sj

, and IBi j! are bounded bya constant kl. Since
l,j’ s

B
i,jyi,j

is nonnegative, Al j and C; j are bounded by the same constant
s s

‘1 “
If condition.(3;28) is satisfied,

‘i$j
i.salso bounded by kl. Sup-

pose condition (3.28) is not satisfied then two cases, corresponding to

l~i,jl<l and lYi,jI >1 respectively, must be considered. Assume

~Yi j] >1, then
s

B’
is.1= ‘iFj

/sin 2 ?

- ‘i, j/2 sin T cos ~

= ‘i,j
(1+52)/26

where bh is the distance between the mesh line x = xi and the intersec-

tion between the mesh line y = yi+l and the line Zi,j (see Figure 3*6)*

Note that O< 8< 1. From conditions (3.29) and (3.30),

lYi ,I<ci,jmi$jl8.
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or

1/8 < c
i,j~lBi,jl”

Therefore,

B~,j< bi,j!(l+62)ci,j/2 bi,,l

< (l+82)ci j/2.
s

Thus,

(3.32) ‘Lj<kl “

If 1X1 < 1, a similar ●nalysis gives the same result, i;e., that condition

(3.32) is satisfied.

8h

4\

FIGURE 3.6



CHAPTER IV

THE FINITE DIFFERENCE PROBLEMS

In order to obtain an approximate solution
‘isj

of problem PO,

the function 7 = Yi,j is first evaluated at each mesh point in~ %-’%”

Next, the operator L is transformed into the form given by equation

(3.3). The transformed operator is then replaced by the finite differ-

ence operator ~ ateachmesh point in ~. Atthemesh pointsin ~,

the approximate solution
‘i,j

is required to satisfy one of the follow-

ing ecpations:

‘bl”i,j = 0’

or

L U.
b2 l,j

= G(xi,y.,U
J i,jtDxui,j’Dyui,j )

where D and D denote applicable finite difference approximations to
x Y

the partial derivatives with respect to x and y respectively. The

value of U(x,y) at each point in
‘s

is taken to be equal to @(x,y).

We consider the following distinct discrete problems:

Problem PI: Problem PI consists of finding a function
‘isj

which satisfies

(4.1) ‘h”i,j = G(XiSYjSUi,jS @+V)xUi,j,@+~YUi,j), (xi,Yj) ~ Rh

(4.2)
‘bl”i,j = 0

(4.3) U(xty) = O(%y) , (xtY) ~ RS.

38



39

Problem P2: For problem P2, we require

. (4.4)

(405)

%lUi,j
- G(x SY ,~ ,(A+v)xui,,,@+v)yui, j)$ (Xi$yj) e ~i j i,j

‘li2”i,j = G(x ~y.,uiJ i,j’Dxui,j’Dyui,j ) , (Xi,yj) ERb

(4.6) U(y,y) - @(xoy) ) (x~Y) G R~O

Because the systems of equations comprising problems PI ●nd P2 are

nonlinear, some iterative procedure is usually required to solve them. It

is not our purpose to discuss such procedures in detail in this paper. We

merely note some of the types of iterative methods which are used.

Usually, a method for solving ● system of nonlinear algebraic aqua-

ti.ons involves a linearization of the system of equations in such a way that

successive solutions of the linearized system converges to the solution of

the nonlinear system. Frequently the form of the nonlinearity can be ex-

phoited to this end in ● simple way for a particular problem. An example

of the use of such a procedure for a continuous problem is given in Ablow

and Perry [1959] where it is shown that the problem given by

(4*?J Au = bu2 , (x,y) G R,

(4.8) u.~ , (X,y) E s,

where b is a nonnegative constant and @ is a given nonnegative function

can be solved by forming successive iterants according to

Au(n+l)
=bu(til)u(n) , (X9Y) c R

U(n+l) - ~
, (x$y) e s.
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(m) ●nd u(n+l) den~ce;ahe.nHl!lze8.tl fihand n+lst iterants respectively.

A discretized version of this problem and of the iteration scheme is pre-

sented in McAllister [1964c].

There are also several methods for solving general systems of non-

linear algebraic equations. One of these, the so-called “natural” method

consists of.requiring the current iterant to be the solution of the system

of linear equations obtained by evaluating the coefficients which depend on

U and other terms which contribute nonlinearity.es at the previous iterant

(see, for instance, Young and Wheeler [1964]).

Another method which can’be used to solve systems of nonlinear al-

gebraic equations consists of a generalization of Newton’s method. If we

write the system of equations in vector form as

AA

(4.9) F(u) = o

and denote by ~(~) = (ai ~) the matrix with elements
#

au = ~Fi(ii)/aUj

then successive iterants for Newton’s method ●re obtained from

The question bf finding sufficient conditions for the convergence.of

the above procedure was settled in Kantorovich [1948]. The result of Kantoro-

vich can be stated au follows:

Let J, B, C, and D be constants where

J _ BCD,
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and assume the following conditions are satisfied:

‘=(o)) has an inverse andaqesti-(i) for 3 = ~(o), the matrix A(U

mate for its norml is known

l@(t(0))]-lllSB,
(ii) the vector ~(o) is a sufficiently close approximation to the

solution of (4.9) that

l,[~(; (0),]-1

(iii) in the region defined by

;(t(”][l c c,

inequality (4.10) below, the components

of the vector

the components

are twice continuously differentiable with respect to

and satisfy

~ la2FibLJjauklS D, i = 1, 2, .... N,

j,k=l

and

(iv) the constant J satisfies the inequality

J<l/2..

Then the system of equations (4.9) has a solution ~w which is

located in the sphere

l~-iYO)llS [[1-(1-2J)U21/JlC.

Kantorovich also shows the convergence of the sequence ~(n) to be almost

quadratic; for large n,

for any nonnegative p less than 2.

1
The matrix norm used by Kantorovich is 1~11= max f Ivi,jl where

;=(V 1 j) is an Nx N matrix.
lSi.SNj=l

#



CHAPTER V

THE ERROR EQUATIONS

The difference between the solution u o; Problem PO and the solu-

tion U of a finite difference analogue of problem PO is defined as the

error E, i.e.,

(5.1) u. = u.l,j l,j + ‘W

By replacing
‘i,j

by its equivalent E
i$j + %

in the finite

difference equations comprising problems PI and P , finite difference
2

equations are obtained for the error.

In order to simplify the notation, we define the following abbre-

viations for n S 4:

fin> (Mn)i,j =

in> (Nn)i,j =

6n> (Qn)i,j =

nth partial derivative of u with respect to x

evaluated at a point (x~~$yj)$ Osesl,

nth partial derivative of u with respect to y

evaluated at a point (xi9Yj& OSflSl, and

nth partial derivative

evaluated at a point

O S G s CY,where ‘i,j

of u with respect to z

@i+#’Yj~E ),0s0s(3,

We consider first the finite difference

a,p.

equation (4.1) at mesh

.

.

points in ~

42
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“(xi’yj’(ui,j+Ei,j)’@+Wx(ui, j+Ei,j)’ ‘+wy(ui, j-i”Ei, j))[(LJv):{(ui, j+E-J]

(5.2)

-i-B’(---)[(AV) (u
z i,j+Ei,j)] +c’(---)[@Wy(ui, Ei,j)]j)] = ‘(---)

The functions A’, B’, C’, and G are expanded by using the defini-

tion of a definite integral. This is illustrated below for the fui~ction A’:

A’(xi,yj,(u~,j+Ei,j), @W)x(ui, j+Ei,j), @-~) Y(ui,j+Ei,j))

1
(5.3) = A’(xi,y.$u

J i,j’@w)~ui, j$ow)yui, j) + ‘i,j[J. 1
Lrcw

i,j

~W)~E~,j[fOIZpd~i,j “@W)yEi,j[jO1zqd]i,j

~/~r denoting differentiationwith respect to the third argu-

i-

where, with

ment of Z ,

[f~i~elisj-J~aA’(xiJyjg(uitj+eE‘+v)x(uijJ-
@+v)y(ui,j+eE~,j))/ar de,

and similar definitions apply to the terms

By making use of relationships such as equation (3.13), we have the

following additional expansion.
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A’(x ,Y ,U
i j i,j’ @+’ax”i,jA+@yui,j)

(5.4)
2

‘A’(xi~yj9ui,j#(~u/~x)i,j +~2(M3)i,j/~* (~u/~y)i,j“~h (N3)i,j/6)

= A!
~jl ,

~ dO
[f’ 1

~ dO
l,j -rh2(~$)i,j ~ ~ i,j/~ ‘-‘2(N3)i,j ~ q i,j’6

where

i,j = A’(xi,yj$ui,j,(au/~x)i,j,(~/by)i, j),

[JO’Xpd~i,j = ~

1
~ ~’(xisyj~ui,j9(bu/~x)i,j + @h2(M3)i,j/6g

(au/ay)~,j + Qh2(N3)i,j/6)/aP de)

is defined in a similar manner.

We use expansions such as (5.3) and (5.4) and the fact that the dif-

ference operator is linear with respect to second-order differences to write

equation (5.2) in the following form:

ai,jO@xEi,j + 2b~$j@0zEi$j + ci$j(A@YEi9j

(5.5) +d i,j(A+~xEi,j + ‘i,j@+OyEi,j + ‘i,jEi,j = ‘i,j

- A~,j(a2u/bx~i,j - 2B~,j(~2u/bz2)i,j - C~,j(b2u/by2)i,j + Gi,j

where

aid -A’(x ,y ,(U
ij

~,j+Ei,j)> @+~x(ui,j+Ei, j)~@+~Y(ui, j+Ei,j)),
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bid- B’(---), Ci,j =C’(---),

‘L, “ [J),’qi,+’’%%,; + ‘[J’(’5’$,J+LJ ~

+ [fol’P’’li$j[@~Y”i9jl - [J)P’iLr

‘,$, = [J)W!L9JIJL”LJ+‘[fol’q’el,sj[@

+ [J),’J,JA’%%,,]-[Jo+q’qi,f

+ [Jol@uii’%dl-[J).’!.ld
and

‘igj- ‘h {2 @4)i,j*i,j ’12 + [@vMF%J:$’”

1

11
~ ‘@+ @3)i,j () , i,j/6+ (Q4)i,jB~,j/6

r -rl- nl rl T

1+ @v)zui ~dl(MJijjJo‘p’e+‘N3)i$jJo%q’eji,j’3

+ ‘N&/)ild6-[(%Lj&P’e+ @3Lj&,’!L’]
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The last four terms in equation (5.5) sum to zero because of equa-

tions (2.3) and (3.3).’ The f~.nitedifference equation for the error in .

the solutions of problems PI and p. at mesh points in ~ is then
A L EL

ai,j@qxEi,j
+ 2bi,j@&’)zEi,j+ ci,jmnyEi,j

(5.6)

‘-‘i,j@+@~Ei,j ‘ei,j(A-Fv)yE.j,j + ‘i,jEi,j ‘“gi,j

which we write also as

(5.7) ~E
h i,j = gi,j. .

Since the coefficients a, b, and c depend on E, this is a nonlinear

equation.

By using

we find that the

previously designated bounds and equations (3.13), (3.14),

coefficients and the nonhomogeneous term in equation (5.6)

are bounded as follows:

o ‘1

Id~ jI S k2{@2+ h2fi4/12]+ 2LG2i-k2~4/12] + @2+ h2fi4/12]+ 1)
8

where
‘2

is a bound on the f,irstpartial derivatives of the functions

A, B, C, and G. For h less than any designated value, say unity, a

finite constant k3 can be chosen such that

.

I

.

I
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.

.

Similarly, the coefficient e
is~

is bounded in absolute value by ‘3

for h less than unity. For the nonhomogeneous term, we have

For h less than unity, a finite constant k4 can be chosen such that

lg~ jl ‘h%/+*8

Now, consider the coefficient f
isj”

Each term in the coefficient

‘Lj
is bounded for finite h; however, we require also that fi,j

be non-

positive, i.e., that

(5.8)

+ [Jol%’qJ@~Y.J

Inequality (5.8) is established by

tuting for ~2u/~xay in condition

-[-f 1
1
Crde so.

o isj

the use of condition (2.10). 3y substi-

(2.10) from equation (3.2), we obtain

J
1 1

a2u/ax2 (M/& - cot ~ aB/ar)d~ + 2 a2u/az2J (Cos 27 aB/ar)de
o 0

J
1 1

+ a2u/ay2 (acl?k - tan T 3B/&)de -
J

aG/& de s AV
o 0

From equations (3.4), this inequality can be written as
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(5.9)

where

etc.

J
1 1

a2u/ax2 M’lbrd0+2 a2u/az2
J

aB’/& de
o 0

J
1 1

+ a2u/ay2 bc’fbrde -
J

&/& de 5 AV
o 0

A’ = A’(x,Y, U+6V, a(u%~ax, a(u+Ov)/ay)

Inequality (5.8) can be written in the following form:

1
(a2u/&2 + h%4/12)i ~

[J 1irde +2(a2u/az2 +k2Q4/12)i ~ ●

s o iaj 9

1

[’ 1 1
(5.10) irde + (a2u/ay2 + h2N4/12)i,j

[f 1Erde
o i,j o isj

-[’J 1
1
Grde so

o ia.1

where

[XL = [ J

aA’(x,y,u+eE,(A+V)x(u++)E),(Wy(ui+)E))/& ~,j

etc. In order to be able to compare (5.10) with (5.9), we use relationships

1
such as equation (3.13) to expand the quantities

[~ 1
irde , etc. as follows:

.

.

.

.
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[fo’~rde]i, =[folaA1(x,y,.+E,~./,~+e(A++xE,
s

(5.11)
--1, j+ [h% ~ol~lErpded~i,j ,6

?h/ay-!-e(Ai-V)yE)/&d,
s

where

I?rpli.,j = [
232A’(x,y,u+OE, bu/ax+(3(Ai-V)xE +0h%3/6, aulay+e(zw7)yE

+@h2N3/6)&@ i,j

and [xrql~,j is defined similarly.

We define a differentiable

E. at the mesh points (Xi,yj)
l,j

(av/ax)i,js

(5.12) ~

function v on R + S which is equal to

and which has derivatives given by

(A+~xEi, j and

(A+V)yEi,~.

By using (5.11) and (5.12), inequality (5.10) can be written as

r J
1

J
1 1

a2u/ax2 M’lb.d0+2 a2u/az2 ?)B’/& d,+a2u/ay2
J

aC’/& de
!_ o 0 0

-J
1

1

{J

1

[ JJ

11
?lG/& dei S-’2 M4 ~rde i-2 a2u/ax2 M3 iipd,dfl

o -i$j o 00
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J
1 11

+ N4
[H

~rde + 2 ~2u/ay2 M, ~rpdf3d!b
o

●

11
- M3

JJ
~rpd(3dfi- N,

LYO: 0 }
~rqdedfi /12 .. .

00 i,j

All quantities in the curly bracket are bounded; therefore, there exists a

constant k5 such that

J
1

+ a2u/ay2 acvarde -
0 f’aG’ard]i,j’h2k5 “

If ~(xi,Yj) ia nonzero, the validity of (5.13) is established at

the mesh point (Xi,yj) for h< (&/k5)1’2 by inequality (S.9), i.e.,

‘i,j
is nonpositive.

lf ‘(xi’yj) ‘s zero’ ‘i,j ‘s zero’ and ‘bus ‘On-

positive, for all h.

We consider next the finite difference equation for the error in the

solution of problem P2 at irregular mesh points. This equation can take

several forms depending on which of the six neighbors of an irregular mesh

‘oint (Xi’yj) are‘ot ‘n R
sary to consider an irregular

and one diagonal neighbor

sibilities.

Suppose for a mesh

are

+ s. Because of symmetry, it is only neces-

mesh point for which one rectangular neighbor

not in R + S to illustrate the several pos-

pdnt (x,,y,) that y, , = 3 and that both
A J LsJ

the diagonal neighbor (xi-l,yj-3) and the rectangular neighbor (xi-l>Yj)

are not in R + S“(see Figure 5.1); then (Xi,yj) is an irregular mesh

point. Equation (4.5) for Ui ~ is
J
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‘b2”i,j ‘A’(xi9Yj$ui,jSDxui,j9Dyui,j)2[ui+~,j/(A~+l) - ‘i,j/X~

+ui-A1,j/~1(~1+1)]/h2+2B’(---) [ui+1,j+(~2+1)l)

(5● 14)
- ‘i,j 2lx +ui-A2$j-3~2 /~2(~2+1)]/5h2

+ C’(---) [ui,j+l-ai,jwi, j.11/h2

= G(---).

whege~-”’Dx“and D denote applicable .
Y

difference approximations to ~/& and

~1~ ‘respectively. The finite difference

equat’iokfor the error is obtained from

equation (5.14) by the same prbce’durethat

is used for regular mesh points”. For the

irregular mesh point considered above, the

finite difference equation fpr the error

.’ -.
has the form

/

s

.

.

.

Figure 5.1

ai,j2[Ei+l,j’(xl+l] - ‘i,j/Al ‘Ei.A,j/~#1+1)]/h2

. .

‘2bi,j[Ei+l,j+3’”(A2+1)- ‘i,j’h2 ‘Ei-A2,j-3A2’x2(A2+1) ]’5h2

(5.15)

-+ C[E ]/h2 + di,~[E
i,j+l- 2Ei,j+Ei,j=l i+l,j-Ei-A@ ]/(A1+l)h

+e’ [E ]/2h+ f
, i,j i,j+l-Ei,j-l ii j*i,jEi,j = ,

* ,!’

In equation (S.,15),the coeffi.cients’andnonhomogeneous term are given by the

same expressions as for a regular mesh point but where the difference quotients
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are those used in equation (5.14) rather than the symmetric difference quo-

tients previously used. Also, the nonhomogeneous term ~~ ~ is proportional

to h rather than h2. Let k6 be a constant such

(Xi,yj) an irregular mesh point.

The coefficients are bounded in the same way

‘$J

that ii,j ~ hk6 for

as for regular mesh

points. In order to assure that f
i$j

is nonpositive at points where

‘(xi$yj) is nonzero, it is necessary to specify that h be less than or

equal to (A~/k7) where k7 is a constant which corresponds to
‘5

for

regular mesh points.

We denote the finite difference operator for the error in the solu-

tion of problem P2 at irregular mesh points by

~E
b2 i,j = ii,j.

The error equation corresponding to equation (4.2) takes a some-

what different form. For the mesh point configuration given in Figure

3.5a, we have from equations (3.15) and (4.2):

= Nui+l,j+Ei+lsjL (U
bl i,j+Ei,j)

)/(A+l)+ (u
PsJEP$q)/(A+’)

- (Ui,j+Ei,j) - 0.

Since E = O, we have
P9q

- AE.,
‘isj ( ‘Aui+l,j ‘Up,q )LA+l) - Ui j1+1,j $

which by the use of equation (3.22) can be written as

(5.16)
‘i8j

= (hEi+l,j+ Ah2cA(M2)i-@,j+ (M2)iw,j1/W(~+U.

For the general case, the rightmost term in equation (5,16) will be denoted

by g~,j=
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We define the finite difference operator \l bY

~E
bl i,j = ‘Em,n

/(A+l) - Ei,j

where

(xpYj) ‘ ~ and (Xm,yn) ~ ~.

The error equations derived above can be used together with zero

boundary values to formulate boundary value problems for the error. The

boundary value problems for the error functions associated with problems

PI and P2 are:

Problem ~1:

(5.17)

(5.18)

Problem P2:

(5.20)

(5.21)

E(x,y) = O , (x,Y) ~ RSO

.

.



CHAPTER VI

LINEAR DIFFERENCE OPEWTORS

In order to derive error bounds for the

and P , it is necessary to first establish some
2

ference operators.

solutions of problems PI

properties of linear dif-

Let a, b, c, d, e, and f be functions of x and y only which

satisfy the following conditions for (xi,Yj) a mesh point in R+S.

O<KO S ai$j’ ci~j S ‘1

0 s bi$j s ‘1

Idi jl~ Iei,jl ‘K1$

Osf
i,j

where K. and K, are;finite constants. Also, let

(6.1)

u L

(6.2) hl Z 2Ko/K1.

‘et ‘i,j
be an arbitrary function defined

~+~+RS. At the mesh points in ~, we define

operator - by
‘h

at the mesh points in

the finite difference

(6.3) -
‘hvi,j = ai,j@V)xvi,j + 2bi,j@.’0zvi,j+ ci,j@’v)yvi,j

+ di,jo+v)xvi, j + ‘i,j@+v)Yvi, j ‘fi, jvi,j

At the mesh points in ~, finite difference

%2 are defined. The operator ~bl is the same as

54

operators ib~ and

the operator
‘b1

.

.
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given by equations

.
as the operator

‘h
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(3.15) and (3.16). The operator %2 has the same form

but utilizes difference quotients such aa those given

by equations (3.17)-(3.21)rather than the symmetric difference quotients

used above.

Just as the maximum of a function v, continuous on R+S, for which

Lv 2 0 in R is less than or equal to the maximum of zero and the maximum

of v on S, we prove

‘EN 6“1” ‘et ‘isj
be an arbitrary function defined at the mesh

points in Rh + 1$ + RS such that

.

‘hvi,.j2 0’ (xi,Yj) ~ ~,

%2vi,j~ 0’ (xi,Yj) ~ ~.

If the mesh width h is less than hl, then

‘i,j
S max (O,m~x:’v)

s ‘“;

for all (xi,yj) G ~+~.

Proof: Define ~
i$j by’

‘hvi,j ‘$i,j’ (xi~yj) e %$

(6.4)
ig2vi,~ - +i,ja (xi$Yj) ~ KS

then

*i,j 20.

At the mesh points (xisYj) ~ \* equations (6.4) can be written ●s
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-+@i.1, j/Pi,j= @i+l, j/lJi,j%+l,j )Vi-l,j‘i,j + qp,j+d~i,j)vitp,jia

+ QJi, j+i, j)vi,j-1(6.5) ‘“@qp, j&i,j)vqp,j-c X + %,j+llwi, j)vi,j+l

where

~i, j = 2(aw+2bi,j/(ti%2) +Ci j - h2fi,j/2)~$

~i+l,j
= (ai,j+hdi, j /2)$v~-~,j = (?i,j-hdi,j

/2),

‘i*p,j-k2
/@r2+p2),= 2bi,j/(~2+~2)$w~p,j-~ - 2bi,j . .?,
1

Wj j+l1- (ci,j+hei,jf2)? P~,j-1 = (ci,j-hei,j/2).

/

At the mesh points (Xi,yj) ~ ~, the function vi,j
is given by

equations similar to (6.5). These equations involve values of v at one

or more boundary mesh points, and values of the coefficients corresponding

to these mesh points.depend on which of the mesh Points in N(Xi$Yj) are

not in R-1-S. By way tifillustration, the value of the function vi,j
is

given below for the irregular mesh point illustrated in Figure 5.1.

(6.6) + %2,j-3A2
/fPi,j)vi-h2,j-3~,24 (~i,j+l ~i,j)“i+l,j

Ill+ @i,j-1 i,j)Vi,j-1 - (h2/pi,j)Vi,j

I

.

.

.

where



.
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~i, j
= 2(ai,j/~1 +b~,j /5A2+ci,j - h2fi,j/2),

~i-t-l,j
= (2ai j-i-hd /5(A2+l),

s i,j)t(~l+l)$~i+l,j+3 - 2bi9J

~i-l,j - (2ai ~-hA1di,j)/~l(~l+l),Pi-A2,j-3A2° 2bi,j/5~2(~2+l)s
s

~i,j+l /2)9 Vi,j.l- (ci,j-hei,j/2).
- “isj+hei$j

Equation (6.6) is easily generalized to apply to any mesh point in %“

For h < hl, the coefficients in both equations (6.5) and (6.6)

satisfy

o ‘+i,j>vm,n$

and

1–1 v S1
‘i$j

m,n
(m,n)

where the subscripts

in equation (6.5) and

Now, let M=

‘iad
= M at a point

(XmSYn) c ~+~+RS which is associated with (x ,y ) by the appropriate
ij

(m$n) take on all values of the subscripts included

(6.6) except (i,j)e

max vi j’ (Xi$yj) e Rh+~ +RSO If OCM ands

(xi~yj) e ~+ ~s then Vm,n _ M at each point

equation (6.5) or (6.6). If one of the points (Xm,yn) is a point in RS,

the lemma is proved for the point
‘Xi’yj)”

Otherwise, the same argument

applies toeach of the neighbors of the original point until a point which

is associated with a point in RS is reached.

lf ‘Lj is nonpositive for all (Xi,yj) e RS, then Vm,n is non-

positive for all (Xm,yn) in ~+ ~. Therefore,



(6.7)

‘i, j S max (O, max v).

‘s

We consider next the boundary value problem given

ivh i,j = ‘M
, (xi,Yj) ~Rh

(6.8) V(x,y) = O(xsY) $ (x,Y) G RS

where t. , and (6,, are given functions, and all mesh
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assumed

l,J L,J
to be regular mesh points. We prove

- 6.2. Let h< hl; then the boundary value problem given by

equations (6.7) and (6.8) has a unique solution.

Proof: We first show that if a solution of the boundary value prob-

lem exists, it is unique. Suppose
‘i$j and ‘L

are two solutions of

the given problem.
‘en vi,j = (Vi,j- ‘L

) is a solution of the problem

‘hv~,j
= o, (Xi,yj) E ~

‘l,j = 0, (x ,y ) G RS.
ij

By Lemma 6.1, any solution of this problem in bounded above by zero. Simi-

larly, by considering the function -v” it is proved that any solution
i9j’ \

is bounded below by zero. Therefore, V!,j
m O, and

‘i,j = ‘:A”

The determination of v
i,j

at an$ point (xi,Yj) requires the solu-

tion of a set of linear algebraic equations with as many”equations as &knowns.

The uniqueness of the solution implies that the

of coefficients is nonzero$ i.e.~ the matrix of

determinant of the matrix

coefficients is nonsingular.

.

by

points in R are
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In this case, as is well known, the set of equations has one and only one

1
solution.

Next, we establish the existence of a bound on the solution of the

boundary value problem given by equations (6.7) and (6.8).

Let al and the function
‘i,j

be defined by

(6.9) ml = [l+(h2+h[4KO+K:+h2]1’2)/2KO]/[1-hK1/2KO], h<hl

and

(6.1o) Ii
‘isj ‘al - ‘1’ i = 0’ 1’ 2’

.... I.

We first establish

of the following lemmas.

LEMMA 6.3. Let h

some properties of the function
Pi,j

by means

< hl; then if R contains only regular mesh

points, the second difference quotient with respect to z of the function

Pi,j
is nonpositive.

Proofs Let (Xi,Yj) be a regular mesh point and let y = ta/p.
i#j

The second difference quotient with respect to z of the function Pi,j is

given by

(Av)zp~,j = (67)2(++ = -(#)zu;

.
‘See, for instance, Milne [1949], p. 8.
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For h<hl, al Z 1.

F=

Consider the function

F(~,) =f-2+ u;@, pl%l.J. 1. A

For al = 1, F = O, and

dF/dul = Wr!p - Cp) ●

therefore,

F20.

always, and the value (Av)zpi,~ Is nonpositive.

LBMMA 6.4. Let h<hl; then if R contains only regular mesh

points,

\pt,j s-l.

Proof: By direct substitution of (6.10),we have

i
= -ai,j(AV)xa~- 2bi,j@7)zol - di,j(A+V)xm; +fi,j(u~ - o;)”

By condition (6.1) and Lemma 6.3,

‘npi.,j
i

s -ai,j(A@x% - ‘i,j
(A+V)XU;

.

~“-Ko(ul-2++/h2 +K1(ul-u~l)/2h .
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It is verified by direct calculation that al as defined by equation (6.?)

is a solution of

(6011) -K&-2+w’~1)/h2 + K1(u#)/2h = -1

which proves the lemma.

let vi,

Next, we prove

THEOREM 6.1. Assume that R contains only regular mesh points, and

)j
be the solution of the boundary value problem given by equations

(6.7) and (6.8). Then, for h < hl,
.

~ax b’i, jl sPi, j ~maxlt~,jl + Max Pi, jl”
‘h h ‘s

Proof: TJet

%,j = Pi,j mf

h

From condition 6.1 and Lemma 6.4,

‘hqi,j
=max It

isj
‘h

I*

Also,

‘i,j 2 max 10i,jl

‘s

at mesh points in RS. Hence

‘isj ‘Vi,j - qi,j

~i,jlfi;j



is nonpositive on ‘s
and

iw
h i,j = ‘w - ~qw
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is nonnegative for (xi9Yj) e ~. Therefore, by Lemma 6.1, Wi ~ is non-
9

positive in 1$, and

max It~jl?max Pi,jl”% s ‘u = Pi, j 9.
‘h ‘s

A similar argument holds when
%j

is replaced by , and we obtain
-Visj “

max Iv
i,jl s pi j m; Iti,jl+y l~i,jls

‘h

which was to be proved.

COROLLARY:.1. Let yl be given by

Ml = [Kl + (K~+4Ko)1’21/2K0

then there exists an h2 such that for h < h2,

given by equations (6.7) and (6.8) is bounded as

the solution of the problem

follows:

Pp
max ~vi,jl S e IOi jl.max Iti,jl +max ,
% ‘h ‘s

Proof$ By virtue of Theorem 6.1, we need only show that there exists

an h2<h ~ such that for h C h2

i.e., that

.

.

.
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Since u; 2 1, it is sufficient to shuw that

I I.@

‘lse ‘1”

Now,

I l/h Ih
al = (al ) = (u:/h)x

and

{

2 2 1/2

}

l/h
(a:/h) = (l+[h2+h(4KOiiC1+h) 1%#/(1-hK1/2KO)

[

l/k

1[ 1
l/h

2 1’2/2K0 +O(h2)= l-f-h(4KO~1) 1 +hK#2Ko +0(42)

(6.12)
(l/h)-l 0(h2) + ...I/h,

(ml = [l+hvl]l’h + (1/h)[l+h@

As h tends to zero, the first term on the
WI
e and the sum of the successive terms to

right side of (6.12) tends to

zero. Therefore, there exislzs

an h2 < hl such that for h<h2,

and by Theorem 6.19

max Ivi,jl S eplx max Iti ~1 +max ldi,jl.

%
8

‘h ‘s

We

containing

now return to the case of a general region R, i.e., a region

both rggular and irregular mesh points.

LEMMA 6.’5.
‘et ‘i$~

“be an arbitrary function defined at the mesh

points in ~ +Rb +RS such that



ipijzo, (xi,Yj)E\9

%Ivi,j = 0 ‘ (xi%) ‘ %

V(xsy) = 0(X9Y)3(X(Y) k Rs “

Then, for h<hl,

(a)
‘isj

S max (O, max v)s(XisYj) ~ Rh

%%

and

(b) - s Max (0,
‘isj

max v), (xi,yj) e ~+~.

‘s
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.

Proof: Part (a) of this lemma is proved

rectly. Part (b) is prwed by the same argument

by applytng Lemma 6.1 di-

that was used to prove

Lemma 6.1. At a mesh point (xisYj) ‘ % ‘% ‘i,j
is given as a weighted

average with positive weights whose sum does not exceed unity of neighboring

values vm,n”

Consider next the boundary value problem givek by

(6.13)

(6.14)

%vi,j=’~,j s (XiSYj)’Rh

%Ivi,j=%,j ‘ ‘Xi’yi) ‘Rb

(6.15) v(x,y) = 0(X9Y) 9 (x;Y) E RS

where tl
‘i$j and i,j

are given functions. Then, we have

LEMMA 6.6. For h < 111,the boundary value problem given by

equations (6.13)-(6.15)has a unique solution.
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Proof: This

prove Lemma 6.2.
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lemma is proved by the same argument that was used to

Next, we prove

THEOREM 6.2.
‘t ‘i,j

be the solution of the boundary value prob-

lem given by equations (6.13)-(6.15)where fi(x,y)= O, (x$y) c RS. For

h<h2

(6.16) max Ivi ~1 S 2eV1x max Iti ~1 + 2 max

%%3 ‘ ‘h ‘ ‘b

Proof: From Lemma 6.6, we know that the solution

‘i,j 1.

Vf-j ts unique.
->4

We apply Theorem 6.1 to ‘i j> (x~$yj) e ‘h
where the mesh points in

$ %

and those mesh points in ‘s
which are adjacent to mesh points in ‘h

are

considered as boundary mesh points. Thus, for ‘< ‘2’

(6.17) max

‘h

Now, let (Xi,Yj) be

Vi j! S eM1x mmc Iti,jl +max Ivi,j).
s

‘h ‘b

an arbitrary mesh point in ~. From the definition

‘f %1’ ‘i,j
is given by an equation of the form

‘i,j = ‘p,q
/(A+l) + Avm,n/(A+l) “ t; j, 0< A <1,

9

where (Xp,yq) is a mesh point in R~ and (Xm,yn) is a mesh point in

‘h“
Since v = O And A/(~+1) S 1/2, we have

Psq

(6.18) max Ivi jl ~ l/2max Ivi ~1 +max It; j10
%’ %’Rb’
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By substituting successively for
‘ax ~%j

I in (6.17) from (6.18) and for

% .

max Ivi jI in (6.18) from (6.17),we obtain (6.16).

‘h ‘ .

Next, we establish a bound on the solution of the boundary value

problem given by

(6.19)

(6.20)

(6.21)

We have

% ‘i,j = ?L,j , (Xi,yj) ~ ~

+d’i,j = Z,j , (Xi,yj) ~ ~

% = %,j ‘ (Xi’yj) e‘s

LEMMA 6.7. For h <hl, the solution of the boundary value problem

given by equations (6.19)-(6.21)exists and is unique.

Proof: This lemma is proved by the same argument that is used to

prove Lemma 6.2.

Let h~s ~~, and the function
%,j

be defined by

(6.22) h3 = min(h~,h~)

where

(6.23) hi = K~[l - (2/3)1’V]/4K1,
.

and

21’2191/~-1]/2~1 +L2Ko+4K~ + (h~) 1(6.24) h; =Ko[(3/2)
i

(6.25) U2 = [1 + h2/Ko + h(2Ko+ 4K: + h2)1’2/Ko]/[1 - 2hK1/Ko],
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and

(6.26)

Here, k = O except when ~ is evaluated at an irregular mesh point.
i,j

We prove

LEMMA 6.8. For h< h3,

CT*Z1

and

Proof: From equations (6.22) and (6.23)

h ~ Ko[l . (2/3) 1’v]/4K1

< Ko/2K1.

Therefore,

2 1.
‘2

From equations (6.22) and (6.24)

2 1/2]
1/7-1]/2{1 + [2Ko+4K~+ (h;) 1h ~ Ko[(3/2)

or

h+h[2Ko+4Kf+ (h~)2] SKo[(3/2)1’g-1]/2.

Obviously, h is less than unity; thus,

1 +h2/Ko +h[2Ko+4K; +h2]1’2/Ko S (3/2)1/’@ - (1-(2/3)1’%1,
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and from equation (6.23)

1 +h2/K0 +h[2KO+4K~ +h%l’2 /KO S (3/2)1’V[l - 2K1h/KO].

Thus, from equation (6.25),

o-:S3/2.

LEMMA 6.9. For h<h3,

to z of the function Pi,j is

the second difference quotient with respect

nonpositive.

Proof: The proof of this lemma for regular mesh

as the proof of Lemma 6.3.

Let (xi$Yj) be an irregular mesh point and let

points is the same

Yi,j
. ~~~~o We

must consider two cases, i.e., either (but not both) of the diagonal neigh-

bors (xi-@h, yj ‘@) might not be in R + S (sincetcth) or (xj+13h, Yj -

~i,j
is independent of y, ths sign of M is immaterial).

If the diagonal neighbor ‘~) A R + S, the second(Xi- 13h,yj -

difference quottent with respect to z of ~i,j
is given by (see Figure

5.1)

(6.27) ‘-~/A(A+l)]/k2-[U:% (X+1) - U&/x + 02

where Ak, O < A < 1, is the distance between the mesh point (Xi,Yj) and

the point of intersection of S and z
iaj”

We have

(6.28) b;% (A+l) - m:/X + o_;-W/X(A+l)]/k2 = o’:[~ - (A+l) + o’;”]/k2k(X+l).

The coefficient of the square bracket on the right-hand side of (6.28) is non-

negative; thus, we need only show that



.
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is nonnegative. Let

then

F = h(lw) - (A+l) + (l*)-A

and ~ is nonnegative for ~ ~ l/2* By Lemna 6.7, u: s 3/2 for h< h3;

therefore, (6.27) is nonpositive.

Now, suppose the point (xi@h, Yj ~C%h) # R+S. Then, we must

show that

(6.29)
- [ai+Ma /X(lL+l)- u;++-b(~+l)]/k2 S O “

or that

is nonnegative. Again, let {=l+e,05e S1/2; then

F = (#”- (A+l) + X(l*)-l

(6.30)

We need only show that F is positive for some pair of values of A and

e in the interval O < A< 1, 0 S e S 1/2 and that F has no zeros in

this interval to complete the proof that F is nonnegative throughout the
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interval. Consider

= 1/64 >0.
‘l(A,G)=(l/2,1/4

.

Suppose F has a zero in the interval of interest, then from (6.30),

l+A-2G=0

but this relationship is not satisfied at any point in the interval, and

we conclude that # is nonnegative in the intervdl. Thus, (6.29) is non-

positive. This completes the proof of the lemma.

w 6.10. Let (xi,Yj) be a mesh point in Rh+ Rb. For h < h3,

and

Proof: The proof of this lemma for mesh points in Rh is the same

as the proof of Lermna6.4 if
‘3

and ~i,j are substituted for
‘1

and

Pi,j
respectively.

Suppose (Xi,yj) is a mesh point in ~. As in the case of regular

mesh points, we can omit the difference quotient with respect to z by virtue

of condition (6.1) and Lemma 6.9. Theq, there are two cases that must be ‘

considered, i.e., either (but not both) of the rectangular neighbors (xi-h,yj)

or (Xi+h,Yj) might not be in R + S.

First, we assume that the mesh point (xi-h,y ) # R + S. For this
j

case
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(6.31)
i2~i ,j

[#+1/ (A-1-l)- L@ + U:-%(A+l) ]/h2
= -2ai,j 2

~ai+l-u;-A
- ‘i,j 2 ]/(A+l)h+ f(a;-a;), O<A< 1

~u i
2 { }

-2Ko[Am2-(l+k)-krjX]/h21@+l)+K1[u2-u~k]/h(~+l) .

Next, we show that

(6.32) 2[xa2-(l+A)iv@(A+l) = [cf2-2-cr;ll/2.

Let U2 = l+e,OSeS1/2,then

> 62[1- (X+2)G/3]/2.

Also,

-1
‘2-2-U2=1+C

- 2 + (1*)-1

2
SE,

and we require only that

1- (A+2)e/3 Z 1/2

which is true for O < AC 1, 0 S e S 1/2. This establishes (6.32). Now,

we show that

[cr2- L&/(A-Fl) s [02- 0;1].

This reduces to showing that
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-x
‘L? + AU2 2 Aci;l+ (7;1

which is true for all k,m2 in O < A < 1, U2 Z 1. From these results and

(6.31),we have for the case when (xi-h,yj) # R -f-S,

(6.33) K.[u2-ib2ti,j s - - 2 +@/2h2 +K1[IJ2- @/h.

The quantity
‘2

is a solution of

-KO((T2-2 +

thus, the lemma is proved

Now, suppose (Xi~SYj) # R + S. We must show that inequality (6.33)

is sati.afiedfor this configuration or that

cr~l)/2h2+ K1(u2-

for the irregular

-1a2 )/h = -1 ;

mesh point being considered.

(6.34) [#x/A(x+l) - @+
-2ai,j 2

S -Ko[a2- 2+ u;l]/2h2

i+x- = ‘-1 /(A:l)h‘-1/(~+1)]/h2 - di,j[~2
‘2 *J

‘l]/h.+ K1[cf2-02

First, we show that

(6.35) 2[U; - (l+A) + @/x(A+l) z [cr2-2 + 0;11/2.

Let

This

‘2
= 1 -i-e,O S e S 1/2. Then,

(1*) ?:’”-(1+X)(li4)”,i:N.+..e~}(A+l)l42.0.

expression is gre::terthan or equal t~
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1 1-(I+A)c -:-(1-:-A)Xc2/2 + (l+l)A(M),e3/6 .- (1+M (1*) + A- x(l’l”l)Gz/4

and we need only show that

1/2 ‘t(i-l)e/3 ?’0,

which is true for all A,e in O <A < 1, 0 5 E 5 1/2.

In order to complete the proof of (6.34),we must also show that

or that

a;+Au
-1 +Au +U
2 22

which is true for all A,u in O < A < 1, C2 Z 1.

This completes the proof of the lemma for all possible mesh point

configurations. )

The desired bound on the solutl.onof the boundary value problem

given by equations (6.19)-(6.21)is given by

THEOREM 6.3. ‘t ‘i,j
be the solution of the boundary value prob-

lem given by equations (6.19)-(6.21). For h<h3,

Proof: This theorem is proved in the

proved. Use is made of Lemma 6.10, and other

same way that

substitutions

Theorem 6.1 is

are obvious.



I

COROLLARY 1. Let

Pz =

then there exists an ‘4

w~ be defined by

1/2]/%;[2K1+ 2(K: + KO/2)

such that for h<h4, the solution of the problem

given by equations (6.19)-(6.21)is bounded as follows:

max

%=b

Proof:

Corollary 1 to

I&
Se m= {Iti,jli l~i,jl) +m= l@i,jlG

‘hHb

The proof of this corollary is the

‘s

same as the proof of

.

. I



CHAPTER VII

ERROR BOUNDS FOR SOLUTIONS OF FINITE DIFFERENCE PROBLEMS

In this chapter, we use the results of Chapter VI to show that the

boundary value problems for the error functions associated with problems

PI and P2, I.e., problems ~1 and ~2 have solutions which are proportional

to hp, p Z 1. Let WI denote the set of functions defined at the mesh

points in ~+Rb+RS such that if w c W , then
1

I@
(7.1) max lWi ~1 ~4h2 m=x{e k4, k8)

‘h% ‘

W(x,y) = o, (X,y) G Rs

where

(7.2)

and

(7.3) ki = max (k1,k3].

Equation (5.17) which is satisfied by the function ‘i,j
at points

of Rh for problem ~1 is a nonlinear algebraic equation; we linearize it

by replacing E
isj

where it occurs in the arguments of the coefficients

by a given function w c WI. Equation (5.17) is rewritten in the form

.

.

‘gi j, (Xi,yj) ~Rh%Si,j ,

where

75
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%Si,j = ai,j(Av)xsi,j + 2bi,j(Av)zsi,j + ci,j(Aqysi,j

i-d~ j(A-I-~xsi, j + ei ~(A+V)ysi,j + fi,jsi,j
9 $

and where the arguments of a
i,j bi,j

, and
ci,j are

(xi,Yj, (Ui, j+-i, j),

and E. has been replaced by
l,j

(@+J)x(ui,j*i, j)$ (A-W)Y(ui,j”:~i,j))~

‘Lj everywhere except in the coefficients.

We also

(7.4)

(7.5)

(7.6)

denote the difference operator Xbl bY ~1”

Now, consider the boundary value problem ~1 given by

wi,j = gi,j ‘ (xi,Yj) ~Rh

%lsi,j = g;,j > (xi,Yj) ~ Rb

‘isj = 0
, (Xi,Yj) cRS*

We have

LEMMA 7.1.
‘or ‘< ‘2’

the solution s of problem ~1 exists

and is in the set WI.A.

Proof: Since problem

the results of Chapter VI can

Lemma 6.6 that problem ~1 has

PI is a linear difference

be applied to it. For h <

equation problem,

‘2‘ we have from

a unique solution s, and from Theorem 6.2,

.

l+
max Isi jl S 2e ‘ax lgi jl + 2 max Ig;jl*

‘hWb ‘ %’%’
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From this and equations (5.17) and (5.18),

.

.

l+
ma% ISi, jl ~ae h$c4 + 2h%8

‘h%

or

Wk ~ }
~x Isi, j lSh24max[e 4,8.

‘h%

Also, S(x,y) = o, (x,Y) G RS. Hence

THEOREM 7.1. Let h < h2, then

with problem P has a solution E = s*
1

?1

as

By

has no solution that is not inW1.

problem ~1 for the error associated

where S* c W
1“

Moreover, problem

Proof: In order to prove this theorem, we consider the problem ~1

a transformation T:

TW=S.

‘ma 7“1’ ‘or ‘<h2’
the transformation T takes a function w from

the set W~ into a function s which is also in the set WI. The set WI

is a closed n-cell!, and the transformation T is continuous; therefore,

we can apply the Brouwer Fixed Point Theorem to the transfor~tion T. The

1
A closed n-cell is defined as follms

Let Gn be an n-dimensional Euclidean space.

point in Gn be denoted by xi, i = 1, 2, 3,

(see Lefschetz [1949], p. 30).

Iet the coordinates of a

.... n. A closed n-cell is

defined as the image of any continuous one-to-one mapping of the’set



78

The Brouwer Fixed Point

tion of a closed n-cell

Theorem states that2 every continuous transforma-
.

into itself has a fixed point.

Thus, there exists a function S* e WI such that
.

Tg* E S*,

and we conclude that problem ~1 for the error associated with problem PI

has a solution E = s* where S*CWO
1

Now, suppose problem ~1 has a solution = where ~ is not in WI.

This implies that ~ can be used to linearize the difference equation

(5.17) for problem~l and that ~ is the solution of the linearized prob-

lem. However, Theorem 6.2 applies to the linearized problem and states

that, for h<h2, any solution of this problem is bounded es follows:

max I=i .I s 2h2[eV1xk4 + k ]
SJ 8“

‘hwb

Since any solution of problem ~1 also has zero boundary values, we conclude

thet ~ c WI and thus have a contradiction. Therefore, problem ~1 has no

sohtion that is not in W .
1

Next, we consider problem ~2. Let W2 denote the set of functions

de,finedat the mesh points in Rh -1-~ +RS such that if w c 1’?2,then

(7.7)
IJ2X

max IWi ~I S he max (hk4,k6]

%% ‘

(7.8) W(x,y) = o, (x,Y) c R~

—— .-

?
‘-:x’-chetz [1949], p. 117.
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where

(7.9) P2 = [2ki+2(~(ki)2+ k&/2)1/2]/k~c

Equations (5.20) and (5.21) which are satisfied by E
isj at

points of ~ + ~ for problem ~2 are both nonlinear algebraic equations.

We linearize them in the manner given above for problem ~1 by using a given

function w e Woo Problem Em consists of the linearized problem ~0 and is
c G

given by

(7.10) % Si,j = gi,j s

(7.11)
%2 ‘i,j = ii,j 9

(Y● 12) S(x,y) = o 9

‘Xi’yj) e‘h

(Xi,yj) e ~

(x,y) eRS

where ~ and %2 denote the linearized finite difference operators

and %2 respectively.

%

Then, we have

LEMMA 7.2. ‘or ‘<h4’
the solution s of problem ~2 exists and

is in the set W2.

Proof: Lemma 6.7

~2 and state that, for h

and Corollary

<h A, problem

1 to Theorem 6.3 apply to problem

~2 has a unique solution s and

V2X
me% ISi,jl ~ e ~x (Igi,jl, Iii,jll.

%% %$%
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From this and equations (5.20) and (5.21),

max

‘h%

Since also, S(x,y) =

THEOREM 7.2.

with problem P2 has a

0, (x,y) G RS, S

‘t h < ‘4’ ‘hen

solution E = s*

22 has no solution which is not in W2.

GW2.

problem P2 for the error associated

where

Proof: This theorem is proved by the

to prove Theorem 7.1 by using Theorem 6.3 and

6.2 and Lenxna7.1.

From Theorems 7.1 and 7.2, we conclude

associated with problems P, and Pm are boundedA c

h2
portional to and h respectively.

error for problem P2 is actually bounded

s* e Wm. Moreover, problem
c

same argument that is used

Lennna7.2 instead of Theorem

that the error functions

by quantities which are pro-

In Chapter IX, we show that the

by a quantity which is proportional

to h2.



CHAPTER

EXISTENCE AND

The existence of solutions of

VIII

UNIQUENESS

the discrete ●nalogues, problems PI

and P2, of the given continuous problem, pzoblem pO, can be deduced from

the existence of a solution of the continuous problem and the existence

of solutions of problems PI and P2. However, this reasoning depends on

the assumption that the continuous problem satiefiee all of the conditions

given in Chapter II which insures the existence of bounded partial deriva-

tives of fourth order of the solution of the continuous problem. Solutions

of problems P and P can be shown to exist with fewer conditions than this.
1 2

For sufficiently small mesh width, the same conditions which are used to

establish the existence of the solution of problem PO are sufficient to

establish the existence of solutions of problems PI and P2.

We prove

THEOREM 8.1. Let equation (2.3) be uniformly elliptic and let the

coefficients A, B, and C be Ifdldercontinuous in their five variables.

Let the function G be bounded by a constant K, and let the function 0

have H61der continuous first partial derivatives. Then, for h < min (h2,h4),

the solutions of problems PI and P. exist.
x. &

theorem

Proof: First, we note that, by Theorem 2.1, the hypotheses of this

a,resufficient to guarantee the existence of a solution of problem

PO which has continuous second-order partial derivatives in R. Thus, the

transformation (3.3) exists, and it makes sense to talk about problems PI

and P .
2

81



In order

and P2, we use ●

the existence of

Let W3

‘n %+%+RS

82

to establish the existence of solutions of problems PI

technique similar to that which was used to establish

solutions of problems ~1 and ~2.

denote the set of functions defined at the mesh points

such that if w e W , then
3

ply
“max Iqj I ~ Ke”- + ‘=

%’% ‘s

W(x,y) - gl(x,y), (X,y)

where

Equation

it occurs in the

‘id I

‘s

VI = [kl+ (k&ik#’2]/2k!

(4.1), problclmP1, is linearized by replacing Ui,j where

arguments of the functions A, B, C, and G by a given

function w e W3. By Lemma 6.6, the linearized problem has ● unique solu-

tion. This problem is considered as a transformation T, which takes a

function w from the closed n-cell

Theorem 6.2, is also in W3. ‘Since

the Brouwer Fixed Point Theorem can
.

‘1
has a fixed point in W3, which

The existence of a solution

same manner as for problem P . The
1

n-cell W4 where a function w e W
4

A

‘3
into a function U which, by

this transformation is also continuous,

be applied; thtis,the transformation

is a solution of problem PI.

of problem Pz is established in the

solution of problem P2 is in the closed

if

max Iwi jI S Ke
Vzx+ma IOi,jl

%+% ‘ ‘s

w(x,y) - ft(x,y), (x,y) e RS

and where
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V2 = [Zkl+z(k;+ k~/2)1’2]/k& .

Use is made of Lemma 6.7 and Corollary 1 to Theorem 6.3 to show that solu-

tions of the linearized problem exist and are in
‘4“

The solutions of problems P, and Pq can be shown to be unique by aL L

method similar to that used to show that the solution of problem PO

unique. We prove next

THEOREM 8.2. Let equation (2.3) be uniformly elliptic, let

is

the

functions A, B, C, and G have H61der continuous first partial deriva-

tives, and assume that condition (2.10) is satisfied. If v(x,y) is non-

zero for any (x,y) e R, let h<min ((AV/k5)1’2, @v/k7), hll. Othemise,

let h<hl. Then the solutions of problems PI and P2 are unique.

Proof: We consider first problem PI. Suppose problem PI has two

solutions U and fi. Let V denote

“(xi’yj’ui$j’@+v)xui$j’ @+v)yui,j )

the difference U - U and let

be denoted by A’i,j’A’(xi,yj,tii,j’

@+V)xfii,j,@+V)Yfii,j) by Ai,j, etc. Then at the mesh points in ~,

we have

(8.1) +2B;,j@v)zui,j+ c;,j@v)yui,j ‘Gi,j‘i,j@v)xui,j

(8.2) -
‘i,j

@v)xtii,j+2fii j(flv)zfiij+ci j(Av)yoi,j -Eij.
s # D D

We subtract equation (8.2) from equation (8.1) to obtain

‘~,jbv)~vi,j + 2B~,j@v)~v~,j+ c~, j(m)yvi,j

(8.3) + (A~,j- ~;,j)@v)xfii,j + @;,j - =i,j)@’Ozfii,j

+ (C;,j- 5i,j)@v)yfii,j = ‘Gi,j- Gi,j).
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The differences [A;,j-~i,jl, [B;,j-~i,jl, [C;j-~i,jl, and [Gi,j-~i,jl
$

can be evaluated by means of equation (5.3) with u
~s.1

and E
is.i

replaced

by Ui,j
and ‘Lj

respectively.

We have, for example,

[A~,j-~i j] = A1(xi,yj,(U+V)i,j,f&V)x(U+V)i,j,@I-V)y(U+V)i,j)
8

- A’(x ,y ,tii j i,j’@+v)xfi~,j$@~)yfii,j)

(8.4) 1-

1~ 1
.1

= ‘iDj - ~ ‘Xde Dide+ C2rl-V)xvi,j~ P
i,j i$j

1
+ @sl-v)v. [J 1

iide
y l,j ~, q ~,j”

By substituting expressions such as (8.4) for the differences [A~ j- ~i,jl,
3

etc. in equation (8.3) ●nd rearranging, we obtain

A~,j@v)xvi,j +D i,jm+v)xvi,j+ 2B;,j@7)zvi,j + c~,j@)yvi,j

(8.5)

+ Ei,j@+v)yVi,j +Fi,jvi,j = O

where

1-

[J’ ]
1

= QN7)xfii,j ii de
[J 1

+ UAv)zci,j o p
‘u

5 de
o P i,j i,j

+ (/N’)yfii,j[J)rdq,,;[(w’],,{
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Y W[J:’F’],,,-[J)F’],,j$
+ @v) t

!1

[f 1

1-
F. “ @v)xtil,j irde

[J 1
+ 2@v)zCi, j o ‘rdel,j o i>j ~i,j

,Y ~ [Erde]i,j-[j)rde],,j .+(&7) fii ~

The coefficients in equation (8.5) are bounded in the same way that the co-

efficients

Chapter V,

At

(8.6)

and

(8.7)

where O <

in the error equation, Chapter V, ●re bounded. Also, from

1/2
‘Lj

is nonpositive for h< @v/k5) .

the mesh points in ~, U and U satisfy equations of the form

‘bl”i,j - [A/(A+l)]um,n+ [l/(A+l)]up,q - Ui j
>

Ll#i,j - [A/(A+l)]fi~,n+ [l/(A+l)]fip,q- U
iaj

~<1$ (xi2Yj) is a mesh point in ~, (xm,Yn) is a mesh point

in ~, and (Xp,yq) is a point in RS.

We subtract equation (8.7) from equation (8.6), note that U
P,q -

c1
Psq

, to obtain

(8.8) [7d(A+l)Jvm,n - Vi,j = o.
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We now formulate a boundary value problem for V as follows:

*i,j@v)xvi,j
+ c; j (AV)yvi,j + Di, j@+v)xvi, j+ 2J3~,j@7)zvi, j s

[A/ (A+l)]v
m,n ‘-‘i$j - 0 ‘ (*i,Yj) ~ ~

V(x,y) = o , (x,Y) E R~

By Lemma 6.5 the function V is bounded above by zero for h < hl. Simi.-

larly, the function -V is bounded above by zero. Therefore, V m O, and

u-tie

The uniqueness of the solution of problem P2 is established in the

same manner as for problem P
1“

Equation (8.5) ●pplies at mesh points In

~ forproblem P2, and an equation of the same form ●s equation (8.5)

but using asymmetric difference quotients appliee.at the mesh points in

~. Thesolution of the finite difference problem for V corresponding

.

.

to problem P2 is shown to be identically zero by the use of Lemma 6.1.



CHAPTER IX

IMPROVEMENT OF ERNXt

In Chapter VII,, solutions of problems ~1 and ~2

problems PI and P2 respectively are shown to exist and to

quantities which are proportional to hp. The exponent p

equal to two for problem ;1

We now show that the solution

tity which is proportional to

and to be not less than one

for the error in

be bounded by

is found to be

for problem ~O.
c

of problem :2 is actually bounded by a quan-

h’ in all cases. The methods used here

are similar to methods presented in Bers [1953] and in

[1963].

The solution of problem ~n is a fixed point of
.

consisting of

our objective

by a quantity

Bramble and Hubbard

the transformation

the linear boundary value problem ~2. Thus, we accomplish

by showing that the solution s of problem ~2 is bounded

which is proportional to h’.

We denote the finite difference operators B$ and P$2 (see equa-

tions (7.10), (7.11)), when applied at a general mesh point in Rh+ ~, by

‘o “ In this notation, problem ~2 is given by

(9.1) ‘Osi,j ‘gi,j ‘ (xi,Yj) eRh

(9.2) :“osi,j = ii,j , (Xi,yj) e%

(9.’3) S(x,y) = o , (Xi,yj) eRS.
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(9.4)
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The operator
‘o

is written in the following forml

‘Osi,j = I
u
i,j;m,nsm,n

(m,n)

where the subscripts (m,n) take on all values corresponding to points

in Rh+Rb+ Rs. For a given mesh point (xilYj), the coefficients

u
-2

i,j;m,n
are equal respectively to h times the coefficients vm,n

which are defined in Lemma 6.].;otherwise, (T
i,j;m,n

is equal to zero.

The coefficients m
i,j;m,n

satisfy the following conditions for h<h5=

‘k~/ki

(r
i,j;i$j

<o

(9.5) -ai,j;m;n Z O, (i,j) + (m,n)

(m,n)
(m,n)+(i,j)

We now define a function G
~gj;m,n

which is a discrete analogue

of a Green’s function for problem ~2. The function G
igj;myn

is the

solution of

L(g.6) - mi j\m,nGm n;p,q = - ~(xi9YiixpsYq), (xi,Yj)6 Rh + ~
*

(m,n) ‘

1
This notation is also used in Chapter III in the definition of

nonnegative difference operators.

.

.

.
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(9.7) G =5(X ,y;x )Y)9i,j;p,q ijpq (Xi’yj) e ‘s
.

. where 5 is the Kronecker delta.

Next, we establish some properties of the function G
i,j;m,n”

LEMMA 9.1. For fixed h e h5, the function G
i,j;m,n

exists and

is unique.

Proof: If it exists, the function G
i,j;m,n

is unique. For,

assume that G’
i,jim,n and’ ‘l,j;m,n

are two functions satisfying equa-

tions (9.6) and (9.7). Let Gi j;m,n = G’
i,j;m,n

- G!,
i,j;m,n”

Then,
9

G
i,j;m,n

satisfies

Ma
O i,j;m,n = 0’ ‘Xi’yj) e ‘h+Rb’

5
i,j;m,n ‘0’ ‘x@’j) e ‘s’

and by Lemma 6.1, ~
i,j;m,n S O. Similarly, -5 s o;

i,j;m,n
therefore,

E
i,j;m,n =

o.

Since

equations with

existence.

G
i,j;m,n

is the solution of a system of linear algebraic

an equal number of equations and unknowns, uniqueness implies

LEMMA 9.2.

‘efined ‘n ‘h+%+.
s. is given by
l,j

.-

(9.8) Si, j =

Let h< h5 and let s
i$j

be an arbitrary function

‘s“
Then at each mesh point (xisYj) e ‘h+ Rb+RS$

I G
‘sj;m$n[-MOsm,nJ + I G

i,m;m,nsm,n”
(xm,k#R#b (Xm,Yn)ER~
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Proof:
‘t ‘i$j

represent the right side of (9.8). Suppose

(Xi,Yj) e RSO Then the first term on the right side of (9.8) is zero

and ‘i,j
is simply Si ~. NOW, let (xisYj) ~ ‘h+%; thenwe =Onsider

s

‘Owi,j = I
u
i,j;m$nwm,n

(Xm,Yn)CRh~~S

= x u“
i,j;m,n{1

G [-MoSp,q]
m,n;p,q

(xm@eRh~+RS (xp,Yq) ~-~

-1- 1 G

}m,n;p,qsp,q

[Xp,Yq)~RS

= ‘“osi,j “z
u
i,j;m,nGm,n;i,j

(XmSYn)‘hwb~s

+ z s x a
P9q i,j;m,nGm,n;p,q

(xpsYq)as (xm,l~n)~~”+R#Rs

= ‘osi,j

Thus,

Mo[si,j- ‘i,j1 ‘sO , (xi,Yj) ~ Rh+ ~

[Si j- ‘i, j
] = O , (Xi,Yj) G Rs

#
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and by Lemma 6.1,

‘i, j = ‘i, j
, (Xi,yj) e ~+~+R~,

LEMMA 9.3. For h< h5, the function G
I,j;m,n

is nonnegative.

Proof: Assume first that (Xm,yn) c Rh+Rb and consider the func-

tion -G
i,j;m,n

which satisfies

M. [-G~,j;m,n] ‘6(xisyj;xm>yn) ~o, (Xi,yj) c Rh+~,

-G.
i,j;m,n

=0

Now”, let (Xm,yn) E R~; then

M. [-G
i,j;m,n] = 0

, (Xi,Yj) CR~.

, (xisYj) ~Rh+~,

-G = -6(xi2Yj;xm$yn ), (Xi,yj) ER~.i,j;m,n

By Lemma 6.1, -G
i,j;m,n

S O for both cases above.

LEMMA 9.4. For h< min {h3,h4), the sm

where

I &
G se
i,j;m,n

(xm,yn)~Rh*b

V2= [2k; +2((k~)2+k~/2)1’2]/k& .
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Proof: Recall the function
~i,j

which is defined in Chapter VI.

By Lemma 9.2, ~~ j is given by
.

9

.

Fi,j = I G Li,j;m,n[-M#m,n] + - ‘i,j;rn,#rn,n.
(Xm,yn)e~~ (Xm,jIn)ER~

By Lemma 6.10, M~
o i,j

S -1, and by Corollary 1 to Theorem 6.3, 0 s Fi,j

V2X
Se for h<h4. From this and Lemma 9.3, we have

We now prove the principal result of this chapter.

yHEoREM 9.1. Let h<min {hi], i = 3, 4, 5. Then the solution

of problem ~2 is bounded by a quantity which is proportional to the square

of the mesh width.

Proof: From Lemma 9.2, the solution s
i,j

of problem ~2 is

given at the mesh points (xi,Yj) ~ ~+ Rb by

(9.9)
‘i,j = I

G
‘,j;m,n[-MOsm,nJ + I

G
‘,j;m,n[-MOsm,nl”

(xmsYn)~Rh (Xm,yn) e%

For points (xm3Yn) ~ ~, we have frcxnequations (9.1) and (5.20),

I Ill‘Osi,j ‘gi,j

Sh %4 .



Thus, from Lamna 9.4,

1:I G
~$j;m,n[-MOsi,j]

(XmSYn) dZh

~ max
‘Osi, j I

G

(xm,Yn)E%
i,j;m,n

(Xm,Yn)CRh

V*X
5 h2k e .

4

Next, we consider the term

I G
i,j,m,n[-MOsm,*]”

(xm,Yn)E%

Let ~ be any subset of the

any mesh point (Xi,yj) eRh+

mesh points in ~. We show first that for

4

(9.12)
1 ~

min ‘

[

-z 1 z G
i,j;m,n”

‘Xm’yn)% (x ,Y ~%+%mm’n; p’q (XM9Y”)e%
Pq

Let the function
‘i,j

be defined by

.

r1, (Xi,yj) dth+%

(9.13)
‘i,j =

1-0, (Xi,Yj) ER~

By Lemma 9.2;, for (xijYj) = ~+ %$



(9.14)

From conditions (9.5),

(9.15)

From Lemma 9.3, equation (9.14), and inequality (9.15), we have

(9.16) la
I -Gi$j;m$n ‘-%sm,n] “

(xm,Yn)~~

Inequality (9.12) follows from Lemma 9.3 and inequalities (9.15) and (9.16).

Now let the subset ~ consist of all mesh points (Xm,Y ) E ~
n

such that at least one rectangular neighbor of (Xm,yn) is not in R+ S.

Then, for h < h
5’

min
[z

—

1

z k&/2h2

‘Xm’yn)’% (x ,Y )G%+%’’m’n;p’q
Pq

so that

This statement follows from the difinitiona of u
m,n;p,q

and conditions

(9.5).

Therefore, for all mesh points in
%’

.

●

.
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(9.17)

p
G
i,j;m,n[-%sm,n]

(xmsYn)e~

s (2h3/k&)k6 .

Now, let ~ consist of .11 mesh points in 1$ which do not have

rectangular neighbors which are not in R+S. For each such point

(xmsYn), one diagonal neighbor is not in R + S, and from the definition

of ~ at such a point, we have

s (4/3)~h~ B’m,n + O(h2).

Also, for the points under consideration,

-1 a
m,n;p,q

z 2bm,n/h2(c%2+p2) = 2B~,n/h2(a2+@2)

(xpsYq)m#-1$

Thus, from (9.12)

h2(ct2-if32)/2B’ z
m,n I

G
i,j;m,n “

(xm,Yn)c~

.

Therefore,
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II G
i,j;m,n[-%sm,n]

(xm,Yn)e~

S (4/3)r@ h
L

G
i,j;m,nB~,n + 0(h2)

(xm9Yn)e~

S (4/3)q~ h3
I

(CY2-t~2)+O(h2)

(xmsYn)c~

s (4/3)73Q-h3 I;::; ;:‘:sh+O(h2)
%

S (4/3)73~ h3
number of mesh
points in

%
+ O(h2).

Since the number of mesh points in

-1

~ does not increase faster than

h , we have

(9.18)
z

G
i,j;m,n[-%sm,n] = 0(h2)”

(xm9Yn)e~

From inequalities (9.10), (9.17), and (9.18), we have the desired

result, that the solution of problem ~2 is O(h2) for h < min {h }
i’

i=3,4,5.

I



CHAPTER X

ADDITIONAL FINITE DIFFERENCE OPERATORS

The finite difference approximations given in ~hapter 111 can be

used to approximate any uniformly elliptic partial differential equation;

however, they might not be”convenient for use for come problems since the

difference quotient used to approximate ~2u/~z2 might involve values of

the solution at mesh points which are far away from the mesh point of appli-

cation. An approximation with accuracy and generalityequal to the approxi-

mations given previously but which involves values of the solution only

at nearby mesh points is given in this chapter for use with such probleme.

Consider the mesh point configuration given in Figure 10.1 and

assume‘hat ‘(xm) has been determined to be

indicated. Let /jh be the distance between the

the interaecti.on between the mesh line y - y
j+l

between 7r/4 and 7T/2 ae

mesh line x = x
i

and

and ‘he line ‘i#j”

FIGURE 10.1

97
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We consider the following

(10.1) (a2u/az2)i,j-

where d= h(li_82)1’2.

If U
i-%,j+l

and

approximation to a2u/az2:

[ ‘i-%,j+l 1- 2ui9j+ ‘i-~~j-l
/d2

[ 1+d2 (a4u/az4)iti,ji@ /12s es@, esl,

‘i+,j-l
can be approximated to O(hp) in terms

of values of u at mesh points near the point (xi,Yj)9

of the form

say by expressions

(10.2) I‘i-tb,j+l = ~i,j”i,j
+ O(hp),

then these expressions can be substituted into equation (3.15) to obtain a

difference quotient with a truncation error which is 0(hp-2).

In order to approximate a2u/az2 to O(h2), Uiw,j+l and Ui.5,j-1

must be approximated to O(h4); thus, values of u at four neighboring mesh

points must be used in the approximation (10.2). A possible approximation is

(10.3)
‘i+5 ,j+l

= - E5(l-5)(2-W6]ui ~,j,l + [(l+f0W)(2-5)@Ui j+l-. s

+ [tNl+WW@i+l,j+l - @W-Wf$++2,j+1 + o(h4)*

A similar expression gives u
i-b,j-l

to 0(h4) in terms of
‘i-2,j-l’

‘i-l,j-l’”i,j+ and ‘i+l,j-1”

Obvious modifications of the above procedure

to a2u/az2 whi$h have truncation errors which are

on valuea of u at nearby mesh points for any value

yield approximations

0(h2) and which depend

of T, o < ‘T<7r. If

.

.

.
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three-point interpolation formulas are used in place of (10.3), the trunca-

tion error of the resulting approximation to a2u/az 2 ie O(h).

For mesh points near the boundary, special situations might arise

which require special treatment. The variety of ouch special situations

is significantly diminished if we consider only convex regions R. We,

therefore, make this assumption for the remainder of this discussion.

If one or more mesh points in N(XiSYj) are not in R + S, the

linear interpolation procedure due to Collatz can be ueed to determine

Uxi#Yj). By this procedure, the operator Lbl (see Chapter 111) is ob-

tained. Approximations which lead to operators similar to the operator

%2 can also be formulated. Suppose for a mesh point (xisYj) that the

point
(xi*,yj+l

) is not In R+S (see Figure 10.2). Then a2u/az2 can

be approximated by

(10.4) (Uzz)i,j = 2[up,q/A(A+l) -
‘i,j/A + ‘i.5,j-1/(A+ln/d2 + O(h).

If the point
(xi+5’yj+l

) is in R+ S but one or more of the points

(Xp,yq) which would normally be used in the interpolation formula for

‘i* ,j+l
isnotin R+S and if z

iaj
intersects the boundary S at

a point which iS within a few mesh widths distance from the point (xi,Yj),

then the value of u equal to the boundary value at the point of intersec-

tion can be used in equatian (10.4). Alternatively, for sufficiently small

values of the mesh width,
‘i+b,j+l

can always be approximated to the de-

sired accuracy by interpolating between values of u which might be asymmetr-

icallylocated with respect to the point
(Xi%,yj+l

). The above remarks re-

garding the point (xi%;Yj+l) apply also

One of the methods discussed above

boundary to formulate an approximation to

to the point (xi#YjJ”

can be used at points near the

a2u/az2 which has a truncation
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error which is not greater than O(h) and such that the coefficients of

the boundary values involved in the approximation are alwaYa Positive” .

We denote the finite difference approximations to a2u/az2 which
-

are discus$ed above at regular mesh points by G=zui,j” Let Vi,j be

“ an arbitrary function defined on %+ %+ ‘s”
We define the finite differ-

ence operator
‘hl by

.,

A?i,j
.FIGURE 10.2

. .

‘hlvi ,j - %,j~v)xvi,j
T + Ci,jomyvl,j+ *bi,j@ )Zvisj

(10.5) + d~,j@+V)xvi,j + ‘t,j@+v)yvi,j + ‘i,jvi,j

,.

“ where the coefficients satisfy conditions (6.1). We replace the approxi-

2
mation to a d21z2 in the operator %2 by one of the appro&ations di.-

cussed above for use at point; near the boundary to form a difference opera-

tor which we denote by %3.

We formulate a boundary value problem as’follows:



.

.
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(10.6)

(10.7)

(10.8)

‘hlvi, j = ‘f,j s (xi,Yj) ~~

‘b3vi, j = ‘i,j ‘ ‘Xi’yj) e %

v(x,y) = P(x,y), (x,Y) ~ RS.

in the

(10.9)

The finite difference operators
‘hl and ‘b3

can-be written

following form.

Wi,j “

%3vl,j -

The coefficients in

(10.10)

(10.11)

(10.12) ‘

I cl
i,j~m,nvm,n’ (xiDYj) ~ ~

(xm,yn)e~+~+RS

L
a
i,j;m,nvm,n’ (x~,yj) e N*

(xm,yn)e~+I$+RS

(10.9) satisfy the following conditions:

I 0 s Iui,j;i,j I J(Xm,yn) e ~+ 1$+ RS

i~j;mOn
(m,n)*i,j

We note that condition (10.11) is not the same as the condition of diagonal

dominance given in Chapter II since not all of the u
i~j;m$n

are nonnega-

tive. However, the coefficients which are negative are only slightly negativel,

.
L
For example, the minimum value of the negative coefficients in equa-

tion (10.3) is -~/27* -.064.
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and the finite difference operator eeems to have many of the same charac-

teristic as diagonally dominant operators.

In order to establish additional properties of the operators %1

and Lb3 ~ we assume that, corresponding to a given value of the mesh width

h < hl, there are N mesh points in ~+ ~ and that there are (M-N)

points in
‘s “

We write the aet of simultaneous algebraic equations com-

pising the problem given by equations (10.6), (10.7), and (10.8) in matrix

form as follows:

A

where the matrix A iS an N X N matrix whose elements are the coefficients

a
i,j;m,n ‘here (xi,Yj)s (xmsYn) ~ ~+~s ~ in an N component vector

A
with components v

i9j
which comprise the solution of the given problem, g

A
is an N component vector with components

gi,j’
B is an N x (M-N) matrix

whose elements are the coefficients u
i,j;m,n ‘here (xi$Yj) e~+~ and

(Xm,yn) e KS, and # is an llcomponent

the boundary values at points in
‘s“

vector with components equal to “

A

Matrices such as the matrix A which occur in the formulation of

finite difference approximations to elliptic partial differential equations

are frequently of monotone type. A matrix $ is said to be monotone2 if

AA A A
Mx z O implies that x 2 0 for any real vector x.

ficient condition for a matrix ~ to be monotonic is

&l
the inverse matrix M be nonnegative. It has been

A necessary and suf-

that all elements of

shown by direct com-

.

putatian that the negative of the matrix ~ in (10.13) is monotmic for a

2Collatz. [1960J, p. 43.
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number of cases. This appears to be true for cases resulting from the use

of either three-or four-point interpolation to determine values of the ●o-

lution function at points between mesh points for use in approximating

~2u/az2. We assume for the remainder of this discussion that -i La alwaye

monotonic for h < hl; thus,

AI
(10.14) A s o.

Next, we prove

LEMMA 10.1. For h < hl, the matrix ~ in equation (10.13) is non-

singular.

Proof: The diagonal elements of the matrix ~ are the coefficients

A
o
i$j;i,j”

The nondiagonal elements in any row of A are”the coefficknts

a
i~j;m$n

in equation (10.11). For h < hl, the magnitude of the diagonal

A
element in each row of A exceeds each of the nondiagonal elements. Thus ,

the rowe of ~ are linearly independent, and
A
A is nonsingular.

LEMMA 10.2. If ~= ~= 0, then equation (10.13) hae only the trivial

solution $= O.

Proof: The proof follows immediately from Lemna 10.1.

As in Chapter IX, we formulate a discrete analogue of a Green’s

function for the problem given by equaciona (10.6), (10.7), and (10.8). The

Green’s function G
i~jsm9n

ia defined for each meeh point (Xp,yq) e ~+~+RS

by

(10.15)



(10.16)
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G
i,j;p,q

= 5(X Sy ;X y )$
i.lPq

(XiSYj) E RS

LEMMA 10.3. For h< hl, the Green’s function exists and is unique.

Proof: The existence and uniqueness of the solution of equations

(10.15) and (10.16) follows from Lemma 10.1.

LEMMA 10.4. Let Vl,j. be an arbitrary function defined

~ + RS. Then for any mesh point (xisYj) ~ ~+~+RS, forh

‘isj = I
“G
i,j;m,n[-Lhlvm,n]

(xm,Yn)~~

(10.17)

+ I G
i,j;m,n[-%3vm,n] + I

G
i,n;m,nvm,n”

(xm9Yn)~~ (Xm,Yn)~RS

Proof: As in the proof of Lemma 9.2, we let w
isj

represent the

right side of (10.17). If (xisYj) is a point in RS, v
i,j - ‘i#j” ‘f

(Xi~Yj) is a Point in ~(~), ~lVi,j= ‘h~wi,j(~3vi,j = Lb3Wi,j)0 Thus~

LhI%,j-%,j) = o ~ (xisYj) ~ ~

Lb3 (vi,j-wi,j) -0 , (xi,Yj) e \

(“i, j-wi,j
) =0 , (Xi,yj) eRS

and from Lemma 10.2,
‘isj - ‘isj’

(xisYj) ~ ~ + 1$ + RS.
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.

LEMMA 10.5. For h < hl, the Green’s function G
‘tj\m,n is non-

negative.

Proof: We extend the definition of u
iOj;mDn

to include points

in
‘s

as follows:

(10.18) Ui,j;m,n = 8(x ~y ;X sy )~ (XiSYj) ~ RSS (xmsYn) ~ R# ~“
ijmn

For convenience, we

from one to N, and

G. ~Y qjl,j;m,n

i and j take the

trix ~ is given by

assume that the mesh points

we denote the coefficients

in ~+ ~ are numbered

and ‘i,j’
1 s i,m s M, respectively.

place of (i$j) and (m,n). In this

1
all

’21

.
●

.

‘N1

‘12

a22

‘N2

. b.
‘lN

..*
‘2N

. . .
‘NN

and the matrix ~ in given by

r‘l,N+l ‘1,N+2 “*” ‘l,M i

‘2,N+1
~
II

.
●

✎

‘N,N+l
... ‘N,~1

and the function

Here the subscripts

notation, the ma-

L —
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From (10.15), (10.16), and (10.18) the functione G, . satisfy
~sJ

(10.19)

[

2

0

where

A
Ys is the (M-N) x (M-N) identity matrix,

$11is an N x N matzrix,

212 is an N x (M-N) matrix,

A

’21
is an (M-N) x N matrix,

;22 is an (M-N) x (M-N) matrix,

and a~b is the N x N identity matrix.

From (10.19), we have

(10.20)

(10.21)

as
(10.22)

’21 - 0

From (10.1Z), (10.20), and (10.22),

Zll “ -&b?l 2 0,

.

.

and from (10.12), (10.13), (10.14), and (10.21),

$.2 “ ?1:2 o.
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Thus , G
it~ - Gi~jtm,n

is nonnegative.

respect

Now, recall the function ~~ ~ given by equation (6.26). We have
9

LEMMA 10.6. For h< h3, the

to z in the operators LL,
&l&

~i,j
are nonpositive.

second difference quotients with

and ‘b3
when applied to the function

Proof: Let (Xi~Yj) be a regular meeh point. Then, two essen-

tially different cases might arise. If O<tan’r<l,

[

-Oi+l i(mzb’i,j “ ~ - 2cr2+u:-~/d2

for a2 Z 1.

values for ~

quotient with

= -u;-l(o~-202+l)/d2

so

Now, suppose tan T > 1 (see Figure 10.1). If we had exact

at (x~#Yj+~ ) and at (Xi-5~yj-1), then the difference

respect to z would be given by

it6
‘-5)/d2, 0<8 <1, a2k 1@~)z5i,j - -(u2 -2a~+a2

(10.22)

far 0<8

If

and if the

inequality

_ -.;-6(0;- 2d;+l)/d2,

so

<l,azl.

i%
we substitute interpolated values for

a2
and a~-6 in (10.22)

interpolated values are sufficiently accurate, we would expect the

above to be satisfied. That this is true for three-point inter-

polation is readily verified as follows. We use the mesh point configuration



given in Figure 10.1.as an example to obtain

1+M-# -1 2
2 ‘2 ‘d

= -t33;((l/u2)- 2+ u2)/d2

so

108

The use of four-point interpolation formulas for values of ~ ,at

(xi+8’yj+l) and ‘Xi-b’yj-l) ‘esults in

cii)z~i,j = +
[
5(52-l)a~2/6+5(2-5)(%+l)u~1/3 + (1-52)(2-6)

+8(2-8)(~+l)u2/3 + t5(52-l)u~/6

1
‘2/d2.

Since four-point interpolation is more accurate than three-point interpola-

tion and since the inequality (10.22) is valid for three-point interpolation,

the expression above should satisfy (10.22) also.

If tan T is negative, a similar analysis applies at mesh points in

%

If (x ,y ) is a mesh point in ~, an extension of the proof of
ij

Lemma 6.9 applies. The detailing of this extension to cover all possible

cases would be extremely long and is omitted.

.

.

I

.

..

I
~.__ —..
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Since all difference quotients in ~1 and Lb3 except for the

difference quotients with respect to z are the same as the difference

quotients in the operators
‘h and ‘b2

respectively, Lemma 10.6 can be

used to prove Lemma 6.10 for the difference operators
‘hl

and %3, and

we have for h < h ,
3

(10.23)

Next, we prove

LEMMA 10.7. For h < min (h1$h3,h4}, and for any mesh point

(Xi,yj) e ~i-R#-R~,

where p2 is defined by Corollary 1 to Theorem 6.3.

Proof: From Lemma 10.4, we have for (xi.Yj) e %+ %+ ‘s

-i- 1 G
i,j;m,n[-%3Fm,n]

(xm,yn)e~

+ 1 G 5i,j;m,n m,n’

(Xm,Yn)CRS
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Since 5.J, j is nonnegative, we have from Lemma 10.5 and inequalities

(10.23),

and by Corollary L to Theorem 6.3,

for (XigYj) E ~-i-~+ Rs, h< min (hi,h2,h3).

We consider next the following boundary value problem

(10.24)
‘b3vi,j ‘“‘;,j ‘ (xi9Yj) ~ R.b

‘i.,j “ 0 , (XiSYj) c Rs

where
‘i~j

and g~,j are given functions. We prove

,

THEOREM 10.1. The solution v. of the problem given by equa-
l,j

tions (10.24) is bounded as follows:

Proof: From Lemma 10.4, we have

‘i#j - - I G
i,j;m,ngm,n - I

G
i,j;m,ng;,n’ (xisYj) ‘ %+ %“

(Xm.Ynk% (Xm>Ya)ERS

●

.



Thus, by Lenma 10.5

“h

and by Lemma 10.7

The methods used in Chapters V

%
I G

i,j;m,n’

(xm,Yn)~~

%,jll’ @@j) e ~+ ~“

VII, and IX can be used together

with Theorem 10.1 to show that the solution of a discrete analogue of

problem Po, which utilizes the difference quotients given above, converges

to the solution of problem P. as the mesh width is decreased.

A boundary value problem is obtained,

for the error in the discrete analogue of the

value problem for the error is of the form of

by the methods of Chapter V,

given problem. The boundary

the problem given by equa-

tions (10.24). The functions g and g’ will be O(hp) where p depends

on the exact form of the difference quotients used.

The Brouwer Fixed Point Theorem is used aa in Chapter VII to show

that the error is bounded by a quantity which is proportional to (hp).

If g is O(h2) and g’ is O(h), then the methods of Chapter IX are

applicable and can be used to show that the overall error is 0(h2) .



CHAPTER XI

APPLICATIONS

1. Linear Elliptic Equations

The results which have been obtained in previous section,s for

Dirichlet problems for nonlinear elliptic partial differential equations

are applicable to Dirichlet problems for general, linear, uniformly ellip-

tic partial differential equations as special cases.

In order to illustrate this, we consider the problem given by

A(x,y)b2u/bx2 + C(x,y)b2u/by2 + D(x,y)bu/bx + E(x,y)&dbY

(11.1)

1-F(x,y)u = G(x,y) , (x,y) eR

(11.2) U(x,y) = fd(x,y) , (X,y) 6 s.

The region R with boundary S is assumed to satisfy the smoothness con-

ditions given in Chapter II. The coefficients and the function @ are

assumed to have H61der continuous partial derivatives “ of o second and

fourth orde~ respectively, and the function F is assumed to be nonpositive.

Equation (11.1) is uniformly elliptic if there exist positive constants

kd anf k~ :subh.that

kl Z A(x,Y), C(XSY) ~ kO

and \ (x$y) e R+S.

is

kl 2 ID(x,y)l, ]E(x,y)l
J

The uniform ellipticity of equation (11.1), ’the.@onditibnJbhat E’

honpositive; ~and the lcbhditions.oq:R:l ,are sbfficlentj :toguazahtee’ that

112

.

I

.

.
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.

.

,thelgtwem;pkobiem has a unique solution u.

We now make the additional assumption that, for h < 2k0/k3, a set

of mesh lines can be superimposed over the region R in such a way that

the four rectangular neighbors of each mesh point in R are in R + S,

i.e., all mesh points in R are regular mesh points. This assumption is

in no way essential but does simplify the following discussion.

Corresponding to a given set of mesh lines, an approximating finite

difference boundary value problem is formulated by replacing the partial

derivatives in equation (11.1) by central divided differences. We have

(11.3)

(11.4)

A(xi,yj)@7)xui,j + C(xi,yj)@v)yui,j + D(xi,yj)@+V)xUi,j

+ E(XiSYj)@+V)YUi,j +F(xi,yj)Ui,j = G(xi~yj), (xi,yj) E ~

‘isj
= O(lc *Y )

ij
, (Xi,yj) e RS .

The coefficients in equation (11.3) satisfy conditions (6.1), and by Lemma

6.2, the finite difference problem has a unique solution for h < 2k0/kl.

A finite difference equation for the error in the solution of the

problem given by equations (11.3) and (11.4) is obtained by substituting

for U in equation (11.3) from the equation

(11.5) u.
l,j - ‘isj + ‘i,j

where
%,j

is the error. We obtain

A(xisyj )(Av)x(ui,ji- ‘~,j ) +C(x~Syj)@v)y(ui,j+ Ei,j)

(11.6) + D(xi;yj) @+V)x(ui,j+ ‘i$j) + E(Xi,Yj)@+V)y(Ui,j+ ‘I,j)

+ F(XiSYj)(Ui,j + ei,j) = G(xi,y ),
j

(xi,Yj) ~ ~.
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By using relationships such as equations (3.13) and (3.14) and the fact

that the difference quotients are linear, equation (11.6) can be rewritten

as

A(Xi,Yj)@’7)xei,j + c(xi,Yj)(Av)y~i,j + D(xi,Yj)@~)xei,j

- -h2@isyj)(MJi,j+ E(xi,yj)@i@ ~ + F(XiSYj)ei,jy i,j

(11.7) +C(Xi.Yj)(N4)i,j + 2D(XiSYj)(M3)i,j +E(xi9Yj)(N3)i,j]/12

- A(xi,yj)(a2u/ax2)i,j - c(xi,yj) (a2day2)i,j - D(xi,Yj)(?R@)i,j

- E(xpyj)(adb)i,j - F(xitYj)ui,j +G(xisYj)

where (Mi) and (Ni) have the same meaning as in Chapter V.

The last six terms in equation (11.7) sum to zero because of equa-

tion (ll.l)O The finite difference boundary value problem for the error

is then given by

(11.8)

(11.9)

where

A(xi,Yj)@v)xei,j +-c(xi,Yj)@S7)yE~,j + D(Xi,Yj)@+@xei,j

+ E(xi,yj)@~)yei,j + F(XiSYj)ei,j - H(Xi~Yj)> (xisYj) ~ ~

% = “ ‘ ‘Xi’yj)E‘s

.

.

H(XiSYj) - -#[A(xi,q)(MJi,j + c(lci,Yj)@4)i,j + D(xi,Yj)(143)i,j

+ E(xi-$Yj)(N3)i,j]/12”
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Lemma 6.2 applies to the finite difference problem for the error;

thus$ for h C 2k0/kl, the error is uniquely determined. Theorem 6.1 also

applies to the finite difference problem for the error, and we have, for

h < 2k0/kl,

~ h2(u:’h)k1[fi4+ fi4+ 2fi3+2f13]/12

where

[

2 2 1/2
1+ h2/2kO+ h/2kO( kO+kl+h )

‘1 = l-h kl/2k0 1
and X is the maximum distance across the region R. From Corollary 1 to

Theorem 6.1, there exists an ~ such that, for h <~,

where

1A= [kl+ (k: + 4kO)1/2]/2k0 .

Thus, we have an a Priori bound, for h sufficiently small, for

the error which is proportional to h2.

We note that the restriction on the region R which enables the

construction of mesh lines in such a way that all interior mesh points are

regular mesh points is unnecessary. In case irregular mesh points exist,

asymmetric difference approximations such as those given by equations (3.25)

and (3.26) are used. For such a problem, the above analysis results in an

error bound which is proportional to h; however, the techniques developed

in Chapter IX are applicable, and an error bound which is proportional to
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.

I

h2 can be obtained.

In addition, equation (11.1) is easily generalized to include a

mixed derivative term. If equation (11.1) contains a mixed derivative

term, it is necessary to apply the transformation given in Chapter III be-

fore proceeding with the analysis given above.

As was noted in Chapter I, error bounds on solutions of finite dif-

ference approximations to Dirichlet problems for some linear elliptic par-

tial differential equations are given in Gerschgorin [1930]. Gerschgorin’s

results are briefly summarized as follows.

Consider the Dirichlet problem

(ll.lO) Lu = G(x,y) ,

(11.11) u - O(X$Y) D

given by

(x,y) e R

(X,y) E s

where L is a linear elliptic operator, and where the coefficients in L,

the functions G and 0, and R + S satisfy the smoothness conditions

given at the beginning of this chapter.

Assume that an approximating finite difference boundary value prob-

lem is formulated by the use of the difference quotients given in Chapter

III, and let the error in the solution of the finite difference problem

be denoted by c. Let the region R be included in the circular disc

which is bounded by

(X-XO)2+ (y-yo)2 - r20

Thenp if L io the Laplacian, i.e.,

L = a2/ax2 + #/ay2

and G(x,y) ■ O, for h sufficiently small,

.

.
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(J1.12) max IcI s h2r2 max(k4,~4)/12 + h2 max(~gfi2)e

The second term on the right aide of equation (11.12) is present only when

the region R contains irregular mesh points.

Gerachgorin considers two other special

by

cases. Let L be defined

(11.13) Lu - A ~2u/ax2 + C a2u/ay2 + D au/ax + E au/~y + FU

where A> O, C>O,and FsO. If, in addition, the coefficients D and

E are everywhere positive and

A+C+l+2fir2F/2>0

D+E+firF>O,

then, for h sufficiently small,

[ [-}+4?’-{:%T)}I*
IeI S $ (l+2fi)r2max

For the second special case, L is defined as in equation (11.13),

the coefficients D and E each have the same sign throughout R, and

lDl+lEl+firF>O.

In this case. for h sufficiently small,
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By comparing the error bounds on

approximations to Dirichlet problems for

solutions of finite difference

linear elliptic partial differ-

ential equations which
.

Gerschgorin’s results,

but that Gerschgorin’s

are derived

we conclude

results are

at the beginning of thitichapter with

that our results are wch more general

much sharper. For example, for the

Dirichlet problem for Laplace’m equation, our error bound increases expo-

nentially with the diameter of the region R whereas Gerschgorin’s error

bound increases as the square of the radius of the region R. On the other

hand, Gerschgorin?s analysis applies only to special cases, whereas our

analysis is applicable to the Dirichlet problem for any linear, uniformly

elliptic partial differential equation which satisfies the given smooth-

ness conditions and for which F s O.

2. ~ Nonlinear Problem

The solutions of many of the problems associated with nuclear

reactor design are obtainable only as finite difference approximations.

We consider hkre a relatively simple problem in this field which might

be encountered in the design of a research reactor containing a neutron

irradiation facility.

We assume that the irradiation facility consists of a long pipe

through the reactor core with an elliptic cross zection and that we are

interested in determining the thermal neutron flux distribution, at con-

stant reactor power, inside the pipe in a plane perpendicular to its axis.

The thermal neutron flux satirnfies the diffusion equation

D(~2u/hx2 + a2u/by2) - ~+W= O

.
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where D is the diffusion coefficient, ~ is the neutron absorption (re-

moval) cross section, and W is the thermal neutron source. The diffusion

coefficient is a positive constant. The neutron absorption cross section

depends on the rate at which neutrons are absorbed which in turn depends

on the neutron flux. We assume that ~ is given by

x‘u)-4+*)’
where a and ~ are positive constants. The

!.

thermal neutron source is

related to the neutron scattering and absorption rates at thermal and higher

neutron energies. We assume that W can be approximated by

W=y-e
u/8

where y and 8 are positive constants.

The

is given by

The

the axis of

given by

thermal neutron flux at the surface of the irradiation facility

a function @ of position only.
I

thermal neutron flux distribution in the plane perpendicular to

the irradiation facility is then the solution of the problem

(11.14) a2u/ax2+ a2u/ay2 = ;[u(I+*)u+ #/’- y], (x,Y) E R

(11.15) u - 0(xgy)9 (XDY) ~ s

where R, is the region subtended by the facility in a plane perpendicular

to its axis and S is the boundary of R (see Figure Ill).

Equation (11.14) is uniformly elliptic with ‘o
and kl of condi-

tion (2.2) each equal to unity. Condition (2.10) is satisfied provided
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+++-) ------++% .

.
for .s11 (x,y) e R and for all nonnegative u.! Ve assume that this is

true.

The coefficients in equation (11.14) satisfy all necessary

tians given in Chapter II and we assume that the function @(x,y)

,also. In addition, the region R is sufficiently smooth.

t
Y

.

I

FIGURE 11.1

For purposes of illustration, a rather coarse

superimposed over the region R in Figure 11.1. The

concli-

does

set of mesh lines is

interior mesh points

on the major qxis of the ellipfie, except the ones nearest the boundary,
.

are reuular mesh points; all okhers are irregular. At the regular mesh

points, the partial derivative in equation (11.14) are

1
From phy~ical considexationa, we know that u

approximated by

is nonnegative.

.

.

.

I
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symmetric difference quotients to obtain finite difference equations for

u. The finite difference equation at the point (Xi,yj) is, for example)

(AV)xui,j + @v)yui,j

(11.16)

[(+1

At irregular mesh points,

ference quotients such as

Che approximate solution

terms of its values at an

1
+ L+gui,j) % r)]

+exp+-y .

the partial derivatives can be replaced by dif-

the one given by equation (3.19); or, alternatively,

U can be expressed at irregular mesh points in

adjacent regular mesh point and an adjacent boundary

mesh point, i.e., by equation (3.15). We assume that the second alternative

is used; then U at the point (Xm,yn) is given by

(11.17) u = [A/(A+l)]ui,j +[lm+l)lup,q.m,n

An equation such as (11.16) or (11.17) is applicable

point in R. These equations comprise a nonlinear system of

at each mesh

algebraic equa-

tions with an equal number of equations and unknowns. This system can be

solved by one of the methods mentioned in Chapter IV. The error analysis

which has been presented in previous chapters can be applied to the differ-

ence E between the solution of this

of

We

to

the given problem.

The finite difference problem

system of equations and the solution

for the error is derived as follows.

first substitute for the approximate solution in equation (11.14) from

U=U+E

obtain
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@v)x@~,j+E~,j)+ @’vyui,j+Ei,j)

[(-;al+
1

l+@i,j+Ei,j) )
(u

i,j+Ei,j )

1+expu+k.y.5,
By using an expansion such as equation (5.3), the right-hand side of equa-

tion (11.18) can be written as

~ [( 1
I.)al+ l+~(ui,j+Ei,j))@i,j+Ei,j )+ ‘xpri’rEi’i)-j

1
R—

D

+

[a(,+]1

l+(ui , j— ‘w ()]+exp~-y

{J[(‘i, j 1 - 1 )-
(!(Ui -l-eEi.)

D —2al+ l+g(ui,j+eEi,j)
(~;{ui,j+g~i,~g)o

1 ( )1}~h..i’d~ .
‘5 ‘*P

By using this expancion and relationships such as equation (3.14), we cm

write equation (11.18) as

@v)xEi,j+ @v)yEi,j + ‘i,jEi,j - %,j - (a2uIax2)~,j - (a2u/ay2~,J

.

.

I

where
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f.#-
1 [JL(

!1
1

‘iaj--~ ~ )
al+ l+~(ui,j+OEi,j) “ .“’ “’”,.

ct~(ui +eEi )
~+;

( i]

“i,j+%~ de
exp

5
(l+@~,j+@i,j@

and

gi, j = -h
[ o

2 (a4u/ax4)iti,j+ (a4u/ay, ~,jto /12, o s e, o s 10

The last three terms in this equation

and we have at regular mesh points

sum to zero because of equation (11.14),

~E
h i,j

= (AV)xEi,j + @v@j + fi,jEi,j - %,j’

The mesh point (Xm,yn) is a typical irregular mesh point. At

this mesh point, we have

u -l-E =
m,n m,n

from equation (11.17)

[~/(~+l)](ui,j+Ei,j)+[l/(~+l)]uP,q, o<~<l.

By rearranging this equation and using relationships such as equation (3.22),

we obtain

%lEm,n = ‘m,n - ‘A/(A+l)]Ei,j = ‘&n

where g‘ is the product of h2
m,n

and a linear combination of second par-

tial derivatives of u with respect to either x or y.

The finite difference problem for the error is then given by
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where
f%,j

and g~,j are 0(h2). This finite difference problem is the

same as problem PI, Chapter V; and from Chapter VII, for h sufficiently

small, its solution is bounded by a quantity which is 0(h2) .

3. The Problem of Minimal Surfaces

In this section, we discuss the numerical approximation of the solu-

tion of a Dirichlet problem for an equation which contains a mixed deriva-

tive term. The principal

use of the transformation

mixed derivative terms.

purpose of this discussion is to illustrate the

given in Chapter III for equations containing

Let R be a region in the x,y plane which is bounded by a Jordan

curve s. Let @ be a closed curve in x,y,u space which has a one-to-one

projection onto S. The problem of determining a function u(x,y) which

is continuous in R+S, has continuous derivatives up to second order in R,

reduces to @ on S, and satiafiea in R the partial differential equation

(11.19) [L+ (au/ay)21a2u/ax2- 2au/axauny a2u/axay .

+ D + (au/ax)21a2u/ay2- 0

is known as the problem of minimal surfaces.z

.

2
This problem is al-o known as Plateau’s problem.



In order to state an existence theorem

surfaces, we first describe what is meant by a

Let S* be the curve defined in x,y,u space

Let P~, P;, and P; be

the positive acute angle

through P:, P;, and P;.

three di8tinct points
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for the problem of minimal

three-point condition.

by the equation u = @(x,y).

on S* and denote by 0

between the x,y plane and the plane passing

If, for all possible positions of the points

p;, P;, and P~, the quantity 0 is less than or equal to some fixed finite

constant A, then the boundary function@ satisfiesa th~-point conditlmwithamstant

We now state the following4

THEOREM 11.1. Let there be given, on a convex Jordan

the x,y plane, a function @ which satisfies a three-point

with some constant A. Consider all functions U(X,y) which

the region R bounded by S, a Lipschitz condition and which

curve S in

condition

satisfy, in

reduce on S

to the function 9. Then there exists in this class a function uO(x,y)

which satisfies the partial differential equation (11.19).

We assume in the following that the region R is convex and that

@ satisfies a three-point condition with some constant A.

Because of the three-point condition, the boundary function @

also satisfies a Lipechitz condition with some Lipschitz constant M. We

then seek a solution of the given problem in the class of functions F which

satisfy a Lipschitz condition with Lipschitz constant M and which reduce

on S to the function 0.

3Rado [1951], p. 49. In addition to implying a restriction on the
boundary function o, the three-point condition implies that the curve S
contains no arc which is a straight segment.

4
p. 61.
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If a function u is in the class F, the first partial derivatives

of u are bounded in absolute value by the Lipschitz constant M. Equa-

tion (11.19) is uniformly elliptic provided the coefficients are evaluated

for a function U e F with kl and
‘o

of condition (2.2) equal respec-

t~vely to (1+M2) and unity. Condition (2.10) is also satisfied by equa-

tion (11.19).

In terms of the notat:lon previously introduced, we write equation

(11.19) as follows:

(11.20)

where

A ~2u/bx2 + 2B b2u/axby + C b2u/ay2 = O

A = [1 + (bu/by)2J, B - -au/ax

We transform equation (11.20) into the form

(11.21)

where

and

(11.22)

Here~ T

values of

equations

au/ay, andC = [1+ (au/ax)21.

A’ b2u/ax2 + 2B’ b2u/bz2 + C’ b2u/by2 = O

AlsBA- B cot T, B1 = B(sin 2’r)-1,C’ = C -Btan7

tan T = (2B)-l[C - A+ (C2-2AC+A2+ 4B2)1’2], B + O.

is the angle between the z and x axen and depends

the coefficients in equation (11.20) at each point in

(11.20) and (11.22),

tan r - -(aunx)(au/ayP, (au/ay) + O;

I
“1

.

I
I

on the

R. By

.

thus
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A’ = 1 + (&l/by)2 - (au/ax)(au/ay)2(ihdz3x)-1 - I

Bl-- (aunxmday)
sin 27

s (wax)(tway)
2(wax)(au/ay) [

(au/ax)(au/ay)--
2sin ~ coa ~

(au/ax)2+ (WbY)21

= ~[(aubx)2 + (au/ay)21

cl - 1 + (~u/~x)2 - (au/ax)2(au/ay)(h/a#= 1

and the transformed Dirichlet problem is given by

a2u/~x2+ [(~u/ax)2+ (~u/ay)2]a2u/3z2+32u/ay2- O, (x,Y) ~ R

U(x,y) = @(xjy) , (X,y) e s.

In order to extend the discussion further, we assume that a finite

difference approximation to the above problem is selected and that the

system of nonlinear algebraic equations which result from the discretiza-

tion are to be solved by the “natural iteration” method which is discussed

in Chapter IV.

At each mesh point in R, we have a difference equation of the form

(11.23) A~,j
() () ()

U(n) D2U(n+1) + 2BI U(n) D~u~~~l)+ c1 .U~~ D~U~) = ()
i,j x i,j i,j 9

where D~, D2 and D2 denote appropriate difference quotients.
z’ Y
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We consider first the case when D2z i- the difference quotient

(AV)z (see Chapter III). The only new problem which we encounter is that

of determining a method for selecting the direction z at each mesh point

before solving for values of each successive iterant.

The optimum value of Yi,j
at a meth point (xL,Yj)9 with regard

to maximizing the coefficients
“(xi’%)

and B’(x *Y )$ iS given bY
id

.

.

(11.24)

We wish to select an ~i, j
= ta/f3 to 7i,j9approximation where a and

f3 are positive integers, such that

I
Zo

Moreover, for convenience, the integers a and (3 should be as small as

possible.

If

x direction

DxU~~ is equal to zero, the z direction Is taken to be the

and equation (11.23) becomes

~+ (%t;)q‘:”~) +$J~) -00

DyU$~ is equal to zero, the direction z is taken to beSimilarly, if

the y direction, and at this mesh point

I$& + p + pp:])q 1$1~) =00



129

●

Now, suppose
.

7i,j + 0.
‘et ‘7~$~

denote the integer nearest

‘Yi,j’ ‘- 1’ 2’ 3’ . . . . Take successive values of ~i,j .to be n7i,j/n,

n = 1, 20 38 .... Each successive value of
~i,j

is tested to determine

whether or not equations (11.25) and (11.z6) are satisfied. The first such

value of ;i,j which satisfies these equations is used to determine the

direction of the line z, By Theorem 3.1, a value of ~.
l,j”

can always
l,j

be found such that equations (11.25) and (11.26) are satisfied.

The results of applying the above procedure to a specific example

are indicated in Figure 11.2. Corresponding

there is a pair of mesh points (xi*~SYj.fl)o

corresponding to successive values of ~.
l,j

7. = 0.3 are given in Figure 11.2.
l~j

1

to each trial value of ~.
l,j’

The mesh point (x.
l@j-k2 )

which would be selected for

FIGURE 11.2

D2Next~ we consider the case when x stands for the difference quo-

tient @~)z (see Chapter X). Then 7i,j is calculated by equation (11.24)

at each mesh point (Xi,yj) in R. If either D#~~~ or D U(n) is zero,
y i,j

the direction z is the same as in the previous case. suppose
7i$j ‘s

positive; then

is greater than

T is in the first quadrant (see Figure 11.3). If 7.
l,j

ones
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and‘f ?’i,j
is le$s than one,

sim~.lar relationships hold if 7i ~ is negative. The distance d is
o

given in all csses by

d = h(l+52)~’2 .

-i

.

I

For the configuration given in Figure 11.3, the term
(n+l)

@~)zui,j.

is computed from

?,j ‘ !

F14iURE 11.3
. .

(n-i-l)-
GzZ)zui,j

[

U(n+-1) - 1~u:-;l)+&i-l~/d20
i-w ,ji-l

9.. l-b,J-l

~mt-1.)
where U: and U~~~~ ~ ‘are given Ly linear combinatioi~s of

l-%,j+l ... .

.rf Uy;l) “ “at nearby points,,
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The special problems which might be encountered at mesh points near

the boundary are not explored in detail here eince it is not practical to

attempt to generalize such situations any further than has been done in

previous chapters.

The preceding discussion is predicated on the assumption that

U(o) is taken from the class of functions F and that each successive

iterant is in the class F in the sense that IDxu;:; I and IDyU~~ I

are bounded at each mesh point in R by the constant M. If, for some

iterant, this condition is not satisfied at all mesh points in R, there

is no problem in proceeding as outlined above provided the first-order dif-

ference quotients are bounded in absolute value by some constant, say M’.

Alternatively, it seems reasonable to expect that, since the solution of

the given problem is known to be in the class F , convergence might be ac-

celerated if the absolute values of the difference quotients are set equal

to M for purposes of determining y, and evaluating the coefficients
l,j

when they would otherwise exceed M.



APPENDIX

ELIMINATION OF MIXED DERIVATIVE TERMS

The method of finite differences is more easily applied to obtain

approximate solutions of problem P. if the mixed derivative term is elim-

inated. The method for doing this which is described here was introduced

in Bramble and Hubbard [1963] as part of a study of linear elliptic dif-

ference equations. Bramble and Hubbard give a sketch of a proof of the

validity of this procedure; a detailed proof is given here. This proced-

ure can be used to eliminate the mixed derivative term from any uniformly

elliptic partial differential equation in two independent variables pro-

vided the coefficients in the equation are continuous functions of their

arguments.
.

Theorem 3.1 is proved here. We first prove the following lemma.

LEMMAA1. Let k. and kl be constants and let the coefficients

in the

(Al)

equation

A(x,Y) a2U/aX2 + 2B(x,y) a2U/&)y + C(X,Y) a2U/ay2 = G(x,y),

(x,y) eR

satisfy the condition

(42) k#~2ti2) 2 A~2 +2B&4+CQ2Z? kO(~2ti2)

for all real values of

[A3)

~ and o and for all (x,y) e R. Then,

.

.

132
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and

(A4)

Also, if

(A5)

then

(A6)

A - IBI S k;/2k1,

C - IBI > k~/2k1.

Proof: By alternately setting (E,w) = (1,0) and (~,w) = (0,1),

we have that

J.

‘t ‘O,i
be any positive number less

AE2 -i-2B@ -t-CU2 >

and for all nonzero u,,

u

than ko. Then, by (A2),

ko”~[~2-{w2j,
#

(48) b-ko,i](~h) 2 +2B(~fia) -I-[C-ko,i] > 0.

Consider (A8) as a quadratic expression in the unknown (g/u)). Since this

expression is nonzero, it has no real roots which implies that the discrimi-

nant is less than zero. Thus,

4B2 -4[A-k O,i][c - k. J <0#

or

2
AC - B2 >-k. i +ko ~[A+C].

s 3
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IIy(A7),

(A9)

Let {lcO~) be a sequence of positive mm!;ers such that 1:3~
9 #

is less than k. for all i and such that the limit as i increases of

{k. ~] iS ko. Inequality (A9) remains valid-for all i ant!by pas?ing
$

to the limit

which proves the first statement of the lemma.

From inequalities (A3) and (A7), we have, respectively,

and

k: Z AC.

ThIls ,

which establishes the second statement of the letuna.

Next, assume that (AS) is satisfied; then, because of (A7), C > 0,

hence

AC:; lBIC+Ck~/2k1
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or

(MO) AC - B2 s [c - IBI]IBI -tck~/2k1.

By combining inequalities (“u~ (A7), and (A1O) we obtain

(All) k;S [c- IBI]IBI +k;/2.

We substitute =E 1/6, u)= ~ l/& into inequality (A2) to obtain

kl>A/&B+c/’2>ko

or

‘1
-ko~~B+A/2+C/2-ko ZO

from which, by (h7), we have

‘1 -
ko~~B.

This inequality together with (All) gives us

[C - lBl][kl- ko] 2k~/2

or

C- IBl 2k;/2 [kl-kO]

and finally

C- IBl 2k~/2k1 .

Because of symmetry, it is clear that if

C- IBI sk:/2k1,

then
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A - IBI 7 k;/2kl.

The principal result of this appendix is the following:

THEO::EllAl. Jmt the coefficients in equation (Al) be continuous—-. ..-.---

functions of their aruumen~s and satisfy condition (A2). Then there exist

constants k; and q, k;7 0, 1 S ~ z m, such that tan T = y(x,y) can be

specified at each point in R and

A’=A - y-lB ~ k;, c’=c.yB~kI o

B = B/sin 2T 2 0

y(x,y) = *a/@

where O! and j3 are relatively prime integers

lsa,ps~.

Proof: If B = 0, there is nothing to prove; thus, we assume

that IBI>0 throughout.

The angle ‘r is chosen at each point in R such that B’ is

positive; i.e., such that sin 27 has the same sign as B. We divide

inequality (A3) by inequality (A4) to obtain

(#12)

Since we

also has

changing

(A13)

AC/B2 Z 1 +k@c~-!c;) .

choose r such that sin 2T has the same sign as B, y = tan ‘c

the same sign as B, and we can multiply (A12) by (YA)-lB without

the sense of the inequality to obtain

C/yB 2 B/yA [1 +lc~/(k;-k~)].
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Let RI and R2 be subsets of R such that if P G RI, then

and if P c R2, then

By Lemma Al, the sets RI and R2 are disjoint and by the con-

tinuity of the coefficients in equation (Al), RI U R2 is bounded and closed.

Let PI be a point in RI. We choose relatively prime integers

0! and 13 such that

(A14) 1 +kO/4(k;-k;) <~(P)A/13(P)lBl < 1 +3k~/4(k;-k;) .

Due to the continuity of the coefficients A and B, there exists an open

set S(P1) containing
‘1

such that (A14) holds for each point in S(P1) .

Corresponding to each point P in RI, there exists such an open set s(P) .

By the Heine-Borel Theorem, RI can be covered by a finite number of open

sets S(P). With each of the sets S(P), there is associated a pair of

relatively prime Integers cX(P) and P(P) such that (A14) holds. Since

there are only a finite number of such pairs of integers associated with

any finite covering of
‘1 ‘

there exists a constant 71 such that

We take IY(P)I = ~(P)/@(P) and sgn y = sgn B. Then in RI

(A15) A-
-IB

y-1B7 [k;/4(k;-k~)]y .
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By definition, in ‘1 ‘

IBI Z A - k@cl

z (kO/2)[2A/kO- kO/kl]

(A16) IBI ZkO/2 .

Also,

(A17) ly]-l > l/lll.

Therefore, from (A15), (-ti6),~~nd (~17)3

(A18) A- y-lB > [k;/8(kf-k~)]/ql ●

From (A14),

(M9) y-lB/A> [1 +3k~/4(k;-k;)]-l ●

By combining (313), (A18), and ($19)~ we obtain

C/yB > [1 + 3k;/4(k:-k~) ]-1[1 + k~/ (k;-k~) ]

> 4k~/(4k;-k~)

> 1 +k~/4k; +k~/16kf + ...

>1 +k,~/4k~[l/(1-(k~/4k;))] .

.
or
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.

and since

@20)

Let

c- YB >yBk:/(4k~-k~)

YB > kO/2Vl,

Li = :k@/(k~-kO/4)]/8v1 .

Then, from @15) and (A20), we have

,

A- y-lB =A’>A1>O
)

c- YB =C’>xl>o.
J..

In a manner exactly analogous to that given above, we can show there

exists a constant T* such that for any point Q e R2, ly(Q)l can be chosen

equal to a(Q)/@(Q) where ~(Q) and 9(Q) are relatively prime integers

and

1 S~(Q), P(Q) S 7129

We then let

A2 = k@(k:-k:)]/8q2

and obtain
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The set RI U R2 does not necessarily exhaust R. Consider the

set R - R, U Rn. For each point in this set, we have
.

L

and

and we talce

c

A - IBI > k:/2k1

C - IBI > k~/2kl,

ylel for points in this set. Then,

A’

\

> k;/2k1 = X3

c’

for such points.

Now, let

and

v = max[n1gV21.

Then, for each point (x,y) e R, the angle T canbe chosen such that

A’,C’ 2 1c6>0,

and

Bt ~ 0,

y(x,y) = i-cm

where c1!and (3 are relatively prime

lsc%, psq.

integers and
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