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Abstract

A new system of biorthogonal polynomials is developed for the angu-
lar expansion of the directional flux in the linear Boltzmann transport
equation. Recursion relations and an addition theorem are derived for a
system of blorthogonal polynomials shown by Didon (1868) to be orthogonal
over the unit hemisphere. These polynomials are applied to two dimen-
sional forms of the Boltzmenn equation. Equations for the coefficients
of expansion are derived when the directional flux is expanded in 'a. series
of either system of polynomials. One of these systems of equations is
shown to be a linear combination (with specific coefficients) of the
equations obtained when the directional flux is expanded in spherical
harmonic functions, and it is shown that this same system reduces to the

spherical harmonics equations in one dimensional plane geometry.
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Introduction

One of the common methods of formulating mathematical approxi-
metions to the Boltzmann transport equation involves the expeansion
of the angular dependence of the directional flux in spherical harmonics.
The expansion process results in an infinite system of coupled equations
for the expansion coefficients, and this system is usually truncated by
means of & terminating condition, which may be chosen almost arbitrarily.
The approach has several advantages. It can be applied in genera.l' geom-
etr:tes]"2 and is convenient because of the orthogonality properties of
the spherical harmonic functions. If the particle sources include aniso-
tropic scattering, the spherical harmonic addition theorem permits simple
treatment of this kind of a source and minimizes the source coupling of
the equations for the expansion coefficients. Further, particle conser-
vation, a property of the exact transport equation, is maintained in the
equations of the spherical harmonic approximations.

Despite these advantages, considerable effort has been expended in
developing other angular expansion approximations. Part of this effort
has been motivated by the desire to find simpler or more rapidly conver-
ging approximate systems. In one dimensional plane geometry, Aspelumi3
and Conkiéh investigated Tschebyscheff angular expansions, and M:tk,a.5 and

Pomrza.n:tng6 considered expansions in terms of Jacobi polynomials. All of



these efforts, which substitute classical orthogonal polynomials for the
spherical harmonic functions, lead to approximations which are not readi-
1y generalized to other geometries and which, without modification, do
not conserve particles. At the expense of the convenience of orthogon-
ality and addition theorems, these latter two failings are eliminated by
the very general expansion method proposed by Ca.rlson.7’8

In this work still another expansion procedure is described, one
vhich, although it may be applied to one or two dimensional cylindrical
geometry, seems particularly adapted for use in two dimensional (x,y)
rectangular geometry. In this method the angular dependence of the di-
rectional flux is expanded in terms of either of two systems of poly-
nomials in two variables. The two systems of polynomials form a biorthog-
onal set and possess an addition theorem that permits simple treatment of
anisotropic scattering. In (x,y) geometry the systems of equations for
the expansion coefficients possess symmetry properties lacking in the
usual.spherical harmonic expansion. In the same geometry, expansion in
terms of one system of polynomials of the biorthogonal set is a general-
izatlion of the Legendre polynomial expansion in plane geometry, and the
system of equations for the expansion coefficients is easily reduced to
the plane geometry case.

The work described here is preliminary in that no consideration is
given to derivation of boundary conditions or to examination of termina-

ting conditions. 1In addition, no attempt is made to solve the general

systems of equations that are obtained. We content ourselves with



deriving equations for expansion coefficients, examining some of the
properties of these equations, and deriving the basic relations satis-
fied by the biorthogonal polynomials.

In the first section we formulate the Boltzmann equation in (x,y)
rectangular geometry and describe the angular coordinate systems used
throughout the work. In the second section we derive the two systems of
coupled equations that result when the directional flux is expanded in
each of the two systems of polynomials of the biorthogonal set. In the
third section one of these systems is related to the usual spherical
harmonic expansion, and in a fourth section certain elementary proper-
ties of the systems are examined. In a final section we discuss pdssi-
bilities (of which there are many) for future investigations. Deriva-
tion of identities used in the text and of other useful relations are
given in the appendices. In addition, the use of biorthogonal polyno-
mials in cylindrical geometry and the expansion technique of Carlson are

described in appendices.



The Boltzmenn Equation in (x,y) Geometry

The general time-independent, monoenergetic Boltzmann equation is

V() + o(2)¥(z0) = [ a0'¥(z,0")o (2)2(Q" -2) +J(.Q) (1)

in which ¢ and o, are the macroscopic total and scattering cross sections,
Vv is the particle flux (speed times density) at position g traveling in
the direction f, T is the probability for transfer of a particle to daQ
about Q after a scattering event in dQ' about 'y and Jis the source of
particles. For notational convenience we have restricted ourselves to
the monoenergetic equation, but the expansions in the following sections
are also applicable to the velocity dependent equation.

If the medium under consideration is infinite in the z direction,
and if sources and cross sections do not depend on z, then ¥ is inde-

pendent of 2z, and Eqg. (1) becomes

M %,*( +1 g*y +o¥ =0, [ a@'¥(xy,0)1(Q" -2 +.flx7,0) (2)

In Eq. (2) the angular coordinate system is such that 88, = W ,Q'&-y =1,
and g°£z = § as depicted in Fige. 1. The variables u, 1, and ¢ are

the direction cosines of §l and, hence,
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so that the unit vector @ = g(u,n,§) subject to Eq. (3). We shall have

occasion to use two other representations of ,9.:

a) 9=0wo  n=(1-u)F cosp
£ =(1-p%)® sing
b) g = (&) b= (1- 2 com
n=(1-¢%)2 sinw

These coordinates are also shown in Fig. 1. In terms of Eq. (l;) , the

transport equation can be written

1 7t

3 3
K g‘k + N 5! + W(x’y’ll"P) =0 [ dp' J dxp'\[r(x,y,u',qJ')f(g" ",&)

X Yy s 1 t

(6)
+ zf(x,y,p.,q:)

Now, 1f &f is an even function of @ and if £(Q' - Q) is a function of Q' ‘2
only, then ¥ is also an even function of @, or what is the same thing,
an even function of g, and hence a function of p and 1 alone [because

of Eq. (3)]. These statements can be verified by noting that

pu' + ' o+ ER!

®

B
it

F
n

(7)

w4 (1 - D31 - p@)hcos(p - o)



and observing from Eq. (6) that ¥(x,y,n,-¢) satisfies the same equation
as wy(x,y,p,,qJ), assuming the boundary conditions are also even in @. None
of these assumptions 1s very restrictive and we use them in the remainder

of the work, writing
e 9 - 1 ' 3 ' 1 ot + -
13 §¥ + 1 gg + ob(x,¥,1,M) = Oy fl dp fO aP' (%, ¥,u',n )[f(llo ) + f(llo )]

+ ,d(x,y’ll,'ﬂ) (8)

vhere we have made use of evenness of ¥ and used the notation
+ 2 2\ -
nt =t + (1= 123 - wP)eos(o 7 07) (9)

The variaeble of integration in the scattering integral can now be changed,

giving
1 x 1 (1-2)F p ol
J auf ap =) ap/f Lo (- -0 (10)
“l O - _(l_u2)§

In the following derivations we do not display integration limits ex-
plicitly and adopt the convention that all integrals dudgp are over the

hemisphere and that all integrals dudn are over the domain u2 + 'q2 <L

13



Biorthogonal Polynomial Expansion of the Flux

We first expand the directional flux in terms of polynomials

Unm(u.,'f] ), vhich are defined by the generating function

(1 - ap - bn) ® @®
G s D5 1y = = nme ’
alebrwn) (1- an - )2 + (8% + D°)(1 - 4° - 1) 50 10 em(H71)

(11)
assuming that a and b are small enough that the sum on the right con-
verges, i.e., that &% + b° < 1. Equation (11) is the two variable analog
of the generating function for the Tschebyscheff polynomia.ls,9 Tn(u).

The first few of the Unm are displayed in Teble I.

We let

® D ooopil fonp -1
Wx,y,um) = £ = ( ) U (H,ﬂ)\!’ (%x,v) (12)
" 0=0 p0 2 B op oB |

where the binomial coefficient is

() Leng)e | (13)

The polynomials U are orthogonal over the unit circle with weight

(1 - u2 - ne)—% to the polynomials V defined by the generating function

Gplebwm) = (1- 200 - 2m + a2 +09)F = § F &N _(un) (1)
n=0 m=0

14
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The polynomials V are the two variable analog of the Legendre polynomials,
Pn(u). The first few of the V_ are shown in Table IT. In particular

' *
Vno(u.,'q) = Pn(p.) and Vom(u.,'q) = Pm('q). The polynomials U and V were

first studied by Didon, 10 and in particular, he proved that

1
2 _ 2,8 ox mn
/I dungnmUaﬁ(l -w - = ( n ) B0 mp (15)
where 8 oy and % e are Kronecker symbols, e.g.,
8y =0 N #a
(16)
=1 n=¢

The proof of Eg. (15) is reproduced in Appendix A. Multiplying Eq. (12)

by Vnm and integrating, we have

% - dauanv; X
v _(xy) = [f W (17)

*The arthars discovered these polynomials independently. I (K.D.L.)

had noticed in previous workl!l with the transport equation in (x,y)
geometry that certain polynomials in p and n occurred. By Gram-
Schmidt orthogonalization I generated the first few Viom and recognized
that they were generated by Go. However, the Vipm are not themselves
orthogonal. Studying the Batemanl? literature on orthogonal polynomieals,
I came to the conclusion that the polynomials U were generated by a
generalization of the one variable Tschebyscheff polynomisl generating
function. However, I chose the logarithmic function (see Appendix B).
Nelson DeMuth and I used this function to generate the first few Upm and
were attempting to prove orthogonality when he found the Didon reference.
He recognized the applicebility of the work when he saw a tabulation of
the polynomials Upp! The work of Didon (published 1868) seems to be the
only existing description of the U and V polynomials.

16



Table II

The Polynomials V. (u,n)

3 4

: 3 h 2
-1 -3 359 - +8
3u(5n°-1) 5um(7m°-3)
2 2

n

3(35u2n2-2u2-5n2+l)

o 2
1 n
1} 3m
-1 3n(sut-1)
2 2

4 2

35u -30p"+8

L7



It is shown in Appendix C that the scattering transfer function can

be expanded as follows:

D 2041 L /s
E,2x % B (j

+ -
£u,") + fug ) s e B

-1

) VI_J,J(H':TI')UI_j,J(H,ﬂ)
(18)

0 o

-1

28423

= zzo .zo z;: +1 LT <’§3> sz(u',n')U”(um)
= J=

vhere the bl are the same expansion coefficients as for the expansion
of f(p.o) in a series of the Legendre polynomials Pl(p'o)' When Eq. (18)
is substituted in Eq. (8) and Eq. (17) is used, the transport equation

becomes

3 d . @ 2 (z)‘l
13 g;% + 1 % + o¥lx,y,1,m) = O zio B bl ,jio 3 \I'l-.j,,j(x’y)Ul-,j,,j(u’n)

(19)
+ -J (%, ¥,1,0)

It is shown in Appendix B that the polynomials V satisfy the re-

cursion relations

(2n + 2m + l)p.vnm = (n + l)(vn+l,m - vn+l,m-2) + (2m + n)vn-l,m
(20)
(en + 2m + l)'r]Vmn = (m + l)(vn,m+1 - vn-2,m+l) + (2n + m)Vn,m_l

n,m = 0,1,2,000

18




with the convention that polynomials with negative subscripts are zero.
Multiplying Eq. (17) by Vnm(l - ue - ne)'% and integrating we have,
with the use of Egqs. (15), (17), and (20), the following equations for

the coefficients *mnt

[(n+l)(‘l'n+l,m B ¢n+l,m-2) +'(2m'n)¢n-l,m]

%Q/

o

[(m"l)(‘l’n,m_'_l = wn-E,m—l-l) + (2n+m)¢n,m-l] (21)

+
%10/

+ (o -0 )(2n+2m+l)\|rnm = (2n+2m+1)snm

S n+m

m,n = 0,1,2,000

In these equations we have defined

dud’ld(x, NEY U] )vnm( 1)

(22)
(1-p>-n2)2

Snm(x,Y) = ff

Because ve have two systems of polynomials, we can also expand the flux

in terms of the V polynomials, letting

| ® o -1
womn) = T € B (0] y (g (23)

19




so that

du&]Umn( (%, ¥, 1,m)

(24)
(l-uz-ne)%

B _(x,3) = If

With this definition and Eq. (18) (interchanging primed and unprimed

variables), Eq. (8) becomes

3

© ! -1
[ g¥ + 'fl % + W(x,%ll,'ﬂ) = GS z gé_;_]: bz z (g) VI_J,J(u’n)¢z_j,J(x’y)

(25)
+ J(x,y, M)

As shown in Appendix B, the U polynomials satisfy the recursions

(2n + 20 + 1y = {2tL)(Cninsl)

Un+l, m

_ gmeggmlgu

mn+l n-1,m+2

+ (m + n)Un_l,m

(26)

_ (m+1)(en+mel)
(2n + 2m + l)'f]Unm = et T Un,m-i-l + (m + n)Un,m-l

n+2)(n+1
mn+l n+2,m-1

m,n = 0,1,2,000

20



Again, the convention is used that polynomials with negative subscripts
are zero. When we multiply Eq. (25) by Unm(l - u2 - ne)-% and inte-

grate, we obtain

m-l-r];+l %{ [(n + 1)(2m + n + l)¢n+l,m +(nm+n)m+n+ l)¢n-1,m
- (m+ 2)(m + l)¢n-l,m+2]
(27)
+ 'm-_;-}ﬁ ?ry [(m+ 1)(2n + m + l)¢n,m+l +(m+n)(m+n+ l)¢n,m-l
«(n + 2)(n + l)¢n+2,m-l]
+ (o - o'sbn+m)(2n + 2m + l)¢5nm =(2n + 2m + l)‘dnm
with n,m = 0,1,2,... and
dp.dIIJ(X,y,u,'f])U (1sm)
o (x,y) = o 28
L 9) = I~y (28)

21



Relation to the Spherical Harmonic Expansion

We define the spherical harmonic function Ynm as
m
Y "(k,9) = B_"(n)cosmp (29)

anticipating the fact that no temms in sinmp are needed because the flux

V¥ 1s assumed even in @. In this definition the an(p.) are associated
*
Legendre polynomials defined by

m
5 M
By (w) = (1 - u°)° f;,,—l P, (1) (30)
with m< n and
- -m)!
Py "= (1" :11+11: ! an (31)

The fnctims cosmp are an orthogonal set on 0 < ¢ < x such that

. £ 145)
] cosmp cospoap = —eﬁ (32)
0 m

where em is the Neumenn factor

€ =1 m=0

33
=2 m>0 ( )

*mis definition aiffers by a factor of (-1)® from that given in the
Bateman tables.l3

22



The assodated Legendre polynomials of the same superscript are orthogonal

on -1< p< 1l such that

1 '
I P 0By e = 5y (BT 5, (34)

Combining Eqs. (32) and (34) we have

1 T ¢ 00
J ol Y091, (,0) = onipemls, “‘:m”ﬁ (35)

We therefore expand the flux as

® oy @ eg(a-fs)!

'\l’(x’y’P’ﬂ) = aio ot BEO (T Yas(ﬂy¢)¢a8(x’Y) (36)
so that
°nm(x’y) = [/ dl-ld‘PYnm(H,‘P)‘lf(x’y,H,ﬂ) (37)

Now the scattering function f(u.o) can be expanded in a Legendre poly-

nomial series giving

22+1

£(u,) = l?o Bl v, P, (1,) (38)

vhere the bl are the same as in Eq. (18) and are given by

% 1
by =/ ao [ au P,(u,)f(k) (39)

7t -1

The addition theorem for spherical ha.monicslh permits the expansion

23



of Pz(“o) as

2 e (2-3)
Pylag) = = gy B R, 2(nt)eosi(o - @)

Using Eqs. (40) and (38) we have

_ 1 e (2-3)¢
f(uo+) + f(u, ) = = 241

® ) J J
g=0 = Jio—?’fﬁr' Y, (1, 0)Y, (u',9")

Therefore, Eq. (8) can be written

3 3 o (2t:l)o, £ €,(2-3)!

+ d(x’ Ys1,m)

The associated Legendre polynomials satisfy the recursion relations

(2n + 1)up ™(u) = (n + m)P,_"(n) + (n + 1 - m)P,"(n)
and

(20 + 1)(L - 1288 M) = BP0 - B

= (.n +2-m)(m-1- n)Pm;l_j(u)

+(n+mn+m- l)P’::]]:(u)

(ko)

(k1)

(k2)

15

(43)

(Lk)

These relations are valid for n,m = 0,1,2,... m< n provided the de-

finition of Eq. (31) is used.
By using Eq. (4l) it is not difficult to show that

2k



1 1 -1
2(2n + l)nYnm = Y::l - Y‘:l +(n+2-m)(m-1- n)Yﬂ_ﬂ

(45)

+(n+m-1)n + m)YIrnl:i

n,m = 0,1,... m<n

We now multiply Eq. (42) by Ynm, integrate, and apply Egs. (35), (37),
(43) and (45) to find

19
*3 5 [¢n+l,m+l - Qn-l,m-l-l + .(n +2-m}{m-1-md +

n+l,m-1

(n+m)(n+m- l)d)n-l,m-l] + (en + 1)(o - orsbn)<l>nm = (on + l)gznm

n,m= 0,1,2,000 m<n

where the components of the source are given by

~

—Jnm(x’ y) = /I dl-ldqﬂnm( K, ‘P)J(x, Ysi,M) (¥7)

It is shown in Appendix C that the polynomials Vnm are linear com-

binations of the spherical harmonic functions, i.e., that

25



m

2
V(o) = Z "2k ()cos (m - 2k)9] (48)

with

€ o0+ 2x) 1 (-1)¥

- (49)
& 2%ni(m - k)!k!
Multiplying Eq. (48) by ¥(x,¥y,u,n) and integrating, we have
m
Hi.
‘X’nm(ll"‘l) = ki:-OAk °n+m,m-2k (50)

Theréfore, the system of equations in Eq. (21) is a linear combination
of the system of equations of Eq. (46). It is possible to verify this
statement directly by letting, in Eq. (46), m »m - 2k and n »n + m.
If the resulting equations are multiplied by Aknm and summed, Eq. (20)
is obtained. The process is straightforward except for the y derivative
terms where considerable rearrangement of‘ the sums is required.

Tt should be noted that the systems of equations in Egs. (21) and
(27) are symmetric with respect to the number of x and y derivatives
while the spherical harmonics equations are not. This symmetry is a
consequence of the symmetry of the polynomials U and V. That is,
V. o(wn) =V (n,u) and U (w,n) = U (n,u) so that if x and y and
and 1 are interchenged the same systems of equations are obtained.
Presumably, the presence of thls symmetry in the systems of equations

would facilitate numerical solution.

26



In Appendix A it is shown that
T
{) agy  (u,m) = xP_(n)8 (51)

If it is assumed that the flux is independent of y, and if the expansion

of Eq. (12) is integrated over @, the result is

_f @ © (54284 1) (B 3
\F(X,u) = fo\l‘(x,ll,ﬂ)dq) L =z Brc . ( ) ﬂfaB(x)fodwaB(H,n)

&=0 B=0 B
® a1 (52)
= = 5= g (x)B ()
=0 2 0 (04
In this case Eq. (21) becomes, with m = O,
%( [(n + l)"’n+1,o + n"’n-l,o] + (o - asbn)(an + l)"’no = (2n + 1)sno
(53)

n= 0,1,2,000

Because Vno(u,n) is just Pn(u), these equations are the spherical

harmonics equations in plane geometry.

27




Specific Forms of the Blorthogonal Moments Equations

The first few of the equations in Eq. (21) are:

n=n=0

Ay Oy
s t5y * (07 90000 = Spo

n=1 m=0

20, oV, oV
Bxao + axoo + Byll +3(o - o’s.bl)“flo = 3519

n= 0, ms= l
V. 20V, oY,
11 02 00
= Tty ty  t 3(o - o's.bl)ﬂ'OI = 3551
n=m=1

D) VN Vi, 3,
= tax ty Yoy +5(°'-°'sb2)¢ll=5sll

(54)

(55)

(56)

(57)

Equation (54) is the system balance equation,because ¥o is the current

in the x direction and 1;01 is the current in the y direction (V]_o =

73

and V,; =1n). Equations (55) and (56) are, with Voo = ¥y = Yoo = O

Just the current equations of diffusion theory. In this instance the

system of Egs. (54), (55), and (56) can be reduced to & second order

partial differential equation in ¥,. Equations (54) through (56) with

28



= = = = tion, the system derived
¢éo = *be = wie wél 0 is, with one excep " i ys
from a discrete ordinates representation by Lathrop™ in the case of
isotropic scattering. The exception is the coefficient of wll and Sll

in Eq. (57). In the discrete ordinates representation, the quadrature

set 1s chosen to give a diffusion coefficient of 1/3¢ (isotropic scat-
tering) with the consequence that the éoefficient of wil and Sll is 3
instead of 5. If the equations of Eq. (21) are written up through

m+ n =2 and truncated by setting *hm =0 for n + m = 3, the so-called
P2 equations are obtained. These equations can also be reduced to a
second order partial differential equation in the scalar flux *bo’
Although we have not examined the question thoroughly, we conjecture
that the terminating condition whm =0 forn+m=N4+ 1 results in a
system of equations equivalent to the usual PN spherical harmonics

equations.

The first few of the equations in Eq. (27) are

e Y))
Tfl_g + Ty% + (o - 0008y = ‘doo (58)

2d¢, Y] 3p P
Bx?o + Bx?o - on2 + % ay}l + 3(o - Usb1)¢lo = 36£u) (59)

dp 28 dp dp
11 02 00 20
2% Yoy tyy Ty Ot 3(o - o's.bl)¢01 = 3‘451 (60)

(O§]

n
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8 op,, 238y, ) 2a¢03
33x T ox Ox

(61)

dp 236 23¢,
12 10 30
S5t 5y - S+ 5(0 - ogby)Byy = Sedyy

Again, Eq. (58) is the system balance equation, and the truncation
achieved by setting ¢nm =0 forn+m>1 is the consistent Pl ap-

proximation.
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Possibilities for Future Investigations

In addition to the determination of suitable boundary conditions
and possible truncation procedures, there are many avenues of research
suggested by the biorthogonal expansions of this work. For example,
since there are many systems of biorthogonal polynomia.lsle is it pos-
sible to find a system applicable to more general geometries, in par-
ticular, (x,y,z) geometry? The properties of the U and V polynomials
suggest that an expansion over each angular hemisphere (¢ < 0 or & > 0)
is possible provided a simple recursion relation for gvmn(u,n) can be
found. However, there are biorthogonal systems of polynomials in three
varigbles that are orthogonal over the unit sphere u2 + 'q2 + 52 <1
that could be used. These systems would involve expansion coefficients
with three subscripts [szn(”"n ,8), say] some of which (those with even
subscripts) would be related through Eq. (3).

Another interesting problem is the determlination of discrete
ordinates quadrature sets from the biorthogonal polynomials U and V.
The question of mechanical quadrature is discussed briefly by Appell.l6
Perhaps such sets would be optimum, in the Gauss sense, for quadrature
over the hemisphere and particularly applicable for numerical discrete
ordinates solution of the transport equation. At present, there is

no known "best" qw.ua.dra:l:ure.]'7
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Still another avenue of research is the determination of a solution
to the system of equations of Egs. (21) or (27). In the one dimensional

case, e.g., Eq. (53), a solution of the form [using the notation of

Eq. (53)]
¥ o(x) = g ()Y (62)

is postulated and substituted in the system. If the system is truncated,
the consistency of the system determines permissible values of v. The
functions gn(v) can be found by making use of the properties of the

recursion relation they must saa.t:ts:f‘y.]'8 A similar substitution, say

Youn(59) = (v, 1)V + /T (63)
is possible in (x,y) geometry. Can the functions &m and values of v
and T be determined? In the one dimensional case, the 8, are deter-
mined from the properties of the functions which satisfy the same re-
cursion relation as the &no’ i.e., the Legendre polynomials and the
associated Legendre functions. Presumably, if such a technique is
applicable, there must be "singular" functions related to the U and
V polynomials. Such functions might be determined from the partial
differential equations, given by Didon, 10 satisfied by the U and V
polynomials.

As a final and practical question, do the expansions in terms
of the U or V polynomials offer any particular advantages, other than

symmetry, over the spherical harmonic expansions?
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Appendix A

Orthogonality Integral and Related Integrals

In each of the appendices, results are first stated and then

verified. In this appendix we sketch the proof of:

3
&) If auanv (gL - b8 - 0% " = o B (M) 5
(a-1)

T

0 L amglun) - 2oy, (a-2)
T

c) J dwas("’“) =0 B odd
0 (a-3)

g g
=1 E'B(-l)2 @;B)(g_) POH-B(“) B even

To prove Eq. (A-1) we follow Didonlo, and multiply the generating

functions of Egs. (11) and (14) and integrate, giving

&

I1 apang, (s, %,1,m)G,(a,b,1,m)(L = 4° - 1°)

(a-4)

™8

® o o
Tz oz aM™%Pr
n=0 m=0 =0 B=0

33



vwhere T : is the integral on the left of Eq. (A-1). The integral on
the left of Eq. (A-}4) is

%
I=/(f apan(l - ps - qE)(1 - u° - 12) © (1 - 2ap - 2bp + a24t) (a-5)
(1 - us - nt)% + (s° + £5)(1 - 42 - 1?)
With the following change of variables
p = (ad + bT)/r
n = (bMA - aT)/r (a-6)
1'2=aa.2+b2 §'2=82+t2

for which dudn = dMaT, the integral becomes

I=/aMl-2\r+ re)'ﬁf ar(l - {Acose - {rsine)(l - A2 - 72) (a-7)
(1 - {\cose - i"l'sine)2 + 5'2(1 -2 "'2)

where

(as + bt)/r¢
(bs - at)/r¢ (a-8)

cosé
siné

end the domein of integration is A° + 7° < 1. Vhen the change of vari-
able T = (1 - ke) c0s@ is made in the second integral, it becomes

x

L - Mco
I, - do( : Q) - (A-9)
0 (L - Mcosg)” + Nosin (0]

wvhere

L=1-={Acoso

M = {sing(l - A°) (A-10)

N = (1 - A%)
The integral of Eq. (A-9) can be rewritten as

%
1 ap
L =3 '_rn L - Mcosp - iNsing (A-11)
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vhich is an integral around the unit circle z = ei(p in the complex z
plane. There is one simple pole inside the circle for which the

residue is easily evaluated. The result is

=X
, =212+ W -1 (a-12)

H
]

(1l - 2{cose\ + §2cos26) s

The Integral I is thus

0=
(=g

)| - -1
I=xnf aM(1-2r:+ r2) (1 - 2fcoseN + i'zcosee) ®
-1
® ® 5 _—
=5t T I r(fcose) [ axpn().)Pm().) (A-13)
n=0 m=0 -1

ont ;’ jri’cosen
n=0 2n+1

vhere the generating function expansion for Legendre polynomials has
been used and the sums converge for { and r less than unity. When
(rfcose)” is expanded the result is
™ O n m
I. =28 3 P (n+m) M_)_ (A-l’-l-)
1 m em+2n+1
n=0 m=0
vhich is equal to the right side of Eq. (A-4). Equation (A-1k4) is in-
variant under the transformation a -—»a./p, 8§ 2P b »b/q, t - at,
which is true of the right side of Eq. (A-}4) only if Eq. (A-1) is valid.

Didon also discusses the integral in the case when { and r are not both

less than unity.
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The integral of Eq. (A-2) is evaluated in a similar mammer. In-

tegrating G, we have, after the substitution 9 = (1 - ue) cosQ,

f’t ap L - Mcos®@ _

0 (L - Mcosq>)2 + Nesinqu

(aA-15)
® @® x
== = &P aw ()
a=0 B=0 0
where, on the left,
L=1-su
2
M=(1L-p%)t (A-16)
N = (1 - p0)(s" + %)
so that, when Eq. (A-12) is applied, Eq. (A-15) becomes
) ® ® gp %
#(l-2sp+8%) =x = sB(w) = = &%° [ aw(un) (a-17)
a=0 a=0 0

from which Eq. (A-2) follows.

Equation (A-3) follows immediately by integration of Eq. (48), which
is derived in Appendix C.
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Appendix B

Generating Functions, Rodrigues-Type Formilas, and Recursion Relations

The generating functions are

(1-ap-bn) .2 9 am 1
Gl(a-’b, 1)) (l-a.p.-b'q)e N (8.2+b2)(l-p,2-'q2) ni:o mio a mn(ll"fl) (B-1)

G3(a,0,1m) = 1 - £nl(1 - an - 00)° + (&% + V)1 - W° - 9P))
o® ® a-nbmﬂnm(u:'fl) (8-2)
= UOO +2Z Z
n+m
nm

In the sum on the rightyn = m = 0 is excluded.

1

Clesbyun) = (L-2au - 2on 42 +8%) “ = & T A% (wn)  (8-3)
n=0 m=0
The functions Gl and G3 are generalizations of Tschebyscheff polynomial
generating functions and G2 is a generalization of the Legendre poly-
nomial generating function. Just as in the case of the classical poly-
nomials, there are undoubtedly other generating functions.
Didonlo derives the Rodrigues formulas

mn+l
(-1)™7( l+u2+'\r2 ki

min! Bunavm

1
(1424 v2) - (3-1)

Vnm(u,'fl) =
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vhere

u = p(l- 2 - ne)_%

3 (-5)

v=n(l- % -0

and
3
(-1ymn (mn)ey 2 o2 s 2 2 n+m-%
Unm(p"n) = l.3.5..§(gm-?-2n-l) ;Mn;nm'll ) (3-6)

Equation (B-4) is also given in the Bateman Tables. D
There seems to be many recursion relations among the polynomials
and Didon cbtained only U , = (n + l)'qUno, vhich is a special case of

Eq. (B-17) below. We outline the derivation of the following:

(n + l)(vn+l,m + vn+l,m-2) + nvn-l,m = (2n + l)uvnm + 2(n + l)nvn+l,m-l

(B-7)
(n+m+ l)vn+l,m + (n + m)(Vn_'_l,m_2 + vn-l,m) =
(n + 2m + lXp.Vnm + "Vn+1,m-1) (B-8)
(2n + 2m+ 1w __ = (0 + 1)(vn+l’m - vn+l,m-2) + (n + 2m)vn_l,m (8-9)
(2n + 2m + l)'f]Vnm = (m + l)(vn,m-l-l - vn-2,m+l) + (on + m)vn,m-l (B-10)

(n + l)vn+l,m + (n+ m)vn-l,m =(2n +m + l)p.Vnm + (n + l)nvn+l,m-l (B-11)
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(m + 1)Vn,m+1 + (n + m)vn,m_l = (m + l)”vn-l,n»l +(n+2m+ LMV

m(“vn-l,m - vn-2,m) = n(nvn,m-l - vn,m-2)
U + (1 - 'q2)U + 2uU + (1 - p.2)U =
n+l,m n-1l,m n,m-1 n+l,m-2

2"'Unm + 2“Un-;-l, m-1 " I"'bnosmo

(n+1)(n+m-1) _ -
n+mtl bn+l,m #(n-1)(1-n )Un-l,m + ngmUn,m-l +

2
(n+1)(1-w )Un+l,m-2

2‘ n+m-l!
T ndm [n"Umn +

(o + 1')“Un+l,m-l] = 8,080

(n+m+1)(2m+ 2n + L) = (n +1)(2m + n + l)Un+l,m +

(m + n)(m + n + l)Un-l,m - (m+ 2)(m + l)Un-’-l,m-i-E

(n+m+ l)(2m+ en + 1)U (m+ 1)(2n + m + 1)U

n,ml +

(n + m)(n + m+ 1)U l-(n+2)(n+l)U

n,m- n+2,m-1
avnzm_l ) avn_lJI_n
ou on
oV )
nm n,m-1
1 op o - (m + l)vn-l,m+l
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(B-12)

(3-13)

(B-14)

(B-15)

(B-16)

(B-17)

(B-18)

(B-19)



oV oV

-1
H ?‘nmn B gn 22 = (n l)vn+l,m-l | (B-20)

V. oV, )
aﬁmg H Bnnm - N 1%111_!1 = (n+ l)vn+l,m-l - (m+ l)vn-l,m-i-l (B-21)

In general, these equations hold for, n,m = 0,1,2,..., and polynomials
with negative subscripts are assumed equal to zero. The symmetric re-
lations obtained by interchanging up, m, and subscripts also hold. For

example, in Eq. (B-15) the term (n + 1)(1 - ue)Un+ 2(u,'f]) is re-

1, m-
placed by (m + 1)(1 - ne)Un_e,ml(g,n). With similar transpositions

in the remaining terms a different recursion is obtained. » Equations
(B-9) and (B-10) are such a symmetric pair as are other of the re-
lations displayed. Six other recursions involving five U polynomials
can be obtained by eliminating a polynomial from Egs. (B-1k) and (B-15).
In such manipulations the Kronecker delta term can be neglected.

Equation (B-7) is derived by equating coefficients in the identity

oG,
(1L - 2ap - 20 + a2 + b2) &2 = (p - a.)G2 (B-22)

Bquation (B-8) is derived by following a procedure described by Appell.l6

From Eq. (B-3) we have
n
2
(1 - 2(ap + DY) + a® +b2]-% = g (aa.2 +b2) P _E’E’f.bﬂ_g
n=0 n (a2
L (a7+p7)
® (8-23)

=% = a v (un)

n-m,m
n=0 m=0 4

Lo




from which

n

n 2 .22
5, = zo an‘mbmvn_m,m(u,q) = (" + v°)° B (2) (B-24)
m=

-
vhere z = (ap + b'q)/(a.2 + b2) . From the recursion relation for

Legendre polynomials,

(n + l)Pn+l(z) = (2n + l)an(z) - nPn_l(z) (B-25)

we form, by multiplying by (a? + b2)n+l/2,
2 2
(n + l)Sn+l = (2!1 + l)(a-l-l + b )Sn - n(a, +Db )Sn-]_ (B-26)

Equating coefficients of powers of a and b gives Eq. (B-8). Equations
(B-9) through (B-13) are derived by eliminating one of the polynomials
from (B-7) and (B-8).
Equation (B-14) is obtained by equating coefficients in the identity
oGy oD
DSe =" H"33 6 (B-27)

where D is the denominator of Gl' When Appell's procedure is applied to
Gl’ the same recursion is obtained. The procedure does give the in-

teresting relation

otnTn(z) = ; a MMy (B-28)

n-m,m
m=0 ?

b1



where o° = (1 - % - ye)(a.2 + b2) + (ax + by)e, z = (ax + by)/a, and

Tn is a Tschebyscheff polynomial as defined in the Bateman ta.bles.9

Equation (B-15) is obtained from the identity

aGl 863
Dgg-=-hk+(1-au+bn) 5= (B-29)

Equations (B-16) and (B-17) are derived from the Rodrigues relation of

Eq. (B-6). TFor example, we postulate AU, + B+ CU +

l,m
= 0, where A, B, C, and D are functions of n and m. After the

m‘n-l,m-#-a
application of Eq. (B-6) and some rather tedious rearrangement, enough

equations are obtained to determine A, B, C, and D. This ..procedure is
not entirely satisfactory because it is based on the assumption of the
general form of the relation to be verified. In this case we were led
to the assumed form by manipulations of the lower degree polynomials
and the desire to represent WU __ (and 'qUnm) in terms of other poly-
nomials with coefficients independent of p and . In general, rela-
tions among the U polynomials are more difficult to obtain than rela-
tions among the V polynomials. There are possibly three other rela-
tions among the U polynomials analogous to Egs. (B-1l), (B-12), and
(B-13).

Equations (B-18), (B-19), and (B-20) are derived from the identities

3G2 3G,

L el ag (3-30)




and

(B-31)

(B-32)

Equation (B-21), which is needed in expansions in cylindrical geometry,

is obtained by combining Eqs. (B-18), (B-19), and (B-20).
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Appendix C

Addition Theorem for the Polynomials U and V

We wish to show that

™M

+ _ ® (21+l)bz ] s -1 '
f(uo ) + f(uo ) = zio—e—n— 320 <j) V‘_J,J(u':'ﬂ )Uz_j,j(u’n) (C'l)

where "oi is defined by Eq. (9). By comparing this equation with Eq.

(k1)

_ (22+1)b, 2 € (2-3)¢
£(u,") + #lu,) = Eo L =z e 4 ey, et) (c-2)

we see that we need only prove that

] -1 2 e (2-3)!
z <§> V‘_J,J(H':ﬂ')Uz_J,J(H,TI) = zo_%m YIJ(H,QJ)YIJ(H':QJ') (C-3)

j:o J:
To verify this identity we first show that

m
n PR
vnm(u,n) ) [;] em_ak(n+2k).( 1) ok

(ll’ P) (c-4)

k=0  2%n!(m-k)!k! n4m
and that
Bl
3 (et PR J+2k)
Yz (}J.,QJ) = 2‘1:: kio 221{ k UI-J-EI{,J-!-ER(“’“) (C“5)
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In these equations Yz'j(u,QJ) = sz(u)cos,qu.

We start from a relation derived in Appendix B:

L
(a2 + 222 _[(an + on)/(a2 + %)) = £ TN () (c-6)

n-m,m
m=0 4

On the left of this equation, we write the argument of the Legendre poly-

nomial as pupu' + Nn' + g&¢' with

1
a/(a.2 + b2)B

.
1
n' =b/(a +v2)" (c-7)
Py
g =(1-p2-n3) <o

Using the spherical harmonic addition theorem we have, with &' = O,

(n-J)

n+Jj

1
B, [(an + o)/(a® + %)) = 2 3(u)Y, 3 (u,0) (c-8)

T Ms

j=0

Letting t = b/a we combine this relation with Eq. (C-6), obtaining

n
2
z tmvn_m p=(1+t 2y g f%}ji—;z— PJ[(l + t° ) ]Y J(u,cp) (c-9)

m=0

From the relation between Pn'J and the Gegenbauer polynomia.lseo ve have

5 . - )
(1 + t°) P I[(1 + £2) °) - —3 z (- }z(gfg gf% giff)%

(c-10)

L5



By expanding (1 + 1;2)z in a binomial series, rearranging the sums on
the right of Eq. (C-9) and equating coefficients of povers of t in the
finite sums iv'e have

m] [n-

[5] [_2_] em_Ek(n-m+2k) 1(-1) J"'k(En-ak-E,j )!

(on) = L2 £, (u,0) (c-11)
n-m,m*"’ k=0 j=0 En(n-!-m“ER):(n'm'evj)l(n-c.]-k):k!j! i ,

The rearrangement of sums ig complicated, and we sketch the process
showing only the powers of t and neglecting coefficients. Starting
from
e
n L2

J)Eo z>—:o 91 + t5)¢ (c-12)

we interchange order of summation and expand, obtaining

n
2] g2 n-22
[z] 5 p o giveK (c-13)

2=0 k=0 j3=0

again neglecting coefficients. Letting j - j - 2k and interchanging
order of summation we have
2

n
£ ¢ 5 pX (c-14)
=o z=o k— (o, [’!“1214'2: ] )

B wmin(idl, e

J




At this point, we equate coefficients of powers of t and then inter-
change the order of the last two sums giving, with j —»m,

m n-

E] k+ [ 23

> s (c-15)
k=0 #=k

which, with £ = J + k gives the two sums of Eq. (C-11). The J sum-
mation of this equation can be expressed in closed form by first letting

n-o-n+m giving

B €y (142K) 1 (-1) Y0251, 9) ¢l

nm (-1)3(2n+on-2k-23)!

V ()= = Z c-16
nm k=0 2™(n+2m-2k) 1 k! 5=0 2"38(n-23) ! (nem-3-k) ! ( )
then noting that21
g
2
kb o o (-1)9(2n+om-2k-23) (k) (c-17)
n j=0 2nj£(n-2,j)!(m+n-j-k)! (2m-2k)!
22
and then using the value
-k} (n+2m-2k)
c, B(1) = n (c-18)
Combining this result with Egs. (C-17) and (C-16) gives Eq. (C-4).
Equation (C-5) is obtained by direct expansion. We let
. o0 [+ 0]
o) = I E BU (m)
p=0 g=
o (c-19)

p n
=z E Y g ()
p=0 a=0 p-g,q

b7




where the coefficients B are to be determined. That is,

I( Bq) J Apap J
n = =2
using the orthogonality properties of the U and V polynomials. We now

use Eq. (C-U4) on the right of this equation to obtain

=1 |2
nj _ 2g+l) (p+q Pq Q-2k J -
a2 - (2pifarl) (pha) 2 4 Ifauce X35 00, M, 9) (c-21)

where Akpq is the coefficient of the expansion of Eq. (C-4). Using the
orthogonality properties of the spherical harmonic functions and sim-

plifying, we have

tn! 3 . k - !
ng _ Onp?tet [;] (-1)"(p+a-2k)!8, o (c-22)
P~%9 28 g ki(q-k)!

When the properties of the second Kronecker delta are used, we find

that
44
5 (-1)  (n+3)! q
g?d - .mP <q-3 (c-23)
Preq ni2? 7z

for q-J even and that the coefficients are zero otherwise. Substituting

this result in Eq. (C-19) gives

%
3 n (-1) © (n+3)i/q )
Y (1,0) = qzo o &3 )V q,q (c-2k)
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provided q-J is even. The lower limit of this sum is effectively
q = J since [(g-3)/2]! 1is infinite for q< j. Substituting q = J+2k
*
gives Eq. (C-5).
Ve now substitute Eq. (C-4) on the left of Eq. (C-3) obtaining
F] tfo- 1y 02K, 4y
2 €y 3t (2-5+2K)Y,) 0 (u'50")

U,_: () = :
o L3377 4o 299 1( 5-k) k!

(c-25)

N M

J

e.(2-3)!

2 .
J Jtt ot
Ji:o —2?_—5)—.— Yl (H,‘P)Yz (n',0')

On the left of this equation we interchange the order of summation,
let J - J + 2k and interchange the order of summation once more,

obtaining, after subtraction of the left side,

2 e (2-3)!

Jt mt -
iio ‘%W ¥, (u'50") (c-26)

['_2] (-1)%¢ J+2K)U, s o j+2k(u,q>)(z+.j)=

b
k=0 09+ 1 (5410 1kt

3 ?
= Yz (H,QJ) =0

*We have not been able to find the inverse relations expressing Y ™ as a
sum of the V polynomials or expressing the U polynomials as a surt' of
the Y functions. Either one of these relations would serve to determine
the other, and in addition would provide the information to evaluate the
integrals

S mop = /I pagV, - (1y1)Va (15m)

Tomoe = 11 3800, (1,m)0 0 (15m)

which are zero unless n + m = ¢ + B.
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But the quantity in brackets is identically zero by Eq. (C-5) so that
the addition theorem is verified.

In the proof we have stated a not too obvious identity [Eq.
(c-3)] and then verified it. We actually were 1led to the left side
of Eq. (C-3) by conjecture based on the values for ¢ = 0,1,2,3.
However, this form can be established by a procedure used by Ma.thews23
in a heuristic proof of the spherical harmonic addition theorem. If

a function g(p.,'q) is expanded in terms of the polynomials U,
the expansion coefficients are given by

-1
gy = 22288 (13V7 (1 auan, (0 detut ) (c-28)

When this relation is substituted in Eq. (C-27) the result

o o =1
glum) = ff ap'ap'e(u',n') =z SEEHL (IH) Ty (4ianu, ()
2=0 3=0 2x J L3 L3
(c-29)
implies that
o o -1
st oloe) = E T AL BTy naw, un) (e30)
® op,1 £\
zio an Jio J) Vg-J,J(u',n')Uz_J,j(u,n)




But for 0< @, ¢' < x the delta functions on the left are a function

of p.o+ only and can be expanded as

5 - u)s(@ - 0') = £ DR, (") (c-31)

The expansion coefficients Dz are given by

IS au o kgo DB, (o )P, (1, *) = fF au tage, (" )5u - u)o(e - @)
(c-32)

or

21tD£

5peL = 1 (c-33)

since the integral on the right is equal to Pz(l) = 1. Therefore,

O op41 +
3(n - n')dle -d) = = ==P,(n") (c-34)
P=0 2n 2o
or, letting ¢' — -9'
1 ] @ 2:"'1 -
5(n - n')o(e + ') = zzo S Ppley ) (c-35)

But in Eq. (C-30), when @' — -9' on the left, the right side is un-

changed since ' is an even function of @'. Therefore,
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o' : P, (1 )+, (")
5 - ') [B(Q) ) %+6(q>+qg)] - Eo 2g+1 [g Ho 2+ 2\ Mo ]
(c-36)

-1

2841 2 1 ot
'—2§— o (J) V:_J,j(u oM )UI_J,J(H,'Q)

2=0 3

]
n M8
N M

When the coefficients of (2£+1)/2r are equated, the desired form of

the addition theorem is obtained.
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Appendix D

Power Series Expansion of the U and V Polynomials, Special Values and

Miscellaneous Results

By expanding the generating functions and equating coefficients of

povers of a and b we find

[g] [g] (-1) J+k (,j +k) (2n+2m-2.j-2k)(n+m-j-k) (n+m-2,j-2k) p.n-E;jnm-Ek

an( ] ) = Z Z n+m % n+m-Jj-k J+k m-2k
Jj=0 k=0 2 (D—]_)

which reduces, as it should, to the known sum for the Legendre poly-
nomialseu vhen n or m is equal to zero. Similarly, we have

E] 2]

Umn(“’“) = 5 T (J+k)( n+m )(n+m-23-2k) (ue + 712 _ 1)J+kun-2'j'f]m-2k

k /\ 2J+2k -2k
3=0 k=0 J m (p-2)
Directly from these results we find the following
Unm(0,0) =0 n or m odd
ntm  fnen (p-3)
2 2
= (-1) n n and m even
2
Un(1,0) =8 (D-4)
Upm(01) =8 (D-5)
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vnm(o,o) =0 n or m odd

nm (D-6)
= (iig(i)r (:;.?l n and m even
riz)E) (3)¢
vnm(u,o) =0 m odd (D-7)
m
Vy on(:0) = L;é—,?r (2) ¢, (0-8)

In this equation, Cnm'% is a Gegenbauer polynomia.l.22 Consequently,

Vy on(L,0) = L;én?l—n (Z) (e (0-9)

Combining this result with the addition theorem in the form (p' = 1,

N =0, g, =)

P -1
(J) U:-J,j(ﬂ,ﬂ)vz_J,J(l,O) (D-10)

h"d
~~
=
A

!
™M

J
223 Uz_gj,gj(p"ﬂ) (D‘ll)

which is a special case of Eq. (C-5). Many similar relations can be

found in this manner.
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By manipulating Eq. (D-2) it is possible to show that
m

U, = [n + (F e - 1)%]m + [n - (\° 4 - 1)%] (p-12)

and that U; = (m + l)p.Uom.
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Appendix E

Biorthogonal Expansions in Cylindrical Geometry

In two dimensional cylindrical geometry (r,®) the Boltzmamm equa-

tion is15

Eér + %g - %ég‘)ﬂ + o¥(r,8,u,m) =

1 7t
o, J au' [ ap'ylx yunt)£(u,) + £ 7)1 +edlr,8,0m)
-1 o

(E-1)

where ® is defined in Eq. (5) and vhere the same symmetries assumed in Eq.

(8) have been used. Expanding the angular flux as in Eq. (12)

© ® 2040841 (orp) T
Wnoun) = £ 8 EEEE (%F) u o un)g(ne) (8-2)

gives the relation

¥, (r,8) = [[ dpagv__(u,m)¥(x,8,1,1) (E-3)

With the application of this relation and the expansion of Eq. (18), the

Boltzmann equation becomes

B 1200 Ly, § 2,

=0

M

’ -1
520 (J) ﬂfz_'j,‘.](r’ G)UI_J,j(u,TI)

"‘J(r’e’ﬂ"‘l) (E-L)
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From this point, the expansion proceeds as in (x,y) geometry except for
the angular derivative term. We consider this term alone, which when

multiplied.by'th(u,n) and integrated is

11 apagy_(,m) 208D (2-5)

The integral over p and ¢ is equivalent to the integral over e(o <t< 1)

and o(-x <w<x) so that
f apopy_(u,n) 2400 < ff agasy_ (n,n) 228
ey T o 223
d
g m-—:t MY 55

- I agdmm—&;—

(E-6)

oV
- If apaoin —g5+

where the fact that = 0 at ® = 43t has been used. Combining this term
with the rest of the transport equation, we have, after differentiation

of the first term,

&[S apaguv_y + = 3 1 apagmv_y

1 SV (2-7)
+ 51! dudq><uvnm +n —gf,‘,—m)ﬂr + e
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When the recursion relations derived in Appendix B are applied, we find

the following equation for the expansion coefficients

2—; [(n + l)(\lln+l’m - o) + (n + 2m)y ]

‘I'n+l, mn- -l,m

+ % %e [(m + l)(ﬂrn,m'_l - ﬂ’n-z,m-i-l) + (2n + m)ﬂrn,m_l]

+% {(n + 1)(m + v, (e-8)

+1,m +(n+ 1)(en + m)¢n+

1, m-2

- (n+ 1)(m + 2>("’n-l,m+2 - ﬂ'n-3,m+2) +[(m-n+1) - nln+ 3n)]1!fn_l,m]

+ (o - csbn+m)(2n + 2m + l)q:nm = (2n + 2m + l)*dmn(r’e)

where
4 (%:0) = I aucmed(x,0,u,m)V_(u,n) (E-9)

Equation (E-8) can be reduced to one dimensional cylindrical geometry by
assuming that ¢ is independent of 6. In this case certain moments can
be removed by making use of additional symmetry properties of the angular
-flux.

The presence of five expansion coefficients necessary to account for
the angular derivative mey indicate that the biorthogonal expansion is not
optimum for cylindrical geometry,but we are not convinced that we have

found the simplest recursion for NV nm/am.
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Appendix F

A General Method of Moments

In this appendix, for the sake of completeness, we describe the
general moments formulation of Ca.rlson7’8 as it is applied to the trans-
port equation in (x,y) geometry. We consider the transport equation,

Eq. (8), restricted to anisotropic scattering and an isotropic source,

writing
a a -— Gs 1 1 1 1
13 g;%"' n gg + oW(x,¥y,1,m) = 5 JI an'ae'y(x,y,u',0") (F-1)
30 b
+ 2L [ IS awaptuty + 0 ff aurapry) + S

We now define the operator

- 1 T
M =/ auf ap. ™" F-2
on =4, . (r-2)
such that
~ 1 7t nm
M= {1 dy fo app(x, Y, mn)e s = ¥ (x,y) (¥-3)

Thus, Eq. (F-1) is

o ¥, 30 b
B g‘}ﬁ + 1 %‘}f + ou(x,¥,um) = 222 + Z,tl [ty + MYy ] + §%’,;ﬂ (F-4)
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Applying ﬁnm to this equation we have

oy oV
n+l,m n,m-1 _
3x ‘T oy T Vom = %s¥00Tnm * 3o's.bl‘l'lo‘rn+l,m

(¥-5)
+ 3°'sb1*10.rn,m-l +J(X, Y)'rnm

where

1 S,
[ au [ dpu™m
T = -1 0

am Bn O n odd or m odd

(e )fE)

2 2 m and n even
1\ (mn+3

or(z )r(®5%)

In this general formulation the angular flux is not defined explicitly

(¥-6)

in terms of the moments ‘I'nm' Rather, any assumed angular behavior may
be postulated with undetermined coefficients and the coefficients re-

lated to the moments by Eq. (¥-3). For example, suppose

1 1 o
Woyum) = = 52 -2 %P (F-7)
a=0 B=0
Then,
1 1
= X I a,fT (r-8)

¥
nm =0 B=0 o8 otm, 84+m



and enough of these equations can be used to determine the four coef-

ficients 8y’ 2017 210

it follows that the whm’ n,m> 1 can be expressed in terms of the whm

s and a4 Once these coefficients are determined,
for n,m < 1. Therefore, a consistent set of equations can be formed
from the set of Eq. (F-5) by writing these equations for n,m = 0,1

and then eliminating the higher moments. Thus, the general formulation
of Carlson permits a very general choice of angular representation, leads
to a very simple system of moments equations, and makes possible the con-
sistent truncation of the system of equations. However, the treatment
of a general scattering source is cumbersome and the coupling of the
scattering source is different than in the spherical harmonic or bi-
orthogonal expansions. For example, in Eq. (¥-5), the scalar flux,

*bo’ appears in every equation for which m and n are even in contrast

to Egs. (21), (27), or (46) in which the scalar flux appears only in

the n = m = 0 equations. Whether this coupling and the similar coupling
of the anisotropic terms is a computational disadvantage, is an un-

explored question.
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