
4. -.

e’
LA-3725

C&●

LOS ALAMOS SCIENTIFIC LABORATORY
of the

University of California
LOS ALAMOS ● NEW MEXICO

_ ~ Theory of a Radio-Frequency “Spin Filter”
~-m ~ ___
0=

“~; ~.. for a Metastable Hydrogen, Deuterium, or
~e~ ~ _-~~m f
0—
.G8~ __ Tritium Atomic Beams=_
~=~ ~:=~a
0=

i
—-— -

“=” r
1

——.-

FOR REFERENCE

NOT TO BE TAKEN FROM

CAT.NO.1935

THIS JZOOM

L!.. ARY .3”.,.” ,

I——.

UNITE D STATES
ATOMIC ENERGY COMMISSION

CONTRACT W-7405 -ENG. 36

‘.3:. ,’ . .
,.. .:....

,. -,..

, .

.



—

LEGAL NOTICE
This reportwas preparedaa an accountof Governmentaponaoredwork.NeithertbeUnited
States,northeCommtaaion,noranypersonactingon behalfoftheCommtnslon:

A. Makea anywarrantyorrepreeentatlon,expreaaedor implied,withrespecttotheaccu-
racy,completenessor usefulnessoftheinformationconteinedinthta report,or thattheuae
of anyinformation,apparatua,method,or proceaadtaclosedin Ma reportmay notinfrfnge
privatelyowned rtghte;or

B. Aaaumee anyliabilitieswttbrespecttotheuoeof,or fordamagea reauktngfrom the
uaeofanyinformation,apparatus,method,or proceeadtacloaedinthtareport.

As used in theabove,“personacttngon behalfof the Commioaion” includesany em-
ployeeor contractorof theCommission,or employeeof such contractor,totheextentthat
ouch employeeor contractorof theCommineion,or employeeof such contractorprepares,
dlaseminates,or providesaccenato,anyinformationpursuanttobteemploymentor contract
withtheCommiaaion,or hiaemploymentwithsuchcontractor.

This report expresses the opinions of the author or
authors and does not necessarily reflect the opinions
or views of the Los Alamos Scientific Laboratory.

Printed in the United States of America. Available from
Clearinghouse for Federal Scientific and Technical Information
National Bureau of Standards, U. S. Department of Commerce

Springfield, Virginia 22151
Price: Printed Copy $3.00; Microfiche $0.65

.
a.

.-

,&

.
.



-c

IA-3725
UC-34, PHYSICS
TID-4500

LOS ALAMOS SCIENTIFIC LABORATORY
of the

University of California
LOS ALAMOS . NEW MEXICO

Report written: July 1967

Report distributed: October 26, 1967

Theory of a Radio-Frequency “Spin Filter”

for a Metastable Hydrogen, Deuterium, or
—— u

Tritium Atomic Beam

.—

by

Gerald G. Ohlsen

“Joseph L. McI&bben

.

1

ABOUT THIS REPORT
This official electronic version was created by scanning
the best available paper or microfiche copy of the 
original report at a 300 dpi resolution.  Original 
color illustrations appear as black and white images.

For additional information or comments, contact: 
Library Without Walls Project 
Los Alamos National Laboratory Research Library
Los Alamos, NM 87544 
Phone: (505)667-4448 
E-mail: lwwp@lanl.gov




‘-

..

..

*



coNm.ms--

-.
1.

2.

3.

4.

5.

6.

-r.

8.

9.

. .

.

Abstract. . . . . . . . . . . . . . . . . . . . .

Introduction. . . . . . . . . . . . . . . . . . .

Energy Levels of the Hydrogen Atom. . . . . . . .

Selection Rules. . . . . . . . . . . . . . , . .

Discussion of the General Spin State Selection

Problem. . . . . . . . . . . . . . . . . . . . .

Quantum Mechanical Formulation of the Four-Level

Problem. . . . . . . . . . . . . . . . . . . . .

Matrix Elements. . . . . . . . . . . . . . . . .

Analytic Solution of the Three-Level Problem. . .

The Four-Level13’oblem.. . . . . . . . . . . . .

Adiabatic Variation of the Electric Fields. . . .

. . . 5

. . . 5

. . . 6

. . . 8

. . .15

. . .16

. . .18

. . .22

. . .33

. . .40

Acknowledgments. . . . . . . . . . . . . . . . . . . .42

References. . . . . . . . . . . . . . . . . . . . . . .42

Appendix A: A Computer Program for Evaluating the

Analytic Solution of the Three-Level

Equations. . . . . . . . . . . . . . . . .43

Appendix B: A Computer Program for Numerical Inte-

gration of the Four-Level Equations. . . .49

I.

II.

III.

IV.

v.

VI.

VII.

VIII.

IX.

x.

XI.

TABLES

Parameters Characterizingthe Hyperfine Structure

of the c = 2 States of Hydrogen, Deuterium, and

TritiumAtoms. . . . . . . . . . . . . . . . . . . .8

Hydrogen Atom 2SStates . . . . . . . . . . . . ..9

Hydrogen Atom 2P States . . . . . . . . . . . . . .1O

Deuterium Atom 2S States. . . . . . . . . . . . . .I.1

Deuterium Atom 2P States. . . . . . . . . . . . . .12

TritiumAtom 2SStates. . . . . .“. . . . . . . . .13

Tritium Atom 2P States. . . . . . . . . . . . . . .14

n = 2 Hydrogen Atom Wave Functions in a

Magnetic Field. . . . . . . . . . . . . . . . . . .19

Factors Required for the Computation of the

Hydrogen Atom Wave Functions in an Arbitrary

Magnetic Field. . . . . . . . . . . . . . . . . . .20

n = 2 Electric Dipole Matrix Elements . . . . . . .21

Transmissionof Unselected Substates . . . . . . . .2’7

3



-.,

.-

.



TREORY OF A RADIO-FREQUENCY“SPIN FILTER” FOR A--

-.

. .

.

METASTABLE HYDROGEN, DEUIYSRIUM,OR TRITIUM ATOMIC BEAM

by

Gerald G. Ohlsen and Joseph L. McKibben

ABSTRACT

Techniques for selection of metaetable hydrogen, deuterium,
or tritium atoms with a particular nuclear spin polarization
are discussed. The emphasis is on the “three-levelinteraction”
technique, which promises to be the most versatile and satis-
factory of those available.

1. INTRODUCTION

In connectionwith the development of

mos Scientific Laboratory “metastable

the Los Ala-

hydrogen”

polarized ion source, calculationsabout possible

nuclear spin selection techniques have been made.

The discussion of these calculations,which have

been partially reported,
1,2

comprises the main part

of this report. However, for orientationpurposes,

the basic operating scheme for the LASL polarized

ion source is retiewed. The discussion in this sec-

tion is in terms of protons, although the scheme

works as well for deuterons or for trltons.

A beam of protons is extracted from a duoplasmatron

and ’t~endeceleratedto a velocity (-3 x 107 cm/

see) correspondingto 500 eV. Additional electrons

are injected to space-chargeneutralize the beam,

which is then passed through a curtain of cesium

vapor. Collisions in the cesium convert a large
2s

number of protons into H atoms,3 together with

ground-stateatoms, and positive and negative ions.

The beam then enters a longitudinalmagnetic field

of about 500 to 600 G. A transverse “clearing”

electric field separates the charged particles from

the neutral atoms (H2S and #s). The neutral atoms

then pass through a radio-frequencytransition re-
2s

gion where the H atoms possessing any but the de-

sired nuclear spin magnetic quantum number are

quenched to the ground state while a large fraction
2s

of the atoms with the selected m
I
remain in the H

state. This mixture of e100% polarized H2s and
IS

essentiallyunpolarized*H atoms is then passed

through an argon exchange cell, where, at this par-

ticular velocity, the reaction H
2s +

+A+H-+A

occurs with a probability very much larger than does

the correspondingground-statereaction.4

One interestingpoint is that,the LASL nuclear spin

selection method selects rather than rejects a par-

ticular nuclear spin state. Thus, a deuteron besm

correspondingto a pure ~ = 1, 0, or -1 state may

be obtained with a single radio-frequencyselection

device. The selection device, which employs

perpendicularradio-frequencyend static electric

fields, behaves as a filter which allows only those

metastable atoms with a specific nuclear spin quan-

tum number (~) to pass through without being

quenched to the ground state. This device is here-

inafter referred to as a “spin filter.”

The theoreticalupper limit for transmission of the

desired nuclear spin state through the spin filter

is l/2. Thus, for deuterons, at least 5/6 of the

*The portion of the H
ls

produced background current
2s

which arises from decay of H atoms in the rf re-

gion is in fact partially polarized in the opposite

sense.
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incidentmetaatable beam will be quenched,while for

protons or tritons at least 3/~ of the incident

metastable beam will be quenched. In addition, the

incident atomic beam will have a large (perhaps 80

or 90$) ground-statecomponent.

The degree of selection achieved in the argon ex-
2s +

change reaction depends on the ratio of the H
2sA + H- + A+ reaction cross 6ection (denotedby u )

to the H’s + A + H- + A+ reaction croes section (de-

noted by als). ‘Thisratio is not accurately known

at present. The quantity which can be readily mea-

sured is the quenching ration Q; that is, the ratio

of the negative ion yield obtained through a cesium

exchange reaction followedby an argon exchange re-

action without and with the applicationof inter-

vening fields sufficientto quench the entire meta-

stable component of the beam. This ratio can be

expressed in terms of the fraction of the atomic

beam in the metsstable state, f, as follows:

Q= (1- f) + f(02s/aN).

The quenching ratio is related to the resulting nu-

clear spin state purity (p) by

p=l- 4/Qn

for protons and tritons, and by

p=l- 6fQTI

for deuterons,where n is the efficiency of the spin

filter. That is, n = 1 if the theoreticalupper

limit of l/2 for transmissionis reached. The re-

lationshipbetween p and the beam polarizationpara-

meters is given below.

Spin 1/2 Particles

L
P

—

l/2 P

-1/2 -P

Spin 1 Particles

Pz
—

PZz

In the

N(-1),

is the

6

1 P P

o 0 -2P

-1 -P P

above P = N(l/2) - N(-1/2), P = N(1) -

and PZz
= N(1) + N(-1) - 2N(OY, where N(%)

fraction of the beam particles with quantum

number
?“

A measured value of Q = 90 was reported in Reference

4. This corresponds,for n = 0.8 (about the value

expected), to a spin state purity correspondingto

91.7% for deuterons and 94.5% for protons and tri-

tons. However, preliminary data obtained at LASL

suggest that this value may be high by a factor of

~2. For intense beams, the achievableQ seems to

be further reduced to about 30. If these prelimi-

nary indicationsare correct, a spin state purity of

about 83% for protons and tritons, and 75% for deu-

terons, would be expected.

2. ENERGY LEVELS OF THE HYDROGEN ATOM

We begin by reviewing briefly some facts about the

n = 2 energy levels of the hydrogen atom. Figure 1

shows the n = 2 energy levels in a week external

magnetic field. At zero magnetic field, the energy

differencebetween the n = 2 and n = 1 states is

13.6(2 - ~ )ev = 10.15 ev.
12 22 ‘e %2 - =1/2

level spacing (the Lamb shift) correspoda to about

~059 ‘z aile ‘he ‘3/2 - ’112 level ‘eparation
correspondsto about 10,968 MHZ.

‘ield’ ‘he ‘3/2 ‘tates ‘e ‘plit
substates and the 2P

l/2 ‘d %2
into two magnetic substates. me

are usually referred to as a (for

In a week magnetic

into four magnetic

levels each split

‘3/2
substates

mJ = 3/2), b (for

r
Io,wWI

L)05MM

n.2 ENERGY LEVELS OF
THE HYDROGEN ATOM

m, .1/?.
%

●

*
tPm

A t I I
Soo low

FIELo (GAUSS]

Fig. 1. The n = 2 levels of the hydrogen atom in a
weak magnetic field: nuclear hyperfine structure is
neglected.
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Fig. 2.

‘he 2s1/2 ‘d ‘1/2
levels of the hydrogen

atom vs magnetic field with nuclear hyperfine struc-
ture included. Tne diagram for tritium atoms is
nearly identical.

‘J
= 1/2), c (for mJ = -1/2), and d (for mJ = -3/2).

‘imilarb’ ‘he 2pl/2
states are referred to as e

(formJ= 1/2) and f (for mJ= -1/2); the 2Sl,2

states are referred to es a (for m = 1/2) an& 13

(formJ= -1/2).
J

As shown in Figs. 2 and 3 for the 2Sl,2 and 2Pl,2

levels, which are the ones of primary interest here,

the nuclear hyperfine interactionfurther modifies

the energies. In sufficientlylarge magnetic fields,

each magnetic substate, for hydrogen or tritium

atoms, is split into two nuclear magnetic substates.

2000, I

I500
DEUTERIUM ATOMS I

1000-
.a(m,.11

~ 500 dm, .0)

~

>0
0

I
E
D -500
0

t

g(ml.l)
U
a
L -1ooo- ‘o(7HWE UNES) ml.l,O,-l

-1500

~y

f(THREELINES)mi-1,0,1

-20001 ., J
o 100 200 300 4CSJ 51X 600 700 800 900

FIELD (GAUSS)

Fig. 3.
‘e 2sl/2 ‘d 2P112

levels of the deuterium
—,

atom vs magnetic field with nuclear hyperfine struc-
ture included. The order of the e and f levels is
the same as the order of the a and 6 levels, respec-
tively.

of the allowed nuclear magnetic quantum nunbers

~ = 1/2 or ml = -1/2. For deuterium atoms, where

~ cenhave the value 1, 0, or -1, each substate is

split into three nuclear magnetic substates. Note

that the order of the ~ substate energies is in-

verted when the electron spin mJ value is negative.

The byperfine energy level diagram for the 2S
1/2

states is described by the Breit-Rabi formula:

Aw 2%x+x211/2 +EAwx%
W=-*T’$%% Y

where

x = B/Bl.,

Bl= ml + E)/(gJPo) ,

1836.1gJ
~ = 1/( -l),

131

gJ = Lande g factor,

1.1o= Bohr magneton,

B = magnetic field,

Akl= zero field hyperfine splitting,

The last term arises from the interaction of the

nuclear magnetic moment with the applied magnetic

field and is, for ordinary magnetic fields, very

small.

The Breit-Rabi formula is only approximate for the

2pl/2
levels since, for the field strengths of in-

terest here, J ia only an approximatelygood quan-

tum number. An exact calculation requires the di-

sgonalizationof the Iismiltonianincluding both

fine structure and hyperfine structure terms; in

the numerical results presented below we have only

applied a first order Correction to the Breit-Rabi

formula by shifting the e and f lines downward by

an amount calculated from the solution to the fine

structure Zeeman splitting problem. Referred to

the mean value of the multiplet, the correction 5

is Al./= B ). ‘lhe values for the constants- +(=
associatedwith the cases of interest are tabulated

in Table I.
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Table I

Parameters Characterizingthe Nyperflne Structure of the n = 2 States

of Hydrogen, Deuterium, and Triti.umAtoms

Nucleus State KJ 131 AW(~Z ) E B1 (In G)

Proton
%2

2.00229 5.585486 177.551 1.522 x 10-3 63.448

Proton
‘1/2

0.66589 5.585486 59.190 4.58$? X 10-3 63.796

Deuteron
%2

2.00229 0.851’407 40.924 0.233 X 10-3 14.605

Deuteron
=1/2

0.66589 0.8574O7 13.640 0.702 x 10-3 14.644

TTiton
%/2

2.00229 5.951’6& 189.588 1.623 X 10-3 67.755

Triton
‘1/2

0.66589 5.957680 63.200 4.897 X 10-3 68.138

-.

.-

In the numerical.

(Tables II-VII),

tabulationsof the energy levels

all energies are expressed in

equivalent frequency units (MHz) and are referred

to the centroid of the 2S
1/2

zero field multiplet.

The latest published values of the Lsmb shift
6,7

have been used in this calculation (1058.o5MHz for

H atoms and 1059.34 MHz for D atoms). A value of

1058.o5 MHz has been used for T atoms.

The states are labeled by their strong field quan-

tum numbers. Note that, for sufficientlyhigh

fields, the frequency separation for states whose

ml values differ by 1 unit is Ail/2for spin l/2

particles and AW/3 for spin 1 particles. Note also

that the magnitude of the field Bl, which is cus-

tomarily thought of as the field value which de-

fines the weak and strong field regions, is much

smaller here than is the case for ground-state

atoms.

3. SELECTION RULES

The angular momenta involved in the complete de-

scription of a one-electronatomic state are the

orbital angular momentum~; the spin anguhrmo-

mentum ~; and the nuclear spin angular momentum ?.

In a very strong magnetic field (i.e. in the

Paechen-Backregion, which Is -105 0 or greater

for n = 2 hydrogen atcsns)the quantities~, ~, and

?are completelydecoupled. Thus, transitionsmay

be induced which involve only one of the pairs of

quentum numbers t,mg; a,ms; or I,%. In weaker

8

fields where land ~ couple to form ~ (usually known

aa the strong field region, which is in the range

Z102-104 G for n = 2 hydrogen atoms), transitions

can be induced which involve either J,m or I,m .

Finally, for very weak fields, ~and?~ouple t:

form ~, and transitionswill involve changes in

“%”
For a one-electronatom, s is a constant; I

is always constant in atomic physics.

We are concerned here only with the lowest order

transitiona;i.e., with electric and magnetic di-

pole transitions.

a. Electric Dipole Selection Rules

The electric dipole operatcr is e(~ . ~), where e

is the electronic charge, fiis an applied (possibly

oscillating)electric field, and ~ is the electron-

nucleua radius vector. Since this operator ia odd,

it can have nonzero matrix elements only between

states of opposite parity; i.e., Al must be odri.

Further, if one expands the operator into spherical

components, it can be shown (Section 6) that Al =

*1 is required.

For very strong fi.el~ then, the selection rule is

AE = ‘1; Amg = 0, *1 and Am x AIZ = O, since thisI s
opera~or does not affect the spin functions. For

strong fields we have AJ = O, *1; AmJ . 0, *1 and

A? = O. For weak fields, we have AF = O, *1; AmF

= o, *1. If Am = O, where m representswhichever

quamtity is appropriate among ml, mt, ms, mJ, or

..

.
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-785.R7
-777:47
-769.11
-760:78
-752.48
-744.21
-735.97
-727.77
-719.59
-711.45
-71)3.34
-695.27
-687.22
-679.21
-671.23
-663.28
-655.36
-647.47
-639.62
-631.80
-624.01
-616.25

MI=-o,q

-1063.25
-1041.86
-1037.9R
-103?.3’5
-1025.60
-1018.16
-101o.29
-100?.15

-9’73.83
-9R5.30
-976.87
-96R,311
-9’+9.70
-9’51.08
-94~,45
-933.n%
-9~5.20
-916.59
-9117.9Q
-899.40
-8qn.84
-8RP.30
-873.77
-965.27
-856.80
-848,35
-83Q.92
-R-+1 .5?
-82301’5
-1314081
-fli16.4Q
-798,20
-7R9.94
-7R1*71
-773.51
-765.34
-757.19
-74900R
-74].00
-73?.94
-7?4.92
+:;:;:

-701.03
-693.13
-685.2%
-677.41
-6f$~.6il
-661 ●82
‘654. 07
-646.35

M7R_0eq MI=q.5

-10430?5 -1102.44
-1052.63 -llo3.q4
-lf161*99 -1107.Q%
-ln71041 -1113.76
-ln8f).R6 -1120.74
-li19n.34 -1128.47
-1099.Q6 -1136.69
-1109.40 -1145.?5
-1118.QR -1154.05
-112Q.%Q -1163.03
-1138.23 -1172.15
-1147.an -~18103F1
-1157061 -1190.71
-1167*35 -I?OOC12
-1177017 -1209.60
-1186*Q? -1?19.15
-1196.75 -122$1.75

-l?o~*~2 -1238.41
-121fic%l -Ii?48.12
-l?2~046 ‘1.257.87
-1?36040 -1267.67
-1?4A039 -1277.51
-1?56.42 -128?.39
-1?6604$3 -12970’lz
-1?76.56 -130707f+
-1786.6R -13170?R
..1?Q60R4 _13z70q~

-1307.02 -133704n
-1317.?4 -1347.51
-1327.48 -1357.65
-1337,76 -1367.R4
-13411.0f3 -1378.n6
-1358.42 -1388.31
-l?6$loRfI -1398.60
-137Q.20 -140$3.Q?
-1’489,64 -1419.?7
-1400012 -1429.66
-1410.6? -1440.flR
-1421.15 -1450.54
-1431s72 -1461.113
-144?.32 -1471.SIj
-145?.Q% -1482.11
-146306Z -1492.70
‘1474~31 ‘1503.32
-1485~n4 -1513.9R
-149%04tl -1524.66
-1506059 -153503R
-1517041 -1546.14
-15280?6 -1556.Q2
-1639*I5 -1567.74
-155n0n7 -1578.<9

.
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TABt, E Iv

nEUTERIIJM ATOM ?S STATES

-.

.

GAUSS x

0.0 oonno
?0.0 1.369
40.0 2.739
6000 40108
80.0 5*47-?

10000 6.R47
1?0.0 80?16
14000 Q.5R6
160.0 10*Q55
]RO.O ]2.3?4
200.0 13*694
220.0 750n63
24000 160632
260.0 17.nn2
2R0.O ~9*171
300.0 ?o.~~1
3?0.0 ?1OQIO
340.0 730?79
360.0 740649
sRfjOo z6.018
4no.0 ?7.3S7
470.0 ?R9757
440.0 .30.1?6
460.o 31.696
4R0.o 32.Rft5
sno.o 34.234
5?0.0 3s.604
540.0 36.Q73
560.0 3R0342
5R0.O 39.712
6flo.n 41.OR1
6?0.0 42,4’51
640.0 43.RZ!O
660.0 4501R9
6R0.fl 46.5%9
700.(1 47.~2a
7?0.tl 49.?Q7
740.0 %0.667
7fJ0.o %2.036
780.0 536405
Rno.o 54.775
8?0.0 56.144
840.0 570514
86000 5$30RR3
8f30.n 60.252
9(lf)eo 610672
970.0 fizs’?q~
94f).fl 64.3!’!0
96f).o 65.730
9Flo.fJ 67.f)99

1000.0 68*4A9

ALPHA cjTAlE!3

NIB1
13.64
41.68
69.72
97.76

125.80
153.84
181.88
209.92
237.96
266.oO
294,04
322.08
350.12
378.16
406.20
434.24
462.28
490.32
51R.36
544.4(]
574.44
60?.47
630.5;
65Re55
686.5q
714.63
74?.67
77n.71
79R.75
826.79
R54.133
882.87
9if)a91
93R.95
966.99
Q95af)3

1023.o7
11)51011
]L17Q015
1107019
113!5.23
1161.z7
1]91.31
1219.35
1?47.39
1275.43
1303.47
1331051
1359.55
1387.59
141S.63

MT=()

13.64
33.(J1
58.95
q6.lf)

113.66
141.39
169.22
le7.in
~~5.02
25?.96
2Rn.91
3nfJ.RR
336.86
364.85
39?.84
4?n.8?
44R.83
476.84
5c)4.84
532.85
s6fl*86
5RR.87
616.8R
f544.9n
677.91
700.93
7?R*95
756.96
7R4.9$1
Rl?.oo
841.02
869.04
897.06
9?5.(ln
953.10
~~1.l?

100Q.14
1037.16
ln65.19
lf)’?3.21

11?!.23
114Q.25
1177.28
1205.3n
1233032
1261*34
12R9.37
1317.3Q
1345942
1373.44
1401.46

Ml--l

13.64
21 ●q4
46*1-13
72.77

100.17
127,n2
155.59
le3.&3
211932
?39994
?67.17
?9501?
7230n9
351.06
379.n3
407.nl
435.00
46?*9Q
49~sQfl
51R.97
546.Q7
574.96
602.96
630.06
6%loq6
686.q7
714.07
74?.’?7
770.Qfl
79R*QR
826.09
R!j4,q9
RS3.00
oll.nl
Q3q.n2

BETA STATES

MIsI-]

13.64
-14.40
-42.44
-70.4f!
-98.5?

-1.26.56
-154.60
-192.64
-210.68
-238a72
-266.76
-294.RO
-322.R3
-350.ft7
-378.91
-406.Q5
-434.9q
-463.n3
-491.n7
-519.~1
-547. 15
-575.19
-603.73
-631.77
-659. T1
-6$)7.35
-715.39
-743.43
-771.47
-799.51
-827.55
-855.59
-883.63
-911.67
-939.71

Mlsn

-270?q
-35*49
-59*7O
-86*45

-117086
-141052
-169031
-197017
-225on7
-2530n0
v280.95
-308091
-336088
‘364*87
-392*86
-42fIeR5
-448*R5
-476.R5
-504085
-532.86
-560087
-5811 ●RR
-616.R~
-644*9(1
-67Tm92
-70rl.Q3
-728 .q5
.756.97
-784.98
-l1130fjo
-841 .02
-869.04
-R97.f16
-fa25.flR
-953.10

)4181

-?7.28
-46m64
-72.56
-99.71

-1?7.25
-l=IA.97
-18?.78
-210.65
-2?8.55
-266948
-2Q4.4?
-3?T.3R
-360.35
-378.32
-406030
-4?4.2R
-46z.27
-4QI).26
-51R.25
-546.24
-574.24
-60ze24
-6?n.24
-6qq.24
-6R6.24
-714.24
-74?.25
-770,25
-7qq.26
-8?6.26
-854.27
-8R? .27
-910028
-97R.2Q
-966.3n

9670fi2 -967:75 -981.12 -994.30
Q950n3 -995.79 .1oo9.I4 -10?2.31

lf)23.n4 ‘lfJi?3.133 -1037.17 -1060.32
lo51.n5 -1051.R7 -1065.I9 -1078.33
lt179.n6 -1079.QI -1093.21 -lln6.34
111)7.f17 -1107095 -1121*23 -1134.35
l1350n8 -1135.99 -1149*25 -116?.36
116301)9 -1164.03 -1177.2$3 -~lQri.37
1191.10 -1192.n7 -1205,30 -121fl.3a
1?19011 -1220.11 -1233.?2 -1246.39
1?47.12 -1248.14 -)261.35 -1274.40
1P7S.13 -1276.18 -128q.37 -13np.41
1303*14 ‘1304.?2 -1317*39 -131n.42
1331015 -1332076 ‘1345s42 -1358.43
135q.16 -1360.30 -1373.44 -13R6.44
1187.17 -1388.74 -1401.46 -1414.45
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TABLE V

DE~JTFQIIJM ATOM ?P STATES

ALPHA STATES FIETA STATES

.

.-

GALJSS x MIx1 MIUO ~~=-1 MI*-I MIx(I MIX1

0.0 0.000 -1054.79 -10%4.79 -lf154079 -1054.79 -106q.43 -106Ro43
20.0 1.366 -104’5.48 -If)4R.37 -1052oIo -1064.14 -107Io1R -1074.89
4f3.o 20731 -1036.2o -1039.8(I -1044oIo -1073.51 -1079.27 -1os3.55
60.0 4.n97 -1026.96 -1030.85 -103S.Z9 -1082.97 -lf)8R024 -IOCJP.66
80.0 5.463 -1017.74 -1021.79 -1026.30 -1092.35 -1097.47 -llnl.93

lno.o 60829 -1ooR.56 -1oI2.7? -ln17.25 -11oI.S2 -1106o81 -1111.29
1?0.0 8.194 -999.41 -1oo3.64 -1oo8.I8 -1111.32 -1116023 -1170.71
140.0 9.%60 -990,29 -994.57 -999.13 -11200R6 -1125.70 -1120.18
160.0 10.Q?6 -981.20 -9R5.53 -’490.10 -1]30.4? -11350?1 -1179.70
lRO.O 12.2~2 -972,15 -976.50 -98101113 -1140.0?
200.0 13.6%7 -963.12

-1144077 -1169.26
-967.51 -9720n9 -1149.65 -1154.37 -11%8.85

220.0 15.n23 -954.13 -958.56 -963.13 -1159.?1 -1164.00 -116R048
240.0 16.389 -945.17 -94Q.60 -Q54,z0 -1169000 -1173.67 -1178.14
260.0 17.755 -936.24 -940.69 -945030 -1178.72 -1183.37 -11Q7,84
2~o.o 1~.l?o -927.35 -931081 -q36.42 -118f104R -1193.11 -I107.57
300.0 20.4R6 -91R048 -92?.96 -92705R .1198.27 -1202.88 -1207,34
320.0 ?l.~w -909.65 -914.14 -Q18076 -1208.119 -1212,69 -1217.14
340.0 23.?17 -90n.85 -9n5.35 -909.Qfl -1?17*94 -1222.%? -12ZfYe97
36o.o ?4,5R3 -1392e08 -B96,6n -901.73 -1227.a? -123?.39 -1236.83
3f30.o ?5.949 -883,34 -887.87 -8~?.51 -1237,73 -]2470?Q -1246.73
4nnoo 27..315 -F)74.64 -R79017 -R830QI -1747,fIR
4?0.0 28.6R0

-l257o?3 -1256.66
-865.96 -1370051 -R75.16 -1257.66 -1262020 -]266.62

440,0 3oOf146 -857.32 -861.88 -t16601i3 -1267067 -127?*2O -1276,61
460.0 31.412 A34R.71 -853.27 -!i57eq3 -1277e71 -1282.73 -12Rfi.64
4Rfl.o 32.778 -840.13 -844e70 -849,36 -1287.79 -129?.29 -1296.69
500.0 34.143 -831.S8 -$336.17 -8400R3 -1297,R9 -130?.39 -13n607R
5?0.0 35.509 -823.07 -R?7.66 -R32.33 -1308003
540.0 36.R75 -814.59 -819.18

-131?051 -1316.91
-8230R6 -13180?o -1322.67 -13?7.06

S60.0 3R.?41 -FI06,14 -R10074 -R1504? -132804n -1332.97 -1337.24
5R0.o 39.6n6 -797.72 -802.33 -807001 -1338.63 -1343009 -1347.46
61)o.rl 40.Q72 -789.33 -793.95 -798,63 -13480Q0 -1353.34 -13%7.71
6?o.O 42.338 -7t)n.97 -7f35.60 -790.29 -1359.?0 -1363,63 -1367.99
64o.O 43.7n3 -772.65 -777.2Q -7f31.97 -1369.%3 -1373*Q5 -137fl.30
660.0 45.069 -764.36 -76R ●99 -773.69 -13790n9 -1384.3n -13RQ.65
68000 46,435 -756.10 -760.74 -765.44 -13900pfl -1394o69 -139q.03
700.0 470R01 -747.87 -752.52 -7570z2 -1400.70 -I405o1O -1409043
7?0.o 49.]66 -739.67 -744.33
740.O 50.532 -731,51

‘74q.n3 -1411.16 -141%.55 -1419.88
-736.17 -74f)oR8 -1421.6% -1426*II3 -143n_35

76o.O 51.flQ8 -723,38 -7>8.04 -732s76 -1432.17 -1436*54 -144n085
7$30.0 53.264 -715.28 -719.94 -724.66 -]442.7? -1447.09 -1451.39
80000 54,6?9 -707.21 -711C88 -716,fi0 -1453.30 -1457.66 -1461.96
8?0.0 55.q95 -699.17 -703.85 -70fleq7 -1463,9? -1468.i?6 -147?.55
840.0 57.361 -691.16 -695.85 -700.Ij8 -147401j6 -1478.90 -14R3019
8AOO0 %8.727 -6S3.19 -6R7.88 -692s61 -1485.?4 -1489957 -14Q3.85
880.o 60.nQ2 -675.25 -679.94 -684.68 -1495.95 -1500.28 -15f14*54
9no.o 61.458 -667034 -67P. 03 -676078 -1506.69 ‘1511oO1 -1515027
920.fj 62.R24 -659.46 -664.16 -668.90 -1517.47 -1521c77 -1526003
94ooO 64,189 -651,61 -656.3? ‘1561cI17-1528.?7 -153?057 -1536.82
960.0 650%55 -643.80 -648.51 ‘653-26 -1539.11 -1543.40 -1547064
9R0.o 66.9?1 -636.02 -640073 -645@4R -1549eQ8 -1554.z6 -15%f!050

1000.0 68.?87 -628.27 -6?2.9R -637,74 -1560.88 -156%.16 -1569,38

.
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t-”

TAf3LE VI

TRITIUM ATOM ?S STATES

.

GA{JSS

n.n
?0.0
40.0
60.0
Roeo

10000
]2000
14000
160.0
lRO.O
20000
2?0.0
240.0
26000
280.0
300.0
3?o.n
340.0
36000
3R0.o
400.0
42000
440.n
460.0
4RnO~
511000
5?0.0
540.0
560,n
%fJo.fl
600.0
6zllo(l
640.0
660.(1
6Rf).fl

x

n.000
●?Q5
.%90
.RR6

1.1s1
1,476
10771
2,066
2.361
?0657
~.Q52
3.247
3.542
3.R37
4*133
4.428
497?3
5.n18
50313
50608
50~04
6.II?9
6.494
6*7q9
7.nR4
7.379
7.675
7.’.?70
fi,?65
R.560
13,R55
9.]%1
9.446
9*741

]o.n36
700.0 10.331
72OOO 10.6?6
740.0 10*Q22
76OOO 11.217
780.0 llo’5~2
800.0 ~~oR07
Rpo.11 120102
840.0 1203QR
86OOO 120AQ3
8R0.O 120Q9Fl
~oo.n 13.2R3
9?0.0 13.578
940.0 13*R73
960.0 14.169
9qo.cl ]4.464

lor)o.o 140759

ALPHA sTATES 13ETA STATES

klIarI.5

47.40
75.47

103.54
131.61
159.69
]87.76
215.83
243.9o
271.97
300.05
32R.lZ
356.19
384.26
412.33
440.41
468.48
496.55
524.62
552.69
580.77
60!3.84
636.91
664.98
693.o5
721.13
74q020
777.27
805.34
833.41
861.49
889.56
917.63
945,70
973.77

lool.f35
I02Q.92
1057.99
Io860n6
1114013
1142.21
1170.28
1199.35
1226.42
1254,49
1282.57
I31o.64
133f3.71
1366.78
1394.85
1422.93
1451.00

MIa.n.q

47.40
51.44
67.6R
70.22
Q9,2R

1?1060
145.40
170.20
IQ5.7n
2?l.6Jl
24R.04
274.66
3nl .5(]
3?8.5]
355.65
3R2.89
41o.23
4>7.64
465.11
407.63
52n.2n
5&7.Rj
575.45
603.11
630.81
65R.53
6R6.?6
714.0?
741.79
769.5R
797.37
R?s.lil
853.01
RRn.84
Qnll.67
936.57
964.3R
992.24
ln?n.11
1047.9R
107%.86
lln3.74
1131063
115Q.52
11R7.4?
121%.3?
1?43.22
1?71.13
12Q9.04
1376.96
1354.f37

MT=-O.5 Ml=fl,q
47.4n -142.19
19.32 -146.73
-8.7% -157.4R

-36*R2 -174.n2
-64.R9 -194.r17
-9~.Q6 -216.a9

-1210n4 -24002n
-~49011 -265.00
-177918 -290.49
‘2f)5~?5 -316.48
-?3393? -342.83
-?61 ●40 -369.46
-?89,47 -396.?o
-317*54 -423,q0
-345061 -450.44
-373*6R -677.69
-401076 -505.112
-42Q,Q3 -532.43
-457.Qll -559.90
-4a5.f27 -587.42
-5140n4 -614.99
-54?012 -642.60
-%7flo19 -670.?4
-5980?6 -697.QI
-626.73 -725.60
-654.40 -753.-42
-69~,fbR -781.n6
-710,55 -J308CR]
-73q.62 -$336.58
-766.6Q -864.?7
-794.76 -1492017
-822.R4 -f419a9!l
-R50,QI -947.RO
-R7R.QR -975.63
-9n7.n5 -1003.47
-9.35C1? -1031.3>
-963*?n -1059.17
-’a91 .77 -loF17.fj3

-111]9*34 -1114.qn
‘1047cA1 -1142.77
‘1075s4R -]170.65
-1103.56 -1198.%4
-1131s~3 -1226042
-1159*7O ‘1254.3?
-l187e77 -12920?1
-l?150~4 -1310.11
‘l?43.q2 -1339.n2
-l?71cQ9 -1365*Q3
-1300006 -1393.R4
-l12qc13 -1421.7%
-1356c?0 ‘14490~6
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GAUSS

O*O
7000
6000
60. o

80.0
100*O
1?0.0
140.0
160.0
180.0
200.0
22090
24000
26090
280.0
30000
3?000
340.0
36(1.o
380.0
41)0.O
420.0
44000
460. O
480.0
500.0
520.0
54090
560.0
58000
600.0
6?o0O
640.0
66000

TABLE VII

TRTTIUM AToM 2P STATES

ALPHA STATES BET4 STATES

x t9118(l.5MIX-(J.5 ktI=-OOq MI=f).%
o.ooO -1042.25 -1042.25 -ln42.25 -I105o45
.?94 -1032.93 -1040.95 -ln51.63 -1106.f17
●587 -1023.64 -~037.2fl -lt)60cQ9 -I11O.67
,981 -1014.38 -103I.88 -ln7n.41 -1116.?5

1.174 -ln05.15 .1025.34 =ln7Q.116 -1123.n3
] .468

1.761
2.055
2.348
29642
2.Q35
39279
3.522
3.S16
401n9
40403
4.6Q6
49990
5.2R3
59577
5*R71
60164
6.658
6.751
7.045
7.338
7.632
7.Q75
807~9
8.512
8,806
9.n99
9.3Q3
9.6R6

6ROO0 9.9R0
70000 10.273
7?().0 ~09567
74000” 10*R6O
760.o 110154
780.0 11.448
800.0 110741
8?0.0 12.035
840.0 12.3?9
860,0 12G~22
8R0.O 12.915
900.0 13,209
9?0.0 13.502
94o.o 13.796
96000 14,nR9
9R0.O 14.383
1000oO 14.676

-----
-995.95
-986.79
-977.66
-968.56
-959.49
-950.45
-941.45
-932.48
-923.54
-914.63
-905.75
-896.91
-88f1010
-879.32
-870.57
-861 .85
-853.17
-844.51
-835.89
-827.30
-818.75
-810.22
-801.73
-793o27
-784.84
-776.46
-768.08
-759.74
-751.44
-743. ~?
-734*93
-726.73
-718.55
-710.41
-702.30
-694,23
-686.18
-678.17
-670,18
w662.23
-654.32
-646e43
-638,57
-630.75
-622.96
-615.20

----
-101R.O7 -iri69035 -ii~o~<fi
-10]0.34 -1098cR6 -1138.66
-lon2.31 -1109.41 -1147.11

-994.08 -lI1709q -1155.R2
-9R5.7? -1127-60 -1164.72
-977.26 -1137.P4 -1173.79
-96R.75 -1146.ql -1182.96
-960.19 -1156.62 -1192.?4
-951.61 -1166036 -1201062
-943.02 -1176013 -1211.n6
-934.42 -11850Q3 ‘1220058
-9~5.87 -1195*77 -1?30015
-9~7.24 -~705,A3 -123907Q
-9nR.66 -1?15053 -1249.47
-901).oQ -1225.46 -12590?o
-891.55 -1735042 -1268.99
-llR3.02 -lz.45042 -1278.RI
-876.51 -1755.44 -1288.68
-866.02 -l?65c6fI -l?qR.59
-857.56 -17750139 -1308.54
-86Q.lz -1z85.71 -1318.53
-840.71 -12950R7 -1328.55
-R.3?.32 -13060n5 -1338.62
-823.96 -13160?7 -1349.7?
-1315.6P -1326052 -1358.R6
-f3f)7.31 -13360nn -1369.03
-7Q9.03 -1347011 -1379.?4
-7Qn.7R -1357.46 -1313q049
-7R?.56 -13670R4 ‘1399077
-774.36 -137f10?5 -141n.f18
-766.2n -138R*t3q -1420.43
-7%R.06 -1399016 ‘14300R1
-749.95 -1409066 ‘I441o?3
-741.87 -162002n -1451.68
-733.82 -1430.77 -1462.!6
-7?5.80 -1441,37 -1472.68
-717C8Z -1452000 -141330?3
-71-)90R6 -146z067 -14930$?1
-7flla93 -1473,37 -1504.4.3
-694.03 -1484,09 01515.08
-686.16 -1494,R5 -1525.76
-67803z -1505,65 -1536.48
-670.52 -1%16,47 -1547073
-662.74 -1527.33 -~558.nl
-655000 -1538.?2 -1568.R2
-647.28 -1%49.14 -1579.67

..
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‘F ‘ the field required to induce the transition is

parallel to the quantizationaxis, while if Am = *1,

it is perpendicularto the quantizationaxis.

b. Magnetic Dipole Selection Rules

The magnetic dipole operator is of the form - ;.3’

where ~’ is usually an oscillating orrot&tingmag-

netic field, and where C may be an electronic or

nuclear magnetic moment. This operator can ha’ve

ncmzero matrix elements only between states of the

same parity. This means, at least for the present

case, A9.= O.

For very strong fields we have ~ = O, *1 and AL =

Amk = Ams =O; orAms=O, *land Al =Amg=Aml=

o. For intermediatefields we have AJ = O, *1; bJ

. 0, ‘l and ~= O; orA~=O, ilandAJ =Am
J=

o. For weak fields we have AF = O, *I, AmF = O, *1.

Again the magnitude of b determines, in the same

way as above, the parallel or perpendicularnature

of the field required to induce the transition.

Finally, we note that F = O + F = O is absolutely

forbidden fom one-quantumtransitions.

4. DISCUSSION OF THE GENERAL SPIN STATE SELECTION

PROBLEM

A wide assortment of methods exists which might be

used to polarize a netastable hydrogen atomic beam.

This is in contrast to the problem of spin state

selection in an ordinary (ground state) hydrogen

atomic beam where only megnetic dipole transitions

between the various hyperfine components,or adia-

batic reduction of the magnetic field, may be con-

sidered.

It is believed that a “three-levelinteraction,”in

which the applied fields msy simultaneouslycause

transitions emong three levels, offers the best so-

lution to the selection problem. This technique,

which was first fiemonstratedand explainedby Lam%
5 8

and iietherford,and Lamb, is the method used in

the LASL ion spurce. However, we first consider

some of the various other possibilitiesby which a

polarized metastable atomic beam may be produced.

In a magnetic field of about 575 G the !3and e states

become degenerate. If a small (a few V/cm) trans-

verse electric field is applied, the B-states are

coupled to the short-lived e-states (the half-life

of the e-states is -1.6 nsec) and decay rapidly.

Thus one can obtain a beam of a metastables. Such

a beam Is analagoue to the beam obtained in conven-

tional polarized ion sources after separation in a

quadruple or sextupole field. That is, there is

100% electronicpolarizationbut no nuclear polar-

ization. Such a beam could then be converted to a

partially polarized negative ion beam by adiabati-

cally reducing the magnetic field to near zero be-

fore the H
2s +A+H- + A+ reaction is allowed to

occur. However, these particles have a relatively

high velocity (--3 x 107 cm/see) and thus a long

and carefully designed decreasingB field region is

probably needed. 9Drake and Krotkov, who first

used this method, attributed the fact that they

obtained only -2/3 of the theoretical polarization

to an inadequate length in their B field transition

region.

To obtain increased polarization,one must turn to a

selective transition scheme of some sort. We first

consider the use of a magnetic dipole transition

between a particular a state and a particular 6

state in exactly the fashion often used in conven-

tional polarized ion sources. One finds, however

(see Secticn 6), that the electric dipole matrix

elements are of the order of l/a (=137) times

larger than the magnetic dipole matrix elements.

Even though a line through an rf cavity can be

found where B is maximum and E is zero, for practi-

cal beam sizes the average E field will be suffi-

ciently large to make the electric-dipoletransi-

tion rate far exceed the magnetic dipole transition

rate.

We ask if these electric dipole transitionsmight

be directly employed for our purposes. For hydro–

gen or tritium atoms the a-f frequency separation

for the two ml values is approximately120 MHz;

this is to be compared with the natural width of

100 MKz for the f (and e) levels. Thus one could

possibly obtain a reasonable-polarizationwith such

a transverse electric field transition. However,

both the beam intensity and polarization depend

critically on the rf power level. For deuterium

atoms the corresponding frequency separation is on-

ly about 18 MHZ, so for this case the method is in-

feasible. The correspondinga-e (longitudinal

electric field) transitions are separated by one–

half the correspondinga-f separation; thus these

15
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Fig. 4. Schematic dlsgram of the a-d crossing;the
numbem correspond to the A? required for a tr~-

sition between the two crossing states.

transitionswould be even less favorable.

10
It has been demonstrated that at the a-d crossing

(-236o G) a static electric field maybe uaedto

preferentiallyquench a single nuclear spin state.

For protons or tritons, only a(ml = -1/2) end

d(ml = 1/2) can be coupled by electric @ipole radia-

tion. Since this transitionviolates the strong

field selection rules A~=o, AmJ=o,’l, itis

“first-orderforbidden.” However, the remaining

transitionsinvolve ~ >1 an~ because they ere in-

ccznpatiblewith dipole radiati6n, are more highly

forbidden. Figure 4 illustratesthis situation for

both spin l/2 and spin 1 nuclei. It is seen that,

in the deuteron case, two transitionsare compatible

with AmF = 1 (transverseelectric field) and one

with AmF = O (longitudinalelectric field). Thus

one could selectively quench one magnetic eubstate

for spin l/2 systems and either one or two magnetic

substates for spin 1 systems. Since the transitions

here are first-orderforbidden,relatively large

electric fields are needed and serious loss will oc-

cur through the a-f or a-e transitions. It has been

estimated’”that, for protons, one might obtain 50$

polarizationwith 25% a state survival.

Another proposal
11

involves the use of a radio-

frequency transition at zero magnetic field. The

=1/2
(F= 1) level may be coupled to the 2P112

(F= O) level by longitudinalor transverse radia-

tion of the appropriate frequency. A small msgnet-

ic field is permissible if both transverse and lon-

gitudinal radiations are present. ‘e ‘1/2
(F =

O) state is not appreciablyquenched by coupling to

‘he 2pl/2
(F= 1) state because the ffequency dif-

ference is -236 MHZ; the 2S~/2 (F=o) to2p1/2

(F= O) transition is strictly forbidden. Thus,

one might obtain a pure 26~,2 (F= O) metastable

beam. If the field were then adiabaticallyin-

creased to a high value, the metastable beam would

have 100$ nuclear and 100% electronic longitudinal

polarization. ~is scheme, however, is applicable

only to protons or tritons.

5. QUANTUU MECHANICAL FORMULATIONOF THE FOUR-

LEVEL PROBLEM

We consider only the four-levelsystem a, $, e, and

f ‘ince ‘he ‘3/2
levels are sufficientlydistant

to have no significant effect on our problem. In

addition, since we are working in a strong magnetic

field, the nuclear magnetic quantum number ml is

conserved and we may therefore consider separately

each group Of four atomic levels associated with a

particular nuclear spin orientation.

For the amplitudes of the a, B, e, and f states, we

use the notation a, b, c, and d. We use u (with or

without subscripts)to denote an angular frequency.

The Schroedinger equation may be written:

(Ho+ H’)$=ifi~ ,

where Ho is a time-independentHsmiltonian whose

eigenfunctionssatisfy the equation Houn = Enun,

If the exact wave function is written In the form

-iEntfil
$ = E an(t) une s

it is easy to show that the coefficientsan(t) must

satisfy the differentialequations

where

‘kn = ‘%- ‘n)/h ‘

. .

.-

.
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For the four-level

.

case, these equationsmay be

written outiexplicitly as:

ifia

imi

ifi~

,
ifid

where the damping terms -iyc/2 and -iyd/2 have been

added to account for the decay of the e and f states.

Except for the damping terms, the above matrix is

Hermitian. The a-B and e-f transitionsmay be in-

duced only by a transversemagnetic field; the a-f

and 6-e transitionsmay be induced only by a trans-

verse electric field; and the a-e and S-f transi-

tions may be induced only by a longitudinalelectric

field.

We assume a longitudinaloscillating electric field

(~gular frequency u), with an associatedtransverse

oscillatingmagnetic field, and a transverse static

electric field. The matrix elements may then be

written in the form

H& = mcosut

H~e = IIM’coswt

I

.

0

Me
-dt

Cos Ut

-iw t
Re ae Cos Wt

1 -iu t
V’ e

af

M* e1ua6t
Cos ut

o

‘iu!3et
Ve

R’ e
-iw6ftcos ~

iu t iuaft
H~ee ae H;fe

*ieei”Bet H~feiuBft

‘weft
-iy/2 H~fe

H~eeiufet -i-f/2

a

b

c

d

E;a = ?iRCosut

H~B = m’cosat

H’ = flv
e~

H~a = *v’ ,

where M and M’ represent magnetic dipole matrix el-

ements, R and R’ represent longitudinal electric di-

pole matrix elements, and V and V! represent trans-

verse electric dipole matrix elements. (me nota-

tion R and V is selected since R and R’ will be

associatedwith a radio-frequencyelectric field,

and V and V! will be associatedwith a static elec-

tric field.) These matrix elements are discussed

in Section 6; for the present we merely observe

that the magnitude of dipole matrix elements is di-

rectly proportionalto the relevant applied field.

Note that the unprimed matrix elements relate to the

e level, and the primed matrix

the f level.

In this notation our equations

elements relate to

become:

V* eiuset R!* eiuBftcostit,

iueft
-iy/2 M,* e Cos Wt

-iu t

M’ e ‘f Cos Wt -iy/2

a

b

c

d .

.,



The equations are used in this form for the numeri-

cal Integrationstudies discussed in Sections 8 and

9. However, the effect of the f state on the syfi-

tem is not large--itmerely causes a slow overall

decay of the metastable beam. For our first dis-

cussion of the system, we neglect the f level ef-

fects.

Also, except in the numerical integration studies,
12

we follow the standard practice end drop the term

in cos wt = % (eiwt + e-i’”t)which is incapable of

resonance. (We note that this approximationcannot

be made for both frequencies if one uses an oscil-

lating transverse electric field as well as an os-

cillating longitudinalelectric field, since then

at least two frequency terms can always resonate.

In fact, one then obtains interferencebetween the

two contributions.)With these approximationsthe

equationsbecome:

o

-i(Illar’)te

-i(wue -u)t
e

o

-i(oBet
Ve

These are the equations given by Lemb.
8

In Section

7 we follow the method indicatedby Lamb to obtain

an enalytic solution to these equations for the

special case of constant field magnitudes during the

interactionthe.

6. MATRIX ELEMENTS

Neglecting the nuclear hyperfine interaction,the

wave functionswhich describe the n = 2 states of

the hydrogen atom msy be written in the form given

In Table VIII.* The coefficients e - c
1 4 can be ex-

pressed se follows. Define the dimensionlessparam-

eter ~ = UoB/AE, where MI is the fine structure

splitting (10,968MHz). (C becomes unity at a field

of about 7800 G; thus, as far as fine structure is

concerned,we are interestedprimarily in the weak

field region. Accordingly,Table VIII is subdivided

into the weak field groups (where J and mJ are good

quantum numbers) although the wave functions are

exact for all fields.) We may write

.2 .431- 6+)

.3 .+tl + IS-)

.4 +&l - 6_)

where

6+= (c+l/3)/~1+2(/3+ C
2

and

6 = (( - l/3]/~1 -2(/3 + (2

!tbe quantities C, 6+, 6_, and c1 - C4 are tabulated,

V* :w@t

-iy/2

a

b

c

for various magnetic fields, in Table LX. We note

that, for zero field, C+ + l/3, C_ + -1/3 end c1 -

Eh become unity. In that cese, the coefficients in

Table IX become the usual Clebsch-Gordancoeffi-

cients which couple angular momenta 1 and l/2. For

~rge fields, C+ + 1 and ~- + I; thus G2 and ~4

become zero while .1+$ and C3 +~. In this

case, we obtain the wave functions for which 1, m
t’

s, and me are the appropriate quantum numbers.

We now consider the effect of the nuclear hyperfine

* The values of c - c
1 4 were obtained from Bethe

and Salpeter,13 Section 46. The Clebach-Gordenco-

efficients and engular functions used throughout

this section are, however, those of Condon and

Shortley.14 me tables of matrix elements given

Ref. 13 may be used if account is taken of the

(-l)m difference in phase conventions for the

spherical harmonics.

18
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TABLE VIII

n = 2 Hydrogen Atom Wave Functions in .aMagnetic Field

Multiplet State
‘J Function

a 3/2
‘21$11

(+)

d -3/2

F=3 2R21$11 (+)

F3 4R21$10 ‘+)

1/2
6
lR (+) ~1R21$U (+)e

- 3 2 21’J’1O
‘1/2

f -1/2
F
2R

F- 3 4 21$1-I (+) + 3 3R~$’lo (+)

a 1/2
‘20$00

(4)
2s1/2

B -1/2
‘20$00 (+)

NOTATION

(+) and (+) are electron

’20 =

’21 =

‘$11= F- ii sin9eio

JF3$10 = ~ Cose

$1-1 = Fi since-i$

v00 = E T

spinors

9

.
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TABLE IX

Factors Required for the Computationof the Hydrogen Atom Wave Functions

in an Arbitrary Magnetic Field

o 0 .3333 -.3333 1 1 1 1

390 .05 .3833 -.2833 1.016 .983 1.034 .961’

780 .1 .4333 -.2333 1.031 .965 1.068 .935

3,900 .5 .8333 -.1666 1.117 .872 1.113 .-f12

7,800 lio 1.3333 +.6666 1.167 .563 1.538

39,000

.525

5.0 5.3333 4.6666 1.220 .1.22 1.72~ ,152

78,000 10.0 10.3333 9.6666 1.224 .084 1.73 .111

interaction. The magnetic fields of interest are

in the region of 500-600 G, The parameterwhich

defines the strong and weak field regions (with re-

spect to the ~erfine interaction)is X ~VoB/AW,

where AW correspondsto the zero field hyperfine

splitting. The magnetic field at which X is unity

variee from -15 to -65 G for the cases of present

interest (see Table I) and we are thus interested in

the strong field region as far es the hyperfine in-

teraction is concerned. ‘Ibismesns that the appro-

priate wave fictions which include the nuclear spin

are of the form given in Table VIII multiplied by a

nuclear spin wave functionwhich correspondsto a

particular~. (These are only approximatelycor-

rect wave functions; in fact, a small amount of nu-

clear spin component of other than the predominant

ml value will be present. ‘I’hesituation is anala-

gous to the situation discussed above for the fine

structurewave functions,if~, ~, and~ replace ~,

~, and~. me a-d crossing technique10 discuesedin

Section 4 makee use of this fact.)

Turning to the evaluation of the matrix elements

which connect the various states, we assume that
5

is a good quantum number; i.e., that we may use

electronwave functions of the form given in Table

VIII multiplied by a nuclear spinor, The selection

rule ~ = O holds for the transitionsof interest

so the nuclear spin wave function is omitted in the

following discussion. lhrther, we assume that the

direction of the static magnetic field defines the

+Z axis of the system.

We first consider the magnetic dipole matrix elements

20

which connect the ~ to the a and the f to the e

states. The perturbing interaction is

H’ =-~.ii’ = -ggPot. i’ -g#o:*i’

where, neglectingradiative corrections, gt = 1

and g= = 2, and where P. is the Bohr megneton. We

may write:

1“3’ =%(B~+iJ3J)(Lx - ity) +~(B~- iBJ)

(lx+ igy) +B~tz=@~t_+ ~~t+ +B~lz .

Using this expression together with the similar

expression for ~. B!, the &a matrix element may be

written:

+ @: (gt~+ + g~s+) + Bz(gt~z + gssz)]
—

R20Voo(+)dT .

13
The operators L+, I_, and %= obey the equations

L+$h = J(L- ml)(L+mg+l) IJI
t Imz+l’

$-$h = J(9,+mt)(t- ml + 1) #
1 % -l’and

fiz$h =m@
t

Lllsl”

The operators s+, s , and s= obey identical.equa-

“9

..

●

.



TABLE X

n . 2 Electric Dipole Matrix Elements

Units: ea.

. . lkensitl,on

~+~

~+d

a+b

~+c

a+c

B+b

a+d

B+a

a+e

~+f

a+f

B+e

Am

+1

-1

0

0

-1

+1

-2

+2

o

0

-1

+1

tions (where s = l/2, m~

tion, only the following

results:

s+(+) = (4)

s_(t) = (+)

Sz(+) = %(+)

Sz(+) = -%(+)

For the present example,

‘a:iw’-
-3EJG

3E+/G “

&lEz

&4Ez

mE3E+

-@E2E-

0

0

-&2Ez

+& E
32

-&hE+

-&lE_

= *1/2J. In spinor nota-

operati.onsyield non-zero

the k+, 1-, and 1= opera-

tors yield zero and the only contributionto the in-

tegral is from the ‘%+zSBLS+term. We thus obtain

H’ = -~svoB~ = -P B’. In the notation of Section
as
5 this corresponds~O-M = -UoB~/fior M = -ipoB;/li

for oscillating fields in the x and y directions,

respectively.

The ~atrix element connecting f to e can be similar-

ly evaluated;the result is:

H:f = [-gt(E2~k+ c1E3)/3+gsc2E3/6]PoB~ .

For the magnetic fields of interest here, cl, C2,

E3, and s~ are very near unity. If it is assumed

that they are exactly unity, we have

XEx

-3Ex/G

3Ex/~

o

0

mE3Ex

-mc2Ex

o

0

0

0

-&4Ex

-&lEx

Matrix Element,of
yEy

3iEy/@

3iEy/6

o

0

mE3iEy

~.2iEy

o

0

0

0

-6E4iEy

~cliEy

Hjf = -poB~/3 .

ZEZ

o

0

o

0

0

0

o

0

(Thislimiting result could have been readily ob-

tained by consideringthe effective interactionto

be-g2p po$.~’ together with the JmJ representa-

%tion of he state.) In the notation of Section 5,

this result correspondsto M’ = -cpoBx/3h or M’ =

-iEBy/36 for oscillating fields in the x and y di-

rections, respectively,where s is given by:

E = gL(s2e4 + c1 3e)- (36C2E312 .

We note that EZS1 for field strengths of present

interest. Numerically the quantity po/h is 2n times

(1.401)MHz/G. Note that M and M’ have units of

angular frequency.

lienow turn to the electric dipole matrix elements.

In this case the perturbing part of the Hsmiltonian

is of the form H’ =
~+
e .r where e is the electronic

charge, ~ an electric field strength, and~is the

electron position vector.

For example, the matrix element which causes the

21



transition a + e msy be written

Rm~m(t)d? .

Noting the orthonormalityof the electron spinors

and expanding efis~, this becomes

H~a = ~2eJR21$yCl[~E+x-+ QE.% + EZ=IRIO$OCI‘T “

If we use the following facts

z = rcos8

x+ = rsineei$

x = rsinee-i$

dT = r2sinOdOd$ ,

we obtain
T 2T r

R21(r)R20(r)r3dr
JJ ~ ‘$’?0

(Ezcose +~E+si.nCle-i$+zE_sintlei$)$oosineded$.

The radial integral
13

has the value 3fiao, where a.

is the Bohr radius. The angular integrals can be

evaluated either directly or by reference to ta-

bles.13 In this case, only Ezcose survives the $

integration,and we obtain

H;e . -6c2eaoEz .

In Table X the matrix elements are
14

assumption of the Condon-Shortley

given vith the

conventions for

the vector coupling coefficientsand wave functions.

Any modification of sign in which c1 and C3, or S2

and EL are changed slmultaneoualy,or in which the

overall phase of a wave function is changed, pre-

serves the orthogonalityand eigenvaluesof the

functions and is therefore acceptable. Thus, for

‘he 251/2 - 2pl/2 transitions,many possible con-

sistent sets of signs for the matrix elements are

POSEible.

In the notation of Section 5, the electric dipole

matrix elements may be written

R = -6c2 eao Ez

and

22

V = -ficleaoEx or -fit ea iEloy

V’ = -~c4eaoEx or ~c4eaoiEy ,

depending on whether the transverse field Is along

the x or y axis. For the magnetic fields of inter-

est, c - c1
~ differ from unity by only a few per-

cent. Neglecting these small differences,we may

write

R!=-R* and Vl=V* .

This form is used in some of the later dlscuasion.

In fact, any relative signs between the matrix ele-

ments such that arg(R/V) = -arg(R!*/V!*)will re-

sult in identical answers for any calculationwhich

involves only these matrix elements.

Numerically,the quantity &eao/ii is given by 6X

(1.60206 X10-19 C) X (5.29172 X 10‘9 cm) x 107/

(1.05443 x 10-27 erg-see) = 13.9257 (c!u/V)~z.

Note that the quantity &eaoE/fi, where E la an elec-

tric field strength (V/cm), has the units of angular

frequency.

7. ANALYTIC SOLUTION OF THE THREE-LEVEL PROBL~

For the case of interest, where the magnetic field

is such that the B and e levels are nearly degen-

erate, the f level has little effect on the ayatem.

Thus, to good approximation,we may neglect ita

presence. (The quality of this approxlmationwlll

be examined in Section 8.)

The equationa which characterizethe three-level

system axe then

i6t i(6+wBe)t
i&= W*be +$iR*ce

it = %&fa e-i6t +V*ce
‘w~et

-i(6+uBe)t
i?=wae +V

where we have defined the

ence 6 = u - u.
aB

-ifJBet
be -k(iyc) ,

angular frequency differ-

easily-solvedspecial

6=OandwBe=0. In

Let us first consider the

case vhich correspondsto

other words, we assume a magnetic field strength

such that the 6 and e levels are degenerate (cross-

ing) and an rf frequency such that u/2r = w~B/2n

(resonance). Note that we are speaking of a partic-

ular nuclear spin magnetic quantum number, since

.

m

.-. — .- .-
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0-

sinultfmecmsresonance and crossing occur at a dif-

ferent magnetic field (and co~reapondingfrequency)

for the vmious ~ values. We also neglect M (for

the reasons given in Section 6).

With these assumptions the equationabecome

i: = %R*c

i~ = l/*c

i$=@a+Vb-~(iyc) .

If one differentiatesthe third of these equations

and substitutesthe first two equations into the

third, the result is

y+~yc+pgc=o,

where P2 =**R +.V*V. The general.solution of

this equation is

-ult -112t
c=Ce

1
+ C2e s

2
where v

1
and P2 are the two roots of u -%yp +P2

. 0:

.

U1,2 =
y/4 * 4;/4)2 - P2 .

To evaluate the constants we assume some initial

conditions. For a

state, a =landb

that 6=~iRatt

we obtain:

particle initially in its a-

= ~ = O at t = O; this implies

= o. Applying these conditions,

“(
-Illt -112t

)c=%e - e ‘

where .=-. This solution isvalid for

all values of P2 except the critically damped case
-iR

P2 = (y/2)2; for this case c = ~te -(Y/4)to me

solutions for c may be put back into the equations

a=A
3 J
+ -~iR* Cdt

.

b= JB3 + -iV* cdt ,

where A and B are integrationconstants.
3 3

We ob-

tain:

(

-p2t
R*R e-~lt

s,. 1 - —+= ~ -—
4P2 ‘~ lJ2 PI )

After a sufficientlylong time

terms decay to zero, since the

p2 are positive for all values

Thus, our asymptotic solutions

e ‘3@&RvYV*!J

the exponential

real parts of P and
2

,1
ofP.

are

“z=%
C+().

That is, an equilibriumpopulation of the a and 6

states is established. Since we are dealing with

amplitudes, a definite phase relation exists be-

tween a and b; i.e., we have a coherent mixture of

the a and 8 states, while the amplitude for the e

state has decayed to zero.

lienote that our asymptotic solutions satisfy the

conditionxa + Vb = O. From inspection of the

equations, it is clear that we have a solution if

c =;=IJ. The physical nature of the phenomenon 1s

one of interference;the relative phase of the

transitionmatrix elements is such that contribu-

tions from a and b to the c state population de-

structively interfere; i.e., @a+ Vb = O.

We now turn to the solution of the general three-

level equations following the method indicated by

Lamb.
8 First, let us generalize the equations

slightly to allow for an arbitrary phase for the rf

field at t = O. That is, we assume

H~a =H~~=hR COS(ti + 6.) ,

where 60 is the phase at t = O. This may be written

as

iti -i 6
~[fi(Re O)eiut+fi(Re ‘)e-iwt]”

We may perform a similar decompositionof M. Drop-

ping the negative frequency term, as before, and de-
i.SO i60

fining Re = R. and Me = Mo, the equations re-

main the same except R +R oand M+M:
o



ili=

ii =

it!=

Following

a=

b=

c=

-U.

i(15+ U)Be)t
R~ce +W~be

i6t

V* ~ ,iuBe’ + *o ~ e-’~’

-1(6 + w~e)t -iuBet
Rose +Vbe

%(iYc) .

Lamb,8 we assume a solution of the form

P = -i(AaB + Aae)

Q = V*V+ %(RgRo + MgMo) - A Aa~ ae

R = i(MgV*Ro +MoVR~ - %i(RgRoAa8+ M;MoAae) ,

and where A = -6 and Aae = -6 - uBe - tiy.
a~

Such a complex cubic equation mey be solved algebra-

ically as follows. Define Uk = r.+ P/3. The equa-
2 9

t -U.t
tion for z is then z“ + az + b where a = Q - PG/3

-11.t

-Plt -112t -p t
(Ble + B2e +Be

3 ~e-i6t
3

-Plt -P2t -p3t -i6t - iwBet
(Cle + C2e +Ce

3
)e .

Substitutingthis form into the equations and equat-
-Pit for ~~ple, we ob’~n

ing coefficientsof e ,

1111 M: R:

M. i!_ll-6 ‘J*

R. v ‘pl-6-’”~e-%iy

‘1

‘1

%

. 0,

with identical equations holding for PO and V=. Wec J

use the general subscript k from here on since the

fo~owi~ discussion applies to PI, P2, ~d P3. For

any but the trivial.solution ~ = Bk = Ck = 0, the

determinantof the coefficientsmust vanish; thus,

the three vslues of M are the roots of the complex

cubic equation:

ipk(ivk - IS)(iPk- 6 - UK - %iy)

+ (M~V*Ro + MoVR~) - RoR~ (iu 6)k-

-W* (iPk) -MOM: (iPk- 6- WBe-%iy) =0 .

This may be written in the form

3
‘k

+ Pllk2+Quk+R=O,

where

and b = 2P3/27 - PQ/3 + R. Then a solution for z

= -b,, k =at;:i~;e’he

isoftheformz=u-

equation u3

operations defined ere vtild for ccxnplexnumbers;

however, we find six values for u of which three

lead to redundant solutions. To improve computation

precision, we select the + or - sign in the equation

for U3 according to which gives the larger ab801ute

value. It was found necessary to use double-

precision arithmetic to achieve satisfactoryaccu-

racy for the values of the coefficientsof interest

to the present problem. The FORTRAN IV code for

this procedure is included in Appendix A.

Returning to the matrix equation, once we know that

the determinant of the coefficientsia zero, we may

use any two equations to relate the quantities Bk

and Ck to ~, which we will assume to be arbitrary.

(That is. A.. A-. and A. will be taken to be the~. ~. 3
three independent constants characteristicof the

solution of a system of three first-orderdifferen-

tial equations.) One finds

Bk = -%I$[Mo(hIk -6- fJIBe- %iY) - Rev*]/Dk

Ck=-~[Ro(iUk -6) -MoV]/Dk ,

where

Dk = (iPk - 6 - WBe -%iy)(lvk - 6) - V*V .

Thus, defining Bk = ~~ and Ck

solution of the equations is of

Ill 1

a . 1 1 1

b=
‘1 ‘2 ‘3

c=
61 62 63

= ~~, our

the form

!1

-Plt
Ale

-112t
A2e

-p3t
Ae

3

general

.
.

.
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To evaluate the coefficients~VA2S ~dA3, it is

necessary to assume some initisl conditions. If

there is no e-state component in the initial beam,

we may achieve sufficient generalityby eeauming

each of the initial conditions a = 1, b = O, c = O

and a= O, b = 1, c = O. The solution to the prob-

lem correspondingto a besm which containa en inco-

herent mixture of a-state atoms and B-state atoms

can then be written by combining these solutions

appropriately(i.e., by an average over initial

states). We could use some other set of spinors es

a basis system; a natural basis system for this

problem will be discussed later. For a - 1, b = O,

ad c = O at t = O, the solution of the linear

equations yields

~= (E263- C362)ID

A2 = (C3151- c163)/D

A3 = (C162 - c261)/D ,

where

D= (c 6 -
23

=362) + (s361 - E163) + (C162 - e261).

Fora=O,b=l, and

~ = (62 - 63)/D

A2 = (63 - 61)/D

A3 = (61- 62)/D

The present solutions

C = O at t = O we obtain

.

have been evaluated numeri-

cally by computer methods (AppendixA). In s~ary,

the assumptionsmade in obtaining these solutions

are:

a)

b)

c)

the three-level approximationequations are

adequate,

Ro, V, end M. are constant during the inter-

action time,

the effect of the e
-iut

term (the Bloch-

Siegert term) is small.

These restrictionswill be relaxed in the numerical

integrationresults to be described later.

Iw
e note that the initial phase of the rf field plays

no role in the solutions. Accordingly,we will re-

fer to R and M, not R. and Mo, in most of the fol-

kwing discussion. The coefficients~, Bk, end Ck

are slowly varying functions of the angular fre-

quency difference 6 = u - u. The character of
a%

the variation of A3 antiB
3’

the coefficientsof the

most slowly decqying term, depends on the sign end

magnitude of uBe at the magnetic field for which 6

= O; i.e., to the differencebetween the resonance

and crossing frequencies. Figure 5 shows the mod-

ulus and argument of A for
3

~ = O deuterium atoms,

es a function of B - B. (where B. =B(6 = O)), or

6/2x, for the following 3 cases:

Ceee u/2T B.
‘@e

/2. IROI #1
(MRz)

(G) (Msz)

1 1471.90 525 89.95 250 250

2 1611.99 57’5 -1.57 250 250

3 1752.09 625 -92.53 250 250

The numerical values of the matrix elements (IROI

. 2>0 MRz end IVI = 2>0 MSz) correspond to a longi-

tudinal rf field of 2>0/(13.93 x .975) = 18.41 V/cm

and to a transverse static field of 250/(13.93 x

1.021) = 17.58 V/cm. The particular frequencies

chosen correspondto a resonence ~50 G below

crossing, approximatelyat crossing, and w50 G a-

bove crossing. (The exact field for which .Be =

O for ~ = O deuterium atoms is 574.14 G, for

which ua6/2T = 1609.57 MSz.) Since the tine shape

depends only on uBe/2r, the curves in Figures 5-8

aPP3.Yto w of the hydrogen, deuterium, or tritium

8/2- (Mliz)

1.5 @
20 m o 20

L

‘ \\\;

L1.21}i L‘~ “-
-W -8 -6 -4 -2 4 10

B-B, (c3AUS!3

Ng. 5. The variation of IA31 (solid curves) and

arg A3 (dashed curves) for csses 1,

of the IA31 curves is terminated at

(P2) becomes smaller than Re (1.13).

2, and 3. One

-8 G where Re

25
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l.s~ m 10

3

19.- \
~

\s
g“
.
~

4
05

.!O .8.6-4-20 Z4 68
8-8, (GAUSSI

Fig. 6. The variation of IB3I (solid curves) and

arg B3 (dashed curves) for c~es 1, 2, and 3. One

of the IB31 curves is terminated at 8.5 G, and a

second curve at -8 G, where Re (P2) becomes sm~ler

than Re (V3).

B-B, (GAUSS)

Fig. 7. The variation of the real part (solid
curves) and imaginary part (dashed curves) of P3

(inMHz angular frequency) for casee 1, 2, end 3.

substates. However, the values of u/2n and B.

given above are specificallyfor ~ = O deuterium

atoms. Since, for a given fixed frequency, w~e

will be different for the different aubstatea of

the species being polarized, the line shape corre-

sponding to each will be slightly different. The

cases 1 and 3 chosen for illustrationare probably

a little too far from crossing for reasonable sep-

aration of aeuteriummagnetic BubBtates; a range of

*35 G from the crossing field would appear to be

I
i ,

.0.

.-

1

B-& (GAUSS)

s?ig. 8. The “transmission” la12 (upper three

curves) and lb[2 (lower three curves) evaluated at
t = 0.4 wee, for cases 1, 2, and 3.

acceptable. For hydrogen or tritium atoms, ~tiere

the line shape is of little consequence,a much

larger difference is acceptable.

Figure 6 shows the modulus and argument of B3 as a

function of B - B. or 612x, for the same three

cases. Note that the slopes of the IA31 and IB31

curves are opposite in sign for a given w
Be”

Figure 7 shows the reel and imaginary parts of the

small dectxyconstant P3, as a function of B - B. or

6/2w, for the seinecases. Figure 8 shows the trans-

mission la12 snd lb]2 after

cm). At a time as large se

survive, so

la)2= lA3e-’’3t)2

and

lb12= [B3e-’’3t12.

a time t = 0.4 vsec (12

this, only the P3 terms

The opposite shift in the apparent resonant field

for la12 and lb12 transmissionis because of the

opposite slopes of the IA31 and IB31 curves noted

above.

It is relevant to inquire about the transmissionof

.
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TABLE XI

1. Transmission of Unselected Substates

lR1/lVl tlR12+ IV12 IA91 Re,(v=)

Units: (125 MRz)2 ‘ :1
Angular FreXuency (psec )

0.5
1.0
1.5

0.5
1.0
1.5

0.5
1.0
1.5

2.

2
2
2

5
5
5

10
10
10

Transmissionof

\R\/lVl

0.5
1.0
1.5

1.03 5.3
1.15 20.1
1.39 43.?

.98 5.5

.90 17.4

.’75 26.5

.95 3.3

.81 9.3

.68 1.3.2

the Selected Substate

0.9412
0.8000
0.6400

atoms with other than the desired ~ quantum number.

For hydrogen or tritium atoms, this mqy easily be

made zero. For deuterium atoms, scme care must be

taken in the choice of parameters. If the optimum

driving frequency of 1.609.5TMRZ is chosen, the

transmissioncurves for ml = 1, 0, and -1 are highly

sYmmetric and therefore almost identical..The rele-

vant quantity is the transmission of a given state

when the magnetic field is tuned to an adjacent

state. For example, for ti/2r= 1609.57 MRz, the

resonsnt fields for mI = 1, 0, and -1 deuterium at-

oms are 564.48, 574.14, and 583.96 G. In the case

of mI = O deuterium atom selection, we are inter-

ested in the transmission of ~=lsnd~=3atoms

at 574.14 G; i.e., at 9.56 G above and at 9.82 G

below their respective resonant fields. The rela-

tive contributionsfrom either of these m~ be de-

termined from Table XI. Thus, for IRI = IVI =250

MHz, the fractional contaminationof
Y

= O states

with% =lstat es would be 10.90e‘17”4t/.8012which,
-6

for t = 0.4 vsec, is about 10 . For other driving

frequenciesthe selection is less favorable;however,

as mentioned above, the selectionwould appear to be

reasonably satisfactoryfor a frequency range of

-*1oo MRZ (correspondingto --*35G). The quality

of the selection in these cases can be estimated

from Figures 5-’7.

We now write simpler expressions for the special

case of resonance (IS= O). As noted above, the

coefficientsdo not vary rapictly,so some state-

ments about the general nature of the solutions at

resonaoce will apply approximatelyto the off-

resonance solutions. We neglect the small matrix

element M. For this case, the cubic equation be-

comes

U3- (Y/2 - il%e)k?+ P211= o ,

where P2 = ~R* + W* as before. The roots are

U1,2 = (Y/4 - iuBe/2) f ~y/b - iuBe/2)2 -P2

which are seen to be consistentwith the solutions

obtained above for wBe= 0“
Inserting these values for the pk in the general

relationa,we obtain

.k= #@~*/~k

and

tik= -%iRpk/Dk ,

where

Dk = iPk(iuk - W6e -

= -Pkz + 2)lk (Y/4

iy/2) _ V*V

- ilJBe/2)‘-V*V.

Ifwe define F,= (y/4 -

4Y/b - iwBe/2)2 - P2

and 6k as follows:

k llk ‘k- —.

iw6e/2) and n =

we can tabulate the Ilk,Sk,

‘k ~k.—

1 ~+11 R*@ 21,1*/R -2i(c + q)/R

2C-TI R*R/4 21J*/R -2i(5 - n)/R

3 0 -V*V -R/2V o

The determinant D may be written

D
.- 8iV*n

R*R* (1+*).

For the initial condition a = 1, b = O, c = O, we

obtain the coefficients

I
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1

2

3

‘*R (1 + :)p

For large times, the solutions are therefore

tiote that a and b have asymptoticvalues identical

to those obtained if u
Be

= O; thus, only the tren-

slent terms are affectedby w~e#Ofor6=0.

For frequenciesslightly off resonance, neglecting

the slight veriation of the coefficients,we have

where v
3

is a

Figure 7).

-RV* e-(D3
bS—

2P2

rapidly varying function of 6

+ i6)t
,

(see

For the initial conditionsa = O, b = 1, c = O, we

obtain the solutions

k
% ‘k Ck—

3
Ritl/

-—

2P2

R*R

p

From the symmetry of the equations, one can see

that the relation between the sets of coefficients

for the two assumed initial conditionsmust involve

only the simultaneousinterchangeof R/2 with V end

the definition of ~with that of Bk.

In general, the roots of the cubic equation are

complex. The imaginary components correspondto

(time dependent) energy shifts from the unperturbed

eigenenergiescharacterizingthe wave functions

given in Table VIII. Consicter,for illustrative

purposes, the situation at crossing and resonance

28

where

~1,2 =
y/4 * 4y/4)2-P2 , 113=0.

It is clear that ifP2 < (y/k)’, all the roots are

real and the unperturbed energies remain correct,

If, however, P2 > (Y/4)2, Ul and U2 will have an

imaginary component and the level energies will.be

shifted. This is related to the phenomena of level

repulsion in which, under certain circumstance,the

energies of two states as a function of magnetic

field do not cross, but rather repel, and thus in-

terchange roles.
8

This effect does not result in a

shift of the ~sition of the three-level reaonsnce,

however, since this is determined solely by the

frequency at which Re(p3) = O, and this frequency

will correspond* to IS= O for any value of w

P2.
Be ‘r

For 6 # O, P3 has an imaginary component (see

Figure ‘j’)and the slowly decaying states a and 6

may be regarded as sllghtly energy-shifted. The

energy shift of the rapidJy decaying component has

no significanceat large times.

Figures 9-D illustrate the time dependence of lal’

and ]b12 for the cases 1, 2, and 3 defined above

(initial conditions a=l, b=O, andc= O), Fig-

ure 9 correspondsto resonance (6 = O), Figure 10

correspondsto 1 G off resonance (15/2T= 2.8 MHz),

snd Figure I.1correspondsto 9.6 G off resonance

(6/2r =26.9 MHz). The last value is chosen for

presentation since 9.6 G is approximatelythe dif-

ference in magnetic field values at which the vari-

ous deuterium magnetic substatea resonate.

Figure 12 illustratesthe time dependence of la[2

end lb{’ at resonance (6 = O) for the cases 1, 2,

and 3 but for the initial conditions a = O, b = 1,

snd C = O.

Figures 13-15 show the transmission of hydrogen

metastable atoms versus magnetic field for an rf

field of fixed frequency and strength (here taken

to be 161o KHz and 18.41 V/cm, respectively)and

for several.values of the transverse field (8.79,

*G has been noted above,the apparent resonant fre-

quency sometimes differs slightly from 6 = O. This

ia due only to the slow variation of

cients IA31 and IB31 with frequency,

lated to the energy shifts presently

aion.

the coeffi-

and is unre-

under discu-
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TIME (Psec)

Fig. 9. The variation of la12 and lb12 vs time for
B = B. (8 = O) with initial conditions a(0) = 1,

b(0) = c(0) = O for ceses 1, 2, and 3.

DISTANCE (cm)

1.OO
3 6 9, 12 Is

, 1 ,

0.8
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I
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“
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Iblt
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I
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o 0.1 0.2 0.3 0.4 0.5

TIME (psec)

Fig. 10. The variation of la12 and
B- Bn = -1 G (.5/2T= 2.8 MHz) with

tions-a(0) = 1, b(0) = c(0) = O for

3.

lb12vs time for
initial condi-

caees 1, 2, and

0.4–.

1
I

0.2

0 0.1 0.2 0.3 0.4 0.5

TIME (pee)

Fig. U.. !Chevariation of la12 and lb12 vs time
forB-Bo= -9.6G (6/2n s 26.9 MHZ) with initial

conditions a(0) = 1, b(0) = c(0) = O for cases 1,
2, and 3.

DISTANCE (cm)

I.0 31 6 9 12 15, I I

0.6

0.6

0.4+
I
1
I lal~

lb?

1 I 1 I 8 I I
0.2 0.3 0.4 0.5

TIME (poet)

Fig. 12. ‘l’hevariation of la12 and lb12 vs time
for B = BO”(6 = O) with initial cond.ltionsb(o) =

1“,a(0) = c(0) = O for cases 1, 2, and 3.
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FIELD (GAUSS)

Ng. 13. The transmissionof hydro~eu metaatable

atoms (la12 + lb12 and la12)vs magnetic field for
1610 MHz; {RI = 250 MRZ, and IvI = 125 MHZ. The
solid curves correspondto initial condition a(0)
= 1 and the deshed curves correspondto b(0) = 1.
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FIELD (GAUS6)

Fig. 14. The transmissionof hydrogen metastable

atoms ([al* + lb12 end la]2)vs magnetic field for
1610 MRz; IRI = 250 ~z, and Iv{ = 250 ~z. ‘132e
solid curves correspondto initial condition a(0)
= 1 snd the dashed curves correspondto b(0) = 1.

17.58, and 26.37 V/cm). The peaks at different mag-

netic field strengths correspond,of course, to dif-

ferent nuclear spin sutmtates. An interactionthe

of 0.4 Psec (correspondingto a cavity length 1.2cm)

is assumed. The solid curves correspondto sn ini-

// I XL I I n!

520. 940 560 560 600 620
“l-

FIELD(GAUSS)

Fig. 15. The transmissionof hydrouen metaatable

atoms (la12 + lb12 and la[2)vs magnetic field for
1610 MHZ; IRl 3 250MHz, and IVI = 375MHz. The
solid curves correspond to initial condition a(0)
= 1 and the dashed curves correspond to b(0) = 1.

tial pure alpha-statebeam (a(0) = 1) and the

dashed curves correspondto a pure beta-state beam

(b(0) = 1). For the highly symmetric case (~lRl =

[VI) shown in Figure 13, thetwoinitia.l conditions

result, except in the “tail” region, in identical

solutions. The quantities ]a12 + lb12 end la12 are

plotted in each case.

Ngurea 16-18 show the transmissionof deuterium

metaatable atoms for the same cases and conditions.

Several observationsabout the general nature of

the solutions mqy be made from the graphs:

1. For fixed lRl, both the height and width

of the lines which correspond to a a(0) =

1 increaee with increasing IVI. (For fixed

IVI, the height and width of the peaks

which correspond to b(0) = 1 increase with

increasing IRI, although this is not shown

here.) The heights, of course, vary in

the manner stated previously, and depend

only on lR1/lVl. For the case~lRl = IVI,

the a(0) = 1 and b(0) = 1 solutions become

nearly identical.,This result is appa-

rent from the symmetry of the equations.

2. From Figures 9-n, one can see that the

width of the resonance lines must decrease

monotonically as the interaction time in-

.

.
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Fig. 16. The yield of deuteriumdetestable atoms

(la12 + [b12 and ]a12) vs magnetic field for 161o
MHz; IRI =250 MHz, and IV[ =125 MHz. For this
case, curves correspondingto initial condition a(0)
= 1 and to b(0) = 1 are identical.

%5 565 575 565 565
FIELO (GAUSS)

Fig. ii’. The yield of deuteriummetaatable atome

(la]2+ lb12 and la12)vs magnetic field for1610
MHz; IRI =250 MRz, and [VI =250 MHz. Thesoli.d
curves correspondto initial condition a(0) = 1 and
the dashed curves to b(0) = 1.

cresses. The curves shown in Figures 13-

18 are for t = 0.4 psec, which correspon&

to a cavity length of 12 cm for a beam with

the velocity of interest (30 cm/psec).

3. The separation of metastable hydrogen or

I

55s 665 575 585 595

FIELD (GAUSS)

Fig. 18. The yield of deuterium metastable atoms

(la12+ lb12 and la12)vs magnetic field for1610
MHz; IRI .250 MHz, and IVl = 375 MHZ. The solid
curves correspondto initial condition a(0) = 1 and
the dashed curves to b(0) = 1.

tritium atoms with different nuclear spin

orientationsappears to be very easy in

the sense that the parameters mey vary

over a wide range. However, for metasta-

ble deuterium atoms, if one uses too large

a field strength, the width of the lines

will be too large. Thus, the minimum cav-

ity length appears to be -6 cm for deu-

terium atoms, but could be shorter for hy-

drogen or tritium atoms. (This is because

IR[/IVI must be held constant to achieve

a given transmission at resonance. Since

[VI< Iv[m=i.reqtired, IR{ . lF/[m=~S

also required. But the decay constants

correspondingto the unwanted nuclear spin

states are approximatelyproportionalto

IRI; this implies L > Ltin where g is the

cavity length.)

For an incident unpolarizedbeam of metastables

(i.e., l/2 of beam in the a state, l/2 in the $

state) the transmission at resonance of the “spin

filter” is exactly 50$, as may be verified from

Figures 9 and 12 and from Figures 13-18. ~is fol-

lows from the expressions already derived which are

repeated here in a matrix form:
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The Initial beem may be regarded as an incoherent

mixture of a end 8 states although the final beam

is a coherent mixture. If we average over initial

and sum over find states, we find

la(t +-)12+ lb(t+m12= ~la(0)12+\lb(0)]2 ;

i.e., 50% of an (electron)unpolarizedbesm is

quenched.

We next consider the physical nature of the states

which are transmitted through the spin filter.

As a first step we eliminate

pendence by defining the new

-i(wa -U)t
A=ae

-lw*t
B=be

-iuet
C=ce .

the explicit time de-

variables

The equations for these new variables are found to

be

ii= (Wa - u)A + ZR*C

~ = ti6B+ V*C

iC=@A+VB+(we- ~iy)C .

We choose w
B
= O (which we may do since the energy

scale is arbitrary) and define as usual 6 = w -
as

w. The equations and definitionsare then

ii = 6A + l$R*c

ill= V*C

ii=+iRA+vB - (.@e+%iy)c
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A = ae-i6t

B-b

C=ce
‘i’’’Bet .

Let us define the apinors r and s, with amplitudes

p and q, SS fO~OWS:

r=$(**al + v*f3)

s=#(Va’-xB) ,

+i6t
where the splnor a’ = ae . The total wave func-

tion, neglecting the e state (i.e., for t + M) is

‘i6t)aei6t + b6 ~then of the form $ = aa + b~ ~ (ae

A(aei6t) +B@zAa! +B6. Notice that r anda are

orthonormal. We can invert the definitionsof r

and s to find:

a’ =~(+@+V *s)

O =~(Vr-~R*s) .

Substitutingthese expressions into the definition

Of$:

$=pr+qs~Aa’+B~

we obtain:

P.*(%RA+VB) A=~(W*p + Vq)

q = ~ (V*A - %R*B) B=~(Vh-*q) .

We now derive the differential equations for p and

q:

ii =Pp- (ulBe+%iy)c .

If we specialize to resonance (6 = O) these equa-

tions become

i; = Pc

ii=o

lt=Pp-(uBe+%iy)c .

The variables may be further separated as follows:

-fi=P(i6) =P(Pp- i(wBe+~iy)c)

= P2p + (%y - iu~e)fi

. .

.-

.

. .-



. .

-.

-V= P(i;) - i(lOBe+ MY): = P2C + (%Y- iwBe)6 .

Thus our three equations are

~+(l$y- iiJJBe)~+ P=’p= o

:+($y - iuJ,Jt+ P2C = o

These equations have the solutions

-plt -P2t
p = ple + p2e

q.q
1

-Plt -p2t
C = Cle +Ce

2 >

i.e., p~“and Y~ are the two large decay constants

defined earlier. For times of interest to us,

therefore:

p+o

q=ql

C+o .

Thus the amplitude of the spinor s is conserved

while the amplitude of r decays exactly as does the

amplitude of e.

Let us momentarily

i.e., we put, once

tion, for 6 = O, r

allow an arbitrary initial phase;

again, R = Ro. In spinor nota-

and s may be written

-iwat

()

%RZ e
r _ R2;+O0

-iw t
V* e 6

-iwat

‘20*00

()

Ve

s.—
P

-iuBt .
-~Ro e

The expectation values of the Pauli operators for

these states axe tabulated below:

<ax >

<“y>

Cz>

E4COS(w t+A)
a8

-~Lcos(uaBt+ A)

cisin(wa6t+ A) -~~sin(ua~t+ A)

EII -~11

In the above table, e‘A = RoV*/lRoV*l, cl= lRoV*l/
2

P , andcn= (@gRo-V*V)/P2. Thus thespinors r

and s point opposite directions at all times, make

‘1 ~ with respect to the zan angle of O = tan q
axis, and rotate With the Larmor frequency uaB/2n.

The phase of the rotation is such that the direction

of r is parallel and s antiparallelto the direction

of the transverse field at the time the longitudi.”nal

rf field has its maximum positive value. (This can

be most easily seen by consideringthe static trans-

verse field to define the x axis, so that R. and V

are both real.)

from this formulationwe can again conclude that

50% of an (electron)unpolarizedbeam will survive

the spin filter, since in that case a given parti-

cle he a 50% probability of being in either of any

two orthonorma.1spin states, including the r and s

states defined above.

We note that our resulting metastable beam has both

100% electron polarization (rotating)and 100% nu-

clear polarization,and that the relative direction

of the electron sp~n can be varied. Further, the

phase of the electron spin rotation is related to

the cavity rf phase.

8. THE FOUR-LEVEL PROBLEM

We now consider the effect of the f-level on the

solutions previously discussed. Qualitatively,it

is clear that the transverse electric field wil.1in-

duce quenching through the a - f transition and the

longitudinalrf electric field will induce quenching

through the @ - f transition.

The four-level equationswere stated in Section 5.

The frequency dependent quantitieswhich enter into

these equations are

iuaet, i(2w
+ “’f3f-

6)t
e U$cos wt = ~e

i(ri
Be

+ 6)t
+ %e

and

ei13f
i(uaf - 6)t i(w~f - Wap + 6)t

cos ut = ~e + he ,

where 6 = w - u as before. The first of these
a13

expressions,as noted in the discussion of the

three-level system, may be approximated (near 8 =

O) by the second term alone. For the second of

these expressions,on the other hand, the two terms
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are of roughly equal Importance. Thus the simplest

equationswhich reasonably describe the four level

system are:

i(wBe + 6)t iua#
ii = **cc + Vde

ifJJBet iuBf
ili = V*ce - $Rde - COS(W - 6)t

af3

-i(W@e + 6)t
ii = 4Rae + Vbe

‘i’’’8et

-iuaft

ii = V*ae - ~itbe -i”Bf ~o*(u
6)t ,

aB -

where we have put.R! = -R* and VI = V* in accordance

with Table X and the discussion in Section 6. Note

that these relations hold only in the zero field

ltiit; i.e., if cl, S2, C3, and C4 + 1. All four-

level calculationspresented here are based on this

assumption. Note also that an arbitrary initial

phase cannot be included in the four-levelcase by

putting R = R. as was done in Section 7. The ini-

tial phase is, however, of no importance.

We first consider the quenching of a states by a

transverse electric field with no rf longitudinal

field present (i.e., R = O). The equations above

then separate into two independentpairs of which

the a - f pair is

iuaft
ii = Vde

-iWaft
i; = V*ac -+jiyd .

These equations are easily solved if one assumes

-lllt -112t
a=Ae

1 + A2e

-Vlt -P2t -iuaft
d = (Dle +De

2 )e .

One finds that p. and U. are the roots of

l12+2cp+lv12=o ,

where

c

Thus we

For the

general

3,4

= y/b - iua#2

may write B1 a
.

initial condition

solution for a is

.

= E * n where n =

a(0) = 1, d(0)

found to be

~.

= 0, the

.q]e-(~ + rl)ta=%(l-n ‘%(1 +$)e-(~- ~)t .

If 1~12 >> IV12, we may approximate ~ by

m-g .
The expression for a becomes

J.g)t
a=~e-2ct+e .

4#

The first term has a small coefficientand rapid

decey constant; for times of interest, we may write

YIV12[a12~e-(Yaf)t , ~af=

uaf2 + (Y/2)2 ‘

which is the Stark quenching formula given by Lemb

and Rutherford.5 Similar results are obtained for

the 6 - e quenching:

lb12=e-(y6e)t , yse=

and for the a - e quenching:

la12~e-(Yae)t , Yae=

YIV12
wBe2 + (y/2)=’

ylR12/4

(Use-u)a+ (y/2)2 .

This result is not applicable to the 13- f quench-

ing, however. It should also be noted that for the

field strength of present interest, the expansion

of q used above will not be valid for the 13- e

case if u is small or zero.
Se

Thus, for a atoms in the presence of both rf and

static electric fields, we would expect an effec-

tive decay constant of the order of, but greater
af

than, y . The situation is complicated,however,

since the various contributionsto the decey are

coherent.

An analytic solution at 6 = O is possible if

ei”Bft
iwaft

cos u t is approximatedby e
afl

.Asa.l-

ready noted, this is not a good approximation;how-

ever, it at least partially takes into account the

B- f interaction and is included here primarily

for the physical insight that it mqy afford.

To obtain this solution, we first eliminate the os-

cillating time dependence with the substitution

. .

..

.

.



-.

.

.

A = ae-idt

B=b

C=ce ‘“Bet

i(uaf - 6)t
D=de .

The equationsXor these variables are

.
iA

1$

:
.
LC

●

iD

60 Q* Y

00 V* ~R

*R V -(woe +~iy) o

V* -~R* o -(oaf - 6 +~iy)

A

B

c

c

In terms of the previously defined amplitudes p and

q, we can derive
.

i; = R6A/2P + Pc

i{ = v*~A/P +.pD

I P2 = **R + V*V .

it = Pp - (wBe ++liy)C I
i5=Pq-(uaf-6+

At resonance (6 = O)

two coupled pairs

i; = pc

%iY)D I

the equations

i: = Pp - (uBe+%iy)c

and

i; = pD

reduce to the

9

.ifi=Pq- (uaf+%iy)C ,

from which it follows that

; + 2cBe; +p*p. o

I

cBe
= y/4 - iwBe/2

8 + 2<Be5 + P2C = o

=@
‘pit -ll;t

q = qle + ‘%e

where p~,2 = liaf* 4a f2-. P2 .

The quantitiesVI and p2 are recognized as the two

larger decay constentsdiscussedin the three-level

caae; thw, for times of inte’rest,p + O. However,

c >> P2 for the present region of interest, so we
af

IUSYexp=d the square root (as before) to obtain

P;3 2E = Y/2 - iiJlaf

P; ~p2/2E = p2/(Y/2 - iuaf) .

me pi term decays raPid.lY,

eat

~ ~ q2e-(P2/2E)t

so for times of inter-

.

Our initial conditions are A(0) = 1, B(0) = C(0) =

D(0) = O. NOW

q(o) = $ (V*A(0) - ~R*B(0)) = ~ 9

and

~(o) =~(v*~(0) -~R*fi(0)) =0 ,

where the latter condition follows from the differ-

ential equations. These conditionsyield

%=WF=F”

Thus, for large times,

p+o; q+~e -(P2/2c)t
.
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curves correspondto la12 and the lower curves to lb12. The curves marked 1
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.-

,.

.

.

36

!



definition of A and B, we

. .

-.

.

Inserting these into the

obtain

A=@l*p+Vq)+

B =~(V~-%Rq) +

In the three-level case,

l’hus,both lA12and IB12

+wJ e-(P2/2c)t
2P

for large time, we obtained

are altered only by “amul-

tiplicative factor e-Yaft “here

af ,P’
Y .

~2
P2=klR12+ IV12 .

Uf + (Y/2)2 ‘

A point worth noticing with respect to these solu-

tions is that only the state with amplitude q (the

s state) Is coupled directly to the f state. That

is, if the e level were not present, the a-f-~ in-

teraction, in this approximation,would select the

r state and quench the s state. This is exactly

the opposite to the situation for the a-e-B inter-

actions; thus this contributionfrom the f level is

destructive.

In Figure 19 the line shape obtained by numerical

integration,with various approximations,is shown.

The calculationis for the case of 5
= O deuterium

atoms at the (near~) optimum frequency of 1611.99

MEz (which correspondsto B. = 575 G). The param-

eters are.lRl = IV! = 250 MHz. We note that, se

expected, the curve which correspondsto the (6 =

O) analytic solution given above gives a result a-

bout midway between the three-leveland the four-

level results.

In Figure 20 the exact four-levelresults for the

loss (at resonance) of la12 are shown for various

parameters and for the same frequency and magnetic

field as above. These curves represent the ratio

of la12 (at 0.25 usec) to the three-level equili-

brium value (lao]2)which would obtain in the ab-

sence of the f level. The dashed curve represents

the prediction of the approximate four-levelana-

lytic solution given above. Note that this pre-

dieted value depends only onklR12 + lV12. The

~“ t*025fl#cc
DICTION ~.o.s

. 1RI.Ioo

*

G

‘\
.

~,.1.s

, ●Pow2R LEVEt *IRIZ+IV121N UNITS 0F(125 MHZ)2

Fig. 20. The ratio of la12to lao]2,where lao12

is the three-level equilibriumvalue of \a12, for
B. = 575 G. The points are calculated from the

exact four-leveltheory; the curves are visual fits
to the points. The dashed curve represents the
prediction obtained from the (approximate)four-
level analytic solutions.

ratios vary approximately linearly with the inter-

action time to The ratio of lb12 to lbo12 is, for

this case, indistinguishablefrom the ratio of la12

to lao12.

Figure 21 shows the time dependence

tione, at 6 = O, for the conditions

19. Note that the inclusion of the

term in the three-level theory (the

correction term) results In a decay

level equilibriumsolution of about

of the solu-

uaed in Figure

antiresonant

Bloch-Siegert

from the three-

2%/psec.

Figure 22 shows the line shape for a frequency of

1508.326 MHz. Again the calculationis for ~=o

deuterons (for which this particular frequency cor-

responds to B. = 538G) and for [RI = [vI = 250MHz.

Note the shift of the peaks from the resonant field.

Figure’23 shows the loss through the f state, for a

frequency 1508.326 MHz and field 538 G (mI = O deu-

terium atoms), for a variety of parameters \R\ and

IV!. In this case, unlike that shown in Figure 20,

the ratios la12/lao12and \b\2/\bo12are not iden-

tical. Further, the loss through the f level ap-

pears to be somewhat greater. However, as m~ be

seen by comparing Figures 19 and 22, the peak posi-

tions are shifted in the latter case, and therefore

6 = O does not, in general.,correspond to maximum

transmission. If both \a12 and \b12 transmission
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Fig. 23. The lower graph shows the ratio of la[2

to lao12,where lao12 is the three-level equilibrium

value of la(2, for B. = 538 G. The upper graph

shows the ratio of lb12 to lbo{2 for these condi-

tions.

are of interest (see Section 9) the value of 6 which

results in maximum transmissionof la12+ lb12will

depend on the p=ameters. (’fhisis true since the

la12 and lb]2 curves are shifted in opposite direc-

tions for u~e # O, and the relative contributionof

la12 and lb12 to the total transmittedbeam depends

on lR1/lVl.) Thus the curves given in Figure 23

predict greater loss, in general, than would be

obtained by choosing en optimum value of 6.

Finally, calculationsshow that the three-level and

four-level results agree to within AO1O%, for a wide

range of parameters, in the tail region. Thus, the

transmission of the unselected substates is ade-

quately describedby the results given in Table XI.

The transmissionof the selected substate can, how-

ever, be improved by the field shaping technique to

be described in Section 9.

9. ADIABATIC VARIATION OF THE ELJ3CWRICFIELCS

In the preceding discussion,we have assumed that

the various applied fields are constant throughout

the spin filter. If this condition is not met, we

must resort to numerical techniques to solve even

the three-level equations, although some general

features of the solutions may be deduced from the

fozm of the equations.

For applicationto a practical polarized ion source,

the optimum transmissionof the desired nuclear spin

substate can be achieved if (a) the static electric

field is constant, and (b) the rf field increases

slowly from zero at the entrance of the spin filter

to a maximum near the center and then decreaaea to

zero at the exit.

It was shown in Section 7 that, in three-level ap-

proximation, exactly 50% of an (electron)unpolar-

ized H’s beam with the desired ml value could be

transmittedthrough a combinationof static trans-

verse and longitudinalrf electric fields. In a

practical ion source, however, the 8 ccmponent of

the atomic beam will almost certainlybe quenched

by the required “sweep” fields long before it

reaches the spin filter. In addl.tion,any B compo-

nent which emerges from the filter will probably

be quenched before reachi~ the argon exchange cell..

Fortheperameters [RI= IVI =250 MHz, forexemple,

only 64% of an initially pure a beam would emerge

from the spin filter in an a state, so that only

about l/3 of the initially produced unpolarized

beam would be available at the argon exchange cell..

(Note thatwe are referring always to the beam com-

ponent with the desired ~value; thus, in terms of

the total atomic beem the l/3 given above becomes

~/6 for hydrogen or tritium beams and l/9 for deu-

terium beems.)

If the fields are shaped as indicated above, it la

possible, in the three-level approximation,to

achieve 100% transmission for a pure a beam. A

spin filter with such field shaping will have 0$

transmission for a ~ beam and thus will.still have

50% transmission for an (electron)unpolarized beam.

TTIiSis indicated in Figure 24 for a space variation

of the rf field strength of the form sin(~) where
o

z is the distance from the entrance to the rf re-

gion and Z. is the total length of the rf region.

For this example IVI is assumed to have the constant

.-

.

.

.
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Fig. 24. The quantities la12 + lb12 end la12 vs
time as a metsstable beam (a(0) = 1) traverses a
cavity whose rf strength varies as sin(rz/zo),where

..

Fig. 25, The quantities la12 + lb12 and la12 vs
time for various rates of increase and decrease of
of the rf field strength. The rising and falling

portions of the rf field have the shape sinz(tr/2~).
‘I’hecurves numbered 1-7 correspond to T = 0.2, 0.1,
0.O5, 0.025, 0.00125, 0.000625, and 0.0 psec, re-
spectively. For all curves 6/2T =0 and IR{ = lVI
= 250 hniz. Note the decrease in the overall decw
rate when the rf field is turned off.

2.(= 30 cm) b the total length of the cavity.

~ese curves correspondto 6/2r = O, lRlm= = 250

MHz, and to a constant static electric field such
that Iv[ = 250 hmz,

value 250 MSz and IRlmu = 250 MSz. The results of

both three-leveland four-leveltheory are shown.

(The deviation from 100% of the transmissionwhich

correspondsto three-level theory arises solely from

the inclusion of both frequencyterme in the expan-

sion of cos(wt),while the discussion above is based
i.ut

on the assumption cos ut ~ he . All results pre-

sented in Figures 24 and 25 are baaed on calcula-

tions which include both terms of cos d.)

where the constants

%ao+Vbo=O

or, equivalently

ao/bo = -2V/R.

a and b
o

0 are related by

the equilibriumsolutions pre-(These are, in fact,

viously discussed.) If IRl + O, the equilibrium
These results can be understood as follows. For

simplicity, consider the special case of resonance

(6 = O) and crossing (uBe = O). The three-level

equations are then, as noted in Section 7:

solution will correspondto a pure a state. If

[RI +Oallnuclear substates areeqtivde.t ad no

selection would occur. However, if IRI is in-

creased sufficientlygradually, so that the condi-

tion Wa + Vh = O can be followed adiabatically,

the nuclear spin selection can be made without loss.

At this point, the amplitude which describes a par-

ticle in the beam will be a coherent mixture of a

and 13states. If {R! is then slowly decreased to

zero, the a and B mixture will be transformed back

into a pure a state, Thus there are two important

aspects to the field shaping: (a) a slow rise of

IRI prevents loss from occuring through the excitat-

ion of “transients”as the beam enters the cavity,

ii = %R*c

it = V*C

i~=%Ra+Vb-~(iyc) .

Also as noted in Section 7, it is evident that one

possible solution of these equations is

a.a b=bo, c=O
o’
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and (b) a slow fall of IRI transforms the mixed a

end B state back into the more stable pure a state.

If no quenchingbetween the rf region and the argon

exchsnge region were likely to occur, the second

part of the field shaping would be unnecessary. It

is evident that the importantparameter in these

arguments is lR1/lVl,so that an exactly constant

lVl is not required.

The above can also be expressed in terms of the r

and s splnors defined in Section ~. We recall that

s = ~ (Va - %R6)

and has the constant amplitude ql. In terms of a

and b, for 6 = 0,

q=ql =$(’J*a_~Rb) .

Thus, if IRI +0, s +aandq(t) = qo=a(0) =1.

If [RI is increasedsufficientlygradually, the

state s will be conserved and therefore a particular

a + ~ mixture will be formed. If [RI is then de-

creased sufficientlygradually, it will again be

conserved and the mixture state will be transformed

back into a pure a state.

It remains to determinewhat is meant by “suffi-

ciently gradually.” In Figure 25 the results for

various assumed rise times for the rf field are pre-

sented. The exact four-leveltheory was used for

these calculations. We easume a 30 cm overall path

(velocity“ 30 cm/psec) and that only the static

electric field acts over the last 15 cm. The rising

and falling portions of the rf field is assumed to

have the shape sin2(tn/27). The rf field is fully

turned off at t = O and at t = 0.5 psec. The vari-

ous curves are labeled with the parameter T and in

each case the upper curve represents la12 + lb12,

and the lower curve ]a12. It is seen that no loss

occurs fOr the case T = 0.2 ~sec. At the steepest

part of the sin2(tn/2T) curve, the fractional rate

of change in IRI is T/T. /=For T = 0.2 Bsec, n T

I -1
15.7 x 106 sec . Since the Larniorfrequency is

6
around 16OO x 10 sec‘1, IRI changes about 1% in a

Larmor cycle. Thus, we have demonstratedthat a

satisfactorycriterion for adiabaticityis that the

strength of the rf field may change no more than

about 1% per cycle. This is about the value that

one would expect.
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APPENDIX A. A COMPUTER PROGRAM FOR EVALUATING THE

ANALYTIC SOLUTION OF TRE TRREE-JJCVELEQUATIONS

A FOITIViANIV program which evaluates the eolutione

developed in Section 7 is given in this appendix.

The version given computes the squared amplitudes

la12, lb12, lc12, md la12+ lb12ae a function of

time for a set of fixed driving frequenciesand for

fixed magnetic field. The modulus end phase of a,

b, and c are also given. Other versions of the pro-

gram exist in which time is held constant while the

variation of the above quantitieswith magnetic

field at fixed frequency, or with frequency at fixed

magnetic field, is studied.

The input

Card 1

XSPIN

GJ

XMu

DELW

GJP

DELWP

for the program is as follows:

(FOW 6 F12.6)

spin of nucleus (i.e., % or 1)

gJ value forthe2~ states (S2)

magnetic moment of the nucleus (in nu-

clear magnetona)

zero magnetic field hyperfine splitting

forthe~ state (MHz)

gJ value for the 2P% states (= 2/3)

zero magnetic field hyperfine Bplitting

for the 2P% states (MSz)

(The radiative correctionto the gJ v~ue is sup-

plied by the subroutineBREIT and should not be in-

cluded in GJ and GJP.)

Card 2 (FORMAT 6F12.6)

FREQMN minimum applied frequency (MSz)

FREQDL increment in applied frequency (MHz)

FREw maximum applied frequency (MRz)

TF maximum time at which solutions are to

‘ be evaluated (psec)

DELT increment in time at which solutions are

to be evaluated (TF/DELT should not ex-

ceed 500)

BGAUSS magnetic field (G)

Card 3 (FoMT 6F1206)

XMM M in MSz (angular frequency)

RR R in MRz (angulsr frequency)

w V in MRz (angular frequency)

where these quantities are complex and therefore

appeu 8S three pairs of numbers on the card, The

real part of each quantity appears first. The rela-

tions between these units and practical units are

given in the program listing.

Card 4 (FoRhfAT 614)

IMODE If IMODE = 1, program returns to start.

If IMODE = 2, program returns to read

in new Card 3 and proceeds.

ICSMN minimum ceae to be calculated

ICSMX maximum case to be calculated

where m
I
= 1, 0, -1 correspond to cases 1, 2, and

3 for deuterium atoms and ~ = %, -%, correspond”to

cases 1 and 2 for hydrogen and for tritium atoms.

The program consists of a main program together

with several subroutines. The function of the

various subroutines is as follows:

a) SUBROUTINE CUBIC (P, Q, R, RT1, RT2, RT3)

This subroutine evaluates the solutions of a cubic

equation with complex coefficientsof the form x
3

+ PX2+ 9,x + R = O. It uses double-precisionarith-

metic in order to obtain the required accuracy. The

three complex roots, RT1, RT2, and RT3 are in order

of decreasing real parts.

b) SUBROUI’INEDPROD (XR, XI, YR, YI, ZR, ZI)

This subroutinemultiplies the complex numbers X

and Y together to give complex Z. Double-precision

arithmetic is used; thus the real and imaginary

parts are carried separately.

c) SUBROUTINE DARCTAN (Y, X, Z)

This subroutine finds Z = arctangent (Y/X) in the

correct quadrant. Double-precisionarithmetic is

used.

d) SUBROUTINEBREIT (XI, FFF, XM, GJ, GI, DELW

BGAUSS, W, XGAUSS, EPS1)

This subroutine evaluatesthe energy of a given

state according to the Breit-Rabi formula (see

Section 2). The input variables are

XI spin of nucleus

FFF F quantum number

XM ~ quantum nunber

GJ 6J value (atomic g factor) exclu~ng

radiative corrections

GI f31value (nucle~ g factor)

‘DELW zero magnetic field hyperfine splitting

in MHz

BGAUSS magnetic field in G

The output variables are

w energy of state in MHz

XGAUSS value of the parameter X(defined in

Section 2)
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EPS1 nuclear moment correction term c1 + QPk + R for k = 1, 2, 3, are given. The devia-

(in Mliz;already included in W) - tlon of these quantities from zero gives some idea

The output from the program is flly labeled, and .
of the accuracy with which the roots have been re-

includes the values of the coefficients~, Bk, and
term.ined.

— .-

ck‘
the decay constentsPk, end the relevant fre- Tape 10 is defined ee input and Tape 9 ae output

quencies in MHz. In addition, the three quantities for the particular system for which this program

2Fl, F2, and F3, which are the values of P; + P1.Ik was written.

c TIME PLOT VERSION
c IIIVIDE R AND v BY 13.94 TO OBTAIN VOLTS/CM PEAK To ZERO
c DIVIDE M BY 8.80 To OBTAIN GAuSS PFAK TO ZERO
c IHAT 1s, ENTER R,V, AND M IN MHZ ANGULAR FREQUENCY

nItiENSloN FFA(6)#FFB(6), XMfA(6),XMFB (6)
DIMENSION FARS(3),FACS(3)/FBCs(3 )
DIMENSION ASQ(500),BSO(500 ),CsQ(50 0),ABSO(500 ),T[ME(500)
COMPLEX XMM,RRSVV,D ELAC,P,Q,R, XHMSTR,RRSTAR,vVsTAR, XI,RT1,RT2,HT3,

1xIMU(3),D,EPS(3),IIEL(3 ), A(3),B(.$),C(3) ?SUM
cOMPLEX X,F1, F2,F3,AA,BB,CC,PHASAH ,PHASAC
DOUBLE PREcIS1ON Pi
COMMON Pl

1 FORMAT(6F12.6)
2 FORMAT(6H A(K)= 6F9.4,7H Mu(l)= 2F9.4,4H Fl= 2F9,4)
3 FORMAT(6H B(K)= 6F9,4,7H Mu(2)= 2F9.4,4H F2= 2F9.4)
4 FORMAT(6H c(K)= 6E’9.4,7H Mu(3)= 2F9.4,4H F3= 2F9.4)
5 FORMAT(6HOFRECJ= F10,3,5X,3HK=1, 15X,3HK=2, 15X,3HK=3 )
6 FORMAT(122H0 TIME A*+2 B.*2
1+8*.2

C**? A**2
MOD A PHASE A MUII B PHASE B MOD C PHASE C

2 )
7 FORt4AT (F12.3.4P12.6~6F10 .3)
8 FORMAT(lH1)
9 FORMAT(4H MM= 2F12.6,4H RR= 2b12.6,4h Vv= 2F12.6)

10 FORMAT(6H FREU= F~2.3,711 GAMMA= F12.3,5H FAB= F12.3, 5H FAC= F12.
13,5H FBC= F12.3 )

12 FORMAT(40H DOUBLE PRECISION cUBIC SOLUTION METHOD )
13 FORMAT(614)
14 FORMAT(7H SPIN= }12,6,4H GJ= F12.6,5H MU= F12.6,6H DELW= F12.6,

15H GJP= Fi2.6,7H DELWP= F12.6)
15

160
161

19

100

101

FORMAT(14H STATE NUMBER 14,9H AT FIELD F7,1, 6H GAUSS )
FORMAT(48H INlrIAL cONI_IITiONS A=l, B=o, CXO )
FORMAT(48H INITIAL CONDITIONS A=O, B=l, C=O )
PI=4. O*DATAN(l.OD+O)
GAMMA=200 .*3,1415927
xI=cHpLx(O.0,100)
WRITE(9~8)
READ(lO, 1)XSPIN,GJ,XMU, DELw,GJPtr)ELwF
READ(lO, 1)FRFOMN,FREQDL ,FREQMx, rF,DELT,BGAUSS
GI=XMU/XSpIN
ISPIN=XSPIN+l.o
GO TO (100,101), ISPIN
NCASE=2
FFA(l)=I.O
xMFA(i)=l,o
FFB(l)=O.O
xMFB(i)=O.O
FFA(2)=1.O
)(MFA(2)=0.O
FFB(2)=1.O
XMFB(2)=-1.O
GO TO 20
NCASE=3
FFA(l)=i.5
XMFA(l)=l.5
FFB(1)=0,5

.

1

.
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XMFB(l)=O.5
FfA(2)=lo5
)(MFA(2)=0,5
;;:&~;;o.5

=-0.5
FFA(3)=1.5
XMFA(3)=-O.5
FFf3(3)=l.5
)(MFB(3)=-1.5

20 READ(1os1)XM)ISRR1VV
READ(10$13) IMODEIICSI’!N, !Csmx

c lMODE 1 GO TO 19 2 GO TO 20 .
URITE(9S8)
NFREO:(FRE(NIX-FREOMN)/FREQDL
NFREQ=NFREQ+l
NTIME=TF/DELT
NTIME=NTIME+l
DO 132 1NIT=1,2
00 110 lcAsE=IcSMN, ICSMX
CALL BREIT(XSPIN,FFA( ICASE) ,XMFA(ICASE),GJ,G1,DELH, BGAuSsSFA,xGAus

lS,FpSl)
CALL 13REIT(xsPIN#FFB( ICASE)# XhF@(ICASE),GJ, GI,DE1.W#BGAUSS,FB, xGAUS

lS.EpSl)
CALL BREIT(XSPIN)FFAI ICASE) #XMFA(ICASE),GJPsG!,DELWP#HGAUSS,FCDBGA

luSs,EpSl)
FC=FC-1058.O7O
FAR:FA-FB
FAc=FA-Fc
FARS(ICAsE)=FAB
FAcS(ICASE)=FAc
FFICS(ICASE)ZFB-FC
DO 110 I=l,NFREQ
FI=I-l
FREQ=FREQMN+F1 *FREQDL
IIELA13=(FREQ-FAB)*2.0*3.1415927
PHASAB=CMPLX( OQOIDELAB )
ARL=(FREQ-FAC)*2. 0*3,1415927
PHAsAc=CMPLX( O.O$ARL)
AIM=- 0.5*GAMMA
13ELAC=CMPLX(ARL.A IM)
xMMsTR=CONJG(XMM)
RRsTAR=CONJG(RR)
vVSTAR=CONJG(Vv)
p=oELAB+DELAc
Q=nELAB*DELAC-vV*VVSTAR-O 025*(RR*RRsTAN+xMM*xMMsTR )
ri=0.5*REAL(XMM*VV*RRSTAR)-0 025*(RR*RRsTAR*DELAB+xMM*xMMsTR*nELAc )
P=- x[*p
QX-Q
R=xI*R
CALL CUBIC(p,osRsRTl#RT2sRT3)
x=RT1
F1=X**3+P*X**2+Q*X+R
)(=RT2
F2=X**3+P*X*+2+12*X+R
X=RT3
F3=X**3+P*x**2+Q*X*R
XIMU(I)=R71*XI
)(IMU(2)=RT2*XI
X1MU(31=RT3*XI
DO 22 K=1,3
D=(nELAC+X IMU(K))*(DELAR+x lMU(KI)-vV*VvSTAR
EPs(K) =-o.5*( XMM*(DELAC+X1MU(K ))-RR*VVSTAR)/D
nEL(K)=- o.5*(RR*(DELAB+x IMu(K) )-xMM*VV)/D
A(i)=EPs(2)*DEL(3) -Eps( 3)*DEL(2)
A(2)=EPS(3)*DEL(1)-EPS( 1)*DEL(3)
A(3)=FPs(1 )*DEL(2)-EPS(2) ●DEL(1)
SUM=A(I)+A(2)+A(3)
G(3 TO (130,131),IfIIT
A(I)=DEL (2)-DEL(3)
A(2)=DEL(3)-nEL(l)
A(3)=IIFL(1)-IIEL(2)
DO 23 K=1,3

45



A(K)=A(K)/SUM
B(K)=EPS(K)+A(K)

23 c(K)=DFL(K)*A(K)
wRITE(9,8)
bIR!TE(9014 )xsPINJGJ,xMu, DELW,GJP,DELAp
WRITE(9,5)FRE(I
WRITE(9,2) (A(K),K=1,3 ),RT1,F1
WRITE(9,3) (B(K),K=1,3 ),RT2,F2
WRITE(9,4) (C(K),K=1$3 ),RT3,F3
GO TO (150,151), IIIIT

150 WR1TE(90160)
GO TO 152

151 wRITE(9,161)
152 wR1TE(9,9)xMM,RR,vV

WRTTE(9, 1O)FREQ,GAMMA, FABS(ICAS= ),FACS( ICASE ),FBCS(ICASE)
wR[TF(9,15) ICAsE,HGAUSS
wR[TF(9.6)
DO 114 ITIME=l,NT!ME
FITIME=ITIME
T=(FITIMF-l .n)*DEI,T
TIMF(ITIME)=T
X=RT1*T
F1=CEXP(X)
X=RT2*T
F2=CEXP(X)
X=WT3*T
F3=CEXP(X)
AA=A(l)/Fl+A(2)/F2+A(3) /F3
BR=R(l)/Fl+13(2)/F2+B(3) /F3
Fl13=BH*ckxP(PHASAB*T)
CC=C(l)/Fl+C(2)/F2+C(3) /F3
CC=CC*CEXP(PHASAC*T)
AS(2(ITIME) =(CABS(AA) )**2
BSQ(lTIMF)= (CABS(HB))**2
cSQ(ITIME)= (CABS(CC)) **2
AFIsQ(IT IME)zASL)( ITIME )+BSO(ITIMt)
xMoDAA=CABs(AA)
xMol_)BR=CABS(B13)
XMODCC=CABS(CC)
PHASAA=ATAN2( AIMAG(AA ),REAL(AA) )
PHASAA.180.O*pHASAA/3.1415927
PHASRB=ATAN2 (AiMAG(BB ),REAL(BB) )
PHASBB.180,0*pHAsBB/3. 1415927
PHASCC=ATAN2(A IMAG(CC ),REAL(CC))
PHASCC.180.O*PHASCC/3.1415927

114 wRITE(9, 7)TIME(ITIME),AsQ (ITIME),RSO(I TIME),CSQ(l T IME),AB=O( ITINE)
l,XMODAA,PHASAA, XMODeB, PHASBEI, XMIIDCC,PHASCC

llo coNTINuE
132 cONTINuE

GO TO (19,20), !MODE
END

sUBRUIJTINE CUBIC(P,0,R,RT1,RT2,RT3)
c DOURLE PRECISION VERSION
c SoLvEs CUE[C EOUATIOIIS OF THE FoRM XS*3+P*X**2+O*X+Rx0. o WITH P, C,
c AND R COMPLEX. THE THREE ROOTs RTI, RT2, AND RT3 ARE IN ORDER CF
c DECREASING REAL PART.

cOMPIEX P,0,R,NTl,RT2,RT3,RT(~ ),A,B,U,W120
DOUEILE PRECISIUN PR$PI,oR$QI,RRJRI .P2R tP21,AR,AI,P3R#P31,P12R ,PcI,

lBR,BI,R2R,B21, A2R,A21 ,A3R, A31,R12R,RT21,RTABS,RTARG, RTR,RTI,AAR,
2AAI,DARG
w120=cMPLx(-005~ o.8660254 )
PR=REAL(P)
oRxREAI (0)
RR=REAL(R)
PI=AIMAG(P)
oI=AIMAG(0)
RI=AIMAG(R)
CALL DPROD(pR,PI,PRSp l,P2R, p2i)

“t
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14

13

15

ARs(JR/3.O-P2R/9,0
Al=Q1/3o0-P21/9,0
ASNGLR:AR*S.O
ASNGL1=AI*3.O
A=CMpLX( ASNQLR#AsNQLl)
CALL DPROD(P2R#P21,pR,Pl,psR ,P31)
CALL DPRoD(PR,PI,uR,QI,POR,pO 1)
8R=P3R/27,0-PQR/6,0*RR/2, O
Bl=P31/2700-POI/6,0*R1 /2.0
CALL DPRoO(BR,BI JEIR,BI,B2R,B2 1)
CAI.L OPRoD(AR, AI#AR,AI,A2R,A21 )
cALL DPROD(AR, A[,A2R,AZI,A~R, A31)
I?T2R=B2R+A3R
RT21=B?I+A31
I?TABS= (RT2R**2+RT21**2 )640,25
CALL TJARCTN(RT21,RT2R,RTARQ)
RTARG=RTARQ/?,o
RTR=RTABS*DCoS(RTARG)
RTI:RTABS*I)SIN(RTARG)
ABSAA=DSQRT ((RTR-BR)**2+ (RTI-BI)**2)
ABsBB=DsGIRT ((RTR+nR)**2+ (RT1+RI)**2)
IF(ARSAA .GE.ABSBB)GO To 2
SGN :-1.0
GO TO 3
sGN=l.O
AAR=- RR+sGN*RTli
AAI=-B1+SGN*RT1
ABS=(AAR**2*AA1 **2)** (100/600)
CALL UARCTN( AAI,AAR,DARG)
ARG=llARG/300
(]R=ARs*cos(ARG)
UI=ABS*SIN(ARG)
u=cMPLx(UR,U!)
DO 1 J=1,3
RT(J)=u-(P+A/U)/3,0
U=lJ*W120
R1=REA1(RT(l))
R2=REAL(RT(2))
I?3:REAL(RT(3))
IF(RI.GE.R2)G0 TO 10
IF(R3.GE.R2)G() TO 11
IF(R3.GE.R1)Go TO 1?
J1=2
J2=1
J3=3
GO Tfl 1>
J1=2
J?33
J3=1
GO To 15
J1=3
.J7=2
J3:1
G(J T(J lb
IF (R.\.Gl-,Rl)GO TO 13
(f(R.\.GE,R?)GO TO 14
Ji=l
,J2=7
.J3X3
GO T(I 15
Jl=l
J?=3
J.!=?
GO Tr) 15
.J1=3
J2=1
/3.?
C(ll$TINUF.
RTtsl+l(Jl)
RT?=RT(J?)
RT,\=(4T(J3)
RFTUHN
FN[J



SUBROUTINE DPROD(XR,XI,YR# Yl,zR>Z I)
oOUBLE PRECIS[oN XR, XI, YRS y19 ZR, 21
zR=xR*YR-XI*YI
ZI=XI*YR+XR*Y1
RETURN
ENO

SUBROUTINE DARcTN(Y~X,Z)
c ~INDS DOURLE PRECISION ARCTANGENT IN RADIANS IN CORRECT QUADRANT.
c DEFINES ZERO/ZERO=ZEt70, IJSES RANGE PI To - PI

00UBLE pRECISloN x,Y,Z,PI#YX
COMMON PI
YX=YIX
IF(x)300,301,302

30LI IF(Y)303,304,304
303 z=DATAN(Yx)-p[

GO TO 308
304 z=OATAN(YX)+Pl

GO TO 308
3ol IF(Y)305,306,307
305 zx-pl/2.13

GO TO 308
306 z=~,o

GO TO 308
307 z=P1/2.o

GO TO 308
31)2 z=nATAN(yx)
308 RETuRN

END

SUBROUTINE BREIT(xI,FFF,XM,GJ$ GI,DELW. RGAUSS,W,XGAUSSJEPS1)
ISGN=FFF
FxIsGN
5GN=(F*200-l,o)*(llELw/2 .0)
GJ1=GJ+O .002?9*(GJ-1.O )
EPs=l.o/(GJl+1836,1/G[ -1.0)
xGAuss=GJ1*9 .2732*BGAUSSI (6.625*DELH* (l.O+EpS))

5 Epsl=EPS*OELW*xGA(JSS
6 w=-DELw/(4.0*xI+2,0)+EPsl*xM

R=2.O*XM/(XI+O05)
IF(B+l. 0)1,1,2

1 IF(xGAUSS-l ,0)2,3,3
3 SGN=-SGN
2 W=W+SGN*SQRT(l. O+B+XGAUSS+XGAIJsS*XGAUSS )

IF(GJ.GE.1.0) RETuRN
llELTA=ABs(w)*4.O*BGAUSS/ (9.0*5214.0)
w=N-oELTA
RETURN
ENo

1
.
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APPENDIX B. A COMMFI!ERPROGRAM FOR TSE NUMERICAL

INTEGRATIONOF THE FOUR-LEVEL EQUATIONS

A FORTRAN IV program which numerically integrates

the four-levelequations is given in this appendix.

The version given finds [a12, /b12, IC{2, ld12, and

[CL[2+ lb12a s a function of time for a Bet of fixed

driving frequenciesend fixed magnetic field. The

real and imaginary parts of a, b, c, and d are also

given. Other versions of the progrem exist in”which

time is held constantwhile the variation of the

above quantitieswith magnetic field at fixed fre-

quency, or with frequency at fixed magnetic field,

is studied.

On a CDC 6600, the progrsm requires (for the accu-

racy used here) about 1 minute of central processor

time per microsecond of integrationtime. More pre-

cisely, the computationtimes and number of times

the subroutine DERIV is called are as follows:

Card 3 (FORMAT F12.6)

FREQ2 driving transverse frequency in MSz

(normally zero)

Card 4 (FORMAT 6 F12.6)

Identical to Card 3 for program described in

Appendix A.

Card 5 (FORMAT6 F12.6)

XMMP M’ inhlliz(angular frequency)

RRP R’ inMSz (angular frequency)

VvP V’ in MSz (angular frequency)

where these quantities are complex and again re-

quire two numbers each for their specification.

Cards 6, 7 (F0WT6 F12.6)

Xo(l) initial real part of a

XO(2) initial imaginary part of a

Case DERIV calls ComputationTime Approximation
per psec per Bsec

1 5,000 35

2 80,000 66

3 40,000 42

4 80,000 81

where the case number is as given in Figure 20. The

program is believed to maintain better than 1$ accu-

racy for integrationtimes at least up to 1 micro-

second. The accuracy can be adjusted with the pa-

rameters RELTST and ABSTST in subroutineINTEG.

Accuracy testing is done in subroutineACCRY.

The program is set up to allow the transverse elec-

tric field to oscillate also. This case could be

of interest if the metastable besm was mixed with

a plasma, since rf fields could penetrate the plas-

ma, under appropriateconditions,while static elec-

tric fields csnnot.

!Me input for the program is as follows:

Card 1 (FOMT m.2.6)

Identical to Card 1 for progrsm described in

Appendix A.

Card 2 (FORMAT F12.6)

Identical to Card 2 for program described in

Appendix A.

sec 3 level, e=w~

sec 3 level, cos wt.

sec k level, eiwt, e-iut

sec 4 level, cos ut

XO(3) initial real part of b

XO(4) initial imaginary part of b

XO(5) initial real part of c

XO(6) initial imaginary part of c

XO(7) initial real part of d

XO(8) initial imaginary part of d

Card 8 (FOW’P6 14)

Identical to Card 4 of

Appendix A.

The program consists of a

with several subroutines.

various subroutines is as

progrem described in

main program together

The function of the

follows:

a) SUBROUTINE INTEG (NN, TI, TTF, HH, HSP, MM,

VVM, 1P, XO, TT, XXI’)

This subroutine integrates an arbitrary system of

real inesr differentialequations. The arguments

of this subroutine are defined by comments in

main program listing. !l%emonitoring feature

periodic test of a specified variable against

the

(a

some
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limit) is not used. INTII?3calls a number of sub-

routines of which only those which are specific to

the FrOblem under discussionwill be further de-

scribed.

b) SUBROUTINDERIV (T, V, FD)

This subroutine computes the value of the first de-

rivatives PD(I) (for I = 1 to 8) given the value of

the functionsV(I) (for I = 1 to 8) and the time T.

I = 1 and 2 correspondto the real.end imaginary

parts of a, 3 and k to the real and imaginary parts

ofb, andso on. (The four complex first-orderdif-

ferential equationshave been rewritten as eight

real first-orderdifferentialequations.)

c) SUBROUTINEPRINT (T, V)

This subroutine sets up the common variable arrays

at the specified print-step intervals for later

printout.

d) SUBROUTINEBREIT (XI, FFF, XM, GJ, GI, DELW,

BGAUSS, W, XGAUSS, EPSl)

This subroutinewas described in Appendix A.

The output from the program is fully labeled. Tape

10 is defined as input and Tape 9 as output for the

system for which this program was written.

The inclusion of fields whose strength varies as

time (or displacementin a cavity) can be easily

incorporatedin the subroutineDERIV. It ia re-

quired to give RR, RRP, MM, Ml@, W, and VVP the

required time dependence, as indicated on ccamnent

cards.

It is important to simplify DERIV as much as posal-

ble, from the point of view of computation time,

since it is in the innermost loop. The form listed

here is more general than required for many prob-

lems, and, if

be simplified

PROGRAM LAMi3V(~NPUT,TAPE ~O=INPUT90UTPUT,~APE 9=

computer time is important, it should

in those cases.

oUTPUT,FILM, TAPE

1 12=FILM)
c AMPLITUDES AS FUNCTION OF TItIE VERSION. LONGITUDINAL AND TRANSVERSE
c ORIVING FREQUENCIES ALLOWED (TRANSVERSE FREQUENCY NORMALLY ZERO),
C DIMENSIONS ALLOW UP TO 5 FREOIJENCY POINTSO 100 TIME POINTS
c (REsULTS STORED AS dIMENsIONED VARIABLES TO ~ACILITATE PLOTTING)
C DIVIDE R ANO V BY 13.94 TO OBTAIN VOLTS/CM PEAK TO ZERO
C DIVIDE M 13Y 8.I3O TO OBTAIN 6AUSS PEAK To ZERO
c TiiAT IS. ENTER R.v? AND M IN MHz (AN3ULAR FREQUENCY)

cOVPLEX XMM+XMMP.RI?,RRPSVVVVVP
CoMMON ARL(3t100;5) o&RL(3r10095) ,CRL(3*10005100RL(3S 10005) ?

1AIM(3Q 1oOJ5)*FIIM(3,1OO 95) 9CIM(3* 100,51, DIM(3,1OO,5) sICASE,IFREQ,
2ITIME*TTME(1OO)

coMtioN/RLK3/xMM9xMMP9RR*RRP*vv .vvD*(3AMMA29wA13*wAE,wAF*wBE*uBF9wEF#
lw~QE’J19wFRF.02

coMMoN/nLK7/Tl-)ERyv
01’47NSION ASIJ(IOO), HSQ(IOO)*CSO(I OO),DSQ (1OO),ABSO(1OO)
rJI’~EKsIoN FFA(3).XWFA(3) $FFR(3)s x~Fq(3)
V1-.4E”.1STON %O(30),XXP (30) oFREa(5) .ssP(3s6)

1 FunMAT(~F120b)
6 Fon,MATf132H TIME A**i? ~**2 C**2 D#*Z A~s2

1+H**2 ARL AIM BRL 81M (X7L cIM DRL DIM
z )

7 FuRMAT{FI o.395F1o.6,4F7.3)
~ F!)XM4T!~Hl)
9 F(W{X4T’4H MM= PF14.A*4H kl?= ?F16.60 4H VV= 2F14.6)

10 F!~Q~l~T:qu rIGAUSSD F12.3? 8H GAMhIA= F12.3QuH FRECJ1= F1.?.39
199 FRC,~?= F12.3 )

11 r~QPl~T!%\! MYP= F13.6*F14.60 =iH RI?P= F13.6*F14.6$ 5ti VVP= F13.6*
1~14.6]

13 F09VAT(~I&)
14 cOnMATf7LI S~IN= F1206s4H QJ= FI?,69cJ+ MU= F12.6,6H DELW= F12.6?

15~ GJPIa F12.607H DELWP= F12.6)
15 F0QM~T(14H STATE NUMBER 14)
16 CODMA7(16H INITIAL VECTOR AfFln*39F7.3))
17 FORMAT(5H FAR= FIO.3$5H FAE8 F10;io5ti FAFw-F10c395H FBE= F1O.3O

15H FRF= FIo.305H FEF= F1O.3 )
GAMMA=1oo.O*2.O*3.1415927
GAMMA2=0,5@(jAMMA
WRITF(9Q8)
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19

100

101

20

READ(lO,l )XSPIN$GJCXMUODtLwSGJpOI)ELUP
REAO(lOO 1) FREQMN9FREQDL$FREQMX9TTF9HHPOBGAUSS
READ(1091)FREQ2
G~=)(MU/XSPIN
ISPIN=XsPIN+l.11
GO TO (1OO91O1)OISPIN
NcAsE@
FFA(1)=1oO
XMFA(1)W1OO
FFB(l)=o,O
XMF8(11=OO0
FFA[2)=1.O
XMFA(2)=I).O
FFB(2)81.O
xMF13(2)=-loo
Go TO 20
NCASE83
FFA(l)=l.5
)(MFA(1)=1*5
FFB(l)=IJ.5
)(MFB(l)=O.5
FFA(2)=I.5
XMFA(2)=O05
FFB(2)=0.5
XMFB(2]=-O.5
FFA(3)=1.5
XMFA(3)=-O.5
FFH(3)=1.5
xMFB(3)m-le5
REAO(lO, 1)XMM9RR9VV
READ(lO, l)XMMP*RRpSVVP
REAO(1091) (XO(I)9I=1?8)
READ (10,13) IMODE.ICSMN9 ICSMX
NFREQ=(FREOMx-FRCQMN) /FREQDL
NFREQsNFREQ+ 1
DO 110 ICASE=ICsMNOICSMx
IDEl?Ivrnn
ITIMEso-
cALL BREIT(XSPIN,FFA (ICASE) ~xMFA(ICASE) sGJOGI*DELWOBGAUSs~FA*

lXGAUSS*EPS1)
CALL BREIT(XSPIN,FFB (ICASEI *xMFBIcAs~)s G~~GI?DELw~BGAUSS$F8S

IcAsg)9G<P9G1$oELwP*BGAuss!FE9

ICASE)oG~PsGI ~DELWPoBGAUSSoFF ?

lXGAUSS*EPS1)
CALL BREIl(XSfJIN,FFA (ICASE) $XMFA

lXGAUSS*EPS1)
CALL BREIT(XSPIN,FFE (ICASE)?XMFB

lxGAUSS?EPS1)
FE=FE-1058.O7O
FF=FF-1058.O7O
FAB=FA-FB
FAE=FA-FE
FAF=FA-FF
FBE=FB.FE
FBF=FB-FF
FEF=FE-FF
MAB=FAB*6.2831854
wAE=FAE*6.2831854
wAF=FAF*6.2B31854
wBEMIFBE*6,2831854
wtlF=FRF*6c2831854
wEF=FEF*602831854
FSP(ICAsESl)=FAB
FSP(ICASE92)=FAE
FSP(ICASE!3)=FAF
FSP(ICASE*4)=FBE
FSP(ICASE*5)=FBF
FSP(ICASE$6)=FEF
Do 112 IFREQ=l*NFREQ
FIFREQ=IFREQ
FREO(IFREQ) =(FIFREQ-1. o)*FREQDL+
FREQ1=FREQ(XFREQ)
WFI?EQ~=6.2831854*FRE(Jl
wFREQ2=6.2831854*FREIJ2
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C NN
c 11
c TTF
C HH
c HHP
c MM
C VVM
c 1P
c
c ;?

wRIrE (908)
NN=8
TIso. o
HH=OOOOO1
MM=o
VVM=O.1)
IPEO
cALL INTEG(NNtTI.TTFsHHQHHPsMMQVVM, IPoXOJTT9XXP}

NUMBER OF FIRS+ ORDER uIFFEREN+IAL EQUAIIONS
INITIAL VALUE OF INDEPENDENT VARIAFJLE
FINAL VALUE OF INDEPENDENT VARYABLE
GUESS AT STEP SIZE
PRINT STEP SIZF
VARIARLE TO BE MONITOREO (o=NO, 1 TU NN YES )
VALUE TO MONITOR FOR
NUMBER OF PARAMETERS
VECTOR OF STARTING VALdEs
VALUE OF TIME RETURNED AT END OF INTEGRATION

c xxp VARIARLE VALUES RETURNED AT END OF INTEGRATION
112 CONTINUE
110 CONTINUE

NIIME=ITIME
00 26 IFREQ=19NFREQ
DO 25 IcA!5E=1cSMN91cSMX
wRIrE(9.8)
wRITE(9~14) XSPIN,GJQXMUpDELW*GJP*OELWP
WRITE (9.9)XMM9RR9VV
WRITE [9911) XMMPSRRPSVVP
WRITE (9910) BGAUSS9GAMMAOFRLQ (IFREQ)9FliEQ2
WRITE(9015)I CASE

W~ITE( 9s16)(XO(II9I=1O8)
wRITE( 9!17)(FSP (ICASEOIFS)? IF5=1 ,6)
kRITE(9,6)
DO 24 ITIME=l~NTIME
AsCJ(ITIME) =AKL(ICASE *IT1ME?1FREQ)**2+AIM( lCASE~ITIMEQ IFREQ)**2
BsQ(ITIMF)=BRL (IcASFSITIME$ IFREQ)**2.BIM(IcASES ITIME$ IFREu)**2
CSQ(ITIME)=CRL (ICASE~ITIME9 IFHEQ)**2~CIM[ICASEsITIMEo IFREQ)**2
OsQ(ITIME) =ORL(ICASEO ITIME*IFREQ)ib*2+C)IM(1CASE9 I~IMEJIFREQ)**2
AUSQ(ITIME)=ASQ (ITIME)*BsQ (ITIME)

24 wRITlt(9,7) TIME(ITIMEloASQ (lTIME) .9SQ(ITIME) !CSQ(ITIME) ~DSQ(ITIME)O
lA13sO(ITIME)~
2ARL(ICASE91TIME* 1FREU) ?AIM(IcASE,ITIME$IFREQ) ~
3BRL(ICASE! ITIME!IFRELJ)*BIM (IcASE,ITIMEJ IFREQ)O
4cRL(ICASEo ITIME~IFREL)) 9CIM(ICASE,ITIME0 IFREQ) o
50RL(ICASE~ ITIME*IFREQ)ODIM (ICASE91TIMESIFREQ)

25 CONTINUE
26 coNTINUE

GO TO (19~20)sIMr)DE
END

sUBROUTINE INTEG (NNQTIsTTFsHH*HHPsMM$VVMsPSXO cTT,XXP)

c INTEG() SOLVES A SYSTEM OF N FIRST ORDER DIFF EIJNS BY A 4TH
c ORDER ADAMs P-C METHOD WITH AuTOMATTC ERROR CONTROL. STARTING
C IS BY RUNGA-KUTTA.
c

INTEGER P*IJ
REAL LB
LOGICAL ACC
CUMMON/RLKl/NsToTF.HoHO9HpoM,VMoJ,ACc~LBoRELTSToABSTSTsFACTOR$

1SNDQX(30?5)Q F(30*5), E(30) 0XP(30)
coMMoN/13LK5/lDouRL*NDouBL
DIMENSION xO{30).XXP(30)

c
c SET UP INITIAL VALUES

NXNN

TF=TTF
H8HH
HP=HHP
M=MM

.
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10

20
21

30

vMsVVM

DO 10 I=l~N
X(IO1)=XO(I)
IF (PoEQOo) Go T() 21
LsN+l
u=~+p

DO 20 I=LoU
xP(I)sXO(I)
DO 20 J=105
x(I*J)=xo(I)
T=TI

BNO=TI+HP
HOXH
ABs8=loflE-4
REL8=ABSR
ABSTST=ABSB*14.2
RELTST=RELB*1402
FAC~OR=RELB/ABSB
Lt3=o.00%*RELTST
IDoUfjL=O
NO(luRLm3
~=p.oe~
CALL START(IRETRN)
G() TO (100~99)oIRETRN

C SHOULD ANY OF THE STARTING VALUES BE PRINTED OUT
100 T=T-3*O*H

Do 35 J=2$4
TxT+H
CALL TEsT(IRETRN)
GO TO (35J60)oIRFTRN

35 cONTINUE
C BEGIN ADAMS METHOD

40

45

50

101

60

64
65

;:

CALL ADAMS
cALL AccRY
IF (Ace) GO TO SO
00 45 I=19N
X(I*1)=X(104)
GO TO 30
CALL TEsT(IRETRN)
GO To (Iols60)sIRETRN
CALL DOUBLE(IRETRN)
GO TO (40930)oIRE1RN
IF (J.EQ.5) GO To 65
Do 64 I=l$N
XP(I)=X(I?J)
CALL PRINT(T-xP)
TT=T
DO 70 IRl~N
x~P(I)=xPII)
RETURN
ENf)

sUBROUTINE START (IRETRN)
c RIJNGA-t(UTTA STARTING METHOD

LOGICAL ACC
COMMON/RLKl/ld~TSTF*HSHOoHPsM9VMoJ,ACC~LB~RELTSTCABSTSTtFACTORQ

1BND?X(30*5),F (30,5)*E( 30) JXP(30)
cOMMON/BLK2/G(30,4)
J=2
cALL RNGA

10 DO 15 I=l~N
15 XP(I)=X(192)

C XP(I)=i)BL INTERVAL RESULT FOR ERROR ANALySIS
T=T-H
H=fl.5*H
IF ((T+H).NE.T) GO TO 30
WKITE (9s20)

20 FORMAT(SOH EUNS CANNOT BE SOLVED FURTHER WITHIN GIVEN ERROR )
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TPLUSH=T+H
WRITE (9921)TPLUSH9T

21 FORMAT(6H T*H= E15.lo, 6tl T= E1591O )
IRFTRN=~
RETuRN

30 DO 40 J=2~3
40 cALL RNGA
41 cALL ACCRY

IF (.NOT.ACC) GO TO 10
J=4
cALL RNGA
IRFfRN=l
RETURN
END

subroutine RNGA

c INTEGRATE N EoNS AHEAD ON THE J/TH sTEP OF LENGTH H.
COMMON/RLKI/N*TQTF.H*HO*HP*MOVMcJ,ACCsLBQRELTST~ABSTSTQFAcTORs

lf3Nn9x(3r)95) 9F(30,5),E(30) ,XP(30)
cOMMON/BLK2/G(30,4)
CALL DERIV(T*X(l,J-l) 9F(1QJ-1 ~)
Do 10 I=lsN
G(I?l)=H*F(ISJ-l)

10 X(I?J)=X (19J-1)*O05*G(I 91)
TTxT+II.5oH
cALL DERIV(TT*X (IsJ)oF(lOJ))
DO 20 IXISN
G(I*2)=H*F(19J)

20 X(IOJ)=X(I ?J-1)+0.5*G(I 92)
CALL DERIV(TToX (I?J)9F(19J~)
DO 30 I=l?N
G(I!3)=I+*F(1sJ)

30 ;j;:#)=x (IoJ-l)*r,(I,3)

CALL DERyV(T~X (l,J)sF(l~J))
DO 40 I=ltN
G{194)=H*F(IOJ)

40 x(IoJ)=x fI~J-l)+(G(Isl )+2.0*(G(I,2) *Q(IQ3).)+G (It4))/600
RETURN
END

sUBROUTINE ACCRY
c TESTS A13S AND REL ERROR ANO SETS Acc .FALSE. IF NEITHER SATISFIED

LOGICAL ACC
COMMON/BLKl/N~TQTF.HoHoCHpoM.VMSJ,ACC!LBtRELTSToABSTSTQFACTORt

1BND$X(3005),F(30.5),E(30) tXP(30)
ACC=OTRUEO
DO 511 IxIsN
EII)=ABs(XP(I)-X (I,J))
IF (E(I) .GE.ABS (X(I,J))*RELTST ) GO TO 10
E(I)=E(I)/ABS(X(IOJ)l
GO TfI 50

10 IF (L(I) .GE.A6sTsT) 60 To 29
E(I)=E(I)*FACTOR-
Go TO 50

20 T=T-ll
Ho=o.5*H
ACC*.FALSE.

75 FORMAT(;H ~ 16HSTEP SIZE cUT TOO F12.80 6H AT T=o F12.8)
w~ITE(9s75) HOOT
Go TO 99

50 CONTINUE
99 RETURN

ENn
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SUBROUTINE TEST (IRFTRN)
c MONIrORS FoR VMQ FN~ OF INTEGN OH PRINT RANGE.

coMMON/RLKl/NSToTFoH*HOSHp$M$VM*J*ACC?LB~~ELTSToARSTST~FACTORo
113NOQX(3005) 9F(30,5)OE(30) 0XP[30)

DIMENSION Xl (30) 0X2(30) SFl(30~. *F2(30)
IF (M.EQ.0) GO To ~n
IF ((X(M.J) .LE.VM) .AND.(X(MOJ-l) .QT.vM)) ~0 TO 10
IF ((X(M.J).G T.VM).A ND.(X(M?JW1) .LE.vM)) QO TO 10
G() TO 20

10 CALL DIoDE
IF(T-TF)70*70*30

70 IRE~RN=z
RETURN

~0 IFiA133((T-1F)/TF)-1.OE-6) 80081,81
80 IRETRN=2

RETURN
81 IF(T.LEOTF) GO TO 40
311 H=TF-T

DO 35 1=1*N
35 X(IS1)=X(ISJ)

J.?
cALL RNGA
lRETRNq
RETURN

40 IF(?.LT.BND) GO TO 50
C SAVE ALL VARIABLES wHIcH MAY BE M(JDIFIEn IN PRINT pROcEDuRE

HsAvE=H
TSPVE=T
JsAvE=J
Oo 45 I=lsN
X1(1)=X(1*1)
x2(1)=x(1*2)
F}(I)=F(Is1)
F2[I)=F(I02)

45 x(IQ1)=x(IsJ)
J=2
H=HND-T
CALL RNGA
CALL PRINT(T,X(l.J))
BNII=BNO+HP

c RESTORE VARIA8LES To PROCEED
J=JsAVE
HsHsAvE

T=TsAVE
00 46 I=l~N
X(191)=X1(I)
X(1*2)=X2(I)
F(IQ1)=F1 (I)

46 F(I*2)=F2(I)
50 IF (J.NE.5) GO TO 9Q

1)0 60 I=l,N
X(I04)!=X(I*5)
DO 60 J=205

60 F(19J-l)=F(l?J)
99 IRETRN=l

RLTtiRN
END

SUBROUTINE 010t3E
c FIND VALUE OF T WHERE THE M/TH vARIABLE REACHES THE vALUE VM

COMMON/RLKl/NsT9TFOHoHOSHP~M*VM*J,ACC~LB~RELTST~ABSTSToFACTORo
IRNDSX(30,5) 9F(30,5)OE(30) ?XP(30)

ljIMENsloN o(30)

Yl=X(MgJ)
YO=X(MsJ-1)
flELT=-ARs(H*Yl/(yl-Yo))

10 H=PELT
no 20 I=lsN

20 X(I,l)=X(I,J)
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J=z

CALL RNGA
CALL DERIV(TSX(l,J) SO)
DELT=(vM-x(M9J))/D(M)
IF (ABS(DELT) .GE.l,Oli-4) GO TO lo
X(MSJ)=VM
RETURN
ENr)

sUHROUIINE ADAMS
c INTlibRATE ONE STEP RY THE ADAMS PREnIcToR-CORRECTOR METHOD

CUMMON/HLKl/N,T,TF,H,HO,HpoM,VM$J,ACCOL6,RELTsToABSTsT,FACToRO
ltlNn,x(3n95) ?F(30*5)$E(30) 9~p(30)

Jz5
CALL DERIV(T*X(l,4) ~F(lo4))
nO 10 IxIsN

10 Xp(Il=X( IS4)+0.041666667*H* (55*O*F (I,*)-5?.0*F(I~3)
1+37.0*F (I,2)-9.O*F(lrl))

TxT+~
CALL DERIV(TSXP?F (1,5))
00 2fI Ixl~N

20 x( Is5)=x( 194) +0.041666667*H* (9.0*F(I,5) +1Y.0*F(I$4)
1-5.0*F (Is3)+F(Ic2))

RETURN
EN()

sUBROUTINE 00URLE (IRETRN)
c CAN INTERVAL FrE DOURLE()

REAL LH
coMMoN/RLKl/N9T9TF9H*HooHp9M,vMsJ,Acc9LBoRELTsT9A~sTsT9FAcToR9

lBNr)9x(30,5) 9F(30,5),E(30) 9XP(30)
cuMMoN/HLK5/IDoupL,Nr)ouBL
IDoUBL=TOOU13L+1
IF (ItiouiiL.LT.NIIOiIBL) GO TO 99

c ALLOWS DOURLE ATTEMPT ONLY EVERY NDouBL/TH CALL
IDOU13L=0

10

20

30

99

DO 10 1=1*N
IF (E(I) .GT.LB) GO TO 99
CONTINUE
~l=Hp/(2.o*H)

IF(D1.LE.2.0) GO TO 99
D2=(13No-T)/(2.~*~)
IF(D2.LE02.0) GO TO 99
DO 20 IB1,N
X(ISI)=X(1Q4)
Hu=2.o%l
H=2.O*HO
FORMAT(18H STEP INcREASED TO F12.r3, 6H AT T= F1z08)
WRITE(9*30)H09T
IRFTI?N=?
RETURN
IRFTRN=l
RETURN
END

sUBROUTINE OERIV(T9VSFO)
OIMENSION V(30)OF0(30)
COMPLEX uBAoUFE!UEAsUFBOUFA~U~8
COMPLEX XMM~XMMP,RRvFfRP~VVVVVP
CUMMON/BLK3/XMMvXMMP@RRvURP~VV+VVP~GAMMA2#WAB~WAEeWAf@WBEwWBFgWEF~

t’
.

141FREQ1*WFREQ2
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coMMoN/RLK711DERIv
IDERIV=ICJERIV*l
FOFT1=COSIWFREQ1*T)

c REPLAcE FOFT1 BY FOFTl@(DESIRED SLOW FUNCTION OF TIME) TO MODULATE
C RR~RRPvMMvMt4P

FoFT2=cr)s (wFREQ2*T)
c IF FREQ2=0.o IS ONLY CASE OF INTEREsT SET FO~T2=l.O To sAvE cOMpuTER
C TIME
c REPLACE FOFT2 BY FOFT2*(DESIRED SLOW FUNCTION OF TIME) TO MODULATE
c VV$VVP

UR=-SIN(WAE*T)
uIz-COS(WAE*T)
UEA=RR*FOFTl*CMPLX(URoLJI )
uR=-SIN(W13E*T)
UI=-COS(WBE*T)
uER=VV*FoFT2*cMPLX (IJR.IJI)

101

200

201

uEAR=REAL(UEA) -
uEFJR=REhL(UEa)
uEAI=AIMAG(UEA)
uERI=AIMAG(UEB)
FD(l)=-(lEAR*V (5)-UEAI*V[6)
FU(2)=UEAI*V (5)-IlEAR*V(61
FD(3) =-UEBR*V(5)-UEB1*V (6)
FlJ(4)=uF.RI*V(5) -lJEBR*V(6)
FD(5)UUEAR*V (1)-llEAI*V (2)+UERR*V (3)-UEBI*V(4) -(3AMMA2*V(5)
FD(6)=UEAI*V(I) +uEAR*v (2J+UE131*V(3) +IJEBR*V (41-GAMMA2*V(61
FD(7)=-GAMMA2*v (7)
FO(8)=-GAMMA2*V (R)
IF (CABS(RRP).NE,o.0) GO TO 101
IF(CABS(VVP) .NE.n.o) GO ~0 101
Go TO 200
uR=-SIN(WBF*T)
UI=-COS(W13F*T)
uFB=ffRP*FOFTl*CMPLX (UR~UI )
UR=-SIN(WAF*T)
UI=-COS(WAF*T)
uFA=VVP*FOFT2*CMPLX (UR?UI )
uFRR=REAL(UFFJ)
uFAR=REPL(UFA)
uFFII=AIMAG(UFB)
uFAI=AIMAG(UFA)
FD(l)=Fc)(l) -UFAR*V(7)-UFAI*v (8)
FD(2)=Fn (2) +uFAI*V(7)-uFAR*V (8)
FD(3)=F@ (3)-uFBR*v (71-uFt31@v (~)
FU(4)SFD (4) OUFFJIOV (7J-(JFBR*V (B)
FL)(71=F0 (7) *UFAR*V(11-UFAI~V (2) +I!FBR*V( 3)-UFBI*V(4)
FU(8)=FD(8) +UFAI*V(I)+UFAR*V (2) +uF810V (3)*UFBR*V(6)
~F(CABs(XMM) .NE.n.0) GO TO 201
IF(CABs(XMMP) .NE.O.n) GO TO 201
GO TO 300
uK=-SIN(WA13*T)
UI=-C(JS(WAB*T)
uHA=XMMSFOFTl*cMPLX (uR,UI )
uR=-sIN(wEF*T)
LII=- COS(WEF*T)
uFE=XMMP*FOFTl*CMPLX (LJR!uI)
u8AI?=REAL(UBA)
UFER=REAL(UFE)
uBAI=AIMAG(U8A)
u~Ex=AIMAG(UFE)
FD(l)nFr)(l) -uBAR*v(31-uBAI*v (4)
FD(2)=FD(2) +uBA10v(3)-uBAR*v (4)
Fo(3)=Fo (3) *uBAR*v(l)-uBAI~v (2)
Fo(4)=Fr)(4) +uBAI*v(])*LJBAR*v (2)
FI)(5)=FD( 5)- UFER*V(7)-UFE19V (8)
FD(b)=Fr) (6) +UFEI*V(7)-UFER~V (8)
FL)(7) =FD(7)*uFER*v (51-uFEI:V (6)
FO(8)=FI)(8) +UFEI*V(5)*UFER*V (6)
RETURN300
END



SUHROUTTNE PRINT(TSVI
DIMENSION v(30)
CoMMON ARL(3s100,5) 9BRL(3S10O s5),cRL [3s100t5)QDRL(30 1OOO5)$

lAiM(3s 100S5)~BIM 13.IOOQ5) ,CIM(30100t5) ODIM(3,100~5) ,ICASE~IFREQ.
2ITIME,TTME(1OO)

C0i4M0N/flLKl/N;toTFcHOH0 ~HP~M,VMoJ,Acc$LBtRELTsT~ ARSTST,FACTORO
lBNDoX(3fI*5) SF(30,5),E(30) ,xP(30)- -

coMMoN/BLK7/IoERIv

10
11

ITIME=ITIME+l -
FITIME=YTIME
TIME (ITIME)=FITIME*HP
wRITE(9,10) ICASESITIME* IFREQQIOERIV
FORMAT(6H ICASE 14,6H ITIMli 14.6H IFREQ 14,13H DERIV cYcLES I1o)
FORMAT(9F12.6)
WRITE (9,11)TS(V(I)SI=1 *8)
ARL(ICASE* ITIMEOIFREQ)=V [1)
AIM(ICASE! ITIMECIFREQ) =v(~)
BRL(ICASE?ITIMES IFREU)=V (3)
BIM(ICASESI TIME,IFREO)=V (4)
cR1. (ICASE~ITIMES IFREiJ)=V (5)
cIM(ICASEo I~IME91FREQ)=V (6)
nRL(ICASE* ITIMESIFREU)=V (7)
OIM(ICASEJITIME~ IFRE(J)=V (8)
RETURN
END

sUFIROUTTNE 13REIT(XI,FFFoXMsGJoGI.OELWsBGAySS,W sXGAUSS9EPS1)

IsGN=FFF
FsIsGN
!jGN=(F*~.o-l.o)*(oELw/2.o)
GJ1=GJ*o.00229* (GJ-I. O)
FpS=l.O/(GJl*183601/GI-l ,0)
XGAUSS=GJl*9S2732*FlGAUSS/ (6.6.25*nELw* (1.o*EPS))
EPSl=EPS*[~ELti*XGAUSS
w=-oELw/(4.o*xI+?.o)+EPsl*xM
R=?.0*XM/(XI+0.5)
IF(ti+l.o)I,IQ2
IF(XGAUSS-1*O)203S3
SGN=-SGN
w=w+sGN*sQRT (1.O+B*XGAuSS+XGAUSS*XGAIISS)
IF(GJ.GE.1.0) RETURN
13ELTA=ABS(W)*4.OWBGAUSS/ (9cO*5214,0)
w=w-oELTA
RETURN
ENQ

●☛

●
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