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THEORY OF A RADIO-FREQUENCY "SPIN FILTER" FOR A

METASTABLE HYDROGEN, DEUTERIUM, OR TRITIUM ATOMIC BEAM

by

Gerald G. Ohlsen and Joseph L. McKibben

ABSTRACT

Techniques for selection of metastable hydrogen, deuterium,
or tritium atoms with a particular nuclear spin polarization

are discussed.

The emphasis is on the "three-level interaction"

technique, which promises to be the most versatile and satis-

factory of those available.

1. INTRODUCTION

In connection with the development of the Los Ala-
mos Scientific Laboratory "metastable hydrogen"
polarized ion source, calculations about possible
nuclear spin selection techniques have been made.
The discussion of these calculations, which have
been partially reported,l’2 comprises the main part
of this report. However, for orientation purposes,
the basic operating scheme for the LASL polarized
ion source is reviewed. The discussion in this sec-
tion is in terms of protons, although the scheme

works as well for deuterons or for tritons.

A beam of protons is extracted from a duoplasmatron
and ‘tRen decelerated to a velocity (~ 3 x 107 em/
sec) corresponding to 500 eV. Additional electrons
are injected to space-charge neutralize the beam,
vhich is then passed through a curtain of cesium
vapor. Collisions in the cesium convert & large

number of protons into H2S atoms,3 together with
ground-state atoms, and positive and negative ions.
The beam then enters a longitudinal magnetic field
of about 500 to 600 G. A transverse "clearing"
electric field separates the charged particles from
the neutral atoms (H2S and Hls). The neutral atoms
then pass through a radio-frequency transition re-
glon where the H2S atoms possessing any but the de-

sired nuclear spin magnetic quantum number are

quenched to the ground state while a large fraction
of the atoms with the selected oy remain in the H2S
This mixture of ~100% polarized 1% ana

essentially unpolarized* Hls

state.
atoms is then passed
through an argon exchange cell, where, at this par-
+A+u +at

occurs with a probability very much larger than does

ticular velocity, the reaction H2S

the corresponding ground-state reaction.h

One interesting point is thatlthe LASL nuclear spin
selection method selects rather than rejects a par-
ticular nuclear spin state. Thus, a deuteron beam
corresponding to a pure m, = 1, 0, or -1 state may
be obtained with a single radio-frequency selection
device. The selecfion device, which employs
perpendicular radio-frequency and static electric
fields, behaves as a filter which allows only those
metastable atoms with a specific nuclear spin quan-
tum number (mI) to pass through without being
quenched to the ground state. This device is here-

inafter referred to as a "srin filter."

The theoretical upper limit for transmission of the
desired nuclear spin state through the spin filter
is 1/2. Thus, for deuterons, at least 5/6 of the

*#The portion of the Hls
which arises from decay of H2S atoms in the rf re-

produced background current

gion is in fact partially polarized in the opposite

gsense.




incident metastable beam will be quenched, while for
protons or tritons at least 3/4 of the incident
metastable beam will be quenched. In addition, the
incident atomic beam will have a large (perhaps 80
or 90%) ground-state component.

The degree of selection achieved in the argon ex-

change reaction depends on the ratic of the H2S +

A+H + A+ reaction cross section (denoted by 023)

to the H5 + A » 1™ + a* reaction cross section (de-

lS). This ratio is not accurately known

noted by ¢
at present. The quantity which can be readily mea-
sured is the quenching ration Q; that is, the ratio
of the negative ion yield obtained through a cesium
exchange reaction followed by an argon exchange re—
action without and with the application of inter-
vening fields sufficient to quench the entire meta-
stable component of the beam. This ratio can be
expressed in terms of the fraction of the atomic

beam in the metastable state, f, as follows:

Q= (1-1) + £(c®®/0™).
The quenching ratio is related to the resulting nu-
clear spin state purity (p) by

p=1-54/Qn
for protons and tritons, and by
p=1-6/Qn

for deuterons, where n is the efficiency of the spin
filter. That is, n = 1 if the theoretical upper
limit of 1/2 for transmission is reached. The re-
lationship between p and the beam polerization para-
meters is given below.

Spin 1/2 Particles

I P
1/2 P
-1/2 -p

Spin 1 Particles

il z 2z
1 P P
0 0 -2p

-1 -p P

In the above P = N(1/2) - N(-1/2), P = N(1) -
N(-1), and P, N(1) + N(-1) - 2N(0), where N(mI)
is the fraction of the beam particles with quantum

number m.

A measured value of Q = 90 was reported in Reference

" 4. This corresponds, for n = 0.8 (about the value

expected), to a spin state purity corresponding to
91.7% for deuterons and 9%.5% for protons and tri-
tons. However, preliminary data obtained at LASL
suggest that this value may be high by a factor of
~2. For intense beams, the achievable Q seems to
be further reduced to about 30. If these prelimi-
nary indications are correct, a spin state purity of
about 83% for protons and tritons, and 75% for deu-
terons, would be expected.

2. ENERGY LEVELS OF THE HYDROGEN ATOM

We begin by reviewing briefly some facts about the
n = 2 energy levels of the hydrogen atom. Figure 1
shows the n = 2 energy levels in a weak external
magnetic field. At zero magnetic field, the energy
difference between the n = 2 and n = 1 states is

13.6(lé - l-2)ev = 10.15 eV. The 231/2 - 2P
1 2

level spacing (the Lemb shift) correspords to about
1059 MHz while the 2P3/2 - 2P1/2 level separation

1/2

corresponds to about 10,968 MHz. In a weak magnetic
field, the 2P3/2 states are split into four magnetic
substates and the 2P1/2 and 251/2 levels each split

into two magnetic substates. The 2P substates

3/2
are usually referred to as a (for m; = 3/2), b (for

Ll T

ne2 ENERGY LEVELS OF
THE HYDROGEN ATOM

nJ-Sl!
2P, [J
(V2 3 - n.-llt
<s~_"::::i::::::::::::::::::::.,4n
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I _!
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FIELD  (GAUSS)

Fig. 1. The n = 2 levels of the hydrogen atom in a
weak magnetic field$ nuclear hyperfine structure is
neglected.
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Fig. 2. The 28

1/2
atom vs magnetic field with nuclear hyperfine struc-
ture included. The diagram for tritium atoms is
nearly identical.

= -1/2), and 4 (for my = -3/2).

states are referred to as e

m; = 1/2), ¢ {for ny
Similarly, the 2P1/2

(for my = 1/2) and f (for m; = -1/2); the 28

states are referred to as a (for m
= -1/2).

1/2

5= 1/2) and 8

(for m,
As shown in Figs. 2 and 3 for the 2Sl/2 and 2P1/2
levels, which are the ones of primary interest here,
the nuclear hyperfine interaction further modifies
the energies. In sufficiently large magnetic fields,
each magnetic substate, for hydrogen or tritium

atoms, is split into two nuclear magnetic substates.

20 v T T T ¥ v T T T

1500 ' !

(MHz)
[4.]
3

[]

Blmge)

FREQUENCY
i
3
o

~ o (THREE LINES) m*i,0.1

-1500 f (THREE LINES) ml'-I.O.I

"200% 100 200 300 400 500 600 700 800 900
FIELD (GAUSS)

Fig. 3. 1/2 and 2P1/2

atom vs magnetic field with nuclear hyperfine struc-

ture included. The order of the e and f levels is

The 2S5 levels of the deuterium

the same as the order of the a and 8 levels, respec- -

tively.

That is, there is a substate corresponding to each
of the allowed nuclear magnetic quantum numbers
T = -1/2.

m; can have the value 1, O, or -1, each substate is

mI =1/2 or m For deuterium atoms, where
split into three nuclear magnetic substates. Note
that the order of the np substate energies is in-

verted when the electron spin m; value is negative.

The hyperfine energy level diagram for the 2Sl/2

states is described by the Breit-Rabi formula:

M M, ZBp . 2.1/2
W= 2(21+1)*_2(1'I+—15x+x) +eAWXmF’
where
X = B/Bl"

By = aW(1l + e)/(ggm ) ,

1836.ng
e=1Y(——— -1,
€1
8; = Lande g factor,
uo = Bohr magneton,

B = magnetic field,

AW = zero field hyperfine splitting,

&r = uI/I'= nuclear g factor, and

mF = mJ + mI.

The last term arises from the interaction of the
nuclear magnetic moment with the applied magnetic

field end is, for ordinary magnetic fields, very
small.

The Breit-Rabi formula is only approximate for the
2P1/2 levels since, for the field strengths of in-
terest here, J is only an approximately good quan-
tum number. An exact calculation requires the di-
agonaiization of the Hamiltonian including both
fine structure and hyperfine structure terms; in
the numerical results presented below we have only
applied a first order correction to the Breit-Rabi
formula by shifting the e and f lines downward by
an emount calculated from the solution to the fine
Referred to

the mean value of the multiplet, the correction 2

structure Zeeman splitting problem.

_ 4 B
is oW = - §w(521 c)' The values for the constants
associated with the cases of interest are tabulated
in Table I.




Table I
Parameters Characterizing the Hyperfine Structure of the n = 2 States
of Hydrogen, Deuterium, and Tritium Atoms

Nucleus State g5 gr AW(MHz) € B} (in G)
Proton 281/2 2.00229 5.585486 177.551 1.522 x 1073 63.1448 ”
Proton 2P /5 0.66589 5.585486 59.190 45.589 x 1073 63.796
Deuteron 25, ,,  2.00229 0.857407 40.924 0.233 x 1073 14,605
Deuteron 2P, , 0.66589 0.857407 13.6% 0.702 x 1073 14,644
Triton 28, 2.00229 5.957680 189.588 1.623 x 1073 67.755
Triton 2P /o 0.66589 5.957680 63.200 5.897 x 1073 68.138

In the numerical tabulations of the energy levels
(Tables II-VII), all energies are expressed in
equivalent frequency units (MHz) and are referred
to the centroid of the 281/2 zero field multizl;t.
The latest published values of the Lamb shift ’
have been used in this calculation (1058.05 MHz for
H atoms and 1059.34 MHz for D atoms). A value of
1058.05 MHz has been used for T atoms.

The states are labeled by their strong field quan-
tum numbers. Note that, for sufficiently high
fields, the frequency separation for states whose

{ Vvalues differ by 1 unit is AW/2 for spin 1/2
particles and AW/3 for spin 1 particles. Note also
that the magnitude of the field Bl’ which is cus-
tomarily thought of as the field value which de-

fines the weak and strong field regions, is much

m.

smaller here than is the case for ground-state

atoms.

3. SELECTION RULES

The angular momenta involved in the complete de-
scription of a one-electron atomic state are the
orbital angular momentum I; the spin angular mo-
mentum ;; and the nuclear spin angular momentum f.
In a very strong magnetic field (i.e. in the
Paschen-Back region, which is -105 G or greater
for n = 2 hydrogen atoms) the quantities I, ;, and
4 are completely decoupled. Thus, trensitions may
be induced which involve only one of the pairs of

Quentum numbers L,mz; 8,m,; or I,mI. In weaker

8

fields where'fand ; couple to form 3 (usually known
as the strong field region, which is in the range
—4102—10h G for n = 2 hydrogen atoms), transitions
can be induced which involve either J,mJ or I,mI.
Finally, for very week fields, 3 and 4 couple to
form %, and trensitions will involve changes in
F,mF.

is always constant in atomic physics.

For a one-electron atom, s is a constant; I

We are concerned here only with the lowest order
transitions; i.e., with electric and magnetic di-

pole trensitions.

a. Electric Dipole Selection Rules

The electric dipole operator is e(% - ;), vhere e
is the electronic charge, f is an applied (possibly
oscillating) electric field, and k4 is the electron-
nucleus radius vector. Since this operator is odd,
it can have nonzero matrix elements only between
states of opposite parity; i.e., Af must be odd.
Further, if one expands the operator into spherical
components, it can be shown (Section 6) that At =

t]1 is required.

For very
AL = 213

strong field; then, the selection rule is
Amz = 0, 1 and AmI = Ams = 0, since this

does not affect the spin functions. For
strong fields we have AJ = 0, %1, AmJ = 0, *¥] and
AmI = 0. For weak fields, we have AF = 0, :1; Am
= 0, %],

operator

F .
If Am = 0, vhere m represents whichever

quantity is appropriate among mp, m,, W, Wy, OF

-] J
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«1n71eal
=1n080,RA
=1090.34
«1n99,26
-1‘09040
=-1118,98
=112R,59
«1138,23
=1147,an
-1‘57.6]
'1167.19
1177612
=]11R6.92
=1196¢75
«1206¢52
=1216¢51)
=2]22hebb
=]123R440
=]1246439
=1756442
-1?66043
=1276,56
=1286,KR
=179A R4
=1307,02
«1317,24
«1327.,48
=1337,76
=1348,0n8
«1358,42
=136R«RN
«1379,20
«1389,44
=1400412
«l&lnN,nr?
=1421,158%
=1431.72
=1442.32
«1452,98
=1463.62
=147443]
=14854.04
=1495.80
150659
=1517¢41
=152R+26
-1539.15
«1550¢07

MI=n,5
~1102,44
-1103,94%
-‘107.95
=-1113,76
«1120,74
~1128,47
=1136,A9
-11‘5.’q
=1154,05%
-1163003
=1172,15
-1181,38
-1190.71
=1200412
=1209.60
"?19.15
=1228.75
-‘238041
=17248412
-‘257QQ7
-‘267.67
=1277.51
=1287.39
-1297.12
«1307,78
~1317.28
=1327,32
=1337,40
=1347,81
=1357,A5
=1367,R4
=1378,n6
=1388,131
=1398,60
=14608,92
«~1419,27
~1429,66
=1440,0R
-14SOOQ‘
=1461,0n3
~1471,85
=14R2,11
~1492.,70
=1503.32
=1513,98
=1524.66
"535.18
=1546.14
-‘556.Q2
=156T7.74
=1578,%89




GAUSS

0.0
2060
4040
6040
ANe0

1000
170.0
14040
16060
1R0e0
20040
220,0
240,0
26040
280,0
30040
32040
34040
36040
3RNe0
40040
42060
44060
46040
4R0e0
500,90
S20,0
540,0
$60,0
SR0,0
600,0
620,0
640,0
660,0
AROD N
700,90
T7720,0
T40e0
T60e0
7R0.0
8000
82040
840Ne0
BANN
8RNeN
9000
95040
94060
96040
9R0.0
100060

X

0enNO
14369
24739
4¢108
Se477
6eR4T
Re216
Q45R6
10955
12¢324
13¢A/94%
15063
166432
17«RN2
19171
20541
21910
23279
240649
264018
?743R7
PReTR7
300126
310496
32 +RAS
34,27
I5.604
36,973
IRL342
39,712
41,0R1
424451
43,R20
45,1R9
46,589
47,928
49,297
B0eRAT
52e¢036
934405
K4¢775
R6e144
57514
SR« RR3
ADe252
614622
620991
h4e3RAQ
65730
674099
68e4A9

TABILE Iv

NEUTERIUM ATOM 2S

ALPHA STATES

MT=]
13,64
41,68
69,72
97,76

125,80
153,84
181,88
209,92
237,96
266,00
294,04
322.08
350,12
378,16
406,20
436,24
462,28
490,32
S1R,36
546,4(
5T4,44
602.47
630,51
658,55
686,59
714,63
742,67
770,71
798,75
826,79
854,83
882,87
91n,91
938,95
966,99
995,93
1023,07
1051,.11
1079.15
1107.19
1135,.,23
1163.27
1191.31
1219,35
1247,39
1275.43
1303.47
1331.51
1359,55
1387,59
1415463

M1=(n
13.64
13,01
GR,9%
Réeln

113.6A
141439
169,22
197.1n
225,02
252496
2RN.91
INR.BA
336,86
3A4,88
392,84
470,81
448,83
476,84
Sn6.84
532.85
5An.86
SRR .87
616,88
6‘4.90
677.9
700,93
T72R,95
756,96
784,98
813,00
841,02
849,04
R97,06
925 ,0R
953,1n
9r1,12
1009,14
1037.16
1065.,19
1093,21
1171.23
1149,.25
1177.28
1205430
1233.32
1261434
1289.37
131739
1345442
1373644
1401446

MT=al

13em4

2184

46403

T2.77
10017
127482
155459
183643
?2l11.32
?3Q.24
’67.]7
2985412
323.0n9
351.06
379.03
407601
43500
462,99
490698
S1R.97
G46497
S74496
AD2e96
A3ne96
6SB.96A
ABA,Q7
714,97
742,97
TTn.98
798,98
A26,99
R54,99
RB3,00
939,n2
967,02
995 ,n3
1n023en4
1051 ¢n8
107906
1107 en7
113%.n8
116309
1191410
1219.11
1767412
1275413
1303014
133115
1359.16
1387417

STATES

BETA STATES

Mls=]l
13,64
~14,40
-42.‘4
-700A“
~-98,5?
-126,56
=154,60
-1g2.6a
-210068
-238,72
=266,76
=294 ,R0
-322.R3
-3500“7
-378091
406,95
-“3“099
=463,03
=491 4n7
=519,11
=547,15
=575.19
~h03,23
=631,27
'65901‘
«=6AT7,35
-715,19
-743,43
«TT1,47
~799,51
-827,55
-855,59
«-883,63
911,47
~939,71
-967,75
~995,79
=1023.R3
=10514R7
=1n079,91
-1107095
=1135.,99
=1164.03
=1192.n7
=1220.11
-‘2‘8.“
-1276.18
~1304.72
=1332.76
=1360430
-1388.1‘

MIxn
=2Te2R
=35449
«59.70
=86¢45

=113.8R6
=141.52
=169.+31
197417
=225e07
=25300
~280¢95
=308¢91
=336A+R8
36487
=392.86
=420 RS
=448 .85
=4The85
504485
«532.86
=560n0.87
«58R«RA
=61A89
=644490
672692
«T70N0e93
«T728,95%
-756,97
=784 ,98
=R13,00
=841.02
«B69,04
«R97,06
=925,n8
=953,10
«-981,12
«1009.14
-‘037.17
=106%.19
=1093.21
»1121+23
=1149425
=1177.28
»1205¢30
123332
=1261+135
128937
=1317+39
«1345e42
«1373¢44
=1401046

MI=]
27,28
-66.64
-72.56
-99071

12725
=184,97
'19?.78
=210465
=23A,55
=2h6.48
=294 047
«322+3R
=380,35
-37ﬂ.32
-‘06.30
=44 4,28
=462.27
490,26
-518.25
546424
«574424
=602+24
=-63Ne24
=6R3R .24
-6R6424
=T7164,24
«T42,25%
«770,25
«T9R,26
=826,26
=8654,27
=8R2,27
«910,28
=918 ,29
=964 ,30
=994 ,30
-1022,31
=105n0¢32
=1078.33
w11nhe34
=1134435
=]11h7436
«1190437
=121R«3R
-1246¢39
1276440
=13n024¢41
=133ne42
«135R.43
=13Rheb4
=1414445

11
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GAUSS

De0
200
4040
6040
R0.0

1000
127060
14040
160,0
1R0,0
200,0
220,0
240,0
260,0
2R0,0
3n0,0
320,0
340,0
360,0
380,0
400,0
420,0
440,0
460,0
4A80,0
S00,0
520,0
540,0
560,0
580,0
600,0
62040
640,0
660,0
68040
70040
T20e0
T40e0
760,0
TR0,0
8n0,0
820.0
840,0
86040
8R0.0
9000
92040
94040
960.0
980,0
1000,0

X

0000

1¢366
2731
&en97
Se46k3
6.829
8.194
9.8A0
10,926
12,292
13,657
15,023
16,389
17,755
19,1720
20,486
21,882
23,717
24 ,5R3
25,949
27.315
28,6R0
30,046
31,412
32,778
34,143
35,509
36,R7S
3R,241
9,606
40,972
42,338
43,703
45,069
464435
4T«Rn1
494166
50¢532
51.898
53,264
54,629
55,995
57.361
580727
60en92
616458
62.R24
644189
£54555
66,921
68,287

DEUTFQI)

TaBILE V

M ATOM 2p

ALPHA STATES

MI=1
-1054.79
=1045,48
=1036420
1026496
=1017.,74
=100R.56

«999,41
990,29
-981,20
972,15
963,12
«954,13
«945,17
=936,24
«927,35
=918,48
«=909,65
«=900,85
-892,08
-R83,34
874,64
«-865 96
«857,32
«B4R ,T1
840,13
«831,58
-823,07
-814,59
=806,14
«797,72
«-789,33
780,97
«772,65
764,36
=756,10
-747.87
«T739,67
=731,.51
-723.38
=-715,28
-707,21
=699,17
691,16
-683,19
=-675,25
'667.34
659,46
=651,61
=643,80
«636,02
628,27

MI=n
=]1084,79
«1n4R 37
-1039080
=1030.85
=1021.79
=1012.72
-1003.64

994,57
=9R5,53
«976,50
967,51
«95R,54
949,60
=940 ,69
-931,81
-927,96
=914,14
905,35
«=896,60
-BRT7,87
«R79,17
-870,51
-A61,88
-8%3,27
-844,70
-R36.17
-377.66
-819,18
=R10,74
-8n2,33
«793,95%
=TR5,60
«T77,2%
=TAR 99
=TA0s T4
=752.,52
=T44,33
'716.17
=728,04
«719,94
-711,88
-703.85
«695,85
-6R7,88
-679096
~6T72403
=664.16
=656,37
=648,51
640,73
-632,98

MiZal
»1n054.79
=1052¢10
»1n44410
»1035.29
=1026.30
=1017.25
=-1008+18

099,13
=990,10
«981,08
=972.09
«963,13
=954 ,20
«945,30
-°36.‘2
-927. "38
=918,76
~309,98
-901,23
«-R92,51
-R83,R1
=A75,164
=R6K(,53
«RS97,93
«=R49 ,6
=RB40,R3
=R32,33
=R23,R6
-nlso‘?
-807.01
798,63
790,29
«7R1,97
«773.A9
=T765444
=75Te22
=749.n3
746088
-732.76
=724 ,A6
=716,A0
«708,87
=700.%8
~692461
=684 .48
“6T76e¢7R
=668,+9
66107
=653e26
=H45 ,48
=637,74

STATES

RETA STATES

Mzl
=1054,79
“*1n064,14
=1073.51
=1082,92
=1092,35
=1101.R2
=1111,32
=1120,R6
=1)30,42
=1140,02
=1149,65%
=1159,91
-1169,00
~1178.72
w]118R, 4R
=1198,27
-1208,0n9
=1217,94
-1227,82
-1237,73
~1247,68
-1257,66
~1267,67
-1277,71
-1287,79
-1297,89
-1308,03
-1318,20
-1328,40
=1338,A3
=1348,90
«1359,20
~1369 .53
-1379,R9
=1390,78
=1400,70
~1411,16
~1421,.,45
=1432.17
1442 .77
-1453,30
-1463,92
-1476,56
-1485.?4
-1‘95095
=1506¢69
=1517.47
=1528,27
'1539.11
~1549 98
=1560,A8

MI=0
=106R¢43
=1071¢1R
=1079.27
=108R«24
1097447
=1106+81
=1116427
=1125470
=1135.,21
«1144.77
«1154.37
«1164,00
«1173,67
«1183,37
«1193.11
«1202.88
«1212.69
=12224.52
«1237,39
1242479
«1252.,73
=1262,20
=12772.20
-1282,23
=1292.29
«1302639
«1312.51
«1322.67
=1332.R7
®]1343.09
«1353.34
«1363.63
«=1373.95
=1384,30
=13944¢69
=1405410
14154585
=1426¢03
=143654
-1447,08
«1457,66
-1468,26
=1478,90
=1489.87
150028
=1511+01
=152)77
=1532+57
=1543¢40
=«1554,26
«1565,16

MI=]
«]10AR«&3
=1074.89
=10R3.55
=2]1092.66
«~11n1.93
=1111.29
1172071
-1130,1A
=-1139,70
«1169,26
=1158,85
«1168,48
-1178,14
«11R7,84
-1107,57
«1207,34
-1217,14
-1226,97
-1236,83
-1246,73
-1256,66
«-1266A,62
«1276,61
=12R6,64
«1296,69
=1306,78
=131A,91
«1327,06
«1337,24
«1347,46
-1367,71
=13A7,99
«1378,30
«13RR 68
«1399,03
=14n9.43
-1419088
-]‘30035
-1“0085
-1451,39
~1461,96
«1472,55
-14R83,19
-1493.8q
=15n4¢54
=151%5.27
=1526.03
'1536.82
=1547.64
-1558,50
-154/9,38




GAUSS
NeN
2060
4000
6060
AR0.0
1000
1200
14040
16040
1R040
20060
22040
24040
26040
28040
30060
3200
34040
3600
3R0.0
40060
4200
44060
4ANeN
4R0en
SN0,
520,0
540,0
560,0
SR0,.0
600,0
620,0
640,0
66060
6R0e0N
Tnne0
72040
T40e0
7600
TRO0
80040
R20.0
84040
860.0
BRN.0
9n0e0
92040
94060
960.0
94040
10000

TABLE VI

TRYTIUM ATOM 25 STATES

X

NeNO
¢ 795
¢8990
s RR6

14181

16476

1771

2e0AK

24361

2¢ART

20952

3247

3e542

3eR37

40133

44428

40723

Sen18

Se¢313

SeA08

S5e904

6.]99

Aot 94

6e7R9

7.0“4

Te379

T.675

T.970

B,?AS

Re«5A0

A,R85

9,151

9,446

S9e741

10036
10331
106726
106922
11217
11512
11¢Rn7
12102
12398
12¢A93
124988
13¢2R3
13578
13.R73
14¢1A9
14¢464
14789

ALPHA STATFS

MIan,S
47,40
75,47

103,54

131.61

159,69

187,76

215,83

243,90

271,97

300,05

32R,12

356,19

384,26

412,33

440,61

468,48

496,55

524,62

552,69

580,77

608,84

636,91

664,98

693,05

721.13

744,20

777,27

805,34

833,41

861,49

889,56

917,63

945,70

973,77

1001.85
1029,.,92
1057,.99
1086,.n6
1114,13
1142.21
1170.78
1198,35
1226,42
1254449
1282,57
131n,64
1338,71
1366,78
1394,85
1422.93
1451400

MIa=n.§
4760
R1.64
62.6R
79,22
99,28

121.60
165060
170420
1°§.7ﬂ
221468
248,046
274,66
30].50
378,51
355,65
3R2.89
410423
437.64
465411
40?.63
520.20
547.8)
STS 445
603,11
63048
651,53
6R6K,26
741,79
769,58
797,37
425,18
853,01
BAN,84
Q9nB,67
936,57
964 43R
992.24

1020611

104798

1075.84

1103.74

1131.63

1159.52

11R7.42

1215.32

1243.22

127113

1299,04

1376498

1354.87

BETA STATES

Mrs=0,5
4740
19,32
-8.7q

=3hR2
=644R9
924964
=121 04
=149,.11
=177.18
=205425%
=?233.32
=261.40
-?8Q047
=317.54
=345.61)
=373.48
=401476
=429.83

-657090

485,97

*S14.04

=542412

=]7ne¢19
=598476
=h26433

-65¢.40

=AB2 ,4R

«710,85

=738 ,A2

=T7hhk A9

794,76

-822 ] R4

«A50,91

=RTALQR

=9n7.0%
=935.12

963,20

=Q91427

=1n19¢34
104764
=1nT7Se4R
=110356
«11314A3
-1159070
«11B7+77
=1?715.R4
=1243.,92
=127199
=1300e06
=1329.13
=1356420

MI=n,%
-]“2.i9
=146,23
«157,4R
~174,0n2
=194,.n7
=216,29
240420
'265.00
«290,49
=316,48
~342,R3
=369,46
'396.10
«623,30
-“50.5‘
=477,69
=505.n2
=532.,47
-559090
-587.52
-61a.99
642440
-670.?4
.697.9‘
-725.60
-753,32
«781,0n6
-R08,R1
-R36,58
«864,37
=892 ,17
~919,98
947,80
=975.43

=1003.,47
=1031.32
"059.‘7
=1087,0n3
=1114.90
=1142,77
=1170.65
=1198,54
~1226,42
=1254.3?
=12R2,.,21
=1310,11
=1338,0n2
=1365,91
=1393,R4
=1421,.,75%
~1469,66

13




1%

GAUSS
00
200
4040
6040
8040
10060
170.0
140,0
160,0
18040
20040
22040
24040
26040
28040
30060
32040
34040
36040
380.0
4000
42040
44000
46060
4“0.0
SN0.0
52040
54040
SA0«N
58040
60040
62040
66040
66040
6RO 0
T00e0
72040
T4040
76040
TR0.0
800.,0
820,0
840,0
86040
880,0
900.0
920,0
940,0
960.0
SR0,0
100040

TABLF VIl

TRITIUM ATnM 2P STATES

X
04000
0294
«587
+RAR1
1e174
144668
1761
24085
24348
2¢642
24935
34229
3.522
34R16
44109
44403
40696
44990
Se2R3
Se877
SeRT1
64¢1h4
6¢458
6791
TenasS
Te338
Teh32
Te925
Re?219
B8e812
B.RO6
94099
94393
9.6R6
9.980
10273
10567
10¢R860
11.154
11,448
11.741
12.035
12,378
12.622
12.915
13,209
13,502
13,796
14,0nR9
14,383
14,676

ALPHA STATES

MI=0.5
«1042.25
=1032,.,93
~1023,.64
~1014,.38
=100%5.,15

=995,95
=986,79
=977,66
=968,56
=959,49
=950,45
=941,45
=932,48
=923,54
=914,63
=905,75
=896,91
-888,10
-879,32
=870.57
=861.85
=853,17
=844,51
-835,89
=827.30
-818.75
=R10.22
-801073
=793.27
~784,84
776,44
=T6R, 08
-759076
751,44
743,17
=734,93
726,73
=718,55
710,41
«702,30
~694,23
-686,18
-678.17
«-670,18
~662,23
~654,32
~646,43
-638,57
«-630,75
-622,96
=615,20

MIz=0eS
=1042.25
-1060095
=1037.28
-1011083
=1025.34
=101R.07
=1010,34
=10n2,3)

~994,08

=9R5,72
=977.26

-963075

=960.,1%9

=951,61
~943,02
~934,42
~925.82
91724
=30R,66
=9090.09
=891.5%
=8R3,02
~874,5]

'866.02

~A57.56A

=849,.,12

-340.71

=837.32

'323096

-815.62

~ﬁn7.31

«799,03

«790.7R

=TR2.56

774,36

-766.20

'75“.06

-749095

~741.87

-733,82

=725,80

-717.82

=-7n9,86

«701,93

=694,03

-686,16

~678,32

~670,52

-662,74

-655,00

647,28

BETA STATES

MTS-O.R
=1042425
=1051eA3
=1060.99
=107TNeéb1
=1n079.R6
«1089.35
=1n98.R6
=1108,41
=1117,.,99
2112760
«1137.24
-1‘“6001
=1156462
'1‘66.16
=1176+13
=1185,93
«1195.77
=1205443
=121557
=12254¢46
=1235e42
«1265.42
=1755444
=17265.80
=1275489
=1285.71
=]1295.27
=1306405
=131A.27
=1326¢52
=13364R80
1347411
1357646
=1367+R4
=137R+25
=138R.49
«]1399,16
=1409466
=14204¢20
=1430,77
=144 ,37
=1452.00
=1462,47
-1473.37
«1484,09
-1‘9‘.Rq
=1505,KA5
=1516,47
«1527,33
«183R,22
=1549,14

MI=n,5
«1105.45
=11n6,R7
=1110.67
=1116,25
«1123.03
=1130.58
~1138,66
-‘1‘7.11
=1155,R?2
-1164,72
-1173,78
=1182,.96
=1192,.,74
=1201.,62
=1211.06
=1220.58
-‘?300‘5
=1239,79
-1249.47
=1259.20
=1268,99
-1278,.8]
=1288,48
~1298,59
=1308.54
=1318,53
=~1328,55
-1338.62
-‘34ﬁ.72
~1358,86
=1369.03
=1379.724
'1389059
-1399,77
~1410.08
=1420443
=1430,R)
=1441.73
=1451,A8
=1462,16
=-1472,6A8
=1483,23
«1493,R81
=1504,43
=1515,08
-1525,76
-1536,48
-15‘7.?3
-1558.01
-1568 ,82
-1579,47




L the field required to induce the transition is
parallel to the quantization axis, while if Am = $]1,
it is perpendiculer to the quantization axis.

b. Magnetic Dipole Selection Kules

The magnetic dipole operator is of the form - K\ B
where B is usually an oscillating or rotating mag-
netic field, and where : may be an electronic or
nuclear magnetic moment. This operator can have
nonzero matrix elements only between states of the
seme parity. This means, at least for the present

case, AL = O.

For very strong fields we have AmI = 0, t1 and AL =
= = . = Ed = = =
Amz AmS 0; or Ams 0, *1 end A% Amz AmI
0. For intermediate fields we have AJ = 0, t1; AmJ
=0, *1 end AmI = 03 or AmI =0, t1 and AJ = AmJ =
0. For week fields we have AF = 0, #1, AmF = 0, *l.
Again the magnitude of Am determines, in the same
way as above, the parallel or perpendicular nature

of the field required to induce the transition.

Finally, we note that ¥ = 0 + F = 0 is absolutely

forbidden for one-quantum transitions.

4, DISCUSSION OF THE GENERAL SPIN STATE SELECTION
PROBLEM
A wide assortment of methods exists which might be
used to polarize a metastable hydrogen atomic beeam.
This is in contrast tc the problem of spin state
selection in an ordinary (ground state) hydrogen
atomic beam where only megnetic dipole transitions
between the various hyperfine components, or adia-
batic reduction of the magnetic field, may be con-

sidered.

It is believed that a "three-level interaction," in
which the applied fields may simuwltaneously cause
transitions among three levels, offers the best so-
lution to the selection problem. This technique,
which was first demonstrated and explained bty Lamb
and Retherford,5 and Lamb,8 is the method used in
the LASL ion source. However, we first consider
some of the various other possibilities by which a

polarized metastable atomic beam may be produced.

In a magnetic field of about 575 G the B and e states
become degenerate. If a small (a few V/cm) trans-
verse electric field is applied, the B-states are

coupled to the shart-lived e-states (the half-life

of the e-states is ~1.6 nsec) and decay rapidly.

Thus one can obtain a beam of o metastables. Such
a beam is analagous to the beam obtained in conven-
tional polarized ion sources after separation in a
quadrupole or sextupole field. That is, there is
100% electronic polarization but no nuclear polar-
ization. Such a beam could then be converted to a
partially polarized negative ion beam by adiabati-
cally reducing the magnetic field to near zero be-
fore the H2> + A » H + A" reaction is allowed to
occur. However, these particles have a relatively
high velocity (~3 x 107 cm/sec) and thus a long
and carefully designed decreasing B field region is
Drake and Krotkov,9
used this method, attributed the fact that they
obtained only ~2/3 of the theoretical polarization

to an inadequate length in their B field transition

probably needed. who first

region.

To obtain increased polarization, one must turn to a
We first

consider the use of a magnetic dipole transition

selective transition scheme of some sort.

between a particular o state and a particular B
state in exactly the fashion often used in conven-
ticnal polarized ion sources. One finds, rovever
(see Section 6), thal the electric dipole matrix
elements are of the order of 1l/a (=137) times
larger than the magnetic dipole matrix elements.
Even though a line through an rf cavity can be
found where B is maximum and E is zero, for practi-
cal beam sizes the average E field will be suffi-
ciently large to make the electric .dipole transi-
tion rate far exceed the magnetic dipole transition

rate.

We ask if these electric dipole transitions might
be directly employed for our purposes. For hydro-
gen or tritium atoms the ao-f frequency separation
for thg two oy values is approximately 120 MHz;
this is to be compared with the natural width of
100 MHz for the f (and e) levels. Thus one could
possibly obtain a reasonable’ polarization with such
a transverse electric field transition. However,
both the beam intensity and polarization depend
critically on the rf power level. For deuterium
atoms the corresponding frequency separation is on-
1y about 18 MHz, so for this case the method is in-
feasible. The corresponding a—e (longitudinal
electric field) transitions are separated by one-

half the corresponding a-f separation; thus these
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Fig. 4. Schematic diagram of the a-d crossing; the
numbers correspond to the AmF required for a tran-

sition between the two crossing states.

transitions would be even less favorable.

It has been demonstratedlo

that at the a-d crossing
(~ 2360 G) a static electric field may be used to
preferentially quench a single nuclear spin state.
For protons or tritons, only G(mI = -1/2) and

d(mI = 1/2) can be coupled by electric 8ipole radia-
tion. Since this transition violates the strong
field selection rules AmI =0, AmJ = 0, t1, it is
"first-order forbidden." However, the remaining
transitions involve AmF > 1 and, because they are in-
compatible with dipole radiation, are more highly
forbidden. Figure 4 illustrates this situation for
both spin 1/2 and spin 1 nuclei. It is seen that,
in the deuteron case, two transitions are compatible
with Amp = 1 (transverse electric field) and one
with Am_, = O (longitudinal electric field). Thus

one couid selectively quench one magnetic substate
for spin 1/2 systems and either one or two magnetic
substates for spin 1 systams. Since the transitions
here are first-order forbidden, relatively large
electric fields are needed and serious loss will oc-
It has been
that, for protons, one might obtein 50%

polarization with 25% o state survival.

cur through the c~f or a-e transitions.

estimatedlo

Another proposalll involves the use of a radio-
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frequency transition at zero magnetic field. The
281/2(F = 1) level may be coupled to the 2P1/2

(F = 0) level by longitudinal or transverse radia-
tion of the appropriate frequency. A small magnet-
ic field is permissible if both transverse and lon-
12 (F=
0) state is not appreciably quenched by coupling to
the 2P, (F = 1) state because the frequency dif-
ference is ar 236 MHz; the 281/2 (F =0) to 2P1/2
(F = 0) transition is strictly forbidden. Thus,
1/2 (F = 0) metastable
beam. If the field were then adiabatically in-

gitudinal radiations are present. The 28

one might obtain a pure 28

creased to & high value, the metastable beam would
have 100% nuclear and 100% electronic longitudinal
polarization. This scheme, however, is applicable

only to protons or tritons.

5. QUANTUM MECHANICAL FORMULATION OF THE FOUR-
LEVEL PROBLEM
We consider only the four-level system a, 8, e, and
f since the 2P3/2 levels are sufficiently distant
to have no significant effect on our problem. In
addition, since we are working in a strong magnetic
field, the nuclear magnetic quantum number oy is
conserved and we may therefore consider separately
each group of four atomic levels essociated with a

particular nuclear spin orientation.

For the amplitudes of the a, B, e, and f states, ve
use the notation a, b, c, and d. We use w (with or

without subscripts) to denote an angular frequency.

The Bchroedinger equation may be written:

Ny = ip 28
(H, +H')¢ = ih o=,

where Ho is a time-independent Hamiltonian whose
eigenfunctions satisfy the equation Houn = Enun.
If the exact wave function is written in the form

-iE t/f
=L an(t) ue ,

it is easy to show that the coefficienta an(t) must
satisfy the differential equations

imknt
iﬁék = I Hin ae ,

where

W = (Ek - En)/ﬁ s




and

Hkn =.fu§ H udr -

For the four-level case, these equations may be

written out explicitly as:

- iw Bt
iha ( 0 H e ©
af
. iwB t
inb H' e % 0
Ba
= iw t iw .t
ike H' e ©¢ H' e e
o ef
iw iw,, b
el fa 8
1 1
_1ﬁdJ Hfae Hrse

where the damping terms -iyc/2 and -iyd/2 have been
added to account for the decay of the e and f states.
Except for the damping terms, the above matrix is
Hermitien. The a-8 and e-f transitions may be in-
duced only by a transverse magnetic field; the a-f
and B-e transitions may be induced only by a trans-
verse electric field; and the c-e and B-f trensi-
tions may be induced only by a longitudinal electric
field. ’

We assume a longitudinal oscillating electric field
(angular frequency w), with an associated transverse
oscillating magnetic field, and a transverse static
electric field. The matrix elements may then be

written in the form

H! = HMcoswt
Ba
H! = HM'cosut
fe
r 7 r iw t
ia 0 M* e af cos wt
) . —iwast
ib Me cos wt 0
=
-iw_t -iw, t
ic Re %€ cos wt Ve Be
-iw t -iw, .t
Lid V' e af R' e 8t cos wt

iw t iw t_ F
H e ©¢ H! e of a
ae af
iw, t iw, t
Be 8f
1 1
HBee HBfe b
iw .t
. ' ef
-iy/2 Hefe c
iwret
H! e -iy/2 d
fe 4 L d
' = #Rcoswt
ea
1 = 1
HfB fiR'coswt
' =
HeB av
[ = [
Hfa av N

where M and M' represent magnetic dipole matrix el-
ements, R and R' represent longitudinal electric di-
pole matrix elements, and V and V' represent trans-
(The nota-

tion R and V is selected since R and R' will be

verse electric dipole matrix elements.

agsociated with a radio-frequency electric field,
and V and V!
tric field.)

will be associated with a static elec-
These matrix elements are discussed

in Section 63 for the present we merély observe

that the magnitude of dipole matrix elements is di-

rectly proportional to the relevant applied field.

Note that the unprimed matrix elements relate to the

e level, and the primed matrix elements relate to

the f level.

In this notation our equations become:

1w, iwaft
R* e cos wt V¥ e a
iw, t iw, .t
V¥ e Be R'* e 8r cos wt b
iweft
-iy/2 M'* e cos wt c
-iw .t
M' e cos wt -iy/2 J da J .
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The equations are used in this form for the numeri-
cal integration studies discussed in Sections 8 and
9. However, the effect of the f state on the sys-
tem is not large--it merely causes a slow overall
decay of the metastable beam. For our first dis-
cussion of the system, we neglect the f level ef-

fects.

Also, except in the numerical integration studies,
we follow the standard practicel2 and drop the term
in cos wt = % (eiwt + e_iwt) which is incapable of
resonance. (We note that this approximation cannot
be made for both frequencies if one uses an oscil-
lating trensverse electric field as well as an os-
cillating longitudinal electric field, since then
at least two frequency terms can always resonate.
In fact, one then obtains interference between the
two contributions.) With these approximations the

equations become:

- { 1w -w)t
18 0 M e ©B
6] =| e_i(m""s_m)‘c 0
_15_ | = e—:i.(m“e -w)t v e—iwset
These are the equations given by La.mb.8 In Section

T we follow the method indicated by Lamb to obtain
an analytic solution to these equations for the
special case of constant field magnitudes during the
interaction time.

6. MATRIX ELEMENTS

Neglecting the nuclear hyperfine interaction, the
wave functions which describe the n = 2 states of
the hydrogen atom may be written in the form given
in Table VIII.* The coefficients € - €, cen be ex-
pressed as follows. Define the dimensionless para-
meter £ = uoB/AE, where AE is the fine structure
splitting (10,968 MHz). (& becomes unity at a field
of about 7800 G; thus, as far as fine structure is
concerned, we are interested primerily in the week
Accordingly, Table VIII is subdivided
into the weak field groups (where J and oy are good
quantum numbers) although the wave functions are

exact for all fields.) We may write

field region.
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3 -

€, = g(l -6)
where

5, = (6 + 1/3)/ V1 + 28/3 + aé
and

§ = (g-1/3)/V1 -28/3 + ¢

The quantities €, 6 _, §_, and ¢

. - €, are tabulated,

1

:|.(m“e -w)t

R* e a
iw, t
ve e b€ b
—iY/2 [+ J .

L
s

for various magnetic fields, in Table IX. We note

that, for zero field, £, * 1/3, &+ -1/3 and € -

In that case, the coefficients in
Table IX become the usual Clebsch-Gorden coeffi-

€), become unity.

cients which couple angular momenta 1 and 1/2. For
large fields, €, *1land £ +1; thus €, and €
become zero while g +Jg and 53 -»J;. In this
case, we obtain the wave functions for which ¢, my.
s, and m  are the appropriate quantum numbers.

We now consider the effect of the nuclear hyperfine

* The values of €, — €, Vere obtained from Bethe
13 Section 46. The Clebsch-Gordean co-
efficients and angular functions used throughout

and Salpeter,

this section are, however, those of Condon and
Shortley.lh The tables of matrix elements given in
Ref. 13 may be used if account is taken of the
(—1)m difference in phase conventions for the

spherical harmonics.




TABLE VIII

n = 2 Hydrogen Atom Wave Functions in a Magnetic Field

Multiplet State m; Function

? 3/2 Rop¥yy (M)
F3/2 ° He E€1R21w10 (+) + E‘Eszl“’n (+)
¢ e E‘ Far¥y () + thRzl“‘lo (+)
¢ /2 Ror¥ior (V)
2y e 1/2 - E:2R21¢lo (+) E:‘lel“’u (+)
f -1/2 'E‘hmel—l (+) + J%;3R21“‘10 (+)

25, /5 @ 1/2 Ryg¥oe ()
g T/ Rao¥oo (V)

NOTATION

and (+) are electron spinors
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TABLE IX

Factors Required for the Computation of the Hydrogen Atom Wave Functions
in an Arbitrary Magnetic Field

Field 3 [ [ € € € €
(c) + - 1 2 3 h
0 0 + .3333 -.3333 1 1
390 .05 .3833 -.2833 1.016 .983 1.03% .967
780 .1 .4333 -.2333 1.031 .965 1.068 .935
3,900 .5 .8333 -.1666 1.117 .872 1.113 .T12
7,800 1l.o 1.3333 +.6666 1.167 .563 1.538 .525
39,000 5.0 5.3333 4,6666 1.220 122 1.724 .152
78,000 10.0 10.3333 9.6666 1.22% .08% 1.730 .111
interaction. The magnetic fields of interest are which connect the B to the o and the f to the e

in the region of 500-600 G. The parameter which
defines the strong and weak field regions (with re-
spect to the hyperfine interaction) is X g5u°B/Aw,
where AW corresponds to the zero field hyperfine
splitting. The magnetic field at which X is unity
varies from ~15 to ~ 65 G for the cases of present
interest (see Table I) and we are thus interested in
the strong field region as far as the hyperfine in-
teraction is concerned. This means that the appro-
priate wave functions which include the nuclear spin
are of the form given in Table VIII multiplied by a
nuclear spin wave function which corresponds to a
particular m. (These are only approximately cor-
rect wave functions; in fact, a small amount of nu-
clear spin component of other than the predominant

m. value will be present. The situation is anala-

I
gous to the situation discussed above for the fine
structure wave functions, if f, 3, and f replace 3,
i, and g. The a-d crossing techniquelo discussed in

Section 4 makes use of this fact.)

Turning to the evaluation of the matrix elements
vwhich connect the various states, we assume that n,
is a good quantum number; i.e., that we may use
electron wave functions of the form given in Table
VIII multiplied by a nuclear spinor. The selection
rule Am.I = 0 holds for the transitions of interest
80 the nuclear spin wave function is omitted in the
following discussion. Further, we assume that the
direction of the static magnetic field defines the

+z axis of the system.

We first consider the magnetic dipole matrix elements

20

states. The perturbing interaction is
H' = -;- B = —gzuof- B - 35“03' B

where, neglecting radiative corrections, 8, = 1
and g = 2, and where u, is the Bohr magneton. We
may write:

LB = (B + B (e, - it ) + (B} - iB))
(2, +i2) + B¢ ®3B1e +3BlL, + Bt .

Using this expression together with the similar
expression for e B', the B+0 matrix element may be

written:
Blg = —uOJ-Rzowgo(H[%B; (g% + gg8_)

1
+ B! (gy2, +g,) +B (gt +ggs,)]

R2owoo(+)dr .

The operators 2+, £ , and lz obey the equationsl3

z+wmz = /(e- m ) (et m, + 1) wmz 0
z_wmz = V(2+ n)(2-m, + 1) *"“z _q» and .
"z"mz = mz“’ml :

The operators 8,, 8_, and s, obey identical equa-




TABLE X

n = 2 Electric Dipole Matrix Elements

Units: ea.
Transition Am Matrix Elgpent Matrix Element: of
of e€ *r xE - YE 2E
X ¥ z
a+a +1 -3E_/V2 -3E /2 3iE //2 0
g+a -1 3E,//2 3E //2 3iEy//2_ 0
a+b 0 /Be E 0 0 /B¢ E
1z . 17z
B +c 0 v/gel‘Ez 0 0 Be,E,
a+c -1 ¢3/253E+ 3/2e3Ex ¢3/2e3iEy 0
B+0b +1 -¥3/2e,E_ -Y3/2e,E, 3/2€,iE 0
a+d -2 0 0 0 0
B +a +2 0 0 0 0
a+e 0 -/§e2Ez 0 0 -Eezsz
g+ f 0 +/§e3Ez 0 0 +/§e3Ez
a+f -1 —@ehE_,_ —@ehEx —/3_ehiEy 0
B+e +1 —/§E1E_ —JEElEx /gellEy 0
tions (where s = 1/2, m, = t1/2). 1In spinor nota- HL, = —uoBJ/3 .

tion, only the following operations yield non-zeroc
results:

s,(+) = (4)

5_(4) = (4)

s, (4) = %(4) :
5,(+) = x(4)

For the present example, the £+, %_, and Lz opera—
tors yield zero and the only contribution to the in-
tegral is from the %gsBlS+ term. We thus obtain
H&B = —%gsuoBl = —uoBl. In the notation of Section
5 this corresponds to M = —uoB;/h or M = —iuoBé/h
for oscillating fields in the x and y directions,
respectively.

The matrix element connecting f to e can be similar-
ly evaluated; the result is:

Héf = [—gl(e2eh + 5153)/3 + 355253/6]u°Bl .

For the magnetic fields of interest here, €15 €55

53, and €, are very near unity. If it is assumed
that they are exactly unity, we have

(This limiting result could have been readily ob-
tained by considering the effective interaction to
be ~8op u°3- B together with the JmJ representa-—
tion ofgthe state.) In the notation of Section 5,
this result corresponds to M' = —euon/3h or M' =
—ieBy/3h for oscillating fields in the x and y di-

rections, respectively, where € is given by:
= + - .
€ gz(e2eh 8183) 355253/2

We note that e=1 for field strengths of present
interest. Numerically the quantity uo/h is 27 times
(1.401) MHz/G. Note that M and M' have units of
angular frequency.

We now turn to the electric dipole matrix elements.
In this case the perturbing part of the Hamiltonian
is of the form H' = eB. 1 where e is the electronic
charge, f an electric field strength, and ; is the

electron position vector.

For example, the matrix element which causes the
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transition a + e may be written
* * >
1 .
Hyy = STegRopvyo(t) + € Ryvy  ($)]LeE - 7]
R20w00(+)d-r .

Noting the orthonormality of the electron spinors
and expanding ef- ;, this becomes

) *
HL = epe fR21$10[8E+x_ +4E x + Ezz]Rlowoo dt .
If we use the following facts

z = rcos®
¢
+
x_ = reinoe 1¢

dt = r251n6d6d¢ ,

x, = rsinge’

we obtain

21 W
= 3
Hclxe e2ez R2l(r)R2o(r)r drl _L ’Jlfo

(Ezcose + %E+sin6e_l¢ + %E_sin6e1¢)woosin6d6d¢.
13
The radial integral
is the Bohr readius.
evaluated either directly or by reference to ta-
13
bles.

has the value 3/§a°, where ao
The angular integrals can be

In this cese, only Ezcose survives the ¢
integration, and we obtain
' -
H = GezeaoEz .

In Table X the matrix elements are given with the
essumption of the Condon—Shortleylh conventions for
the vector coupling coefficients and wave functions.
Any modification of sign in which € 2
and €), are changed simulteneocusly, or in which the

and 53, or €

overall phase of a wave function is changed, pre-
serves the orthogonality and eigenvelues of the

functions and is therefore acceptable. Thus, for
the 281/2 - 2P1/2 transitions, many possible con-
sistent sets of signs for the matrix elements are

possible.

In the notation of Section 5, the electric dipole

matrix elements may be written
R = —/§E2 ea Ez

! =
R /§E3 eao Ez )

22

v = —/§Elea°Ex or —/gﬁleaoiEy

' = o
v = /§Ehea°Ex or /§chea°iEy ,
depending on whether the transverse field is along
the x or y axis. For the magnetic fields of inter-

est, € - €, differ from unity by only a few per-—

cent. Neglecting these small differences, we may
write
R' = -R*¥ and V' = V¥ |

This form is used in some of the later discussion.
In fact, any relative signs between the matrix ele-
ments such that arg(R/V) = -arg(R'*/V'#*) will re-
sult in identical answers for any calculation which
involves only these matrix elements.

Numerically, the quantity /3 eao/ﬁ is given by v3 x
(1.60206 x 10729 ¢) x (5.29172 x 107 em) x 107/
(1.05L4k43 x 10727 erg-sec) = 13.9257 (cm/V) MHz.

Note that the quantity v3 eaoE/ﬁ, vhere E is an elec-
tric field strength (V/cm), has the units of angular
frequency.

T. ANALYTIC SOLUTION OF THE THREE-LEVEL PROBLEM

For the case of interest, where the magnetic field
is such that the B and e levels are nearly degen-
erate, the f level has little effect on the system.
Thus, to good approximation, we may neglect its

(The quality of this approximation will
be examined in Section 8.)

presence.

The equations which characterize the three-level

system are then

1(6+w, )t
i = 3M* b eist + XR* c e Be
iw, t
i = MM a it v* c e B€
-i( 5+wse) t “lugt
ic=%R ae +Vbe - %(iye) ,

where we have defined the angular frequency differ-

ence § = w_, - W.

aB

Let us first consider the easily-solved special
case vwhich corresponds to § = 0 and wBe = 0. In
other words, we assume a magnetic field strength
such that the B and e levels are degenerate (cross-
ing) and an rf frequency such that w/21 = wus/2ﬂ
(resonance). Note that we are speaking of a partic-

ular nuclear spin magnetic quantum number, since




simultaneous resonance and crossing occur at & 4aif-
ferent magnetic field (and corresponding frequency)
for the various m; values. We also neglect M (for

the reasons given in Section 6).

With these assumptions the equations become

ia = MR¥*c
iB = V#c
18 = %Ra + Vb - H(iyc) .

If one differentiates the third of these equations
and substitutes the first two equations into the
third, the result is

'c'+¥ﬂ<':+P2c=O ,

vhere p° = ¥R*R + V*V. The general solution of
this equation is
-Hyt -nyt

c = Cle + C2e N

where 5 and 4, are the two roots of u2 - 3yp + P2

= 0:

2

o = v/t Aym)® - P2

M,

To evaluate the constants, we assume some initial
conditions. For a particle initielly in its a-
state, a =1 and b = c = 0 at t = 03 this implies
that ¢ =% iR at t = 0. Applying these conditions,

we obtain:

o = iR e'“lt _ e'“zt
Tn ’

vhere n = v’(y/2)2 - P2. This solution is valid for

all values of P2 except the critically damped case
2 2 . _-iR  —(y/4)b
P® = (v/2)7; for this case ¢ = 5~ te . The

solutions for c may be put back into the equations
for 4 and b to obtain

a = A3 + -lgiR*fcdt

b= B3 + -iV*fcdt ,

vhere A, and B, are integration constants. We ob-

3 3
tain:
-u,t -u.t
_ R*¥R , R*R e 2 e 1
=1-2te \ W, T
Lp n L 1

-y, t -u.t
b-_V"R+V"R(e2 _el)
op? Bn ¥o ¥y

After a sufficiently long time the exponential
terms decay to zero, since the real parts of ul and

u, are positive for all values of P2.

2

Thus, our asymptotic solutions are

o >
XR¥R + VeV

V¥R

b > TRER ¥ VAV

c+0 .

That is, an equilibrium population of the a and B8
states is established. Since we are dealing with
amplitudes, a definite phase relation exists be-
tween a and b; i.e., we have a coherent mixture of
the o and B8 states, while the amplitude for the e

state has decayed to zero.

We note that our asymptotic solutions satisfy the
condition %Ra + Vb = 0. From inspection of the
equations, it is clear that we have a solution if

¢ = é = 0. The physical nature of the phenomenon is
one of interference; the relative phase of the
transition matrix elements is such that contribu-
tions from a and b to the c state population de-

structively interfere; i.e., 3Ra + Vb = O.

We now turn to the solution of the general three-
level equations following the method indicated by
La.mb.8 First, let us generalize the equations
slightly to allow for an arbitrary phase for the rf
field at t = 0. That is, we assume

H' = H'#* = &R cos(uwt + 6 ) ,

ea ae o
where 60 is the phase at t = 0. This may be written
as
is -i6 .

%-[b(Re o)eiwt + f(Re o)e—lwt].
We may perform a similar decomposition of M. Drop-
ping the negative frequency term, as before, and de-

is ié

o

fining Re ° = Ro and Me = Mo’ the equations re-

main the same except R + Ro and M > MO:



i(6 + w e)t

. ] iét
* *

ia = Ro ce + %Mo be

iw, t
ib = y* c e Be %Mo a e_ist

—-i(6 + w, )t -iw, t
ié¢ = R oae Be' L ype B¢

- Y(iye) .

Following La.mb,8

-u.t -u. .t -u,t
- 1 2 3
a Ale + A2e + A3e

we assume a solution of the form

-u.t -u,.t
+ B,e 2 + B_e 3

)e—iGt
1 2 3

_ult

-u,t -pu.t =16t - iw, t
c = (Cle 2 3 Be

+ C.e + C.e Je .

Substituting this form into the equations and equat-

ing coefficients of e_ult, for exemple, we obtain

* * [ ]
iul Mo Ro Al

- # =
M 1n, -6 v B, o,
Ro v iul—é—wse—kiyj Cl-J

with identical equations holding for P and u3. We
use the general subscript k from here on since the
following discussion applies to By My, and u3. For
any but the trivial solution Ak = Bk = Ck = 0, the
determinant of the coefficients must vanish; thus,
the three values of u are the roots of the complex

cubic equation:
o (imy = &)y - 6 - wp, - Hiy)
tatt ) #) #* -
+ (Mov R, + MOVRO) R R* (1uk s)

- * - * - - - =
A (iuk) MOMO (iuk § Wge iy) 0.

This may be written in the form

3

2
My + Puk + Quk +Rw0,

where
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P = _i(AaB M Aae)

= y# » W -
Q= V¥V + k(ROR° + MOMO) AasAae

R = i(M*V#R + M VR* - %(R*¥R A . + M*M & ) ,
o o oo o o af o o ae
and where AaB = -6 and Aae =_6 - Wge ~ Mivy.

Such a complex cubic equation may be solved algebra-
ically as follows. Define b =2 + P/3. The equa-
tion for z is then z3 + az + b vhere a = Q - P2/3
and b = 2P3/27 - PQ/3 + R. Then a solution for z

is of the form z = u - a/3u, where u satisfies the
equation u3 = -b/2 * (b/2)2 + (a/3)2. All the
operations defined are valid for complex numbers;
however, we find six values for u of which three
lead to redundant solutions. To improve computation
precision, we select the + or - sign in the equation
for u3 according to which gives the larger absolute
value. It was found necessary to use double-
precision arithmetic to achieve satisfactory accu-
racy for the values of the coefficients of interest
The FORTRAN IV code for
this procedure is included in Appendix A.

to the present problem.

Returning to the matrix equation, once we know that
the determinant of the coefficients is zero, we may
use any two equations to relate the quantities Bk
and Ck to Ak’ vhich we will assume to be arbitrary.
(That is, Al’ A2, and A3 will be teken to be the
three independent constents characteristic of the
solution of a system of three first-order differen-

tial equations.) One finds

By = XA [M (1w - 6 - w, - %iy) - R V*]/D
¢, = %A (R (in, - 6) - M VI/D_,
where

D = (i - & - Woe —8iy)(iuk - 8) - v#v

Thus, defining Bk = ekAk and Ck = GkAk’ our general
solution of the equations is of the form

[}
[y

_u3t
1 62 63 A3e .

L]
[=

-u,t -
al=1]1 1 1 Ale .
_u2t
b 1 2 e3 A2e
c




To evaluate the coefficients Al’ A2, and A3, it is
necessary to assume some initial conditions. If
there is no e-state component in the initial beam,
ve may achieve sufficient generality by assuming
each of the initial conditions a =1, b =0, ¢ =0
and a =0, b =1, ¢c = 0. The solution to the prob-
lem corresponding to a beam which contains an inco-
herent mixture of a-state atoms and B-state atoms
can then be written by combining these soclutions
appropriately (i.e., by an average over initial
states). We could use some other set of spinors as
a basis system; a natural basis system for this
problem will be discussed later. For a =1, b = 0,
and ¢ = 0 at t = 0, the solution of the linear
equations yields

!

Ay

(5263 - 5362)/D

(5361 - 5163)/D
A3 = (5162 - 5261)/D ,
where

D= (8253 - 5362) + (5361 - 5163) + (5162 - 5261).

For a =0, b=1, andc = 0 at t = 0 we obtain

(52 - 63)/D

>
|

o = (53 - 6,)/p

>
|

3= (5l - 62)/D .

The present solutions have been evaluated numeri-
cally by computer methods (Appendix A). In summary,
the assumptions made in obtaining these solutions
are:
a) the three-level approximation equations are
adequate,
b) R , V, and M_ are constant during the inter-
action time,

¢) the effect of the e 19t

term (the Bloch-

Siegert term) is small.

These restrictions will be relaxed in the numerical

. integration results to be described later.

We note that the initial phese of the rf field plays
no role in the solutions. Accordingly, we will re-
fer to R and M, not Ro and Mo’ in most of the fol-

lowing discussion. The coefficients Ak’ Bk’ and C
are slowly varying functions of the angular fre-

quency difference § = w

k

ap "~ w. The character of
the variation of A3 and B3, the coefficients of the

most slowly decaying term, depends on the sign and

magnitude of w, at the magnetic field for which §

=0; i.e., to sge di fference between the resonance
and crossing frequencies. Figure 5 shows the mod-
ulus and argument of A3 for m, = 0 deuterium atoms,
as a function of B - B (where B, = B(§ = 0)), or

§/2n, for the following 3 cases:

Case w/2m B w, /2% IR | |v]
(MHz) @) Be Omg)  (MEZ)

1 1471.90 525 89.95 250 250
1611.99 575 -1.57 250 250

3 1752.09 625  -92.53 250 250

The numerical values of the matrix elements (]Rol

= 250 MHz and |V| = 250 MHz) correspond to a longi-
tudinal rf field of 250/(13.93 x .975) = 18.41 V/cm
and to a transverse static field of 250/(13.93 x
1.021) = 17.58 V/cm. The particular frequencies
chosen correspond to a resonance ~50 G below
crossing, approximately at crossing, and ~50 G a-
(The exact field for which wae =

0 for m; =0 deuterium atoms is 574.14% G, for

which waB/2ﬂ = 1609.57 MHz.) Since the line shape
depends only on wse/2n, the curves in Figures 5-8

apply to any of the hydrogen, deuterium, or tritium

bove crossing.

3/2% (MHz)
|5P 2%

@

i
_ o o o
3 S
2 =
£ 9
< <
Lt g
~ os s

, v , \
-2 [ 2 4 ] [} 10
B-8, (GAUSS)

&P
o
o

Fig. 5. The variation of ]A3] (solid curves) and
arg A3 (dashed curves) for cases 1, 2, and 3. One
of the ]A3] curves is terminated at -8 G where Re
(u2) becomes smaller than Re (u3).
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Fig. 6. The variation of ]B3] (solid curves) and
arg B3 (dashed curves) for cases 1, 2, and 3. One
of the ]B3] curves is terminated at 8.5 G, and a
second curve at -8 G, where Re (u2) becomes smaller
than Re (u3).

327 (MH2)

8-8, (GAUSS)

Fig. 7. The variation of the real part (solid
curves) and imeginary pert (dashed curves) of Mg

(in MHz angular frequency) for cases 1, 2, and 3.

substates. However, the values of w/2r and B°
given above are specifically for n, = 0 deuterium
atoms. Since, for a given fixed frequency, wBe
will be different for the different substates of
the species being polarized, the line shape corre-
sponding to each will be slightly different. The
cases 1 and 3 chosen for illustration are probably
a little too far from crossing for reasonable sep-
aration of deuterium megnetic substates; a range of

35 G from the crossing field would appear to be
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Fig. 8. The "transmission" ]a]2 (upper three

curves) and ]b]2 (lower three curves) evaluated at
t = 0.4 usec, for cases 1, 2, and 3.

acceptable. For hydrogen or tritium atome, where
the line shape is of little consequence, a much

larger difference is acceptable.

Figure 6 shows the modulus and argument of B3 as a
function of B - B° or §/2x, for the same three
cases. Note that the slopes of the ]A3] and ]B3]

curves are opposite in sign for a given Wge

Figure 7 shows the real and imeginary parts of the

small decay constant u3, as a function of B - B° or
§/2w, for the same cases. Figure 8 shows the trans-
mission ]a]2 and ]b]2 after a time t = 0.L4 usec (12

cm). At a time as large as this, only the Mg terms

survive, so

2 “H3t o
la]® = |age 3|

-u.t

]b]2 = ]B3e 32,

The opposite shift in the apparent resonant field .
for ]a.]2 and ]b]2 transmission is because of the

opposite slopes of the ]A3] and ]B3] curves noted -~

above.

It is relevant to inquire about the transmission of



TABLE XI from Figures 5-T.

1. missi
Trensmission of Unselected Substates We now write simpler expressions for the special

Ir]/]v] k]R]2 + ]V]2 A Re (1.) case of resonance (6 = 0). As noted above, the
Units: (125 MHz)a 3 El coefficients do not vary rapidly, so some state-
Angular Frequency (usec™™) ments about the general nature of the solutions at
0.5 2 1.03 5.3 resonence will apply approximately to the off-
1.0 2 1.15 20.1 resonance solutions. We neglect the small matrix
1.5 2 1.39 43.2
element M. For this case, the cubic equation be-
0.5 5 .98 5.5 comes
1.0 5 .90 17.4
1. . 26.
> > ™ > W o (y/2 - iwse)u2 +Pu=o0,
0.5 10 .95 3.3
1.0 10 .81 .
1.5 10 68 13 g where P2 = XRR¥ + VV* ags before. The roots are
My o = (Wb = tug /2) & My - dug2)® - 9P
2. Transmission of the Selected Substate ’
IR 1/]v] Iag] by =0,
0.5 0.9412
1.0 0.8000 which are seen to be consistent with the solutions
1.5 0.6%400 cbtained above for Wae = 0.

Inserting these values for the L in the general

atoms with other than the desired np quantum number. relations, we obtein

For hydrogen or tritium atoms, this may easily be

[y}
1]

x = PERV*/D
made zero. For deuterium atoms, some care must be and .
taken in the choice of parameters. If the optimum Gk = ‘%iRuk/Dk ,
driving frequency of 1609.57 MHz is chosen, the
transmission curves for my = 1, 0, and -1 are highly where
symnetric and therefore almost identical. The rele- Dk = iuk(iuk - Wge T iy/2) - v*v

vant guantity is the transmission of a given state

when the magnetic field is tuned to an adjacent _“k2 + 2“k (y/h - ine/2)'_ vev .
state. For example, for w/2% = 1609.57 MHz, the

resonant fields for oy = 1, 0, and -1 deuterium at-
oms are 56L4.48, 57L.14, and 583.96 G. In the case

of mp = 0 deuterium atom selection, we are inter-

If we define £ = (y/4 - iwse/2) and n =

2 2 _
/{y/h - iwse/2) - P we can tabulate the D, €,
ested in the transmission of mI = 1 and mI = 3 atoms and 6k as follows:

at 574.1% G; i.e., at 9.56 G above and at 9.82 G

k ny Dk €y Gk
below their respective resonant fields. The rela- -
+ * #* -
tive contributions from either of these may be de- 1 & n R*R/b 2V*/R 2i(¢ + n)/R
- * * — -
termined from Table XI. Thus, for |R| = |V| = 250 2 £-n R¥R/4 2v*/R 21(¢ - n)/R
3 0 -y -R/2v 0

MHz, the fractional contamination of ny = 0 states

with m; = 1 states would be 10.90e™17-%%/ 80|12 ynich,

The determinant D may be written
for t = 0.4 psec, is about 10 . For other driving

. . D =- 8iv¥*n 1+ R*R )
frequencies the selection is less favorable; however, == RRR¥ =2
as mentioned above, the selection would appear to be
reasonably satisfactory for a frequency range of For the initial condition a =1, b =0, ¢ = 0, we
~$100 MHz (corresponding to ~%35 G). The quality obtain the coefficients

of the selection in these cases can be estimated
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x " P S
R*R £ RV# £ iR
1 =S (1-3 = ((1-2 :
8P2 n )-‘P2 n .rn.
R*R & RV¥ & -iR
2 o (1 + n) . (1 + n) n
¢ - *
3 s BVZ o .
P 2p

For large times, the solutions are therefore

P 2P .

Note that a and b have esymptotic values identical
to those cbtained if We = 03 thus, only the tran-
sient terms are affected by wBe * 0 for § = 0.
" For frequencies slightly off resonance, neglecting

the slight variation of the coefficients, we have

_gyx ~(ug + 160t
—_—a €

k]
2P2

#y —Hab
ad !El e 3 ba
P
where u3 is a rapidly varying function of 6 (see
Figure T).
For the initial conditions a = 0, b =1, ¢ = 0, we
obtain the solutions

k A By Cx
# #
1 Ba-dHh Ha-H X
up up "
* W -
e Ha+yhy Ha+y &
4p n n n
R*Y R*R
3 -2 w2
2P 4p

From the symmetry of the equations, one can see
that the relation between the sets of coefficients
for the two assumed initial conditions must involve
only the simultaneous interchange of R/2 with V and
the definition of Ak with that of Bk'
In general, the roots of the cubic equation are
complex. The imaginary components correspond to
(time dependent) energy shifts from the unperturbed
eigenenergies characterizing the wave functions
given in Table VIII. Consider, for illustrative

purposes, the situation at crossing and resonance
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where

o=/ e AymZ %, =0

My,

It is clear that if P? < (y/h)2, all the roots are
real and the unperturbed energies remain correct.
If, however, P2 > (y/h)z, H, and u, will have an
imaginary component and the level energies will be
shifted. This is related to the phenomena of level
repulsion in which, under certain circumstance, the
energies of two states as a function of magnetic
field do not cross, but rather repel, and thus in-
terchange roles.8 This effect does not result in a
shift of the position of the three-level resonance,
however, since this is determined solely by the
frequency at which Re(u3) = 0, and this frequency

will correspond* to § = 0 for any value of w, or

P2. For 6 # 0, u3 has an imaginary componense(see
Figure 7) and the slowly decaying states a and 8
may be regarded as slightly energy-shifted. The
energy shift of the rapidly decaying components has

no significance at large times.

Figures 9-11 illustrate the time dependence of ]a.]2
and ]b]2 for the cases 1, 2, and 3 defined above
(initial conditions a =1, b = 0, and ¢ = 0). Fig-
ure 9 corresponds to resonance (6§ = 0), Figure 10
corresponds to 1 G off resonance (6/2% = 2.8 MHz),
and Figure 11 corresponds to 9.6 G off resonance
(8/27 = 26.9 MHz). The last value is chosen for
presentation since 9.6 G is approximately the aif-
ference in magnetic field values at which the veri-

ous deuterium magnetic substates resonate.

Figure 12 illustrates the time dependence of ]a]2
and ]b]2 at resonance (8 = 0) for the cases 1, 2,
and 3 but for the initial conditions a = 0, b = 1,

and ¢ = 0.

Figures 13-15 show the transmission of hydrogen

metastable atoms versus magnetic field for an rf
field of fixed frequency and strength (here taken
to be 1610 MHz and 18.41 V/cm, respectively) and

for several values of the transverse field (8.79,

#As has been néted above,the apparent resonant fre-
quency scmetimes differs slightly from § = 0. This
is due only to the slow variation of the coeffi-
cients ]A3] and ]B3] with frequency, and is unre-
lated to the energy shifts presently under discus-

sion.




—o
©
5
5

TIME (usec)

Fig. 9. The variation of ]a]2 and ]b]2 vs time for
B = Bo (6 = 0) with initial conditions a(0) = 1,

b(0) = ¢(0) = O for cases 1, 2, and 3.
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Fig. 10. The variation of ]a]2 and ]b]2 vs time for

B - B,=-1¢ (6/2n ~ 2.8 MHz) with initial condi-
tions a(0) = 1, b(0) = ¢(0) = 0 for cases 1, 2, and
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Fig. 11. The variation of ]a]2 and ]b]2 vs time
for B - Bo = -9.6 G (6/27 » 26.9 MHz) with initial

conditions a(0) = 1, b(0) = ¢(0) = 0 for cases 1,
2, and 3.
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Fig. 12. The variation of ]a]2 and ]b]2 vs time
for B = B (6 = 0) with initial conditions b(0) =

1, a(0) = c(0) = 0 for cases 1, 2, and 3.
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Fig. 13. The transmission of hydrogen'metastable

atoms (]a]2 + ]b]2 and ]a]2) vs magnetic field for
1610 MHz; |R| = 250 MHz, and |V]| = 125 MHz. The
solid curves correspond to initial condition a(0)
= 1 and the dashed curves correspond to b(0) = 1.
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Fig. 1. The transmission of hydrogen metastable

atoms (]a]2 + ]b]2 and ]a]2) vs magnetic field for
1610 MHz; |R| = 250 MHz, and |V| = 250 MHz. The
80lid curves correspond to initial condition a(0)
= 1 and the dashed curves correspond to b(0) = 1.

17.58, and 26.37 V/cm).
netic field strengths correspond, of course, to dif-
An interaction time

of 0.4 usec (corresponding to a cavity length 12 cm)

The peaks at different mag-

ferent nuclear spin substates.

is assumed. The solid curves correspond to an ini-
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Fig. 15.

atoms (]a]2 + ]b]2 and ]a]2) vs magnetic field for
1610 MHz; |R| = 250 MHz, and |V| = 375 MHz. The
8olid curves corréspond to initial condition a(0)
= 1 and the dashed curves correspond to b(0) = 1.

The transmission of hydrogen metastable

tial pure alpha-state beam (a(0) = 1) and the
dashed curves correspond to a pure beta-state beam
(b(0) = 1). For the highly symmetric case (%|R| =
|v]) shown in Figure 13, the two initial conditions
result, except in the "tail" region, in identical
solutions. The quantities ]a]2 + ]b]2 and ]a]2 are

plotted in each case.

Figures 16-18 show the transmission of deuterium

metastable atoms for the same cases and conditions.

Several observations about the general nature of
the solutions may be made from the graphs:
1. For fixed |R|, both the height and width
of the lines which correspond to a a(0) =
(For fixed
|V], the height and width of the pesks
which correspond to b(0) = 1 increase with

1 increase with increasing ]V].

increasing ]R], although this is not shown
here.) The heights, of course, vary in
the manner stated previously, and depend

only on ]R]/]V]. For the case %|R| = 1v]»

the a(0) = 1 and b(0) = 1 solutions become S

nearly identical. This result is appa-

rent from the symmetry of the equations. -

2. TFrom Figures 9-11, one can see that the
width of the resonance lines must decrease

monotonically as the interaction time in-
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Fig. 16. The yield of deuterium metastable atoms

(|a]? + |b]? and |a]?) vs magnetic field for 1610
MHz; |R| = 250 MHz, and |V| = 125 MHz. For this
case, curves corresponding to initial condition a(0)
=1 and to b(0) = 1 are identical.
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Fig. 17. The yield of deuterium metastable atoms

(]a]2 + ]b]2 and ]a]2) vs magnetic field for 1610
MHz; |R| = 250 MHz, and |V| = 250 MHz. The solid
curves correspond to initial condition a(0) = 1 and
the dashed curves to b(0) = 1.

creases. The curves shown in Figures 13-
18 are for t = 0.4 usec, which corresponds
to a cavity length of 12 cm for a beam with
the velocity of interest (30 cm/usec).

3. The separation of metastable hydrogen or

AMPLITUDE  SQUARED

585 565 575 565 595
FIELD (GAUSS)
Fig. 18. The yield of deuterium metastable atoms
(]a]2 + ]b]2 and ]a]2) vs magnetic field for 1610
MHz; |R| = 250 MHz, and |V| = 375 MHz. The solid
curves correspond to initial condition a(0) = 1 and
the dashed curves to b(0) = 1.

tritium atoms with different nuclear spin
orientations appears to be very easy in
the sense that the parameters may vary
over a wide range. However, for metasta-
ble deuterium atoms, if one uses too large
a field strength, the width of the lines
will be too large. Thus, the minimum cav-
ity length appears to be ~6 cm for deu-
terium atoms, but could be.shorter for hy-
(This is because

|R]/|V] must be held constant to achieve

drogen or tritium atoms.

Since
|v] < ]V]max is required, |R| < ]R]max is
also required.

a given trensmission at resonance.

But the decay constants
corresponding to the unwented nuclear spin
states are approximately proportional to
]R]; this implies ¢ > zmin where £ is the
cavity length.)

For an incident unpolarized beam of metastables
(i.e., 1/2 of beam in the a state, 1/2 in the B
state) the trensmission at resonance of the "spin
filter" is exactly 50%, as may be verified from
Figures 9 and 12 and from Figures 13-18. This fol-
lows from the expressions already derived which are

repeated here in a matrix form:
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-R*¥V

a(t + =) \Ad's 5 a(0)
= 1 .
T2
b(t + =) F '%t %:ﬁ bv(0)/ .

The initial beam may be regarded as an incoherent
mixture of a¢ and B states although the final beam
is a coherent mixture. If we average over initial

and sum over final states, we find

2 2 2 2
la(t + =) | + |b(t + =|° = %|a(0)]|° + X%|b(0) ] ;
i.e., 50% of an (electron) unpolarized beam is
quenched.

We next consider the physical nature of the states
which are transmitted through the spin filter.

As a first step we eliminate the explicit time de-

pendence by defining the new variables

—i(wa -w)t
A = ae
-iw,t
B = be 8
—iwet
C = ce .

The equations for these new variables are found to
be

iA = (wa - w)A + MR¥*C

iB = wBB + V¥C
i¢ = 3RA + VB + (we - ¥iy)c .

We choose w, = 0 (which we may do since the energy

8

scale is arbitrary) and define as usual 6§ = waB -

w. The equations and definitions are then

iA

SA + ¥R*C
iB = V¥*C

1c=i5RA+VB—(wB + Jiy)C

e

-ié6t
= ae

+iwset
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Let us define the spinors r and s, with amplitudes

p and q, as follows:

(3R*a' + V*8)

r =

g

8 = %-(Va' - ¥RB) s

+i6t
ae

where the spinor a' = . The total wave func-

tion, neglecting the e state (i.e., for t + =) is
then of the form y = aa + bR = ae_ist)aeist + bg =
A(cel®t) + BE = Aa' + BB. Notice that r and s are
orthonormal. We can invert the definitions of r

and s to find:

a' = %‘(er + V¥g)
B = %-(Vr - MR¥*3) .

Substituting these expressions into the definition
of ¢ :

Yy =pr + g8 £ Aa' + BB
we obtain:

p =% (4RA + VB) A= ¢ OR¥p + Vq)

-

q = 3 (V*A - 3R*B) B

[}
o112

(v¥p - 3Rq) .

We now derive the differential equations for p and
q:

ip = pc + S04

. _ V%A

iq = 3

16 = Pp - (g, + Hiy)C .

If we specialize to rescnance (6§ = 0) these equa-

tions become

ip = PC

iC = Pp - (wBe + %iy)c .

The variables may be further separated as follows:

-p = P(1¢) = P(Pp - 1lug, + }iy)C)

2 . .
= Pp + (dy - i“se)P




-C = P(ip) - ugy + M1y)C = P2C + (dgy - mee)c': .

Thus our three equations are

]
o

. 2
P+ sy - iwse)p + Pp

O
n
o

.o . 2
C+ (%y - iwse)C + P°C

[}
o

These equations have the solutions

o

|

i
[

(1]

w0

|

e}
[

2 2

- + - - .

where Mo ® (y/4 iwse/2) + /{y/h iwse) Py
i.e., ul and u2 are the two large decay constants
defined earlier. For times of interest to us,

therefore:

Thus the emplitude of the spinor s is conserved
while the amplitude of r decays exactly as does the
emplitude of e.

Let us momentarily allow an arbitrary initial phase;
i.e., we put, once again, R = Ro' In spinor nota-

tion, for § = 0, r and s may be written

—iwat
e
Rao%oo ° .
r = -5 —lwst
V* e
—iwat
R Ve
20700
8 = —-P—— —iwst .
—%Ro e

The expectation values of the Pauli operators for

-, these states are tabulated below:
| r R 8
- +
- <(cxj> e#cos(wast + 4) e*cos(wast A)

elsin(wast +4) —eLsin(wast +4)

<°y>
L9 ) ~€py

In the above table, e’ = R V¥/|R V¥, €4 = |R V*|/
P2, end ey = (kRgRo - V#y)/P2, Thus the spinors r
and s point opposite directions at all times, make
an angle of 0 = tan_l %# with respect to the z
axis, and rotate with the Larmor frequency was/2n.
The phase of the rotation is such that the direction
of r is parallel and s antiparallel to the direction
of the transverse field at the time the longitudinal
rf field has its maximum positive value. (This can
be most easily seen by considering the static trans-
verse field to define the x axis, so that Ro and V
are both real.)

From this formulation we can again conclude that
50% of an (electron) unpolarized beam will survive
the spin filter, since in that case a given parti-
cle has a 50% probability of being in either of any
two orthonormal spin states, including the r and s

states defined above.

We note that our resulting metastable beam has both
100% electron polarization (rotating) and 100% nu-
clear polarization, and that the relative direction
Further, the

phase of the electron spin rotation is related to

of the electron spin can be varied.

the cavity rf phase.

8. THE FOUR-LEVEL PROBLEM

We now consider the effect of the f-level on the
Qualitatively, it
is clear that the transverse electric field will in-
duce quenching through the o - f transition and the
longitudinal rf electric field will induce quenching
through the 8 - f transition.

solutions previously discussed.

The four-level equations were stated in Section S.
The frequency dependent quantities which enter into

these equations are

iw t i(2w , + w,. - 8)t
e %® - cos wt = ke aB 8t
i(w, + 8)t
+ 353 Be
and
iw i(w . - 8)t ilw,p - w , + 8)t
e 8r cos wt = ke of + %e 8L af s

where § = Wog ~ @ as before. The first of these
expressions, as noted in the discussion of the

three-level system, may be approximated (near § =
0) by the second term alone. For the second of

these expressions, on the other hﬁnd, the two terms
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are of roughly equal importance. Thus the simplest
equations which reasonably describe the four level
system are:

i(w
14 = kR*ce

+ 8)t iwaft

Be + Vde

iw, t iw

Be” _ LRde _Bf

3 *, -
ib = V¥ce cos(wGB §)t

-i(w

+ 8)t -iw et
i¢ = LRae

Be + Vbe 8

-iw t -iw

1d = y#ge °F _ IR*be Br cos(wa -8t

8

vhere we have put R' = <~R* and V' = V* in accordance
with Table X and the discussion in Section 6( Note
that these relations hold only in the zero field
limit; i.e., if €15 €5 €3s and € + 1. All four-
level calculations presented here are based on this
assumption. Note also that an arbitrary initial
phase cannot be included in the four-level case by
putting R = Ro as was done in Section 7. The ini-

tial phase is, however, of no importance.

We first consider the quenching of o« states by a
transverse electric field with no rf longitudinal
field present (i.e., R = 0). The equations above
then separate into two independent pairs of which
the a - £ pair is

. iwaft
ia = Vde

-iw t

14 = V*ac of* _ Miva .

These equations are easily solved if one assumes

-u.t -u.t
a = Ale 1 + A2e 2

u.t —u2t —iwaft

1
+ Dye Je .

d= (Dle
One finds that ul and u2 are the roots of

Wworoen+ V)20,

where

E= y/h - iwaf/2 .

Thus we mey write Wy o = E t nvhere n = ¢E2 - ]V]2.
’

For the initial condition a(0) = 1, d(0) = 0, the

general solution for a is found to be
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a = ;5(1 _ _{)e—(i + 0t + ;5(1 +_€)e—(5 -t .
n n

1r ]E]2 >> ]V]2, we may approximate n by

2
e lw?

2§ * .~

The expression for a becomes
2 -

2 Ly
a s V2 e_2Et + e 2
Le

The first term has a small coefficient and rapid

decay constent; for times of interest, we may write

af 2
2 - t af v
la]=e (e ¥ = "‘él‘l““‘g
Wyp * (v/2)

vhich is the Stark quenching formula given by Lamb
and Retherford.5 Similer results are obtained for

the B - e quenching:

_(.Be 2
]b]2z (Y )t yBe = ylvl

? 2 2

wee * (y/2)
and for the @ - e quenching:
ae 2
2. ~(y )t ae _ y|R|S/4
la]? = e , Y= > 5
- + .

(0o = w) (v/2)

This result is not applicable to the B8 - f quench-
ing, however. It should also be noted that for the
field strength of present interest, the expansion
of n used above will not be valid for the B - e

case if wBe is small or zero.

Thus, for a atoms in the presence of both rf and
static electric fields, we would expect an effec-
tive decay constant of the order of, but greater
than, ch. The situation is complicated, however,
since the various contributions to the decay are
coherent.

An analytic solution at 6§ = 0 is possible if

in t iw ft
e cos wcst is approximated by e “ . A8 al-

ready noted, this is not a good approximation; how-

ever, it at least partially takes into account the .
8 - f interaction and is included here primarily

for the physical insight that it may afford.

To obtain this solution, we first eliminate the os-
cillating time dependence with the substitution




- ae-iGt

A

B=5%

c - ceiwset

b - de:l.(mmf - 8t .

The equations for these variables are

ri.i (6 0 AR* Y . -A-
B lo o v %R B
i€ ) ¥RV —(ug, + kiy) 0 c
{'b‘ {v* 3R* 0 ~(wyp = 6 +3iy)| | D]

In terms of the previously defined amplitudes p and

q, we can derive

R6A/2P + PC .

e
o]
n

V*SA/P + PD

[ X
fie]
L}

P° = RR*R + VAV .

e
0
[}

Pp - (wBe + Xiy)C

[y
o
[}

Pq - (w , - 6 + 3iy)D

At resonance (6§ = 0) the equations reduce to the

two coupled pairs
ip = PC

iC = Pp - (wge +%iv)C ,

and
PD

.
w0
[}

.
o
[}

Pq - (wa + ;EiY)C s

from which it follows that

P+2gg b+ P%p = 0

EBe = v/4 - iwse/2
» . 2 _
E+ag, C+PC=0

L1 | ] 2
Q+26 Q+Pq=0

. . Eaf = y/4 - iwaf/2
D+ 2a°fﬁ +PD=0
Thus
= e_ult + e_u2t
P = By P,
/. 2 2
where M1,2 EBe t EBe - P
and
-ult -uit
_ 1
Q= qe + qe
2 2
1 = -
where ul’2 Eaf $ Eaf P .

The quantities Y and u, are recognized as the two
larger decay constantsdiscussed in the three-level
case; thus, for times of inte}est, p - 0. However,
Eaf >> P2 for the present region of interest, so we

may expand the square root (as before) to obtain
' ~ = -
L 2g = y/2 iwaf

up @ PP/2E = P2/(v/2 - tu,

f) *

-

The ui term decays rapidly, so for times of inter-

est

2
@ q e (F /20

Our initial conditions are A(Q) = 1, B(0) = c(0) =
D(0) = 0. Now

"
4] (o

q(0)

(V*A(0) - %R¥B(0)) = 1

(o) (V*A(0) - %R*B(0))

a1 [0
1]
o

where the latter condition follows from the differ-

ential equations. These conditions yield

~E+tn V¢ v
2n P TP

2

Thus, for large times,

2
* -
p+0; q~ %— o (F /2E?t .

3
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Fig. 19. The line shape as calculated with various approximations. The upper
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correspond to the three-level theory. The curves marked 2 show the effect of
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3 correspond to the approximate four-level theory in which e cos wt is
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replaced by e and e cos wt + e The curves marked

4 correspond to the exact solutions of the four-level problem.




Inserting these into the definition of A and B, we
obtain

2
(arop + va) > L (s/2)e
P e

-3
n
ol

2
(VAp - dRq) » Bt (~(F7/280)¢

o]
1]
ol

In the three-level case, for large time, we obtained

2
v —RV#*
A~ > B + =P .

P

Thus, both ]A]2 and ]B]2 are altered only by a mul-
af

Y where

tiplicative factor e~
af _ P2
A GRS ¢

o+ (v/2)2

P2 = x|r|% + |v]? .

A point worth noticing with respect to these solu-
tions is that only the state with amplitude q (the
s state) is coupled directly to the f state. That
is, if the e level were not present, the a-f-f in-
teraction, in this approximation, would select the
This is exactly

the opposite to the situation for the a-e-8 inter-
actions; thus this contribution from the f level is

r state and quench the s state.

destructive.

In Figure 19 the line shape obtained by numerical
integration, with various approximations, is shown.
The calculation is for the case of m = 0 deuterium
atoms at the (nearly) optimum frequency of 1611.99
MHz (which corresponds to B° = 575 G). The param-
eters are. |R| = |V| = 250 MHz. We note that, as
expected, the curve which corresponds to the (§ =
0) analytic solution given above gives a result a-
bout midway between the three-level and the four-

level results.

In Figure 20 the exact four-level results for the
loss (at resonance) of ]a]2 are shown for various
peremeters and for the same frequency and magnetic
field as above. These curves represent the ratio
of ]a]2 (at 0.25 usec) to the three-level equili-
brium value (]a°]2) which would cbtein in the ab-
sence of the f level. The deshed curve represents
the prediction of the approximate four-level ana-
lytic solution given above. Note that this pre-

dicted value depends only on k]R]2 + ]V]2. The

te 025 usec

iRt
l-%.ob

07 1 L e 1 s
o 2 4 6 8 10

‘POWER LEVEL' 4 IRIZ+ VI IN UNITS OF (125 MHz)

Fig. 20. The ratio of ]a]2 to ]a°]2, where ]aol2

is the three-level equilibrium value of |a|?, for
Bo = 575 G. The points are calculated from the

exact four-level theory; the curves are visual fits
to the points. The dashed curve represents the
prediction obtained from the {approximate) four-
level analytic solutions.

ratios vary approximately linearly with the inter-
action time t. The ratio of |b|? to ]b°]2 is, for
this case, indistinguishable from the ratio of ]a]2
to |a|%

Figure 21 shows the time dependence of the solu-
tions, at § = 0, for the conditions used in Figure
19. Note that the inclusion of the antiresonant
term in the three-level theory (the Bloch-Siegert
correction term) results in a decay from the three-
level equilibrium solution of about 2%/usec.

Figure 22 shows the line shape for a frequency of
1508.326 MHz. Again the calculation is for m =0
deuterons (for which this particular frequency cor-
responds to By = 538 G) and for |R| = |V| = 250 MHz.
Note the shift of the peaks from the resonant field.

Figure 23 shows the loss through the f state, for a
frequency 1508.326 MHz and field 538 G (mI = 0 deu-
terium atoms), for a variety of parameters |R| and
|V]. In this case, unlike that shown in Figure 20,
the ratios ]a]2/]a°]2 and ib]2/]b°]2 are not iden-
tical. Further, the loss through the f level ap-
pears to be somewhat greater. However, as may be
seen by comparing Figures 19 and 22, the peak posi-
tions are shifted in the latter case, and therefore
§ = 0 does not, in general, correspond to maximum

transmission. If both ]a]2 and ]b]2 transmission
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Fig. 23. The lower graph shows the ratio of ]a]2

to ]a°]2, where ]a°]2 is the three-level equilibrium
value of ]a]2, for B° = 538 G. The upper graph
shows the ratio of ]b]2 to ]b°]2 for these condi-

tions.

are of interest (see Section 9) the value of § which
results in meximum transmission of ]a]2 + ]b]2 will
depend on the parameters. (This is true since the
]a]2 and ]b]2 curves are shifted in opposite direc-
tions for Wge # 0, and the relative contribution of
]a]2 and ]b]2 to the total transmitted beam depends
on |R|/|v|.) Thus the curves given in Figure 23
predict greater loss, in general, than would be

obtained by choosing an optimum value of §.

Finally, calculations show that the three-level and
four-level results agree to within ~10%, for a wide
range of parameters, in the tail region. Thus, the
transmission of the unselected substates is ade-
quately described by the results given in Table XI.
The trensmission of the selected substate can, how-
ever, be improved by the field shaping technigue to
be described in Section 9.

ko

9. ADIABATIC VARIATION OF THE ELECTRIC FIELDS

In the preceding discussion, we have assumed that
the various applied fields are constant throughout
the spin filter. If this condition is not met, we
must resort to numerical techniques to solve even
the three-level equations, although some general
features of the solutions may be deduced from the

form of the equations.

For application to a practical polarized ion source,
the optimum transmission of the desired nuclear spin
substate can be achieved if (a) the static electric
field is constant, and (b) the rf field increases
slowly from zero at the entrance of the spin filter
to a maximum near the center and then decreases to

zero at the exit.

It was shown in Section 7 that, in three-level ap-
proximation, exactly 50% of an (electron) unpolar-
ized H2S beam with the desired oy value could be
transmitted through a combination of static trans-
verse and longitudinal rf electric fields. In a
practical ion source, however, the 8 component of
the atamic beem will almost certainly be quenched
by the required "sweep" fields long before it
reaches the spin filter. 1In addition, any 8 compo-
nent which emerges from the filter will probably

be quenched before reaching the argon exchange cell.
For the parameters ]R] = ]V] = 250 MHz, for example,
only 64% of an initially pure a beam would emerge
from the spin filter in an o state, so that only
about 1/3 of the initially produced unpolarized
beam would be available at the argon exchange cell.
(Note that we are referring always to the beam com-
ponent with the desired n, value; thus, in terms of
the total atomic beam the 1/3 given above beccmes
1/6 for hydrogen or tritium beams and 1/9 for deu—

terium beams.)

If the fields ere shaped as indicated above, it is
possible, in the three-level approximation, to
achieve 100% transmission for a pure a beam. A
spin filter with such field shaping will have 0%
transmission for a B beam and thus will still have
50% transmission for an (electron) unpolarized beam.
This is indicated in Figure 24 for a space variation

of the rf field strength of the form sin(%i) where
o
z is the distance from the entrance to the rf re-

gion and Zy is the total length of the rf region.

For this example |V| is assumed to have the constant
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Fig. 24. The quantities ]a]2 + ]b]2 and ]a]2 vs

time as a metastable beam (a(0) = 1) traverses a

cavity whose rf strength varies as sin(ﬂz/zo), where

z°(= 30 cm) is the total length of the cavity.

These curves correspond to §/2w = 0, lleax = 250

MHz, and to a constant static electric field such
that |V]| = 250 MHz.

value 250 MHz and ]R]max = 250 MHz. The results of
both three-level and four-level theory are shown.
(The deviation from 100% of the transmission which
corresponds to three-level theory arises solely from
the inclusion of both frequency terms in the expan-
sion of cos(wt), while the discussion above is based
on the assumption cos wt & keiwt. All results pre-
sented in Figures 24 and 25 are based on calcula-

tions which include both terms of cos wt.)

These results can be understood as follows. For
simplicity, consider the special case of resonance
(86 = 0) and crossing (wBe = 0). The three-level

equations are then, as noted in Section T:

ia = %R¥*c

[ X
o
L}

V¥c

3Ra + Vb - %(iyc) .

o8
0.
"

Also as noted in Section T, it is evident that one

possible solution of these equations is
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Fig. 25. The quantities ]a]2 + ]b]2 and ]a]2 vs
time for various rates of increase and decrease of
of the rf field strength. The rising and falling

portions of the rf field have the shape sin2(tﬂ/21).
The curves numbered 1-7 correspond to 7 = 0.2, 0.1,
0.05, 0.025, 0.00125, 0.000625, and 0.0 usec, re-
spectively. For all curves §/27 = 0 and ]R] = ]V]

= 250 MHz. Note the decrease in the overall decay
rate when the rf field is turned off.

where the constants a and b° are related by
+ =
%Rao Vb° 0
or, equivalently

ao/b° = -2V/R.

(These are, in fact, the equilibrium solutions pre-
viously discussed.) If |R| + 0, the equilibrium
solution will correspond to a pure a state. If

]R] + 0 all nuclear substates are equivalent and no
selection would occur. However, if ]R] is in-
creased sufficiently gradually, so that the condi-
tion XRa + Vb = O can be followed adiasbatically,
the nuclear spin selection can be made without loss.
At this point, the amplitude which describes a par-
ticle in the beam will be a coherent mixture of a
and B states. If |R| is then slowly decreased to
zero, the o and B8 mixture will be transformed back
into a pure a state. Thus there are two important
aspects to the field shaping: (a) a slow rise of
]R] prevents loss from occuring through the excita-

tion of "transients" as the beam enters the cavity,
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and (b) a slow fall of |R| transforms the mixed o
and 8 state back into the more stable pure a state.
If no quenching between the rf region and the argon
exchange region were likely to occur, the second
part of the field shaping would be unnecessary. It
is evident that the important parameter in these
arguments is ]R]/]V], so0 that an exactly constant
|v] is not required.

The above can also be expressed in terms of the r

and 8 spinors defined in Section 7. We recall that

s = (Va - %R8)
and has the constant amplitude Q- In terms of a
and b, for § = 0,

qQ=*q

l*%(V*a—%Rb) .

Thus, if |R| + 0, s + ¢ and q(t) = g, = a(0) = 1.

If ]R] is increased sufficiently gradually, the
state 8 will be conserved and therefore a particular
If |R| is then de-
creased sufficiently gradually, it will again be

conserved and the mixture state will be transformed

a + B mixture will be formed.

back into a pure a state.

It remains to determine what is meant by "suffi-
ciently gradually." In Figure 25 the results for
various assumed rise times for the rf field are pre-
sented. The exact four-level theory was used for
these calculations. We assume a 30 cm overall path
(velocity = 30 cm/usec) and that only the static
electric field acts over the last 15 cm.
and falling portions of the rf field is assumed to
have the shape sin2(tﬂ/21). The rf field is fully

turned off at t = 0 and at t = 0.5 usec.

The rising

The vari-
ous curves are labeled with the parameter Tt and in
each case the upper curve represents ]a]2 + ]b]2,
It is seen that no loss
occurs for the case 1 = 0.2 psec. At the steepest

part of the sin2(tﬂ/21) curve, the fractional rate

and the lower curve ]a]2.

of change in ]R] is w/t. For 1 = 0.2 usec, n/t =

42

[} -
15.7 x 10° secL.

around 1600 x 106

Since the Larmor frequency is
sec_l, |R| changes about 1% in a
Larmor cycle. Thus, we have demonstrated that a
satisfactory criterion for adiabaticity is that the
strength of the rf field may change no more than
This is about the value that

about 1% per cycle. -

one would expect.
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APPENDIX A. A COMPUTER PROGRAM FOR EVALUATING THE
ANALYTIC SOLUTION OF THE THREE-LEVEL EQUATIONS

A FORTRAN IV progrem which evalumtes the solutions
developed in Section T is given in this appendix.
The version given computes the squared amplitudes
la]2, |v]2, |c]?, and |a]? + |b]® as & function of
time for a set of fixed driving frequencies and for
fixed magnetic field. The modulus and phase of a,
b, and c are also given. Other versions of the pro-
gram exist in which time is held constant while the
variation of the above quantities with magnetic
field at fixed frequency, or with frequency at fixed
magnetic field, is studied.

The input for the program is as follows:

Card 1  (FORMAT 6 F12.6)
XSPIN spin of nucleus (i.e., % or 1)
GJ g5 value for the 2S;é states (2 2)
XMU magnetic moment of the nucleus (in nu-

clear magnetons)
DELW zero magnetic field hyperfine splitting
for the 2S35 state (MHz)
gy velue for the 2P, states (= 2/3)
zero magnetic field hyperfine splitting

for the 21’;\2 states (MHz)

GJP
DELWP

(The radiative correction to the 81 value is sup-
plied by the subroutine BREIT and should not be in-
cluded in GJ and GJP.)

Card 2 (FORMAT 6 F12.6)
FREQMN minimum epplied frequency (MHz)
FREQDL increment in applied frequency (MHz)
FREQMX meximum applied frequency (MHz)
TF maximum time at which solutions are to
" be evaluated (usec)
DELT increment in time at which solutions are
to be evaluated (TF/DELT should not ex—
ceed 500)
BGAUSS magnetic field (G)
Card 3 (FORMAT 6 F12.6)
MM M in MHz (angular frequency)
RR R in MHz (angular frequency)
\A'2 V in MHz (angular frequency)

where these quantities are complex and therefore
appear as three pairs of numbers on the card. The
real part of each quentity appears first. The rela-
tions between these units and practical units are

given in the program listing.

Card k& (FORMAT 6 Ik)

IMODE If IMODE = 1, progrem returns to start.
If IMODE = 2, progrem returns to read
in new Card 3 and proceeds.

ICSMN minimum case to be calculated

ICsMX meximum case to be calculated

where mI =1, 0, -1 correspond to cases 1, 2, and
3 for deuterium atoms and m = %, %, correspond‘to

cases 1 and 2 for hydrogen and for tritium atoms.

The progrem consists of a main program together
with several subroutines. The function of the
various subroutines is as follows:

a) SUBROUTINE CUBIC (P, Q, R, RT1, RT2, RT3)
This subroutine evaluates the solutions of a cubic
equation with complex coefficients of the form x3

+Px2 + Qx + R = 0.

It uses double-precision arith-
metic in order to obtain the required accuracy. The
three complex roots, RT1l, RT2, and RT3 are in order

of decreasing real parts.

b) SUBROUTINE DPROD (XR, XI, YR, YI, ZR, 2I)
This subroutine multiplies the complex numbers X
and Y together to give complex Z. Double-precision
arithmetic is used; thus the real and imaginary

parts are carried separately.

c) SUBROUTINE DARCTAN (Y. X, 2)
This subroutine finds Z = arctangent (Y/X) in the
correct quadrant. Double-precision arithmetic is

used.

d) SUBROUTINE BREIT (XI, FFF, Xﬁ, GJ, GI, DELW
BGAUSS, W, XGAUSS, EPS1)
This subroutine evaluates the energy of a given
state according to the Breit-Rabi formula (see

Section 2). The input variables are

XI spin of nucleus
FFF F quantum number
- m quantum number
GJ

g. value (atomic g factor) excluding
J

radiative corrections

GI gy value (nuclear g factor)

* DELW zero magnetic field hyperfine splitting
in MHz

BGAUSS magnetic field in G

The output variables are
W energy of state in MHz
XGAUSS value of the parameter X(defined in

Section 2)
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EPS1 nuclear moment correction term € + Q"k + R for k =1, 2, 3, are given. The devia-

(in MHz; already included in W) tion of these quantities from zero gives some idea

accur with which th ts have been de-
The output from the program is fully labeled, and of the accuracy wate © roots ve n

includes the values of the coefficients Ak’ Bk’ and termined.

C,»> the decay constants u , and the relevant fre- *  Tape 10 is defined as input and Tape 9 as output
quencies in MHz. In addition, the three quantities for the particular system for which this program
Fl1, F2, and F3, which are the values of ug + PUE o was written.

¢ IIME PLOT VERSION
¢ DIVIDE R AND VvV BY 13,94 To OBTAIN VOLTS/CM PEAK TOD ZERO
¢ UIviDF M BY 8.80 TO OBTAIN GAUSS PFAK TO ZERO
¢ IMAT 1S, ENTER R,V, AND M [N MHZ ANGULAR FREQUENCY
NIMENSION FFA(O),FFB(6).XMFA(6),XMFBI(6)
DIMENS]ON FARS(3),FACS(3),FBCS(3)
DIMENSION ASQ(200),BS0(500),CSQ(500),ABSG(500),TIME(500)
COMPI.EX XMM,RR,VV,DELAC.P,Q,Rs»XMMSTR,RRSTAR,VVSTAR,XI.RT1,RT2,RT3,
1XIMU(3)sD,EPS(3)HLDEL(3).A(3),B(3).C(3),SUM
COMPLEX X,F1,F2.,F3,AA,BB.CC,PHASAB,PHASAC
DOUBLE PRECISION PI
COMMON P]
1 FORMAT(6F12.6)
2 FORMAT(6H A(K)= 6F9.4,7H Mu(1)= 2F9.4,4H F1= 2F9.4)
3 FORMAT(6H B(K)= 6F9.4,7H My(2)= 2F9.4,4H F2= 2F9.4)
4 FORMAT(6H C(K)= 6£9.4,7H MU(3)= 2F9.4,4H F3= 2F9.4)
5 FORMAT(6HOFREQ= F10.3,5%,34K=1.15%,3HK=2,15X,3HK=3 )
6 FORMAT(122H0 TIME Awe? Bew? Cew? Awew?
1+Rew2 MOD A PHASE A Mun B FHASE B MOD C PHASE C
2 )
7 FORMAT(F12.3.4F12.6,6F10.3)
8 FORMAT(1H1)
9 FORMAT(4H MM= 2F12.6,4H RRx 2+12.6,4H VVz 2F12,6)
10 FORMAT(6H FREQ= F12.3,71} GAMMA= F12.3,5H FAB= F12.3, SH FACx F12.
13,5H FRC= F12.3 )
12 FORMAT(40H DOUBLE PRECISION cUBIC SoLuTION METHOD )
13 FORMAT(614)
14 FORMAT(7H SPIN= }112.6,4H GJ= F12.6,5H MUz F12.6,6H DELW= F12.6,
15H GJP= F12.6.7H DELWP=z F12.6)
15 FORMAT(14H STATE NUMBER 14,94 AT FIELD F7.1, 6H GAUSS )
160 FORMAT(48H INITIAL CONDITIQNS 4=z1, B=0, C=z0 )
161 FORMAT(48H INITIAL CONDITIONS 4a=zp, B=1, C=0 )

Pl1=4.0+«DATAN(1.0D+0)
GAMMA=200.+3.1415927
X1=CMPLX(0.0,1.0)
WRITE(9,8)

19 READ(10.1)XSPIN,Gy,XMU,DELW,GJP .NELWF
READ(10,1)FREUMN, FREQDL .FREQMX,. FF ,DELT.BGAUSS
Gl=XMU/XSPIN
1SPIN=XSPIN+1.0
GO TO (100.101).ISPIN

100 NCASE=2
FFA(1)=1.0
XMFA(1)=1,0
FFB(1)=0.0
XMFB(1)=0.0
FFA(2)=1.0
XMFA(2)=0.0
FFB(2)=1.0
XMFB(2)=-1.0
GO TO 20

104 NCASE=3
FFA(1)=1.5
XMFA(1)=1.5
FFB(1)=0.5

]




XMFB(1)%0.5
FFA(2)=1.5
XMFA(2)=0.5
FFB(2)=0.5
XMFB(2)=-0.5
FFA(3)=1.5
XMFA(3)=2-0.5
FFB(3)=1.5
XMFB(3)z-1.5
20 READ(10,1)XMM,RRaVV
READ(10,13)IMODEs IGSMN, 1CSMX
¢ IMODE 1 GO TO 19 2 GO TO 20
WRITE(9,8)
NFREG= (FREQMX-FREQMN)/FREQDL
NFREQ=NFREQ+1
NTIME=TF/DELT
NTIME=NTIME+1
DO 132 INIT=1,2
DO 110 ICASE=1CSMp, ICSMX
CALL BREIT(XSPIN,FFA(ICASE)»XMFA(ICASE).GJ,G1,DELW,BGAUSS,FA,XGAUS
18,FPS1)
CALL BREIT(XSPIN,¢FB(ICASE),xMFB(ICASE),GJ,G1,DEILW,BGAUSS,FB,XGAUS
1S,EPS1)
CALL BREIT(XSPIN,FFA(ICASE),XMFA(ICASE),GJP,G1,DELWP,HGAUSS,FC,RBGA
1USS,EPS1)
FC=FC-1058.070
FAR=FA-FB
FAC=FA-FC
FABS(ICASE)=FAB
FACS(ICASE)=FAC
FBOS(1CASE)=FB-FC
DO 110 !=1,NFREQ
Fl=1-1
FREQ=FREQMN+F I *FREQDL
DELAB=(FREQ-FAB)*2,0+3.1415927
PHASAB=CMPLX(0-0,DELAB)
ARL=(FREQ-FAC)*2.,0%3.1415927
PHASAC=CMPLX (0.0, ARL)
AIM=-0.5+GAMMA
NDELAC=CMPLX(ARL,A M)
XMMSTR=CONJG (XMM)
RRSTAR=CONJG(RR)
VVSTAR=CONJG(VV)
P=DEL AB+DELAC
Q=DELAB*DELAC-VV*YVSTAR«0,25+«(RR«RRSTAR+XMM*XMMSTR)
R=0.5*REAL (XMM*VV«RRSTAR)*0.25*(RR*RRSTAR*DEL AB+XMM*XMMSTR#DELAC)
P=-X1#P
Q0=-0
R=x]#*R
CALL CUBIC(P.0,R,RT1,RT2,RT3)
X=RT1
Fl:Xttsoptx"ZOQ'XoR
X=RT2
F2=Xee3+PaXee24Q*Y+R
X=RT3
F3=Xee3+Pexea2+Qx+R
XIMUC1)=RTLw#X1
XIMU(2)=RT2#X]I
XIMU(3)=RT3#XI
DO 22 K=1,3
D= (DELAC+XIMU(K) )« (DELAR+XIMU(K))-VV*VVSTAR
EPS(K)=~-0.5%(XMM* (DELAC+XIMU(K))-RR#VVSTAR)/D
22 NEL(K)=-0.5#(RR*«(DELAB+XIMU(K))-XMMeVV)/D
A(1)=EPS(2)+DEL(3)-EPS(3)*DEL(2)
A(2)=EPS(3)+DEL(1)-EPS(1)*DEL(3)
A(3)=FPS(1)+DEL(2)-EPS(2)*DEL(1)
SUMzA(1)+A(2)+A(D)
GO TO (130,131),1InIT
131 A(1)=DEL(2)-DEL(3)
A(2)=DEL(3)-DEL(1)
A(3)=DEL(1)-DEL(2)
130 DO 23 K=1,3




(e NeXe Xl

A(K)=A(K)/SUM
B(K)ZEPS(K)*A(K)

23 C(K)=DFL(K)*A(K)
WRITE(9,8)
WRITE(9.14)XSPIN,(GJsXMU,DELW,GJ",DELKP
WRITE(9,5)FRED
WRITE(9,2)(A(K),K=1,3),RT1.F1
WRITE(9,3)(B(K),K=1,3),RT2,F2
WRITE(9+4)(C(K),K=1,3),RT3,F3
GO TO (150,151),141T7

150 WRITE(9.160)
GO TO 152

191 WRITE(9.161)

192 WRITE(9,9)XMM,RR,VV
WRITE(9,10)FREU, GAMMA,FABS(I£AS=),FACS(ICASE),FBRS(ICASE)
WRITF(9,15) ICASE,HGAUSS
WRITF(9,6)

DO 114 ITIME=1,NT!ME
FITIME=ITIME

T=(FITIME-1.n)*DE T
TIMFCITIME)=T

X=RT1eT

FL1=CEXP(X)

X=RTZ2#*T

F2=CEXP(X)

X=RT3*T

F3=CEXP(X)
AAZA(1)/F1+AC2)/F2+A(3)/F3
BBzRB(1)/F1+B(2)/F2+B(3)/F3
BB=BH*CEXP(PHASAB«T)
CC=C(1)/F1+C(2)/F2+C(3)/F3
CC=CC+CEXP(PHASAC«T)
ASQUITIME)=(CABS(AA) ) *e2
BSQ(ITIME)=(CABS(3B) ) *#w?2
CSQ(ITIMF)=(CABS((CC))*w2
ABSQUITIME)zASQU(ITIME)+RSA(ITIME)
XMODAA=CABS(AA)

XMODBR=CABS(BB)

xMoDCC=CABS(CC)
PHASAA=ATAN2(AIMAG(AA),REAL(AA))
PHASAA=180.0+PHASAA/3.1415927
PHASBB=ATAN2(AIMAG(BB) .REAL(BB))
PHASBB=180.0+PHASEB/3.1415927
PHASCC=ATAN2(AIMAG(CC),REAL(CC))
PHASCC=180.0+MHASCC/3.1415927

114 WRITE(9,7)TIMECITIME),ASQ(ITIME) .RSQ(ITIME),CSQ(ITIME),ABSQ(ITIME)

1,XMODAA,PHASAA»XMODBB,PHASBB, XMUDCC,PHASCC

110 CONTINUE

132 CONTINUE
GO TO (19,20),!MODE
END

SUBROUTINE cuBlC(p,Q,R,RT1,RTZ2,RT3I)

DOUBLE PRECISION VERSION
SOLVES CUBIC EQUATIO$S OF THE FORM Xew3+PeXew2+QeX+R20.0 WITH P, G,
AND R COMPLEX. THE THREE ROOTS RT1, RT2, AND RT3 ARE IN ORDER cf
UECREASING REAL PART,

COMPLEX P,0,R,RTL,RT2,RT3+RT(3)A,B,U,W120

DOUBLE PRECISIUN PRsP1,QRsQ!,RR,RI,P2R.P21,AR,A1,P3R,P31,PQR,PCI,

1RR,B!.82R,B21,A2R,A21,A3R,A31,RI12R,RT21,RTABS,RTARG,RTR,RTI, aAR,

2AA1,DARG

W120=CMPLX(=0.5,0,8660254)

PR=REAL(P)

QR=REA}| (Q)

RR=REAL (R) -

PI=AIMAG(P)

QI=ATMAG(Q)

RI=AIMAG(R)

CALL DPROD(PR,PI,PR,PI,P2R,P21)




12

11

o

14

13

1y

AR2QR/3.0-P2R/9.0
AlzQ1/3.0-P21/9,0
ASNGLR=AR+3.0

ASNGLI=Al+*3,0
ATCMPLX(ASNGLR+ASNGL])

CALL DPRQD(P2R.P2],PR,P1,P3IR,P31)
CALL DPROD(PR,P1,0R,Q!,PQR,PQl)
BR=P3R/27,0-PQR/6,0¢RR/2,0
B1=P31/27.0-PQ1/6.04R1/2.0
CALL DPROD(BR,B!,BR,BI,B82R,B21)
CAILL DPROD(AR,AIsAR,ALl,A2R,A2])
CALL DPROD(AR,AI,A2R,A21,A3R,A31)
RT2R=B2R+A3R

RT21=B21+A3!
RTABS=(RT2R*#2+RTD1#¢2)ex0,25
CALL DARCTN(RI21,RT2R,RTARG)
RTARG=RTARG/?2.0
RTR=RTABS+DCOS(RTARG)
RTI=RTABS+*DNSIN(RTARG)
ABSAA=DSQRT((RTR=BR) #*24 (RT1<Bl)ee2)
ABSBB=DSQRT((RTR*BR) ##2+ (RT1¢R1)ew2)
IF(ABSAA.GE.ABSBB)GD Tn 2
SGN=-1.0

GO Tn 3

SGN=1.0

AAR=-BR+SGN#RTR
AAl=-B]+SGN#RT!
ABS=(AAR##2+AAlw*2)%e(1,0/6.0)
CALL UDARCTN(AAl,AAR,DARG)
ARG=DARG/3.0

{JR=ABS«COS (ARG)
Ul=ABS#SIN(ARG)

U=CMPLX(UR,UI)

DO 1 J=1:3
RT(J)=U-(P+A/ZU)I /3.0

Usij*W120

R1=REAL (RT(1))

R2=REAL(RT(2))

RI=REAL(RT(3))

IFIR1.GE,R2)GD TO 10
IF(R3.GE.R2)G0O TO 11
IF(RI.GE.RLIGN TO 12

J1=z2

Je=z1

J3=3

GO Tn 1%

Ji=2

J?233

J3=1

G0 TO 1Y

J1=3

Jo=2

INES!

GN Tu 19

IFrR3.GE.R1IGO TO 13
IF(RS.GF,R?2)GN TO 14

Jisi

J2=2

1323

GO 111 19

J1=1

IYER)

IREY

6O T 15

J1:23

J2=1

1322

rONT INUE

RT1=H]I(J1)

RTP2=RT (J2)

RTZ=RT(J3)

RFTURN

END
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48

c
c

F INDS DOURLE PRFCISIUN ARCTANGENT IN RADIANS IN CORRECT QUADRANT.

SUBROUTINE DPROD(XR,XI1,YR»YI,ZR,Z1)
DOUBLE PRECISION xR, XI, YR, YI. ZR, 2!
ZRzXR*YR-X1#Y]

Zl=X1*YR+XReY]

RETURN

END

SUBROUTINE DARCTN(Y,X,Z)

DEFINES ZERQ/ZERO=ZERO., USES RANGE Pl TO - Pl

300
303

304

301
305

306
307

302
308

N =

DOUBLE PRECIS!ION X,Y,Z,P1,¥YX
COMMON P

YX=Y/X
1F¢(x)300,301,302
1F(Y)303,304,304
Z=DATAN(YX)-P]
GO TO 308
Z=DATAN(YX)+P!
GO TQ 308
1F(Y)305,306,307
2=-P1/2.0

GO TO 308

Z=0.0

GO TO 308
2=P1/72.0

GO TO 308
ZZNATANCYX)
RETURN

END

SURROUTINE BREIT(XI,FFF,XM,GJ,G! . DELW,RGAUSS,W,XGAUSS,EPS1)
ISGN=FFF

F=]SGN

SGN=(F#2.0-1.0)*(DELW/2.0)
GJ1=6J+0.00229*(GJ-1.0)

EPS=1.0/(GJ1#1836,1/G1-1.0)

XGAUSS=6J1+9.2732«BGAUSS/(6.625*DELW*(1.0+EPS))

EPS1=EPS«DELW*XGAYSS
=-DELW/(4.0%X1+2,0)eEPSLeXM

R=2.0%#xM/(X1+0:5)

1F(B+1.0)1,1,2

1F(XGAUSS-1.0)2,3,3

SGN=-SGN

W=W+SGN*SQRT(1.0+B+XGAUSS+XGAUSS#XGAUSS)
IF(GJ.GE.1.0) RETURN

DELTA=ABS(W)#4.0*BGAUSS/(9.0#5214.0)

WzW-DELTA

RETURN

END




APPENDIX B. A COMPUTER PROGRAM FOR THE NUMERICAL
INTEGRATION OF THE FOUR-LEVEL EQUATIONS

A FORTRAN IV program which numerically integrates
the four-level equations is given in this appendix.
The version given finds ]a]2, ]b]2, ]c]2, ]d]2, and
]a]2 + ]b]2 as a function of time for a set of fixed
driving frequencies and fixed magnetic field. The
real and imeginary parts of a, b, c, and d are also
given. Other versions of the progrem exist in ;hich
time is held constant while the variation of the
above quantities with magnetic field at fixed fre-
quency, or with frequency at fixed magnetic field,
is studied.

On a CDC 6600, the progrem requires (for the accu-
racy used here) about 1 minute of central processor
time per microsecond of integration time. More pre-
cisely, the computation times and number of times

the subroutine DERIV is called are as follows:

Card 3 (FORMAT F12.6)

FREQ2 driving transverse frequency in MHz

(normally zero)
Card 4 (FORMAT 6 F12.6)

Identical to Card 3 for program described in
Appendix A.

Card 5 (FORMAT 6 F12.6)
XMMP M' in MHz (angular frequency)
RRP R' in MHz (engular frequency)
VVP V' in MHz (angular frequency)

vhere these quantities are complex and again re-

quire two numbers each for their specification.
Cards 6, T (FORMAT 6 F12.6)

Xo(1) initial real part of a
xo(2) initial imaginary part of a

Case DERIV Cealls Computation Time Approximation
per usec per usec

1 5,000 35 sec 3 level, eiwt

2 80,000 66 sec 3 level, cos wt

3 40,000 42 sec 4 level, elwt, e~ lut

k 80,000 81 sec 4 level, cos wt

vhere the case number is as given in Figure 20. The
program is believed to maintain better than 1% accu-
racy for integration times at least up to 1 micro-
second. The accuracy can be adjusted with the pa-
remeters RELTST and ABSTST in subroutine INTEG.
Accuracy testing is done in subroutine ACCRY.

The program is set up to allow the transverse elec-
tric field to oscillate also. This case could be
of interest if the metastable beam was mixed with

a plasma, since rf fields could penetrate the plas-
ma, under appropriate conditions, while static elec-
tric fields cannot.

The input for the program is as follows:

Card 1 (FORMAT F12.6)

Identical to Card 1 for progrem described in

Appendix A. .
Card 2 (FORMAT F12.6)

Identical to Card 2 for program described in
Appendix A.

x0(3) initial real part of b
xo(k) initial imaginary part of b
xo0(5) initial real part of c
Xo0(6) initial imaginary part of ¢
x0(7) initial real part of d
x0(8) initial imaginary part of d

Card 8 (FORMAT 6 1i)

Identical to Card 4 of program described in
Appendix A.

The program consists of a main program together
with several subroutines. The function of the

various subroutines is as follows:

a) SUBROUTINE INTEG (NN, TI, TTF, HH, HHP, MM,
VWM, IP, X0, TT, XXP)
This subroutine integrates en arbitrary system of
real inear differential equations. The arguments
of this subroutine are defined by comments in the
main program listing. The monitoring feature (a

periodic test of a specified variable against some
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1limit) is not used. INTEG calls a number of sub- BGAUSS, W, XGAUSS, EPS1)
routines of which only those which are specific to This subroutine was described in Appendix A.
the problem under discussion will be further de-

The output from the program is fully labeled. Tape
scribed.

10 is defined as input and Tape 9 as output for the
b) SUBROUTIN DERIV (T, V, FD) system for which this program was written.
This subroutine computes the value of the first de-
rivatives FD(I) (for I = 1 to 8) given the value of
the functions V(I) (for I = 1 to 8) end the time T.
I =1 end 2 correspond to the real and imaginary

The inc¢lusion of fields whose strength varies as
time (or displacement in a cavity) can be easily
incorporated in the subroutine DERIV. It is re-

N quired to give RR, RRP, MM, MMP, VV, and VVP the
arts of a aend 4 to the real and imagin arts
P » 3 € imeginary p required time dependence, as indicated on comment
of b, and so on. (The four complex first-order aif- s

cards.
ferential equations have been rewritten as eight

real first-order differential equations.) It is important to simplify DFRIV as much as possi-

ble, from the point of view of computation time,
c) SUBROUTINE PRINT (T, V)
. since it is in the innermost loop. The form listed
This subroutine sets up the common variable arrays
here is more general than required for many prob-
at the specified print-step intervals for later

printout. lems, and, if computer time is important, it should
be simplified in those cases.

d) SUBROUTINE BREIT (XI, FFF, XM, GJ, GI, DELW,

PROGRAM [ AMBV (INPUT,TAPE 10=INPUT,OUTPUT.TAPE 9= QUTPUT,FILM, TAPE
1 [2=FILM)
AMPLITUOES AS FUNCTION UF TIME VERSTION. LONGITUDINAL AND TRANSVERSE
DRIVING FREQUENCIES ALLUWED (TRANSVFRSE FREQUENCY NORMALLY ZERO).
DIMENSIONS ALLOW UP To S5 FREQUENCY POINTSs 100 TIME POINTS
(RESULTS STORED AS NIMENSIONED VARIABLES TO FACILITATE PLOTTING)
DIVIDE R aND V BY 13.94 TO OBTAIN VoLTS/CM PEAK TO ZgRO
DIVIDE M By B8480 TO OBTAIN GAUSS PEak Tn ZERD
THAT ISy ENTER RyVe AND M IN MHZ (ANBULAR FREQUENCY)
COMPLEX XMMyXMMP ,RR<RRPsVVIVVYP
COMMON ARL(3¢100,5) ¢yBRL(39y10095) ¢CRL(39100+5)¢DRL(36100¢5)
1AIM(3910095) »BIM(3,10095),CIM(391009%)9DIM(3,10045),ICASEsIFREQ,
2ITIMESTIME(100)
COMMON/RLK3/XMM s XMMP y RR9yRRP 9 YV s VYD ¢ GAMMA2 y WAB 9 WAE s WAF y WBE » WBF y WEF o
1WFREW] yWFREQ2 '
CUMMON/RLKT/IDERTV
DIMENSION ASH(100) y8SQA(100)9CSQ(100),0SQ(100)9aBSQ(100)
RIMERSINN FFA(3) o XMFA(3) 9FFB(3) 9 XMF8 (3)
NIMEYSTON X0(30) o XXP(30) 9FREN(S) ,FSP (396)
1 FORMAT (4F12ek) :
6 FORMAT¢]32H TIME Ano? Hee2 C*s2 Do*2 Aww2
JeH#a2 aRL AlM BRL, BIm CRL cim ORL Dim
2 )
7 FURMAT(F10e30e5F1ne648F743)
4 FORMAT (1H1)
Q FORMAT "4 MMB PF14,694H kR® 2F14 .66 4H VVE 2F14,6)
10 FORMETY (g HGAUSSE F12,39y 8H GAMMA® F12.398H FREQIs Fl2.3»
184 FuEy2s F12.3 )
111£§““:;ﬁqu MMP= F13,69F1446% SH RRP= F13.,69F14469 5H VVPE F13,69
446
13 FOQVAT(gI4)
14 cORPMAT(7H SPINE F12¢694H GJm F12,698H MUm F12,6,6H DELWE F12.69
154 GJPm F12.647H DELWPE F12.6)
15 FORMAT(14H STATE NUMBER 14}
16 FORMAT(16H INITIAL VECYOR 4(F1ne3,F7,3))
17 FORMAT(5H FAB= F10,395H FAEm F10,3+54 FAF® F10,3'8H FBEs F10,39
15H FRAF® F10+395H FEF® F10,3 )
GAMMA®]100.0%2,0%3.141%927
GAMMA2=m( , S®GAMMA
WRITF (9,8)

OO OO0 0
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19

100

20

READ(1041)XSPINsGJ s XMUsDELWsGJPINELWP
READ(10,1)FREQMN,FREQDL s FREQMX s TTF s HWP +BGAUSS
READ(10,1)FREQ2

GlaXMU/XSPIN

ISPINSXSPIN®1,D

GO TO (1009101)9ISPIN
NCASE=2

FFA(l)=1,0

XMFA(1)=m140

FFE(1)=0,0

XMFB (1) =040

FFA(2)®m] .0

XMFA (2) =040

FFR(2)m1,0

XMFB(2)a=1,0

GO TO 29

NCASE=3

FFA(1)=],.5

XMFA(1)=1.5

FFR(1)=0.5

XMFB(1) =05

FFA(2)®m1.5

XMFA(2)®045

FFB(2)=q.5

XMFB (2)m=0,5

FFA(3)=,5

XMFA(3)m=0,5

FFR(3)®m145

XMFB(3)m=1.5

READ (10,1) XMMyRR,VV
READ(1041) XMMP yRRPyVVP
READ(10,1) (X0(1)4Im198)
READ(10,13) IMODE « ICSMNy ICSMX
NFREQs (FREWUMX=FREQMN) /FREQUL
NFREQsSNFREWQ®1

DO 110 JCASE=ICSMN,yICSMX
I0ERIV=g

1TIME=pD

CALL BRFIT(XSPINJFFA(ICASE) 9 XMFA (ICAGE) yGJsGIsDELWIBGAUSSsFA,
1XGAUSSyEPS])

CALL BREIT(XSPIN.FFB(ICASE)vaFB(ICAsE)vGQyGIoDELwoBGAUSSoFBo
1XGAUSSyePS1)

CALL BREIT(XSPINyFFA(ICASE) 9 XMFA(ICASE) vGJP+1GIsDELWPIBGAUSSsFEs
1XGAUSS,ygPS1)

CALL BREIT(XSPIN,FFB(ICASE) s XMFB (ICASE) +GJP+GI+DE WP +BGAUSSsFFy
1XGAUSS»ePS])

FE=FE=1058.070
FF=FF=10584070

FAB®FA=FB

FAE=FA=FE

FAF=FA=FF

FBE3FB=FE

FBF=FB=FF

FEF=2FE=FF

WAB=FAHB®6,2831854
WAESFAE#6.2831854
WAFSFAF86.,2831854
WRE=FBE#6,2831854
wBF=FRF96.2831854
wEFeFEF#6.2831854
FSP(ICASEs1) =FaB
FSP(ICAQEs2) sFAE
FSP(ICASE+3) ®FAF
FSP(ICASE %) =FBE
FSP(ICASES)sFBF
FSP(ICASE6) =FEF

DO 112 IFREQ=1.NFREQ
FIFREQ=IFREQ
FREW(IFREQ)=(FIFREQ=1.0) *FREQDL* FREQMN
FREQI=FREQ(IFREQ)
WFREQ1=6¢2831854#FREW]
WFREQ2m6,28318544FREW2
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OO OO0NONOO

COoO0n

WRITE(9,8)
NN=8
TI'0.0
HH=0,0001
MM=(
VVME(,0
1P=0
CALL INTEG(NNyTIoTTFoHHIHHP sMMoVyMe IP9 X0y TTo XXP)

NN NUMBER OF FIRST ORDER UIFFERENTIAL EQUATIONS

T INITIAL VALUE OF INDEPENDENT VARIABLE

TTF  FINAL VALUE OF INDEPENDENT VARTABLE

HH GUESS AT STEP SIZE

HHP PRINT STEP SIZF

MM VARIABLE TU BE MONITORED (0=NO, 1 TU NN YES )

VVM  VALUE TO MONITQR FOR

1P NUMBER OF PARAMETERS

X0 VECTOR OF STARTING VALUES

TT VALUE OF TIME RETURNED AT END oF INTEGRATION

XXP VARIARLE VALUES RETURNED AT ENDn OF INTEGRATION

112 CONTINUE

110 CONTINUE
NTIME=ITIME
DO 26 IFREum1,NFREQ
DU 25 ICASE®ICSMNsICSMX
WRITE(9,8)
WRITE(9,14) XSPINyGJy XMUsDELWGJUP4DELWP
WRITE (9,9) XMMyRR,VV
WRITE(9,11) XMMP yRRP 4 VYP
WRITE(9,10)BGAUSSyGAMMAYFREQ (IFREQ) 9+ FREQ2
WRITE(9,15) ICASE
WRITE( 9916) (X0(])yIm14B)
WRITE( 9917) (FSP(ICASEsIFS) »1FS=1,46)
WRITE(9,6)
DO 24 ITIME=1,NTIME
ASQ(ITIME) =AKL (ICASEs ITIME»IFREQ) #02,AIM(ICASEyITIMEY IFREQ) %02
BSQ(ITIMF)=BRL(ICASFeITIMEYIFREQ)##24BIM(ICASEsITIME s IFREQ) ##2
CSQ(ITIME)=CRL (ICASEsITIME2IFREQ) ##2,CIM(ICASEyITIMEsIFREQ) #a2
DSQ(ITIME)=DRL(ICASEs ITIMEYIFREQ) ##24,DIM(ICASEs ITIME s IFREQ) ##2
ABSQ(ITIME)®=ASQ(ITIME) +BSQ(ITIME)

24 WRITE(9,7) TIME(ITIME) yASQ(ITIME) 4BSQ(ITIME) yCSQ(ITIME) yDSQ(ITIME) »

1ABSQ(ITIME) »
2ARL(ICASEsITIMEsIFREW) yAIM(ICASE,ITIMEsIFREQ) »
3BRL(ICASEsITIMEyIFREW) yBIM(ICASE,ITIMEs IFREQ) »
4CRLUICASEs ITIMEs IFREW) 9»CIM(ICASE, ITIMEsIFREQ) »
SORL(ICASEsITIMEyIFREQ) 4DIM(ICASE,ITIME, IFREQ)
25 CONTINUE
26 CONTINUE
GO TO (19920) 4 IMODE
END

SUBROUTINE INTEG (NNeTIsTTFoHHeHHP sMMIVVMIP 9 X0 TTyXXP)
INTEG() SOLVES A SYSTEM OF N FIRST ORDER DIFF EQNS By A &4TH
ORDER ADAMS P=C METHOD WITH AUTOMATIC ERROR CONTROLs STARTING
IS BY RUNGA=-KUTTA.

INTEGER Pot!
REAL LB

LOGICAL ACC
CUMMON/RLKL/NyToTF yHIHN s HP oMy Vi JyACCILBYRELTST9ARSTSTyFACTORY
1BNDeX(3n95) sF (3045) yE(30) yXP(30)

COMMON/RLKS/ IDOURL yNDOUBL

DIMENSION X0(30) 4XXP(30)

SET UP INITIAL VALUES
NENN
TFaTTF
H®HH
KPaHHP
MBMM




N

c

VMeVVM
DO 10 ImleN

10 x(1e1)mx0 (1)
IF (P.EQ.0) GO To 2%
LaN+1
UsNeP
DO 20 I=mLsU
XP(I)=axo(I)
DO 20 J=ls5

20 X(IeJ)mxo (1)

21 T=71
BNDBTIeHP
HO=H
ABSB=®1,nE~4
RELB=ABSR
ABSTST=aABSB#14,2
RELTST=RELB®*14,2
FACTOR=RELB/ABSB
LB=0.008#RELTST
10ouUBL=p
NOOURL =3
HEZ2400%H

30 CALL START(IRETRN)
GO TO (100999)sIRETRN

SHOULD ANY OF THE STARTING VALUES BE PRINTED OUT

100 T=T=3,0%H
NO 35 JUm2+4
TEZT+H
CALL TEST(IRETRN)
GO TO (35960) s IRETRN

35 CONTINUE

BEGIN ADAMS METHOD

40 cALL ADAMS
CALL ACCRY
IF (ACC) GO TO Sp
NO 45 I=]1yN

45 X(191)mx(1y4)
G0 TO 3p

S0 cALL TEST({IRETRN)
GO TO (101960)9IRETRN

101 CALL DOUBLE (IRETRN)
GO TO (40930) s IRETRN

60 IF (JJEQ.5) GO To 65
DU 64 ImlsN

64 XP(I)=X(I0sJ)

65 CALL PRINT(TeXP)
TT=T
DO 70 ImleN

70 xXP(I)=xP(I)

99 RETURN
END

SUBROUTINE START (IRETRN)
RUNGA=KUTTA STARTING METHOD
LuGICcaL ACC
CUMMON/RLKY1/Ns ToTF g HoHOIHP oMy VMy J,ACCILBIRELTSTyARSTSToFACTORY
1BND9X(3n95S) 9F(3045)4E(30) 9XP (30)
COMMON/RLK2/G(3044)
J=2
CALL RNGA
10 DO 15 I=mleN
15 xP(I)=mXx(192)
XP(I)sDSL INTERVAL RESULT FOR ERHOR ANALYSIS
T=T=
HBNeS®H
IF ((Tep) eNEsT) GO TO 30
WRITE (9,20)
20 FORMAT(50H EWUNS CANNOT BE SOLVED FURTHER WITHIN GIVEN ERROR )
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21

30

40
41

TPLUSH=T+H

WRITE(9,21) TPLUSH,T
FORMAT (gH TeHm £15,109 6H T= E15.10 )
IRFTRN=2

RETURN

NO 40 JUm2,3

CALL RNGA

CALL ACCRY

IF (4NOT,ACC) GO TO 1o
J=4

CALL RNGA

1RF TRN=1

RETURN

END

SURROUTTNE RNGA

INTEGRATE N EQNS AHEAD ON THE J/TH STEP OF LENGTH He

10

20

30

40

TE

1o

20

75

S0
99

COMMON/RLK1 /Ny ToTF yHoHO s HPsMyVMy J,ACCoLByRELTSTyABSTST4FACTORY
18NN X (3095) 9F(3045) yE(30) yAP(30)
COMMON/RBRLK2/G(30,44)

CALL DERIVI(TeX(1,J=1)4F(lyJd=1))
DO 10 I=leN

G(Isl)muF (T9J=1)
X(Tod)=mxX(LoJ=1)+0aSHG(T9]l)
TT:T‘O.s“H

CALL DERIV(TTeX(19J)oF(ley))

NnO 20 I=mleN

G(192)=HuF (19J))
X(led)mxX(19J=1)+ne58G(192)

CALL DERIV(TToX (19 J)oF(leJ))

DU 30 I=lsN

G(I93)muaF (oY)
X{ToJ)mX(ToJ=l)®,(143)

T=TeH

CALL DERYVI(TeX(14J)sF (19ed))

DO 40 IxlyN

G {Iv0)mHaF (TeJ)
XCIoJ)mX(1gJm1)o(G(I91)92,0%(G(1,2)¢G(193))eG(144))/6,0
RETURN

END

SUBROUTINE ACCRY
STS ABS AND REL ERROR AND SETS ACec +FALSE. IF NEITHER SATISFIED
LOGICAL ACC
COMMON/BLK1/NoToTF oy HYHOSHP My VMy JoACCILBIRELTST9ABSTSToFACTORY
1BND X (3095)9F (3045) 4E (30) yXP (30)

ACC® o TRUE o

DO S0 I=lN

E(I)®SABS(XP(I)=X(1,y0))

IF (E(1)+GE«ABS(X(I,9J))*RELTST) 60 Tn 10
E(I)SE(])ZABS(X(Ts )}

GO 10 59

IF (Z(1),GE«.ABSTST) $0 TO 29

E(1)=E (1) *FACTOR

GO TO Sn

TERT=H

HO=0+5%H

ACC’.FALSE.

FORMAT(1H » 16HSTEP SIZE CUT TO» Fl12,Bsy 6H AT Tms» F12.8)
WRITE(9,75) HO»T

GO TO 99

CONTINUE

RETURN

END



SUBROUTINE TEST (IRFTRN)
MONITORS FOR vMe END OF INTEGN OR PRINT RANGE,
COMMON/RLK1/NsToTF oHIHOIHP YMy VMoJ.ACcvLBvRFLTSTvARSTSTvFACTORv
IBNN9 X (3095) 9F (3045) yE(30) 9 XP (30)
DIMENSTON xl(ao).xz(ao).rl(solvrz(so)
IF (MJ,EQ.0) GO To 2n
IF ((X(MygJ) sLE.VM) s AND 4 (X (MyJ=1) ,GT4vM)) GO TO 10
IF ((X(MyJ)eGTeVM) , ANDe (X (M9 g=1) ,LEevM)) GO T0 10
GO TD 2p
10 cALL DINDE
IF(T=TF)70e70430
70 IRETRN=)
RETURN
20 IF(ABS((T=TF)/TF1=1,0E=6) B0,81s8]
80 IRFTRN=2
RETURN
81 IF(TJLE,TF) GO Tn 40
30 H=TF=T
DU 35 IalsN
35 X(Iel)mx(IsJ)
J=?
CALL RNGA
IRETRN=2
RETURN
40 IF(TL.LT,RBND) GO TO S0
SAVE ALL VARIABLES WHICH MAY BE MODYFIEn IN PRINT PRQCEDURE
HSAVE=H
TSAVE=T
JSAVE=J
DO 45 I=1sN
X1(I)ax(Isl)
X2(D=x(1y2)
FL(I)=F(Is1)
F2(I)=F (1+2)
45 X(Tel)mx(lsJ)
J=2
H=BND=T
CALL RNGA
CALL PRINT(TeX(1,U))
BND=BND+HP
RESTURE VARIABLES Tn PROCEED
J=JSAVE
HIHSAVE
T=TSAVE
DO 46 I=1yN
X{1ol)=x1 (1)
X(192)ax2(1)
FlIs1)=F1(D)
46 F(l192)=F2(1)
S0 IF (JuNE.S) GO TO 99
N0 60 Ixlen
x(194)=x(145)
NO 60 JUm295
60 F(led=1)=F(1sJ)
99 IRETRN=)
RETURN
END

SUBROUTINE DIODE
FIND VALUE OF T WHERE THE M/TH VARIARLE REACHES THE VALUE VM
COMMON/RLK1/NyToTFyHoHOsHP oMy VMy JoACCILByRELTSTyABSTSToFACTORY
18NN X (3n9S) 9F (30+5) 9E (30) o XP (30)
DIMENSION D(30)
Y1mX(My )
YO=X(My J=l)
NELT==ARS (H®Y]1/(y1l=Y0))
10 H=DELT
N0 20 I=1yN
20 x(1el)ex(1,yJ)
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J=2

CALL RNGA

CALL DERIVI(TsX(1,J) )
DELT=(VM=X(M9J)) /D (M)

1F (ABS(DELT)«GE,.1.0E=4) GO TO 1y
X (M9 J)myM

RETURN

END

SUKROUT INE ADAMS

INTEGRATE ONE STEP RY THE ADAMS PRENICTOR=CORRECTOR METHOD
COMMON/RLK1/NyTyTFyHsHO9HP sMyVMy JoACCILByRELTST9ABSTST,FACTORY
1BNNIX(3n95) sF(3045) yE(30) yXP(30)

J=9
CALL DERIVI(TyX(1,4)4F(194))
DO 10 I=leN

10 XP(I)®X(194)%0004166666T*H* (S5.08F (1,4)=59,04F (1+3)
1437.08F (192)=9.,0%F(191))
T=T+H
CALL DERIVI(TeXPosF(195))
DO 20 I=1lsN
20 X(I95)=X(194)+0e04166666T#H® (I,00F (1,5)¢19,0%F(Iv4)
1=5,0%F(J¢3)¢F(192))
RETURN
END

SURROUTTNE DOURLE (IRETRN)
CAN INTERVAL BE DOURLED
REAL LH
COMMON/RLK1/NoToTF oHoHOsHPIMoVMy Jo,ACCILBIRELTST9ARSTST,FACTORY
1BNDsX(3095) oF (3045) yE (30) 9y XP (30)
CUMMON/RLKS/ IDOURL y NDOUBL
100UBL=IDOUBL 1
1F (IDOURL «LT«NDOJBL) GO TO 99
ALLOWS DOURLE ATTEMPT ONLY EVERY NDouBL/TH CALL
1DouBL =0
DO 10 I=leN
IF (E(1).GT.LB) GO TO 99
10 CONTINUE
N1=HP/ (2,0%H)
IF(D1.,LE.2.0) GO TO 99
D2= (BND=T) /(24 %)
IF(D2,LE«240) GO TO Y9
NO 20 I=xleN
20 X(19l)=x(1y4)
HUS2 . 0%H
H=2 4 09H
30 FORMAT (18H STEP INCREASELU TO F12.8, 6H AT Tz F12,.8)
WRITE(9430)H0sT
1RETRN=2
RETURN
99 IRFTRN=]
RETURN
END

SUBROUTINE DERIV(T4VsFD)

DIMENSION V(30),4FD(30)

COMPLEX UBAsUFEsyEAIUFBIUFAyyEB

COMPLEX XMMyXMMP 4RRyRRPsVVVYP

COMMON/BLK3/ XMM 9 XMMP yRR9RRP s YV 9 VYP 9y GAMMA2 y WAB 9 WAE , WAF ¢ WBE s WBF s WEF »
1WFREQ] *WwFREQ2



A's

oo

OO0

COMMON/RLKTZ/IDERTV
IDERIV=IDERIVe]
FOFT1mCNS(WFREQleT)

REPLACE FOFT1 BY FOFT1#(DESIRED SLOw FUNCTION OF TIME) TO MODULATE
RRyRRP 9y MMy MMP

FOFT2aCnS (WFREQ2aT)

IF FREG2=0,0 IS ONLY CASE OF INTEREST SET FOFT2m1,0 TO SAVE COMPUTER
TIME

REPLACE FOFT2 BY FOFT2#(DESIRED SLOW FUNCTION OF TIME) TO MODULATE
VVsvve

200

201

300

UR==SIN(WAE®T)

ul=z=COoS(WAE®T)

UEA=RReFQOF T1#CMP_X (URsUI)
UR==SIN(WBE®T)

UI==COS (WBE*T)
UERaVVeFQOF T2#CMP X (URWUI)
UEAR=REAL (UEA)

UERR=REAL (UEB)

UEAI=AIMAG (UEA)

UERI=AIMAG (UEB) '
FD(1)==UEAR®V (5)=UEAlaV (6)
FU(2)=UEAI®V(S)=IEAR®V (6)
FO(3)==EBR*V (5) aUEBI®V (6)
FU(4)BUFRI#V(S) =iJERR*Y (6)
FO(S)BUEAR®V (1) =UEAI®V (2) +UERR®YV (3) ~yEBI®V (4) =GAMMA2*V (5)
FO(6)=UEAI®V (1) +UEAR®V (2) +UERI®V (3) +JEBR#V (4) =GAMMA2*V (6)
FD(T)==GAMMA2®V (T)

FU(B) 2=GAMMA2#V (R)

IF (CABS(RRP) eNEWpe0) GO TO 101
IF (CABS(VVP) «NEen«0) GO TO 101
GO TO 200

UR==SIN (WBF*T)

ul==COS (WBF®T)
UFB3RRP#FOFT1aCMPLX (URyUI)
UR==S IN(WAF®T)

UI==COS(WAF*T)

UFA=VVP#FOF T2#CMPLX (URyUI)
UFRR=REAL (UFB)

UFAR=REAL (UFA)

UFRI=AIMAG (UFB)

UFAI=AIMAG(UFA)
FD(1)=FD (1) =UFAR®V (7)=UFAI®V (8)
FD(2)=FN(2) ¢UFAlaV (7)-UFAR®V (8)
FD(3)=FD(3)=UFBR®#V (7)=UFBI%V (8)
FU(4)=FD(4) «UFBIaV (7) «\IFBR*V (8)
FO(7)=FN(T7) +UFAR#V (1) =UFAI®V (2) ¢} IFBRaV (3) =UFBI*V(4)
FU(B)SIFD(B) *UFAT®V (1) +UFAR®V (2) s UFBIaV(3) *UFBR*YV (4)
1F (CABS (XMM) «NEene0) GO TO 201
1F (CABS (XMMP) (NE,0,0) GO TO 201
GO TO 3p0

UR==SIN(WAR®T)

Ul==COS(WAB#*T)
UBA=XMMaFOFT1oCMPLX (URyUT)
UR==SIN(WEF#T)

UI==COS(WEF*T)
UFESXMMPaFOF T1eCMPL X (URsUT)
UBAR=REAL (UBA)

UFER=REAL (UFE)

uBAI=AIMAG (UBA)

UFEI=AIMAG (UFE)
FO(1)=FN(1)=UBAR®V (3) =UBAI®*V(4)
FD(2)=FD (2) +UBAT @V (3) =UBAR%*V (4)
FO(3)=FD(3) ¢UBARa#V (1) =UBAI®V (2)
FD(4)®mFD(4) +UBAT#V (1) «UBAR®Y (2)
FID(S)=FD(5)=UFERaV (T)=UFEI*V (8)
FD(B)=FD(6) ¢UFEI#V (T7)-UFER®*V (8)
FO(T)=FD(T) *UFERaV (5)=UFE1*V (6)
FD(B)=Fn(8) ¢UFElaV (5) «UFER*V (6)
RETURN

END
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10
11

N W -

SUKROUTTNE PRINT(T,V)

DIMENSION V(30)

COMMON ARL (39100,5) yBRL(3410095) 4CRL (3910095)9DRL(3910095)
1AIM(3910095) 9BIM(3410095) yCIM(3970095) 9DIM(3,10095) ¢ ICASEsIFREQ,
2ITIMELZTYME(100)

cOMMON/aLKllNoToTF.HoHooHPoM.VM.J.ACcoLBoBELTSToAHSTST.FACTORv
1BND9X (3095) 9F (3045) yE(30) 9 XP (30)

COMMON/BLKT/IDERIV

ITIME=ITIME+]

FITIME=TTIME

TIME(ITIME) ZFITIME#KP

WRITE(9,10) ICASE,ITIME,IFREQ, IDERIV

FORMAT(gH ICASE T4y6H ITIME IaygH IFREQ I44913H DERIV CYCLES I10)

FORMAT (QF1246)

WRITE(9,11)To(V(])yIn1,8)

ARL(ICASEsITIMEs IFREQ)=V (1)

AIM(ICASEsITIME, JFREQ) =V (2)

BRL(ICASEsITIMEs IFREQ) =V (3)

BIM(ICASEsITIMEZIFREV) 2V (4)

CRL(ICASEsITIMEs IFREW) =V (S)

CIM(ICASE ITIME, IFREQ) =V (g)

NDRL(ICASEsITIME s IFREQ)=V(T)

DIM(ICASEsITIME,IFREQ) =V (8)

RETURN

END

SURROUTTNE HREIT(XIsFFFeXM9sGJ9GI DELWIBGAUSS+WyXGAUSSyEPS])
ISGN=FFF

F=ISGN

SGNE (F#2,0=140)* (DELW/2.0)

6J136GJ¢0.00229¢ (GJ=140)
FPS®1,0/(GJ1%183641/GI=140)
XGAUSS=GJ199.2T732#RGAUSS/ (6,625enELWe (1,0*EPS))
EPS1=EPS#DELW®XGAUSS

WS=DELW/ (4,0%X]¢2.0) +EPS1#XM

BE2+0%XM/ (XI*045)

IF(B+1.0)10192

IF(XGAUSS=1¢0)293¢3

SON®=SGN
WEW+SGN#SQRT (14 0+BoXGAUSS+XGAUSSaXGAI)SS)

iF (GJ.GE.‘.O) RETURN

DELTAZARS (W) #4,0#BGAUSS/ (94005214,0)

WsW=DELTA

RETURN

END




