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MODEL FOR GROUND MOTION AND ATMOSPHERIC OVERPRESSURE

DUE TO UNDERGROUND NUCLEAR EXPLOSION

Huan

A physics”
ground motio

by

Lee and James J. Walker

ABSTRACT

model is proposed to describe the
I pattern resulting from an

underground nuclear explosion in an idealized
homogeneous medium. Irregular behaviors in the
observed ground motion are assumed to be
perturbations caused by the local inhomogeneity
of the ground medium. Our model correlates the
ground motions at any point in the spalled zone
to the initial acceleration pulse at the ground
zero. Interestingly, the model predicts that the
ground motion first comes to a stop at a definite
radius about the ground zero, and the region
expands both outward and inward as time goes on.
We believe that this result is closely related to
a phenomenon observed at NTS. In the far field
approximation, we also calculate the overpressure
in the lower atmosphere generated by the ground
motion. We demonstrate that the irregular
component of the ground motion does not affect
the overpressure history in any significant way.
Consequently the model ground motion can be used
as a good approximation in generating the
atmospheric overpressure.

I. INTRODUCTION

The ground motion (GM) associated with an underground nuclear explosion

is thought to be powerful enough to generate an acoustic wave in the

atmosphere. The pattern of the GM, as measured by accelercxneters, varies with
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the yield of the device, the depth of burial, the distance away from ground

zero, and, finally, the type and the composition of the ground medium.

Loosely speaking, the GM can be said to have two components, one regular and

one irregular.

can presumably

ground medium.

from the local

The regular component has a time and spatial correlation which

be understood by physical considerations of a homogeneous

The irregular component, which is the perturbation resulting

inhomogeneity of the ground medium, evidently is quite random

in nature. The irregular component causes the apparent complexity exhibited

in the measured GM pattern. Fortunately for us, it is the regular component

that plays a dominating role in generating the characteristic pulse shape of

the

the

how

the

overpressure in the air. In this report we present a physical model for

regular component of the GM. The model provides us a coherent picture of

the GM pattern depends on various parameters. Furthermore, it possesses

essential structures so that an approximate overpressure pulse can be

simulated in the lower atmosphere.

In the next section, we first discuss the physical considerations which

form the basis for modeling the GM. We formulate the GM in terms of a time-

and position-dependent acceleration function, which can be specified

completely if the initial acceleration pulse at ground zero is known. In

Section III, we analyze when the GMcomes to a stop as a function of distance

and time. We arrive at an interesting conclusion that it occurs first at a

definite radius about the ground zero, and the region subsequently expands

both inward and outward. The result is used to explain a phenomenon observed

in several NTS events. In Section IV, we first calculate the atmospheric

overpressure generated by a &function acceleration pulse, in the far field

approximation. The result is compared with the one obtained in the piston

model . We then proceed to calculate the overpressure due to a general

acceleration pulse coming from a point source. We discuss why the irregular

component of the GM does not affect the overpressure in a significant way,

thus establish that the model GM can be a good approximation in generating the

overpressure in the air.

*
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11. MODEL FOR GROUND MOTION

To consider the regular component of the GM, our starting point is to

assume that the ground medium is homogeneous. It follows that the shock front

is spherical and the GM is ’therefore circularly symnetric about the ground

zero. Since only the vertical component of the ground acceleration

contributes to the atmospheric overpressure, it is sufficient for our purpose

to describe the GM by the vertical acceleration as a function of time and

location. Simply put, our model for the GM consists of a sharp initial

acceleration pulse (IAP), followed by a period of free fall, finally ended.
with another sharp upward acceleration pulse. As the subsequent discussion

will show, the model enables us to specify the acceleration history at any

point once the IAP at ground zero is known.
.

The IAP starts at the arrival of the ground shock originated from the

explosion center. We assume that the duration of the IAP does not vary with

the slant distance (SD). In the elastic zone this is indeed the case. The

amplitude of the IAP, however, is expected to scale down as the SD increases.

In the absence of energy loss, we know that the amplitude of a spherical

pressure pulse should be inversely proportional to the radius. One can argue

as follows: Let r be the width of the acceleration pulse, then cr is the
thickness of the spherical shell that is set in motion, where c is the sound

velocity. The energy carried by the pulse is then = 4m2(cr)pv2, where p is

the density, v the peak velocity, and r the propagation distance. When r

remains fixed, the amplitude of the acceleration pulse is proportional to the

peak velocity, hence varies as I/r. In reality, the energy carried by the

pressure pulse does diminish as it propagates in a realistic medium. The

inelastic effects also tend to make the pulse width broader as it travels out.

This means in general that the amplitude of the acceleration pulse scales down— —
as l/r or faster.1 Furthermore, since only the vertical component contributes. . ——
to the overpressure, projecting in the vertical direction adds another inverse

power2 dependence on the SD.

In the spalled zone, the top surface layer, once spalled by the IAP, will

be in a free fall state. The duration of the free fall motion at a given SD

is in principle related to the amplitude of the IAP. In an idealized picture,

the free fall would end when the spalling layer returns to its original

position. A sharp acceleration pulse will result from the impact. Since the
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elasticity of the surface soil or rock is quite low, no significant bouncing

will occur after the collision. The collision time is so short- that

practically we can approximate the second acceleration pulse by a d-function.

The coefficient of the 6-function is fixed by the condition that the time

integral of the pulse should be (nearly) equal to the impact speed.

Following the above discussion, we are now in a position to specify the

ground acceleration as a function of time t and distance r, denoted by A(t,r).

It is more convenient to define

time variable is retarded by the

A(t,r) = B(t- tg(r),r)

where

tg(r) = (b2 + r2)1/2/c
9’

A(t,r”) through a function B(t,r) in which the

propagation time of the ground shock, i.e.,

(1)

and

b = depth of burial of the source,

C9
= velocity of sound in ground.

A schematic drawing to illustrate the geometry is given in Fig. 1.

The function B(t,r) is then defined as3

(2)

B(t,r) =0 t<o , (3a)

B(t,r) = S(r)A(t) O<t <a, (3b)

B(t,r) = -g ~<t<~(r) , (3C)

B(t,r) =V(r)6(t - ~(r)) t > f3(r) , (3d)

where g is the gravitational acceleration, and S(r) is the SD scalin9

function,l namely *

*
S(r) = (1 + r2/b2)-n/2 , n 22 . (4)
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/

Observation point
for overpressure

Ground zero r

Slant dist, = ( b2 + r2)”2

x
Source

Fig. 1. The schematic geometry describing ground motion.
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A(t) is the acceleration function of the IA at ground zero. The free fall

duration B(r) - a and the impact speed V(r) can be derived from S(r) and A(t).

With B(t,r) specified, we can calculate the time-shifted velocity function

V(t,r) and displacement function D(t,r) as

V(t,r) =JtB(t’,r)dt’
o

and

D(t,r) = JtV(t’,r)dt’ .
0

From our earlier discussion B(r) should satisfy the condition

D(B(r),r) =0 ,

(5)

(6)

(7)

and the impact speed is just

V(r) = -V(6(r),r) . (8)

To solve for B(r) and V(r), we notice that in the time interval between a and

B(r) the motion is free fall. Therefore, we have the relations

V(r) +V(a,r) = g[f3(r)- al (9)

and

V2(r) - V2(a,r) = 2g[D(a,r) - D(i3(r),r)]

= 2gD(a,r) .

These lead to

V(r) = [V2(u,r) + 2gD(a,r)]1/2

(lo)

(11)



and

B(r) = a + l/g[V(a, r) + V(r)] . (12)

Thus both V(r) and B(r) can be expressed in terms of V(a,r) and D(u,r). SO

A(r,t) is canpletely determined by the IAP at ground zero.

If the IAP A(t) is symmetric about its peak, it is straightforward to

show that V(a,r) and D(a,r) are further related by

D(a,r) = l/2W(a,r) .

Equation (11) can be written as

V(r) = V(a,r)[l + gu/V(u,r)ll’2 . (14)

(13)

Experimentally the observed

synwnetric about their peaks,

well for the measured data.

initial acceleration pulses are approximately

so the relation in Eq. (13) actually holds very

It should be stressed that Eq. (14), together

with Eq. (12), imply that the GM after the IAP can be completely specified &

the ~ velocity V(a,r) alone, and is independent of the shape of the IAP.—— —— .— —
The significance of this observation will be discussed in Section IV.

Having presented the idealized description of the GM, we would like to

compare it with the real-world observation. We plot a typical acceleration

history in Fig. 2(a) and the corresponding velocity history in Fig. 2(b).

Their typical observed counterparts are shown in Fig. 3(a) and Fig. 3(b).

Generally speaking, the measured GM exhibits a sharp IAP, followed by an

identifiable period of free fall which usually ends with a pronounced

acceleration pulse. The duration of the IAP normally remains fairly constant

as the slant distance changes. In addition to these regular features, the

observed GM displays the irregularity that at one point the free fall is

uninterrupted while at another

(occasionallY more) very narrow

collisions among the multi-spalled

is absent, we find, not surprising’

it may be interrupted by one or two

acceleration pulses, presumably due to

ground layers. Whenever the interruption

y, that the length of the free fall period

agrees quite well with the value ~(r) - a calculated b Eq. (12)c In case
there are interruptions such as shown in Fig. 3(a), the duration of free fall

tends to be longer than calculated, but not much.



A(t,r)

t

I t

W++’(r)--l
Fig. 2(a). Model pattern of ground acceleration.

V(t,r) V(a,d

-V(r)
Fig. 2(b). Model pattern of ground velocity.
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k--
Fig. 3(a). A typical measured ground acceleration.

Fig. 3(b). A typical measured ground velocity.
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Another point worth mentioning about the observed GM is that the

acceleration pulse at the end of the free fall generally has a damped

oscillating tail such as shown in Fig. 3(a). Although the acceleration

patterns shown in Figs. 2(a) and 3(a) seem to have marked differences, their

velocity patterns as displayed in Figs. 2(b) and 3(b) are quite similar. It

will become clear in Section IV that the velocity pattern has a closer

semblance to the overpressure than the acceleration pattern itself. This is

why we claim that the model, which includes only the regular component of the

GM, can be a good approximation to the real data in generating the

overpressure.

As far as we can tell, the interrupting acceleration pulses which occur

in the measured GM do not exhibit any systematic spatial or temporal

correlations. For the purpose of calculating the overpressure generated by

the GM, the net effect of these interrupting pulses contributed from the

entire spalled surface is equivalent, in an average sense, to having a lower g

value during free fall. So the model can be “fine-tuned” simply by using an

“effective” g value if so desired.

III. GROUND MOTION PHENOMENOLOGY

From their explicit expressions

V(a,r) = S(r) JaA(t)dt
o

and

0(a,r) = S(r)~adtJtA(t’ )dt’ ,
00

(15)

(16)

we see that V(u,r) and D(a,r) are linear in the scaling function S(r). This .

implies that the duration of the free fall, B(r) - % decreases as r

increases. As it turns out, within a certain radius, the decreasing rate of

$(r) - a is faster than the increasing rate of tg(r), as r is increasing.

This leads to the interesting implication that even though the initial shock

10



arrives later in time for larger r, the GM could stop sooner. Let us

elaborate this point by the following analysis:

Let t(r) be the slap-down time (i.e., when the free fall ends) at a point

r; we have

t(r) = tg(r) + B(r) . (17)

As shown in the Appendix, we can derive

dt(r) = r

[
tg(r) - 1n(V(a,r) +V(r))2 .

dr (r2 + b2) 2gV(r)
(18)

Since tg(r) is monotonically increasing whereas [V(u,r) + V(r)]2/V(r) is

monotonically decreasing with r, it is evident that

dt(r)
~Oforr?RS

dr

where R is the solution of r for

dt(r)
7=0 “

(19)

(20)

Equation (19) implies that the GM will stop first at a fixed radius R. Inside

R, the slap-down process rapidly moves inward, whereas outside R, the opposite

is true. Experimentally we have indeed observed the following phenanenon in

the aerial TV pictures taken over many NTS events. A couple of seconds after

the zero time, there would appear a dark ring (sometimes irregular in shape)

rapidly shrinking in toward ground zero. It is compelling to relate this

phenomenon to the conclusion implied by Eq. (19). The observed initial ring

size and rapidity with which the ring shrinks are in fair agreement with the

calculated values.

Numerical solution is needed to

it is informative to take a look at

(A-7) derived in the Appendix,

obtain an accurate value of R. However,

the approximate analytic solution in Eq.

11



R = b{[5nV(a,o)/2gtg( o)]2/(n+l) - 1}1’2 . (A-7)

Normal ly the depth of burial , b, is chosen to be proportional to Y1/3, where Y

is the yield of the device. Consequently, we have tg(o) = Y1/3. The peak

velocity at ground zero, V(a,o), in general depends on Y as well as the ground

medium. For a given type of medium, however, one can argue from energy

consideration that V(a,o) is essentially independent of Y provided b = Y1/3.

In this case, the square root quantity in Eq. (A-6) is rather insensitive to

the variation of Y, andwe conclude thatR =b =Y1/3. In passing, we like to

stress that the type of ground medium can affect V(a,o) substantially and “also

the value of scaling power n.

IV. ATMOSPHERIC OVERPRESSURE

Let A(t,~) be the function describing the vertical ground acceleration,

in the far field approximation the overpressure at a given point & and time t

is given by4

P()(,t)‘&-j A(t-ta,~)l~-@d2~ , (21)

where p is the air density and ta = lx- ~1/c with c being the sound velocity

in air. In particular, if A(t,~) is circularly symmetric with respect to the

ground zero, and ~ is vertically above the latter, then Eq. (21) can be

reduced to a one-dimensional integral. Let ~= (o,o,h) in a coordinate system

with the ground zero being chosen as the origin, we have

P(h,t) = p/rnA(t- ta(r),r)(h2 + r2)-1’2rdr ,
0

(22)

where ta(r) = (h2 + r2)1/2/c. Many essential features of the overpressure

generated by the GM can be learned by studying the above integral. In the

following, our discussion will be based entirely on it.

12



It is worthwhile to mention at this point that, if the acceleration

function A(t,r) is identical and synchronous everywhere within a radius r =

5 In this “piston”ro, then the overpressure is simply the velocity integral.

●
model, we can write

3
A(t,r) =A(t)

and

r
o

P(h,t) = P/ A(t - ta(r))(h2 + r2)-1/2rdr
o

ta(ro)

=pc/ A(t - ta(r))dta(r)

ta(o)

t-ta(ro)

=pcJ A(t’ )dt’
t-ta(o)

= pc[V(t- ta(o)) - V(t- ta(ro))] (23)

The last equality stated that

velocities at retarded time t - ta(o)

that V(t - ta(ro)) is zero for all

overpressure is simply proportional to

P(h,t) is the difference between the

and t - ta(ro). For large enough r. so

practical t values of interest, the

velocity function V(t - ta(o)).

In particular, if A(t) is a &function, then P(h,t) is simply a square

pulse with a non-zero value between t - ta(o) and t - ta(ro) and P(h,t)

becomes a step function for r. + -.

It is useful and illuminating to work out first the overpressure

generated by a &function ground acceleration due to a point source

underground. Since the shock will arrive at the surface at different times

for different SD, we write the acceleration function as

A(r,t) = d(t- tg(r))S(r), (24)

13



where t (r) is defined in Eq. (2) and S(r) is the scaling function. Using Eq.

(22), ~ have

‘o
P6(h,t) = PJ d(t- tg(r) - ta(r))S(r)(h2 + r2)-1’2rdr .

0

We can rewrite

14
at ata

d(t- tg(r) - ta(r)) = 6(r2 -
9+

x(t)) —
ar2 ar r2 = x(t) ‘

where x(t) is the solution of the equation

t - (h2+#/2/c - (b2+x)l/2/~ = () .
9

(25)

(26)

(27)

It is straightforward to solve the above equation and find

Substituting (26) into (25) and integrating over r2, we obtain

Pd(h,t) = ~ccgS(&)(b2+x)1’2/[cg(b2+x)1’2 + c(h2+x)1’2], for tl<t<t2 ,

and

P$h,t) = O otherwise. (28)

14



Where

hb
‘l=F+F

9

and

‘2 =
(h2 + ro2)1/2/c + (b2 + ro2)1/2 /c

9“

We note that the propagation time of the wave along different

causes a smearing of the &function acceleration through r-integration.

the overpressure is nonvanishing over a finite period determined by ro.

paths

Thus,

Since’

x(t) increases with t, so Pd(h,t) is monotonically decreasing with t between

tl and t2. Compared with the overpressure resulting from a synchronous 6-

function acceleration, we have two factors contributing to the difference.

The scaling function, S(r), is the one most responsible for the decreasing of

Pd(h,t) with t. The other factor, (b2 + x)l/2/[cg(b2 + x)l/2 + c(h2 + X)l/2],

decreases with increasing t very slightly. In the limit b+ c=.,the result of

Eq. (28) approaches the one in the piston model, as it

After working out P6[h,t), we can easily obtain

an acceleration pulse of the general form

A(r,t) = A(t - tg(r))S(r) .

should.

the overpressure due to

(29)

Without loss of generality, the function A(x) can be assumed to have a finite

support in [O,A]. We first put A(r,t) into a

A(r,t) = S(r)JAA(T)d(t - T - tg(r))dT .
0

representation

(30)
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It follows that

P(h,t)
r.

2 -1/2rdr
= p~ A(r,t - tg(r))(h2 + r )

o

‘o
= P~AA(T)dT~ S(r)d(t - T - ta(r) -

2 -1/2rdr
tg(r))(h2 + r )

o 0

= fAA(T)P6(h,t - T)dT . (31)
o

pulse A(T) is such that A << (~ - tl), it is easy to see from the

integral above what is the general shape of P(h,t). For tl c t <

rises from zero to the maximum steeply; for tl + A < t < ~, it

If the

convolution

tl + A, it

decreases monotonically just like P6(h,t); and, finally, for t2 < t C t2 + A,

it drops off steeply to zero.

We have discuss~d in Section II that the inodel GM provides a close

representation of the actual one in terms of velocity history. As implied

most clearly in the piston model, the overpressure history is simply

proportional to the velocity history of the GM. In the general case, this

relationship still holds approximately. This fact supports our earlier

assertion that the model GM can be a good approximation to the real data in

generating the atmospheric overpressure.



APPENDIX

To derive the Eq. (18), we use the fact that both V(a,r) and D(a,r) are

linear in S(r), therefore

3

dV”(a,r) = d+~VU(a,r)
dr 8s

nrS ~V”(a,r)=.
r- as

nru=- Va(a,r) ,
(r2 + b2)

and, similarly,

dD(a,r) = nr—- D(a,r) .
dr (r2 + b2)

Using Eqs. (A-l), (A-2), and (17), we have

dt(r) dtg(r)

7= T+

= r_(r2 +

C9

(1 dV(a,r) dV(r)

)~~+r

#)-1/2- nr

[
V(a,r) + V2(a,r) + gD(a,r)

g(r2 + b2) V(r) 1
n[V(a,r) +V(r)]2 12gV(r) “

(A-1)

(A-2)

(A-3)

We have used Eq. (11) in obtaining the last step of Eq. (A-3).

To obtain an approximate analytic solution for the equation dt(r)/dr = O,

we use the fact that in a typical NTS event, (6(o) - a) is usually much larger

4 than a. Dividing Eq. (10) by Eq. (9) and using Eq. (13), we get

V(0) -V(a,O) = aV(a,O)/(f3(0) - a) , (A-4)

17



which implies V(o) fs just slightly larger than V(a,o). Therefore, we can

approximately write

~~”~’ (1 + r2/b2)n/4.
s

(A-5)

Wenote that, to within an accuracy of 20%, we can set (x +y)2/XY = 5 for 1/4

< Xjy c 4. Now if V(R)/V(a,R) < 4 is valid, a posteriori, we can approximate

the equation dt(R)/dR = O by

tg(R) = 5nV(a,R)/2g . (A-6)

This leads to

R =b{[5nV(a,o)/2gtg(o)]2/(n+l) - 1}1’/2 , (A-7)

to within an accuracy about 20/(n+l.) per cent. With R given by’the above, we

have

i#& = (1 + r2/b2)n/4 = [5nV(a,o)/2gtg(o)]n/2(n+1) .
1

For all the NTS events for which we have GM data, the quantity

[hv(Cho)/2gtG(())]

if we take n = 3.

justified a poster-

never exceeds 20, or equivalently V(R)/V(a,R) < 3.1, even

Therefore, the approximation used in writing Eq. (A-6) is

ori.

r
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176-200 12.00 A09 326-350 18.00 AM

201-22s 13.00 AIO 351-37s 19.00 A16

226-250 14.fm AI1 376430 20.00 A17

231-275 1s.00 A12 401425 21.00 A18

276-300 16.00 A13 426450 22.00 A19

Domestic NTIS
Page Range Price Price Code

451475 S23.00 A20
476-sOO 24.00 A21
S01-S25 25.00 A22
526-5sO 26.00 A23
551-575 27.00 A24
576-600 28.oo A2S
601-uP t A99

tAdd S1.00 for each additional 2S-page increment or portion thermf from 601 pages up.


