LA-8333-MS

Informal Report

C.3

CIC-14 REPORT COLLECTION

REPRODUCTION

A Comprehensive Neutron Cross-Section and Secondary Energy Distribution Uncertainty Analysis for a Fusion Reactor

LOS ALAMOS SCIENTIFIC LABORATORY Post Office Box 1663 Los Alamos. New Mexico 87545 This report was not edited by the Technical Information staff.

This work was supported by the US Department of Energy, Office of Fusion Energy.

This tepot i was prepared as an account of work sponsored by the United States Government. Neither the United States not the United States Dopattent of Energy, not any of their employees, makes any warranty, express of implied, of assumes any legal liability of responsibility for the accuracy, completeness, of usefulness of any information, apparatus, product, of process disclosed, of represents that its use would not infringe privately owned tights. Reference herein to any specific commercial product, process, of service by itade name, mark, manufacturet, of otherwise, does not necessarily constitute of imply its endorsement, recommendation, of favoting by the United States Government of any agency thereof. The views and opinions of authors expressed herein do not necessarily state of reflect those of the United States Government of any agency thereof.

> UNITED STATES DEPARTMENT OF ENERGY CONTRACT W-7405-ENG. 36

• .

LA-8333-MS Informal Report

UC-20d, UC-34c Issued: May 1980

A Comprehensive Neutron Cross-Section and Secondary Energy Distribution Uncertainty Analysis for a Fusion Reactor

S. A. W. Gerstl R. J. LaBauve P. G. Young

CONTENTS

•

ABSTH	RACT	
I.	INTRO	DDUCTION
II.	THEOI	RY
III.	CROSS	S-SECTION AND SECONDARY ENERGY DISTRIBUTION (SED) UNCERTAINTY DATA . 5
	A.	Cross-Section Covariance Data
	В.	Secondary-Energy-Distribution Covariances 6
IV.	NUCLI	EONICS ANALYSIS FOR GA'S TNS REACTOR CONCEPT (PGFR) 9
v.	QUAN	TITATIVE RESULTS
	Α.	Response Uncertainties caused by Reaction Cross-Section
		Uncertainties
	В.	Response Uncertainties caused by SED Uncertainties
	С.	Total Response Uncertainties due to all Data Uncertainties15
VI.	CONC	LUSIONS AND RECOMMENDATIONS
REFE	RENCE	S
APPE	NDIX	A
APPE	NDIX	B

A COMPREHENSIVE NEUTRON CROSS-SECTION AND SECONDARY ENERGY DISTRIBUTION UNCERTAINTY ANALYSIS FOR A FUSION REACTOR

by

S. A. W. Gerstl R. J. LaBauve P. G. Young

ABSTRACT

On the example of General Atomic's well-documented Power Generating Fusion Reactor (PGFR) design, this report exercises a comprehensive neutron cross-section and secondary energy distribution (SED) uncertainty analysis. The LASL sensitivity and uncertainty analysis code SENSIT is used to calculate reaction cross-section sensitivity profiles and `integral SED sensitivity coefficients. These are then folded with covariance matrices and integral SED uncertainties to obtain the resulting uncertainties of three calculated neutronics design parameters: two critical radiation damage rates and a nuclear heating rate. The report documents the first sensitivity-based data uncertainty analysis, which incorporates a quantitative treatment of the effects of SED uncertainties. The results demonstrate quantitatively that the ENDF/B-V cross-section data files for C, H, and O, including their SED data, are fully adequate for this design application, while the data for Fe and Ni are at best marginally adequate because they give rise to response uncertainties up to 25%. Much higher response uncertainties are caused by cross-section and SED data uncertainties in Cu (26 to 45%), tungsten (24 to 54%), and Cr (up to 98%). Specific recommendations are given for re-evaluations of certain reaction crosssections, secondary energy distributions, and uncertainty estimates.

I. INTRODUCTION

One of the first steps in any new fusion reactor design is a neutronic analysis to determine adequate tritium breeding, nuclear heating in blankets and coils, acceptable radiation damage rates, etc. In an early phase it is usually sufficient to perform radiation transport calculations with a one-dimensional conceptual design model and allow for multi-dimensional streaming effects by estimated "streaming factors" which assure the 1-D_model to be conservative. However, uncertainties in calculated neutronics design parameters due to crosssection uncertainties will be present in both 1-D as well as multi-dimensional analyses. These latter uncertainties can be conveniently estimated by performing a cross-section sensitivity and uncertainty analysis⁽¹⁾ based on the one-dimensional model.

Such quantitative data assessments have been performed in the past for various different fusion reactor designs, cf. e.g. Refs. (1) through (3). However, none of these analyses considers the effects of all nuclear data uncertainties simultaneously. Specifically, the effects of uncertainties in secondary energy and angular distributions have not been incorporated in the past, primarily due to the lack of a consistent methodology and the lack of uncertainty data for secondary distributions. Only recently such methodology has been developed⁽⁴⁾ and relevant uncertainty data are being made available.

This uncertainty analysis includes the effects of uncertainties in all neutron reaction cross-sections relevant to the model, including correlations, and the effects of estimated uncertainties in the neutron secondary energy distributions (SED's). Effects of uncertainties in secondary angular distributions are not incorporated for the lack of uncertainty data. Also, any uncertainties in gamma ray cross sections are neglected for two reasons: (1) generally, gamma ray interaction cross-sections are known to a much higher degree of accuracy (at least an order of magnitude) than neutron interaction cross-sections, and (2) only one of the three critical nuclear design parameters in our design depends at all on the gamma ray distribution.

II. THEORY

The theoretical expressions underlying any sensitivity-based cross-section uncertainty analysis have been developed previously, cf. e.g. Refs. (1) and (2),

and are given here only for completeness. The variance of any calculated integral design parameter R_k due to correlated uncertainties in given multigroup cross-section sets $\{\Sigma_i^g\}$ and $\{\Sigma_j^g\}$ can be calculated from

$$\left(\frac{\Delta R_k}{R_k}\right)_{i,j}^2 = \sum_{g,g'} P_{i,k}^g P_{j,k}^{g'} Cov (\Sigma_i^g, \Sigma_j^{g'}) , \qquad (1)$$

where

 Σ_{i}^{g} = neutron interaction cross-section for reaction i in energy group g,

$$Cov(\Sigma_i^g, \Sigma_j^{g'}) = relative covariance matrix element for the multigroup cross-sections Σ_i^g and $\Sigma_j^{g'}$,$$

$$P_{i,k}^{g}$$
 = cross-section sensitivity profile for Σ_{i}^{g} with respect to
the integral response R_{k}^{c} .

All cross-section uncertainty information about reaction cross-sections is contained in the relative covariance matrix which is independent of the specific reactor design. All sensitivity information about reaction cross-sections enters Eq. (1) through the product of the sensitivity profiles which, of course, are highly problem-dependent and specific for a particular reactor design and for the particular design parameter considered¹.

If the total response uncertainty due to many cross-section uncertainties is desired, then the relative standard deviation of the response R_k due to all reaction cross-section uncertainties considered for a particular material is given by

$$\left(\frac{\Delta R_{k}}{R_{k}}\right)_{MAT-XS} = \left(\sum_{i,j} \left(\frac{\Delta R_{k}}{R_{k}}\right)^{2}_{i,j}\right)^{\frac{1}{2}}, \qquad (2)$$

assuming that the variances due to individual (partial) cross-section uncertainties are uncorrelated.

The theory for the consistent incorporation of the effects of uncertainties in secondary energy distributions (SED's) has only recently been developed⁽⁵⁾. The concept of hot/cold integral SED-sensitivities, which requires the specification of integral SED-uncertainty parameters, is adopted and applied here. As derived in Ref. 5, the relative standard deviation of an integral response R_k due to SED-uncertainties for a specific reaction, ℓ , that generates secondaries, is given by

$$\left(\frac{\Delta R_k}{R_k} \right)_{\ell} = \sum_{g'} |s_{\ell,g'}^{SED}| \cdot f_{\ell,g'} ,$$
(3)

where

f_{l,g'} = integral SED-uncertainty for neutron interaction l at the incident energy group g'; f is also called the spectral shape uncertainty parameter, sSED

As noted in Ref. 5 the integral SED-sensitivity may be positive or negative, indicating whether the response R_k is more sensitive to the hot portion of the SED or its cold part:

$$s^{SED} = s_{HOT}^{SED} - s_{COLD}^{SED} , \qquad (4)$$

where the hot and cold portions of the integral SED-sensitivity are defined with respect to the median energy of the secondary distribution, cf. Ref. 5.

Equation (3) is valid for the sum of all SED-uncertainties pertaining to a single type of neutron interaction, identified by the subscript ℓ . If the effects of SED-uncertainties from all possible neutron interactions with one material are to be considered, then we may assume that their effects on the responses R_k are

uncorrelated. With this assumption, the relative standard deviation of the response R_k due to all SED-uncertainties considered for a particular material is given by

$$\begin{pmatrix} \frac{\Delta R_k}{R_k} \end{pmatrix}_{MAT-SED} = \left(\sum_{\ell} \left(\frac{\Delta R_k}{R_k} \right)_{\ell}^2 \right)^{\frac{1}{2}} .$$
(5)

Under the same assumption of independent, and therefore uncorrelated, effects on R_k due to both all SED uncertainties and all reaction cross-section uncertainties per material, the total relative standard deviation of R_k per material is given by

$$\left(\frac{\Delta R_{k}}{R_{k}}\right)_{MAT} = \sqrt{\left(\frac{\Delta R_{k}}{R_{k}}\right)^{2} \frac{2}{MAT-XS} + \left(\frac{\Delta R_{k}}{R_{k}}\right)^{2} \frac{2}{MAT-SED}, \qquad (6)$$

which results from the quadratic sum of Eqs. (2) and (5). However, before any of the relative standard deviations defined in Eqs. (2), (3), (5), and (6) may be evaluated quantitatively, the data uncertainties in the form of covariance matrices and integral SED uncertainties, as well as the sensitivity profiles and integral SED-sensitivities must be quantified. In section III we describe how the required data uncertainties were obtained. In order to obtain the required sensitivity information a complete neutronics design analysis of the reactor system must be performed which is described in section IV.

III. CROSS-SECTION AND SECONDARY ENERGY DISTRIBUTION (SED) UNCERTAINTY DATA

One of the more important aspects of nuclear data is that the uncertainties tend to be highly correlated through the measurement processes and the corrections made to the observable quantities to obtain the microscopic cross sections. In many applications, the correlations of the uncertainties in the nuclear data play a crucial role in uncertainties in calculated results.

A. Cross-Section Covariance Data

Several versions of the reference cross-section data library known as ENDF/ B (Evaluated Neutron Data Files-B) have been issued over the past 13 years, but only the latest version, ENDF/B-V, contains formats¹⁴ and sufficient covariance data for an application such as is described in this report. Covariance data are given for 25 important nuclides in ENDF/B-V, which includes data for all nuclides needed in this analysis except Cu and W. For these elements we used the covariance files from Fe and Pb, respectively, assuming that the cross sections of Cu are as well known as those for Fe and the cross sections of W are as well known as those of Pb. Note that both these assumptions are probably optimistic. It is planned, however, that covariance data for Cu and W will be included in ENDF in the future, and the present calculations will be repeated when such data become available.

The covariance data in ENDF/B-V were processed with the NJOY code¹⁵ to transform the data into the 30-group multigroup format needed in this study. Data from the various runs with the NJOY code were collected to form a 30-group covariance data library. The contents of this library, which is in an ENDF-like format, are shown in Table I.

B. Secondary-Energy-Distribution Covariances

It should be noted that ENDF/B-V does not contain data uncertainties and their correlations for secondary energy distribution (SED) data, and at the time of this writing, formats have yet to be specified. Hence, for the purpose of estimating the magnitude of these effects, we have generated SED covariance matrices using the very simple "hot-cold" concept outlined in Ref. 5.

The angle-averaged median energies of the composite elastic plus nonelastic neutron emission spectra were calculated for each material as functions of incident neutron energy. Relative errors were then estimated for the portions of the emission spectra lying above and below the median energies. If $\bar{\sigma}$ designates the integrated neutron emission cross section for a given incident energy and $\sigma_{\rm H} = \bar{\sigma}/2$ is the integrated spectrum for E' > E'_median, then the relative uncertainties of the hot (denoted by subscript "H") and cold (subscript "C") regions can be specified by the quantity f = $\Delta \sigma_{\rm H}/\bar{\sigma} = -\Delta \sigma_{\rm C}/\bar{\sigma}$. For the purposes of this study, we have assumed no correlation in the SED uncertainties with incident neutron energy.

Table II lists the median energies and the relative errors assumed in the

TABLE I

۰

ENDF/B-V COVARIANCE DATA (MF=33) PROCESSED WITH NJOY CODE

MAT	Nuclide	<u>Ref</u> .	MT-Nos, Processed	Reaction Cross Sections
1301	H-1	16	1,2	Total, elastic
1305	B-10	17	1,2,107,780,781	Total, elastic, (n,α) , (n,α_0) , and (n,α_1)
1306	С	18	1,2,4,51-68,91,102, 104,107	Total, elastic, toal inelastic, inelastic levels 1-18, inelastic continuum, (n,γ) , (n,d) , (n,α)
1324	Cr	19 、	1,2,3,4,16,17,22,28, 102,103,104,105,106	Total, elastic, nonelastic, total inelastic, $(n,2n)$, $(n,3n)$, $(n,n'\alpha)$, $(n,n'p)$, (n,γ) , (n,p) , (n,t) , (n,d) , (n, He) , (n,α)
1326	Fe	20	1,2,3,4,16,22,28,102, 103,104,105,106,107	Total, elastic, nonelastic, total inelastic, $(n,2n)$, $(n,n'\alpha)$, $(n,n'p)$, (n,γ) , (n,p) , (n,d) , (n,t) , (n, He) , (n,α)
1328	Ni	21	1,2,4,16,22,28,51-76, 91,102,103,104,107, 111	Total, elastic, total inelastic, (n,2n), (n,n' α), (n,n'p), inelastic levels 1-26, inelastic continuum, (n, γ), (n,p), (n,d), (n, α), (n,2p)
1326	Cu(Fe)	20	1,2,3,4,16,17,22,28, 102,103,104,106,107	Total, elastic, nonelastic, total inelastic, $(n, 2n)$, $(n, 3n)$, $(n, n'\alpha)$, $(n, n'p)$, (n, γ) , (n, p) , (n, d) , (n, He) , (n, α)
1382	W(РЪ)	22	1,2,3,4,16,17,51,52, 64,102	Total, elastic, nonelastic, total inelastic, $(n, 2n)$, $(n, 3n)$, inelastic levels 1, 2, and 14, (n, γ)

MEDIAN ENERGIES (E'_M , IN MEV) AND FRACTIONAL UNCERTAINTIES (F) FOR SECONDARY ENERGY DISTRIBUTIONS AT INCIDENT NEUTRON ENERGIES E_0

TABLE II

	¹² c		16	0	С	r	Fe		Ni		Cı	1	W	
Eo	E'm	F	E'm	F	E' m	F	E'm	F	Ē'm	F	E [†] m	F	E'm	F
16.0	14.71	0.071	14.62	0.088	3.27	0.17	4.49	0.11	14.95	0.13	3.42	0.11	1.86	0.12
14.25	13.00	0.059	13.33	0.072	8.65	0.15	5.99	0.10	13.97	0.11	3.51	0.10	2.17	0.10
12.75	11.71	0.054	11.93	0.062	11.42	0.13	11.17	0.10	12.67	0.11	4.30	1.10	1.91	0.10
11.00	9.77	0.060	9.82	0.057	10.48	0.11	10.57	0.09	10.91	1.10	10.42	0.09	1.57	0.09
8.90	7.35	0.048	7.90	0.050	8.79	0.09	8.77	0.08	8.85	0.09	8.81	0.08	1.24	0.08
6.93	5.96	0.035	6.04	0.030	6.83	0.08	6.86	0.07	6.88	0.08	6.86	0.07	6.66	0.07
4.88	4.46	0.010	4.57	0.010	4.81	0.07	4.81	0.07	4.83	0.07	4.82	0.07	4.83	0.07
3.27	2.63	0.010	3.09	0.010	3.21	0.06	3.21	0.06	3.24	0.06	3.22	0.06	3.25	0.06
2.55	2.16	0.010	2.31	0.010	2.48	0.05	2.49	0.06	2.49	0.05	2.50	0.06	2.51	0.06
1.99	1.73	0.005	1.79	0.010	1.93	0.04	1.93	0.06	1.94	0.04	1.94	0.06	1.96	0.05
1.55	1.34	0.005	1.35	0.010	1.50	0.03	1.51	0.05	1.50	0.03	1.51	0.05	1.51	0.05
1.09	0.95	0.005	0.94	0.010	1.05	0.02	1.06	0.03	1.06	0.02	1.06	0.03	1.06	0.05
0.66	0.57	0.005	0.60	0.010	0.64	0.02	0.63	0.02			0.64	0.02	0.66	0.04
0.40	0.35	0.005	0.34	0.010			0.39	0.02			0.39	0.02	0.38	0.03
0.24	0.21	0.005	0.22	0.010							0.24	0.02	0.22	0.02
0.13	0.12	0.005	0.12	0.010							0.12	0.02	0.12	0.01

total neutron emission spectra for each of the elements present. The relative errors were determined by adding in quadrature separate error components due to elastic and nonelastic neutron reactions.

The elastic scattering components are based upon the evaluated errors given in the ENDF/B-V files for 12 C, 16 O, and Fe, and upon our estimates of these errors for the other materials. Typically, the elastic uncertainty is approximately 8% near 14 MeV and gradually reduces to a few percent near the inelastic threshold. These errors are significantly smaller in the case of 12 C, which is used as a standard in neutron scattering experiments.

The nonelastic neutron spectrum errors were determined by combining quadratically a 15% component assumed to exist for all materials at all energies and a second component based on comparisons with the 14-MeV spectrum measurements of Hermsdorf et al²³ and Clayeux and Voignier.²⁴ This latter component was included to roughly account for variations in the accuracy of the individual evaluations. Only in the cases of Cr and Ni did the addition of the second component significantly change the total SED uncertainty. It should be mentioned that significant differences also exist between the measured and calculated spectra for W, as has been shown by Hetrick et al.²⁵ In averaging over the "hot" (or "cold") portions of the 14-MeV spectrum for W, however, a significant fraction of this spectrum difference disappears. This cancellation indicates one of the problems inherent in using such a coarse representation of SED errors.

IV. NUCLEONICS ANALYSIS FOR GA'S TNS REACTOR CONCEPT (PGFR)

General Atomic's TNS ("The Next Step") reactor design, also labelled Power Generating Fusion Reactor⁽⁶⁾, has been selected as a representative model for all TNS reactor concepts; Fig. 1 shows a cut-away view of the PGFR. A nuclear analysis for this reactor has been performed by General Atomic (GA) and is documented in Ref. 7, which has been issued as Vol. IV of Ref. 6. In this analysis GA identifies as the three most critical nuclear design parameters (1) the radiation damage to the superconducting TF-coil's stabilizing matrix, (2) the radiation damage to the alumina insulator in the F-coil, and (3) the nuclear heating in the superconducting TF-coil. Two one-dimensional models have been employed in the GA nucleonic analysis, an inboard and an outboard model. However, the inboard calculations were sufficient to identify the above three most critical parameters. Therefore, we selected for our data assessment task the PGFR inboard nucleonics

Fig. 1. General Atomic's Power Generating Fusion Reactor (PGFR)

2014	1N [ULA]+UN	iuppon i	E COILS	He COOLANI	$\mathcal{R}_{1,3}$	GAP	IANK WALL	Smif 1 C		COBLANT CHANNEL Ro		JANK WALL	GAP	15Î WALL	GAP	GRAPHIJE TILES	PLASMA AMO VACUUM Q
20HE HUMBER	1	2	2	•	5	•	-	0	9	и	n ~	12	12	14	16	18	12
UENSITY FACIUM	82	1.	08	10	"	_	1.	;1	1.0	13	1.0	1.	_	18	_	1.9	
COMPOILIAN	218 55	218 55	50% Cu	(50% Cu + 40% 21655	VEIE	21855	674 W + 274 H 20) H 30	$\mathbf{\hat{c}}$	H20	21855	vaia	1NC. H20	Vala	c	V010
1H1CXH1SS1CM-		•	21	2	•	2	1	41	2	in	•	1	5	1	1	2	n
L	et 54 (2 103 195 112 154 155 236 238 248 252 253 254 268 281 283 344 R (CM)																

Fig. 2. PGFR inboard nucleonics model.

model which is reproduced from Ref. 7 and shown in Fig. 2. The symbol Q represents the 14-MeV neutron source at the plasma location while the $R_{1,2,3}$ indicate the locations where the 3 critical responses are calculated for which the following response functions were chosen:

- R_2 = Aluminum dpa in the field-shaping coil (F-coil)
 - $\hat{=}$ radiation damage to the A1₂0₃ insulator in the F-coil,
- $R_3 = Kerma$ in the TF-coil
 - $\hat{=}$ nuclear heating in the superconducting TF-coil.

All data for the response functions as well as the multigroup cross-section sets used in the analysis, were derived from ENDF/B-V (8,9) and processed with the NJOY code system (10) into coupled neutron/gamma-ray multigroup sets with 30 neutron and 12 gamma-ray groups (11). The resulting multigroup data library has been applied successfully at LASL to several other fusion nucleonics analyses and is therefore considered a well tested and reliable cross-section data base.

The nuclear analysis of the PGFR was performed with the LASL discrete-ordinates code ONETRAN⁽¹²⁾ in S₈ approximation and with P₂ coupled neutron and gamma-ray cross-sections. The angular flux distributions from the forward ONETRAN run and the three adjoint runs (one for each of the above response functions) were then used in the LASL sensitivity and uncertainty analysis code SENSIT⁽¹³⁾ to compute the relevant sensitivity profiles and response uncertainties.

V. QUANTITATIVE RESULTS

Uncertainties in the three critical design parameters $R_{1,2,3}$ were calculated with SENSIT in two independent stages. First the response uncertainties due to uncertainties in neutron reaction cross-sections were calculated via Eqs. (1) and (2), and then, in a second stage, the additional response uncertainties due to estimated SED uncertainties were computed via Eqs. (3) through (5).

TABLE III

TABLE FOR DEFINITION OF ID-NOS IN TERMS OF SPECIFICATION OF CROSS SECTION COVARIANCES. NOTE IN THIS VERSION, MAT1=MAT2

•

ID-NO	MAT1	MAT2 MT1	MT2	CROSS SECTION COVARIANCE
ID-123456789011234567890123945678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890012345678900123456789001234567	MAT1 1305 1305 1305 1306 1306 1306 1306 1306 1306 1306 1306	MAT2 MT1 1305 1 1305 1 1305 1 1305 2 1305 2 1305 2 1305 107 1306 1 1306 1 1306 1 1306 1 1306 2 1306 1 1306 2 1306 1 1306 107 1306 1 1306 1 1306 1 1324 1 1324 1 1324 1 1324 1 1324 1 1324 1 1326 1 1326 1 1326 1 1326 1 1326 102 1326 102 1328 102 1329 1 1329 1 1329 1 <t< td=""><td>MT2 1 27 27 27 1 2 2 4 4 2 2 2 4 2 4 2 3 7 2 3 7 1 2 4 4 2 3 7 2 7 1 2 2 4 4 2 3 7 2 3 7 1 2 4 4 2 3 7 2 4 4 2 3 7 2 3 7 2 3 7 1 2 4 4 2 3 7 2 3 7 2 3 7 1 2 4 4 2 3 7 2 3 7 2 3 7 1 2 4 4 2 3 7 2 3 7 2 3 7 1 2 4 4 2 3 7 2 4 4 2 3 7 2 3 7 2 3 7 1 2 4 4 4 2 3 7 2 4 4 2 3 7 2 4 4 2 3 7 2 4 4 2 3 7 2 4 4 4 2 3 7 2 4 4 4 2 3 7 2 4 4 4 2</td><td>CROSS SECTION COVARIANCE B10 TOTAL WITH B10 TOTAL B10 TOTAL WITH B10 ELASTIC B10 TOTAL WITH B10 (N, ALPHA) B10 ELASTIC WITH B10 (N, ALPHA) B10 ELASTIC WITH B10 (N, ALPHA) B10 (N, ALPHA) WITH B10 (N, ALPHA) C TOTAL WITH C TOTAL C TOTAL WITH C ELASTIC C ELASTIC WITH C ELASTIC C INELASTIC WITH C ELASTIC C (N, ALPHA) WITH C (N, ALPHA) CR TOTAL WITH CR TOTAL CR TOTAL WITH CR INELASTIC CR ELASTIC WITH CR INELASTIC CR INELASTIC WITH CR INELASTIC CR INELASTIC WITH CR CAPTURE FE TOTAL WITH FE TOTAL FE TOTAL WITH FE TOTAL FE TOTAL WITH FE CAPTURE FE ELASTIC WITH FE ALASTIC FE TOTAL WITH FE CAPTURE FE ELASTIC WITH FE INELASTIC FE ELASTIC WITH FE INELASTIC FE ELASTIC WITH FE CAPTURE FE INELASTIC WITH FE CAPTURE FE INELASTIC WITH FE CAPTURE FE INELASTIC WITH FE (N, ALPHA) FE CAPTURE WITH FE (N, ALPHA) FE CAPTURE WITH FE (N, ALPHA) FE CAPTURE WITH NI TOTAL NI TOTAL WITH NI TOTAL NI TOTAL WITH NI TOTAL NI ELASTIC WITH NI ALASTIC NI INELASTIC WITH NI ALASTIC NI INELASTIC WITH NI CAPTURE FE (N, P) WITH FE (N, P) FE (N, ALPHA) WITH NI CAPTURE NI (N, P) WITH NI (N, P) CU TOTAL WITH CU TOTAL CU TOTAL WITH CU TOTAL CU TOTAL WITH CU TOTAL CU INELASTIC WITH CU INELASTIC CU ELASTIC WITH CU ASTIC CU INELASTIC WITH CU INELASTIC CU INELASTIC WITH CU APTURE NI (N, P) WITH HI CU APTURE CU INELASTIC WITH CU (N, P) CU INELASTIC WITH CU (N, ALPHA) CU CAPTURE WITH CU (N, ALPHA)</td></t<>	MT2 1 27 27 27 1 2 2 4 4 2 2 2 4 2 4 2 3 7 2 3 7 1 2 4 4 2 3 7 2 7 1 2 2 4 4 2 3 7 2 3 7 1 2 4 4 2 3 7 2 4 4 2 3 7 2 3 7 2 3 7 1 2 4 4 2 3 7 2 3 7 2 3 7 1 2 4 4 2 3 7 2 3 7 2 3 7 1 2 4 4 2 3 7 2 3 7 2 3 7 1 2 4 4 2 3 7 2 4 4 2 3 7 2 3 7 2 3 7 1 2 4 4 4 2 3 7 2 4 4 2 3 7 2 4 4 2 3 7 2 4 4 2 3 7 2 4 4 4 2 3 7 2 4 4 4 2 3 7 2 4 4 4 2	CROSS SECTION COVARIANCE B10 TOTAL WITH B10 TOTAL B10 TOTAL WITH B10 ELASTIC B10 TOTAL WITH B10 (N, ALPHA) B10 ELASTIC WITH B10 (N, ALPHA) B10 ELASTIC WITH B10 (N, ALPHA) B10 (N, ALPHA) WITH B10 (N, ALPHA) C TOTAL WITH C TOTAL C TOTAL WITH C ELASTIC C ELASTIC WITH C ELASTIC C INELASTIC WITH C ELASTIC C (N, ALPHA) WITH C (N, ALPHA) CR TOTAL WITH CR TOTAL CR TOTAL WITH CR INELASTIC CR ELASTIC WITH CR INELASTIC CR INELASTIC WITH CR INELASTIC CR INELASTIC WITH CR CAPTURE FE TOTAL WITH FE TOTAL FE TOTAL WITH FE TOTAL FE TOTAL WITH FE CAPTURE FE ELASTIC WITH FE ALASTIC FE TOTAL WITH FE CAPTURE FE ELASTIC WITH FE INELASTIC FE ELASTIC WITH FE INELASTIC FE ELASTIC WITH FE CAPTURE FE INELASTIC WITH FE CAPTURE FE INELASTIC WITH FE CAPTURE FE INELASTIC WITH FE (N, ALPHA) FE CAPTURE WITH FE (N, ALPHA) FE CAPTURE WITH FE (N, ALPHA) FE CAPTURE WITH NI TOTAL NI TOTAL WITH NI TOTAL NI TOTAL WITH NI TOTAL NI ELASTIC WITH NI ALASTIC NI INELASTIC WITH NI ALASTIC NI INELASTIC WITH NI CAPTURE FE (N, P) WITH FE (N, P) FE (N, ALPHA) WITH NI CAPTURE NI (N, P) WITH NI (N, P) CU TOTAL WITH CU TOTAL CU TOTAL WITH CU TOTAL CU TOTAL WITH CU TOTAL CU INELASTIC WITH CU INELASTIC CU ELASTIC WITH CU ASTIC CU INELASTIC WITH CU INELASTIC CU INELASTIC WITH CU APTURE NI (N, P) WITH HI CU APTURE CU INELASTIC WITH CU (N, P) CU INELASTIC WITH CU (N, ALPHA) CU CAPTURE WITH CU (N, ALPHA)
44 45 46 47 48	1329 1329 1329 1329 1329 1382	1329 4 1329 102 1329 103 1329 107 1382 1	107 102 103 107 1	CU INELASTIC WITH CU (N,ALPHA) CU CAPTURE WITH CU CAPTURE CU (N,P) WITH CU (N,P) CU (N,ALPHA) WITH CU (N,ALPHA) PB TOTAL WITH PB TOTAL PD TOTAL WITH PB TOTAL
49 50 51 52 53 55 55 55	1382 1382 1382 1382 1382 1382 1382 1382	1382 1 1382 2 1382 2 1382 2 1382 4 1382 4 1382 4 1382 102	2 102 2 4 102 102	PB TOTAL WITH PB CAPTURE PB TOTAL WITH PB CAPTURE PB ELASTIC WITH PB ELASTIC PB ELASTIC WITH PB INELASTIC PB INELASTIC WITH PB CAPTURE PB CAPTURE WITH PB CAPTURE H TOTAL WITH H TOTAL
56 57 58	1301 1301	1301 1 1301 1 1301 2	22	H TOTAL WITH H ELASTIC H ELASTIC WITH H ELASTIC

.

A. Response Uncertainties caused by Reaction Cross-Section Uncertainties

A total of 24 SENSIT runs were performed to compute $\Delta R_k/R_k$ cause by reaction cross-section uncertainties which are given as relative covariance matrices for pairs of partial reaction cross-sections. Table III gives a listing of these covariance matrices and identifies the relevant pairs of partial cross-sections by ID-numbers. Partial cross-sections for one material were only paired with partials for the same material because it is assumed that the cross-section uncertainties for one material are uncorrelated with those for another material.

However, certain materials are present in more than one spatial zone of the PGFR design; cf. Fig. 2. For example, chromium is present in the first wall, in all stainless steel structural walls and in the TF and E coils, but with a different number density in each zone. Therefore, to simplify the interpretation of our results, we report contributions to response uncertainties due to cross-section uncertainties by material zones as defined by their operational function, like Cr in the first wall, or in all SS walls, or in all coil structures, etc.

Appendix A gives detailed results of our cross-section uncertainty analysis for those response uncertainty components which exceed a 10% standard deviation. The sensitivity profiles for each of the two partial cross-sections of each pair are also given in these tables. A summary of all calculated response uncertainties due to all cross-section uncertainties is given in Table IV. All standard deviations in Table IV per material (i) and zone (j) are obtained by quadratically summing the standard deviations caused by all partial crosssections for that material according to Eq. (2). The overall response uncertainties for $R_{1,2,3}$ due to all reaction cross-section uncertainties are given in the bottom line of Table IV. Large standard deviations of 71.9% and 125.2% are predicted for the responses R_1 and R_3 , respectively. In both cases the largest contributions originate from cross-section uncertainties in Cr, W, Cu, and Ni. However, due to the unavailability of evaluated cross-section uncertainty data for Cu and W we substituted the covariance data for these materials with those for Fe and Pb, as was explained in Section IIIA. These substitutions are thought to be optimistic in the sense that the Fe and Pb covariances are probably generally smaller than such data would be for Cu and W. Therefore, we feel these substitutions do not seriously weaken our conclusions that the Cu and W cross section data are serious sources of uncertainty in the R_1 and R_3 responses.

TABLE IV

•

PREDICTED	RESPONSE	UNCERTAINTIES (STANDARD	DEVIATION)
DUE TO) ESTIMATE	D CROSS-SECTION	UNCERTA:	INTIES

CRO	SS SECT.	Response Uncertainties, in percent							
MAT.	ZONE	100		100x			×		
(1)	(j)	$\left(\Delta R_{1} \right)$	$\left \left(\begin{array}{c}\Delta R_{1}\right)\right ^{*}$	$\left \left(\frac{\Delta R}{2} \right) \right $	$\left \frac{\Delta R_2}{2} \right ^*$	$\left(\Delta R_{3} \right)$	$\left \left< \Delta R_3 \right>^* \right $		
		$\left(\frac{R_1}{i,j}\right)$	$\left(\frac{R_1}{I}\right)_i$	$\frac{R_2}{i,j}$	$\left(\frac{R_2}{r_2}\right)_i$	$\overline{\left(\frac{R_{3}}{1}\right)}_{i,j}$	$\left(\frac{R_3}{1}\right)_i$		
с	TILES	1.69	1.69	2.05	2.05	1.70	1.70		
Cr	FIRST WALL	0.38		0.47		0.38			
	SS WALLS	0.13	28.7	0.04	0.47	5.3	98.3		
	TF+E COILS	28.7		6×10^{-10}		98.2			
Ni	FIRST WALL	1.79		2.21		1.79			
	SS WALLS	1.81	6.91	0.78	2.34	1.5	24.9		
	TF+E COILS	6.43		9x10 ⁻⁹		24.8			
Fe	FIRST WALL	0.18		0.22 ′		0.18			
	SS WALLS	2.61	14.1	1.67	1.68	2.46	15.99		
	TF+E COILS	13.9		2×10^{-8}		15.8			
Cu	F-COIL	3.68	22.0	4.80	(00	3.66	15.0		
	TF+E COILS	32.8	33.0	8x10 ⁻⁹	4.80	45.1	45.3		
W	SHIELD	54.0	54.0	0.196	0.196	54.3	54.3		
н	FIRST WALL	0.07		1.11		0.073			
	H ₂ 0 COOLT.	0.49	5.74	0.76	0.77	0.50	8.71		
[SHIELD	5.72		0.066		8.7			
0	FIRST WALL	0.25		0.28		0.25			
	H ₂ O COOLT.	1.51	7.67	1.01	1.05	1.50	7.65		
	SHIELD	7.52		0.014		7.5			
ALL*		[71.9		6.12		125.1		

*) quadratic sums

B. Response Uncertainties caused by SED Uncertainties

In a second series of 24 computer runs with SENSIT (in SED anaylsis mode ITYP = 3)¹³, the additional response uncertainties $\Delta R_k/R_k$ due to estimated uncertainties in secondary energy distributions were evaluated according to Eqs. (3) and (5). Integral SED uncertainties $f_{\ell,g'}$ between 0.5% and 17% were used as input, as specified in Table II, for incident neutron energies between 16 and 0.13 MeV.

Appendix B gives the detailed results of our SED uncertainty analysis for those calculated response uncertainties which exceed a 10% standard deviation. Integral SED-sensitivity coefficients S^{SED} , together with S_{HOT}^{SED} and S_{COLD}^{SED} according to Eq. (4), are also given in Appendix B for each incident energy group. All calculated response uncertainties due to all SED uncertainties are summarized in Table V by material (i) and zone (j). It should be noted that in this case no substitutions of cross-section or uncertainty files were performed as was necessary for the copper and tungsten reaction cross-section uncertainty analysis. The largest response uncertainties due to SED uncertainties are calculated for R₁ (33.1%) and R₃(37.1%) which are both mainly due to Cu and W SED uncertainties, each contributing between 23 and 28% in $\Delta R/R$.

A note of caution must be added here, which should be taken into consideration when the results of this SED uncertainty analysis are interpreted. As mentioned in Section III.B, the integral SED uncertainties were estimated for the composite secondary energy distributions of elastic and nonelastic reactions, which resulted in the fairly low spectral shape uncertainty parameters $f_{\ell,g'}$ listed in Table II. In addition, such composite SED's often exhibit two distinctly separated peaks, one due to the elastically scattered secondaries peaking fairly close to the incident neutron energy, and the second at much lower energies due to nonelastic emission neutrons. In these situations it is questionable how adequate the SED uncertainties can be realistically described by the simple hot/cold concept which is the basis for our anaylsis⁽⁵⁾. Quite possibly this concept may result in too coarse a representation and may therefore underestimate the real response uncertainties due to SED uncertainties. This potential inadequacy could be remedied, however, if SED uncertainties were treated separately for individual partial cross-sections.

C. Total Response Uncertainties due to all Data Uncertainties

Summary Tables IV and V give the calculated response uncertainties by material as defined in Eqs. (2) and (5), respectively. In Table VI we compare the

TABLE V

CRO	SS SECT.	Response Uncertainties, in percent								
MAT.	ZONE	100	\mathbf{X}	100x	· · · · · · · · · · · · · · · · · · ·	100	X			
(i)	(j)	$\left(\Delta R_1 \right)$	ΔR_1	ΔR_2	ΔR_2	$\left(\Delta R_{3}\right)$	ΔR_{3}			
		$\left \left\langle \overline{R_1} \right\rangle_{i,j} \right $	$\left \frac{R_1}{i} \right $	$\left(\frac{\overline{R_2}}{i,j}\right)$	$\frac{\overline{R_2}}{i}$	$\left(\frac{\overline{R_3}}{1,j}\right)$	$\left(\frac{R_{3}}{1} \right)$ i			
С	TILES	0.41	0.41	0.26	0.26	0.41	0.41			
Cr	FIRST WALL	0.24		0.27	1	0.24				
	SS WALLS	0.33	1.17	0.23	0.35	0.31	0.86			
	TF+E COILS	1.10	ļ	2×10^{-10}		0.76				
Ni	FIRST WALL	0.79		0.74	i	0.79				
	SS WALLS	0.31	0.86	0.08	0.75	0.13	0.85			
	TF+E COILS	0.31	-	1×10^{-10}		0.28				
Fe	FIRST WALL	0.06		0.07		0.06				
	SS WALLS	0.94	6.57	0.51	0.52	0.84	4.58			
	TF+E COILS	6.50		6×10^{-10}		4.50				
Cu	F-COIL	5.2		10.1		5.2				
	TF+E COILS	25.6	26.1	1x10 ⁻⁹	10.1	27.5	28.0			
W	SHIELD	23.5	23.5	0.37	0.37	23.9	23.9			
Н	FIRST WALL	0.10		0.07		0.09				
	H ₂ O COOLT.	0.39	0.99	0.36	0.37	0.39	1.03			
	SHIELD	0.90		0.01		0.95				
0	FIRST WALL	0.11		0.10		0.11				
	H ₂ O COOLT.	0.45	1.05	0.46	0.47	0.46	1.13			
	SHIELD	0.94		0.02		1.03				
ALL*			33.1		10.2		37.1			

PREDICTED RESPONSE UNCERTAINTIES (STANDARD DEVIATION) DUE TO ESTIMATED SED UNCERTAINTIES

*) quadratic sums

TABLE VI

	Response	Uncertainties	in precent
Input Cross-Section Data	$\frac{\Delta R_1}{R_1} \times 100$	$\frac{\Delta R_1}{R_2} x 100$	$\frac{\Delta R_1}{R_3} \times 100$
All C due to XS-Uncert.	1.69	2.05	1.70
due to SED-Uncert.	0.41	0.26	0.41
All Cr due to XS-Uncert.	28.7	0.46	98.3
due SED-Uncert.	1.17	0.35	0.86
All Ni due to XS-Uncert.	6.91	2.34	24.9
due to SED-Uncert.	0.86	0.75	0.85
All Fe due to XS-Uncert.	14.1	1.68	15.99
due to SED-Uncert.	6.57 [·]	0.52	4.58
All Cu due to XS-Uncert.	33.0	4.80	45.3
due to SED-Uncert.	26.1	10.1	28.0
All W due to XS-Uncert.	54.0	0.20	54.3
duė to SED-Uncert.	23.5	0.37	23.9
All H due to XS-Uncert.	5.74	0.77	8.71
due to SED-Uncert.	0.99	0.37	1.03
All O due to XS-Uncert.	7.67	1.05	7.65
due to SED-Uncert.	1.05	0.47	1.13
A11 [^]	79.2	11.9	130.6

TOTAL RESPONSE UNCERTAINTIES (STANDARD DEVIATION) DUE TO ALL DATA UNCERTAINTIES

*) quadratic sums

calculated response uncertainties due to cross-section uncertainties with those due to SED uncertainties per material. We note that in almost all cases the response uncertainties due to SED uncertainties are smaller than those due to reaction cross-section uncertainties.

The total response uncertainties due to all data uncertainties were calculated using Eq. (6), which assumes all individual results summarized in Table VI are uncorrelated and may be summed quadratically by column. The large total response uncertainties of 79% for R_1 and 130% for R_3 are reasons for concern in a real design environment. In our conclusion we recommend, therefore, that certain cross-section files including the SED data, and certain covariance files, be reevaluated. However, if such re-evaluations or re-measurements should result in only insignificantly lower response uncertainties, then some additional conservatism might have to be built into future blanket and shield designs.

VI. CONCLUSIONS AND RECOMMENDATIONS

In general, when a cross-section uncertainty analysis is performed with presently available codes and data, some care must be taken in the interpretation of the results. Specifically, it must be recognized that considerable uncertainty generally exists in the covariance files with the result that fairly large errors are possible in the calculated response uncertainties themselves. Additionally, any conclusions regarding the adequacy of nuclear data for a particular application requires a statement as to what errors are tolerable in the calculated responses. For the conclusions below we have assumed that response uncertainties greater than $\sim 25\%$ are not acceptable.

With these qualifications in mind, the main conclusions drawn from this PGFR cross-section and SED uncertainty analysis are the following:

- The quadratic combination of the worst case response uncertainties (R₃) for H, C, and O results in a combined uncertainty of less than 13%. Therefore, the existing ENDF/B-V neutron cross-section files for these materials, including SED data, appear to be fully adequate for this application.
- 2. The calculated R_3 response uncertainties for Ni and Fe are 25% and 17%, respectively, with the major components resulting from cross-section

uncertainties. The data for these materials therefore appear to be marginally adequate for the present application, although some further reduction in uncertainty would probably be desirable.

- 3. The W cross-section data are probably inadequate, as indicated by a calculated response uncertainty of 54% for both R_1 and R_3 . This conclusion must be qualified somewhat because Pb covariance data were used in the W analysis. However, an examination of the Pb covariance file suggests strongly that this qualitative conclusion would stand even if W covariances were available. Additionally, the calculated 24% response uncertainties in R_1 and R_3 due to tungsten SED uncertainties alone indicate a need for improved data. It is recommended, therefore, that as a first step the cross-section and uncertainty files for W be re-evaluated to include the most recent experimental results.
- 4. For Cu the cross-section as well as the SED data appear inadequate because they produce response uncertainties in R₁ and R₃ between 26 and 45%. Specifically, large sensitivities are obtained for the elastic and total copper cross-sections (see Appendix A) and SED's (see Appendix B) in the energy range from 1.3 keV to 1.3 MeV. These cross-sections and secondary energy distributions are recommended for re-evaluation and possibly re-measurement. Again, these conclusions are subject to a similar qualification as was given for the W results in that Fe covariance data were used in the absense of such data for Cu. As with tungsten, however, we believe the qualitative conclusions for Cu are valid.
- 5. The cross-section data for Cr appear grossly inadequate because they produce an almost 100% uncertainty in R_3 , while the SED data are found fully adequate. The main contribution to the 98% standard deviation is from the Cr total and elastic cross-sections (compare Appendix A). While the sensitivity of R_3 to the Cr total and elastic cross-sections is roughly a factor of 10 lower than the sensitivity of R_3 to the copper cross-sections, the uncertainty estimates for Cr are much larger than those for Cu. We recommend, therefore, first a reevaluation of the covariance files for the total and elastic chromium cross-sections, and secondly, if the new uncertainty estimates are not substantially lower, a re-evaluation of the Cr cross-sections them-selves.

REFERENCES

- S. A. W. Gerstl, Donald J. Dudziak, and D. W. Muir, "Cross-Section Sensitivity and Uncertainty Analysis with Application to a Fusion Reactor," Nucl. Sci. Eng., <u>62</u>, 137-156 (1977).
- E. T. Cheng, "Generalized Variational Principles for Controlled Thermoclear Reactor Neutronics Analysis", General Atomic Company Report GA-A15378, June 1979.
- J. M. Barnes, R. T. Santoro, and T. A. Gabriel, "The Sensitivity of the First-Wall Radiation Damage to Fusion Reactor Blanket Composition", ORNL/ TM-6105, December 1977.
- S. A. W. Gerstl, "Sensitivity Profiles for Secondary Energy and Angular Distributions", Proc. Fifth Int. Conf. Reactor Shielding, held April 18-23, 1977, in Knoxville, Tennessee, Proceedings edited by R. W. Roussin et.al., Science Press, Princeton, 1978.
- 5. S. A. W. Gerstl, "Uncertainty Analysis for Secondary Energy Distributions", Proc. Seminar-Workshop on Theory and Application of Sensitivity and Uncertainty Analysis, held Aug. 22-24, 1978, in Oak Ridge, Tennessee, Proceedings edited by C. R. Weisbin et.al., ORNL/RSIC-42, Feb. 1979; see also D. W. Muir in "Applied Nuclear Data Research and Development, April 1-June 30, 1977," Los Alamos Scientific Laboratory report LA-6971-PR p. 30 (1977).
- 6. GA TNS Project Status Report for FY-78, Volumes I-VIII, GA-A15100, October 1978.
- 7. "Fusion Energy Flow", GA-A15100, Volume IV, October 1978.
- ENDF/B-IV, Report BNL-17541 (ENDF-201), edited by D. Garber, available from the National Nuclear Data Center (NNDC), Brookhaven National Laboratory (BNL), Upton, N.Y. (October 1975).
- 9. "Summary Documentation of LASL Nuclear Data Evaluations for ENDF/B-V," compiled by P. G. Young, LASL informal report LA-7663-MS, January 1979.
- R. E. MacFarlane, R. J. Barrett, D. W. Muir, and R. M. Boicourt, "The NJOY Nuclear Data Processing System: User's Manual", Los Alamos Scientific Laboratory report LA-7584-MS (ENDF-272), December 1978.
- "MATXS, 30x12 Neutron, Photon, and Heating Library", private communication from R. E. MacFarlane and D. W. Muir, Los Alamos Scientific Laboratory, T-2, Feburary 18, 1977.
- T. R. Hill, "ONETRAN: A Discrete Ordinates Finite Element Code for the Solution of the One-Dimensional Multigroup Transport Equation", Los Alamos Scientific Laboratory report LA-5990-MS, June 1975.
- 13. S. A. W. Gerstl, "SENSIT: A Cross-Section and Design Sensitivity and Uncertainty Analysis Code," Los Alamos Scientific Laboratory Report in preparation.

- 14. F. G. Perey, "The Data Covariance Files for ENDF/B-V," ORNL/TM-5938 (1977).
- R. E. MacFarlane, R. J. Barrett, D. W. Muir, and R. M. Boicourt, "The NJOY Nuclear Data Processing System: User's Manual," LA-7584-M (1978).
- 16. L. Stewart, R. J. LaBauve, P. G. Young, and D. G. Foster, Jr., ENDF/B-V Evaluation MAT 1301, personal communication through the National Nuclear Data_Center (1979); D. G. Foster and P. G. Young, "Cross Section Covariances for ¹H," in "Summary Documentation of LASL Nuclear Data Evaluations for ENDF/B-V," LA-7663-MS (1979), p. 134.
- G. M. Hale, L. Stewart, and P. G. Young, ENDF/B-V Evaluation MAT 1305, personal communication through the National Nuclear Data Center (1979);
 G. M. Hale, "Cross Section Covariances for ¹⁰B," in "Summary Documentation of LASL Nuclear Data Evaluations for ENDF/B-V," LA-7663-MS (1979), p. 138.
- C. Y. Fu and F. G. Perey, ENDF/B-V Evaluation MAT 1306, personal communication through the National Nuclear Data Center (1979).
- 19. A Prince and T. W. Burrows, ENDF/B-V Evaluation MAT 1324, personal communication through the National Nuclear Data Center (1979).
- 20. C. Y. Fu and F. G. Perey, ENDF/B-V Evaluation MAT 1326, personal communication through the National Nuclear Data Center (1979).
- 21. M. Divadeenam, ENDF/B-V Evaluation MAT 1328, personal communication through the National Nuclear Data Center (1979).
- 22. C. Y. Fu and F. G. Perey, ENDF/B-V Evaluation MAT 1382, personal communication through the National Nuclear Data Center (1979).
- D. Hermsdorf, A. Meister, S. Sassonoff, D. Seeliger, K. Seidel, and F. Shalin, "Differentielle Neutronenemissionsquerschnitte J_{nM}(E₀; E; θ) bei 14.6 MeV Einschussenergie für die Elemente Be, C, Na, Mg, Al, Si, P, S, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Se, Br, Zr, Nb, Cd, In, Sn, Sb, I, Ta, W, Au, Hg, Pb and Bi," Zentralinstitut für Kernforschung report ZKF-277(U) (1975).
- 24. G. Clayeux and J. Voignier, "Diffusion Non Elastique de Neutrons de 14 MeV sur Mg, Al, Si, S, Ca, Sc, Fe, Ni, Cu, Au, Pb et Bi," Commissariat a l'Energie Atomique report CEA-R-4279 (1972).
- 25. D. M. Hetrick, D. C. Larson, and C. Y. Fu, "Status of ENDF/B-V Neutron Emission Spectra Induced by 14-MeV Neutrons," ORNL/TM-6637 (1979).

APPENDIX A

In this appendix we reproduce 24 tables from the detailed SENSIT printouts for those cases of our reaction cross-section uncertainty analysis where response uncertainties greater than 10% have been obtained. The ID-numbers at the top of the tables identify the cross-section pair for which correlated uncertainties in the form of a covariance matrix have been used in the uncertainty analysis, as listed in Table III. The sensitivity profiles for each of the two reaction crosssections of each pair are also given as P1(G) and P2(G), which are printed per lethargy interval width DELTA-U. TNS(PGFR) XS-SENS.ANAL. FOR RI-DPA ADJ. * TF+E COILS * 156: CR,NI,FE,CU

Cr(tot, tot)

GROUP	UPPER-E(EV)	DELTA-U	P1(G)	P2(G)
1	1.700E+07	1.25E-01	0.	0.
2	1.500E+07	1.05E-01	-3.604E-01	-3.604E-01
3	1.350E+07	1.18E-01	-1.123E-01	-1.123E-01
4	1.200E+07	1.82E-01	-3.654E-02	-3.654E-02
5	1.000E+07	2.50E-01	-3.007E-02	-3.007E-02
6	7.790E+06	2.49E-01	-2.975E-02	-2.975E-02
7	6.070E+06	5.00E-01	-2.936E-02	-2.936E-02
8	3.680E+06	2.50E-01	-4.754E-02	-4.754E-02
9	2.865E+0G	2.50E-01	-6.988E-02	-6.988E-02
10	2.232E+06	2.50E-01	-8.550E-02	-8.550E-02
11	1.738E+06	2.50E-01	-1.105E-01	-1.105E-01
12	1.353E+06	4.97E-01	-2.340E-01	-2.340E-01
13	8.230E+05	4.98E-01	-6.011E-01	-6.011E-01
14	5.000E+05	5.01E-01	-6.642E-01	-6.642E-01
15	3.030E+05	4.99E-01	-2.841E-01	-2.841E-01
16	1.840E+05	I.00E+00	-3.680E-01	-3.680E-01
17	6.760E+04	1.00E+00	-5.192E-02	-5.192E-02
18	2.480E+04	1.00E+00	-1.367E-02	-1.367E-02
19	9.120E+03	1.00E+00	-3.582E-02	-3.582E-02
20	3.350E+03	9.98E-01	-4.791E-03	-4.791E-03
21	1.235E+03	1.00E+00	-1.343E-04	-1.343E-04
22	4.540E+02	1.00E+00	-8.179E-05	-8.179E-05
23	1.670E+02	1.00E+00	-5.501E-05	-5.581E-05
24	6.1400+01	9.99E-01	-4.3266-05	-4.326E-05
25	2.260E+01	9.996-01	-2.666E-05	-2.666E-05
26	8.320E+00	1.00E+00	-1.344E-05	-1.344E-05
27	3.060E+00	9.96E-01	-6.47IE-06	-6.471E-06
28	1.130E+00	1.00E+00	-2.949E-06	-2.949E-06
29	4.140E-01	1.00E+00	-1.404E-06	-1.404E-06
30	1.520E-01	1.11E+00	-1.399E-07	-1.399E-07
INTEGR	RAL		-1.53IE+00	-1.53.1E+00

<u>_</u>.

.

VARIANCE. (DELTA-R OVER R)-SQUARE = (DR/R)SQ. = 2.749E-02 RELATIVE STANDARD DEVIATION = DR/R = 1.658E-01 1.658E+01 PER CENT TNS(PGFR) XS-SENS ANAL. FOR RI-DPA ADJ. * TF+E COILS * 156: CR NI.FE.CU

.

Cr (tot, el.)

.

GRU1234567890112345678901222222222222222222222222222222222222	UPPER-E(EV) 1.700E+07 1.500E+07 1.500E+07 1.200E+07 1.200E+07 1.200E+07 1.000E+07 7.790E+06 3.680E+06 2.865E+06 2.865E+06 2.232E+06 1.738E+06 1.738E+06 1.353E+06 8.230E+05 3.030E+05 3.030E+05 3.030E+05 3.030E+05 3.030E+05 3.030E+04 3.125E+03 4.540E+04 9.125E+03 4.540E+02 1.670E+04 1.235E+03 4.540E+02 1.670E+04 1.235E+03 4.540E+02 1.670E+04 1.332E+00 4.140E-01 1.520E-01	DELTA-U 1.25E-01 1.05E-01 1.05E-01 2.50E-01 2.50E-01 2.50E-01 2.50E-01 2.50E-01 2.50E-01 2.50E-01 2.50E-01 4.97E-01 4.97E-01 1.00E+00 1.00E+0	P1(G) 0. -3.604E-01 -1.123E-01 -3.654E-02 -3.007E-02 -2.975E-02 -2.936E-02 -4.754E-02 -6.988E-02 -6.988E-02 -6.988E-02 -6.011E-01 -2.340E-01 -6.612E-01 -5.192E-02 -1.367E-02 -1.367E-02 -1.343E-04 -8.179E-05 -5.581E-05 -2.666E-05 -1.344E-05 -6.2.949E-06 -1.494E-06 -1.399E-07	$\begin{array}{c} P2(G) \\ 0, \\ -1, 639E-01 \\ -5, 424E-02 \\ -1, 678E-02 \\ -1, 743E-02 \\ -1, 743E-02 \\ -3, 379E-02 \\ -3, 379E-02 \\ -7, 058E-02 \\ -1, 906E-01 \\ -2, 202E-01 \\ -2, 202E-01 \\ -2, 0838E-01 \\ -2, 0838E-01 \\ -2, 0838E-01 \\ -3, 675E-01 \\ -3, 108E-05 \\ -3, 108E-05 \\ -3, 108E-05 \\ -2, 593E-05 \\ -2, 593E-05 \\ -2, 593E-05 \\ -2, 593E-05 \\ -2, 619E-06 \\ -1, 162E-06 \\ -9, 143E-08 \\ -2, 619E-06 \\ -9, 143E-08 \\ -2, 619E-06 \\ -1, 162E-06 \\ -9, 143E-08 \\ -2, 619E-06 \\ -1, 162E-06 \\ -1, 162E-06 \\ -1, 162E-06 \\ -1, 143E-08 \\ -2, 619E-06 \\ -2, 619E-06 \\ -2, 619E-06 \\ -3, 143E-08 \\ -3, 144E-08 \\ -3, 144$
INTEG	RAL		-1.531E+00	-1.468E+00

.

VARIANCE, (DELTA-R OVER R)-SQUARE	-	(DR/R)SQ.	-	2.749E-02
RELATIVE STANDARD DEVIATION	-	DR/R	-	1.658E-01 1.658E+01 PER CENT

TNS (PGFR) XS-SENS.ANAL. FOR R1-DPA ADJ. * TF+E COILS * 156: (CR) NI.FE.CU

Cr(el, el.)

.

GROUP	UPPER-E(EV)	DELTA-U	P1(G)	P2(G)
1	1.700E+07	1.25E-01	0.	0.
2	1.500E+07	1.05E-01	-1.639E-01	-1.639E-01
3	1.350E+07	1.18E-01	-5.424E-02	-5.424E-02
4	1.200E+07	1.82E-01	-1.873E-02	-1.873E-02
5	1.000E+07	2.50E-01	-1.678E-02	-1.678E-02
Ĝ	7.790E+86	2.49E-01	-1.743E-02	-1.743E-02
7	6.070E+06	5.00E-01	-1.783E-02	-1.783E-02
8	3.680E+06	2.50E-01	-3.379E-02	-3.379E-02
9	2.865E+06	2.50E-01	-5.268E-02	-5.268E-02
10	2.232E+06	2.50E-01	-7.058E-02	-7.058E-02
11	1.738E+06	2.50E-01	-1.006E-01	-1.006E-01
12	1.353E+06	4.97E-01	-2.282E-01	-2.282E-01
13	8.230E+05	4.98E-01	-5.975E-01	-5.975E-01
14	5.000E+05	5.01E-01	-6.635E-01	-6.635E-01
15	3.030E+05	4.99E-01	-2.838E-01	-2.838E-01
16	1.840E+05	1.00E+00	-3.675E-01	-3.675E-01
17	6.760E+04	1.00E+00	-5.173E-02	-5.173E-02
18	2.480E+04	1.00E+00	-1.356E-02	-1.356E-02
19	9.120E+03	1.00E+00	-3.571E-02	-3.571E-02
20	3.350E+03	9.98E-01	-4.734E-03	-4.734E-03
21	1.235E+03	1.00E+00	-1.338E-04	-1.338E-04
22	4.540E+02	1.00E+00	-8.125E-05	-8.125E-05
23	1.670E+02	1.00E+00	-5.523E-05	-5.523E-05
24	6.140E+01	9.99E-01	-4.253E-05	-4.253E-05
25	2.260E+01	9.99E-01	-2.593E-05	-2.593E-05
26	8.320E+00	1.00E+00	-1.284E-05	-1.284E-05
27	3.060E+00	9.96E-01	-6.011E-06	-6.011E-06
28	1.130E+00	1.00E+00	-2.619E-06	-2.619E-06
29	4.140E-01	1.00E+00	-1.162E-06	-1.162E-06
30	1.520E-01	1.11E+00	-9.143E-08	-9.143E-08
INTER	B.01		-1 4005-100	-1 4005-00
111156	KHL		-1.4085 100	-1.4085700

VARIANCE, (DELTA-R OVER R)-SQUARE RELATIVE STANDARD DEVIATION	n 7	(DR/R)SQ. DR/R	2 2 2	2.750E-02 1.658E-01 1.658E+01 PER CENT

TNS(PGFR) XS-SENS.ANAL. FOR R1-DPA ADJ. * TF+E COILS * 156: CP.N1.FE(CU)

Cu (tot, tot)

GROUP 1 2 3 4 5 6 7 8 9 1 1 2 3 4 5 6 7 8 9 1 1 2 3 4 5 6 7 8 9 1 1 2 3 4 5 6 7 8 9 1 1 2 3 4 5 6 7 8 9 1 1 1 2 3 4 5 6 7 8 9 1 1 1 2 3 4 5 6 7 8 9 1 1 1 1 2 3 4 5 6 7 8 9 1 1 1 1 2 3 4 5 6 7 8 9 1 1 1 1 2 3 4 1 5 6 7 8 9 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	UPPER-E(EV) 1.700E+07 1.500E+07 1.350E+07 1.200E+07 1.200E+07 7.790E+06 6.070E+06 2.032E+06 2.232E+06 1.730E+06 2.232E+06 1.739E+06 1.353E+06 8.230E+05 3.030E+05 3.030E+05 1.840E+05 3.030E+05 1.20E+03 3.355E+03 4.540E+02 6.140E+01 1.30E+00 1.140E-01 1.520E-01	DELTA-U 1.25E-01 1.05E-01 2.50E-01 2.50E-01 2.50E-01 2.50E-01 2.50E-01 2.50E-01 2.50E-01 2.50E-01 2.50E-01 2.50E-01 4.97E-01 4.97E-01 1.00E+00 1.00E+0	PI(G) 8. -3.570E+00 -1.111E+00 -3.610E-01 -2.835E-01 -2.619E-01 -3.476E-01 -4.860E-01 -4.860E-01 -4.860E-01 -1.955E+00 -5.624E+00 -6.517E+00 -2.730E+01 -3.693E-01 -1.703E-01 -8.924E-02 -2.053E-03 -1.011E-04 -4.101E-04 -4.997E-04 -3.695E-05 -2.005E-05 -2.005E-05 -1.869E-06	P2(G) 8. -3.570E+00 -1.111E+00 -3.610E-01 -2.835E-01 -2.836E-01 -3.476E-01 -3.476E-01 -4.860E-01 -6.373E-01 -8.260E-01 -1.955E+00 -5.624E+00 -6.574E+00 -2.767E+00 -2.767E+00 -2.767E+00 -2.767E+00 -2.767E+00 -2.767E+00 -2.767E+00 -2.767E+00 -2.767E+00 -2.767E+00 -2.767E+00 -2.767E+00 -2.767E+00 -2.767E+00 -2.765E-01 -1.703E-01 -8.924E-02 -2.055E-05 -1.869E-06 -1.869E-06	
INTEG	₹AL		-1.387E+01	-1.387E+01	•

VARIANCE, (DELTA-R OVER R)-SQUARE		(DR/R)SQ.	=	3.530E-02		
RELATIVE STANDARD DEVIATION	=	DP./R	-	1.879E-01		
			=	1.879E+01	PER	CENT

TNS(PGTO) VS-DONG.ONOL. FOR RI-DPA ADJ. * TE+5 COILS * 156: CR.NI.FE.CU

au (tot, el)

•

1

THE NUMBER FOR THIS XS-PAIR ORE NDEN1 = 4.070000-02 and NDORA + 4.070002-02

.

GROUP	UPPER-E(EV)	DELTA-U	P1(G)	P2(G)
1	1.700E+07	1.25E-01.	0.	0.
2	1.500E+97	1.05E-01	-3.570E+00	-1.672E-90
3	1.350E+07	1.18E-01	-1.111E+00	-5.389E-01
4	1.200E+07	1.82E-01	-3.610E-01	-1.821E-01
5	1.000E+07	2.50E-01	-2.835E-01	-1.539E-01
6	7.790E+06	2.49E-01	-2.619E-01	-1.468F-01
7	6.070E+06	5.00E-01	-2.386E-01	-1.366E-01
8	3.680E+06	2.50E-01	-3.476E-01	-2.024E-01
9	2.865E+06	2.50E-01	-4.860E-01	-2.993E-01
10	2.232E+06	2.50E-01	-6.373E-01	-4.276E-01
11	1.738E+06	2.50E-01	-8.260E-01	-6.147E-01
12	1.353E+06	4,97E-01	-1.955E+00	-1.771E+00
13	8.230E+05	4.98E-01	-5.624E+00	-5.572E+00
14	5.000E+05	5.01E-01	-6.517E+00	-6.496E+00
15	3.030E+05	4.99E-01	-2.767E+00	-2.757E+00
16	1.840E+05	1.00E+00	-2.730E+00	-2.719E+00
17	6.760E+04	1.00E+00	-6.749E-01	-6.714E-01
:18	2.4800+04	1.00E+00	-3.693E-01	-3.664E-01
19	9.120E+03	1.00E+00	-1.703E-01	-1.678E-01
20	3.350E+03	9.98E-01	-8.924E-02	-8.756E-02
21	1.235E+03	I.00E+00	-2.053E-03	-1.743E-03
22	4.540E+02	1.00E+00	-1.011E-03	-9.7920-04
23	1.670E+02	1.00E+00	-7.841E-04	-7.790E-04
24 -	6.140E+01	9.99E-01	-6.518E-04	-6.452E-04
25	2.260E+01	9.99E-01	-4.101E-04	-4.032E-04
26	8.320E+00	1.00E+00	-1.997E-04	-1.939E-04
27	3.060E+00	9.96E-01	-9.568E-05	-9.118E-05
28	1.I30E+00	1.00E+00	-4.305E-05	-3.979E-05
29	4.140E-01	1.00E+00	-2.005E-05	-1.766E-05
30	1.520E-01	1.11E+00	-1.869E-06	-1.398E-06
INTEGR	KAL .		-1.387E+01	-1.311E+01

•

VARIANCE. (DELTA-R OVER R)-SQUARE		(DR/R)SQ.	8	3.529E-02
RELATIVE STANDARD DEVIATION	=	DR/R	=	1.879E-01
• · · · · ·			e	1.879E+01 PER CENT

TNS(PGFR) XS-SENS.ANAL. FOR R1-DPA ADJ. * TF+E COILS * 156: CR.NI.FECU

Cu(el., el.)

UPPER-E(EV)	DELTA-U	P1(G)	P2(G)
1.700E+07	1.25E-01	0.	0.
1.500E+07	1.05E-01	-1.672E+00	-1.672E+00
1.350E+07	1.18E-01	-5.3896-01	-5.389E-01
1.200E+07	1.82E-01	-1.021E-01	-1.821E-01
1.000E+07	2.50E-01	-1.539E-01	-1.539E-01
7.790E+06	2.49E-01	-1.488E-01	-1.480E-01
6.070E+06	5.00E-01	-1.366E-01	-1.366E-01
3.680E+06	2.50E-01	-2.024E-01	-2.024E-01
2.865E+06	2.50E-01	-2.993E-01	-2.993E-01
2.232E+86	2.50E-01	-4.276E-01	-4.276E-01
1.7385+06	2.505-01	-6.147E-01	-6.147E-01
1.3538.406	4.97E-01	-1.771E+00	-1.771E+00
8.230E+05	4.98E-01	-5.572E+00	-5.5726+00
5.000E+05	5.01E-01	-6.496E+00	-6.496E+00
3.030E+05	4.99E-01	· -2.757E-00	-2.7576.400
1.840E+05	1.00E+00	-2.719E+03	-2.7196+00
6.760E+04	1.00E+00	-6.714E-01	-6.714E-01
2.480E+04	1.00E+00	-3.664E-01	-3.6645-01
9.120F+03	1.00E+00	-1.678E-01	-1.6796-01
3.350F+03	9.98E-01	-8.756E-02	-8.7565-02
1.235E+03	1.00E+00	-1.743E-03	-1.74312-03
4.540E+02	1.00E+00	-9.792E-04	-0.7925-04
1.670E+02	1.00E+00	-7.790E-04	-7.7905-04
6.140E+01	9.99E-01	-6.452E-04	-6.452E-04
2.260E+01	9,990-01	-4.032E-04	-4.032F-04
0.320E+00	1.00E+00	-1.939E-04	-1.979E-04
3.060E+00	9.96E-01	-9.118E-05	-9.119E-05
1.130E+00	1.00E+00	-3.979E-05	-3.979E-05
4.140E-01	1.00E+00	-1.766E-05	-1.766E-05
1.520E-01	1.11E+00	-1.389E-06	-1.3886-06
RAL		-1.311E+01	-1.311E+01
	UPPER-E(EY) 1.700E+07 1.520E+07 1.350E+07 1.200E+07 1.200E+07 1.200E+07 1.200E+06 6.070E+06 2.05E+06 2.232E+06 2.232E+06 1.733E+06 1.733E+06 1.355E+06 2.232E+06 2.352E+05 3.0678E+05 3.0678E+05 3.0678E+03 1.225E+03 1.225E+03 1.225E+03 1.225E+03 1.225E+03 1.225E+03 1.225E+03 1.225E+03 1.225E+03 1.225E+03 1.225E+03 1.225E+03 1.225E+03 1.225E+03 1.225E+03 1.225E+02 1.678E+40 1.225E+01 2.258E+01 1.529E-01 RAL	UPPER-E(EV) DELTA-U 1.700E+07 1.25E-01 1.500E+07 1.05E-01 1.350E+07 1.05E-01 1.200E+07 1.05E-01 1.200E+07 2.50E-01 7.790E+06 2.49E-01 6.070E+06 2.50E-01 2.665E+06 2.50E-01 2.232E+06 2.50E-01 2.232E+06 2.50E-01 1.733E+06 2.50E-01 1.353E+06 2.50E-01 1.353E+06 2.50E-01 1.353E+06 2.50E-01 1.353E+06 2.50E-01 1.353E+06 2.50E-01 1.353E+06 2.50E-01 1.353E+06 2.50E-01 1.353E+06 2.50E-01 1.252E+06 2.50E-01 1.353E+06 2.50E-01 1.353E+06 2.50E-01 1.353E+07 1.00E+00 1.40E+07 1.00E+00 1.255E+03 1.00E+00 1.255E+03 1.00E+00 1.255E+03 1.00E+00 1.670E+02 1.00E+00 1.670E+02 1.00E+00 1.670E+01 9.99E-01 2.250E+01 9.9E-01 1.320E+00 1.00E+00 1.130E+00 1.00E+00 3.0660E+00 9.56E-01 1.130E+00 1.00E+00 3.060E+00 1.00E+00 3.500E+01 1.00E+00 3.20E+00 1.00	UPPER-E(EV) DELTA-U P1(G) 1.700E+07 1.25E-01 0. 1.500E+07 1.05E-01 -1.672E+00 1.350E+07 1.05E-01 -1.672E+00 1.350E+07 1.05E-01 -1.672E+00 1.200E+07 1.02E-01 -1.621E-01 1.000E+07 2.59E-01 -1.539E-01 1.000E+07 2.59E-01 -1.362E-01 1.000E+07 2.59E-01 -1.362E-01 2.00E+06 2.49E-01 -1.438E-01 3.680E+06 2.50E-01 -2.932E-01 2.865E+06 2.50E-01 -2.932E-01 2.232E+06 2.50E-01 -4.275E-01 1.353E+06 4.97E-01 -1.771E+00 8.230E+05 4.98E-01 -5.572E+00 3.030E+05 4.99E-01 -2.757E+00 3.640E+05 5.01E-01 -6.436E+00 3.640E+05 4.99E-01 -2.757E+00 3.640E+05 4.99E-01 -2.757E+00 1.840E+05 1.00E+00 -3.664E+01 9.25E+03 1.00E+00 </td

.

VARIANCE. (DELTA-R OVER R)-SQUARE	Ξ	(DE/R)SQ.	c	3.609E-02
PELATIVE STANDARD DEVIATION	c	DR/R	E	1.900E-01
			=	1.900E+01 PER CENT

TNS(PGTP) XS-SENS.ANOL. FOP RI-DPA ADJ. * TF+E COILS * 156: CP.NI (FOCU

Fe (tot, tot)

۰.

GROUP	UPPEP-E(EV)	DELTA-U	P1(G)	P2(G)
1	1.700E+07	1.25E-01	0.	0.
2	1.500E+07	1.05E-01	-I.454E+00	-1.454E+00
3	1.350E+07	1.18E-01	-4.512E-01	-4.512E-01
4	1.200E+07	1.82E-01	-1.491E-01	-1.49IE-01
5	1.000E+07	2.50E-01	-1.203E-01	-1.203E-01
6	7.790E+06	2.49E-01	-1.156E-01	-1.156E-01
7	6.070E+06	5.00E-01	-1.089E-01	-1.089E-01
8	3.680E+06	2.50E-01	-1.632E-01	-1.632E-01
9	2.865E+06	2.50E-01	-2.398E-01	-2.390E-01
10	2.232E+06	2.50E-01	-2.979E-01	-2.979E-01
11	1.738E+06	2.50E-01	-3.803E-01	-3.803E-01
12	1.353E+06	4.97E-01	-7.603E-01	-7.603E-01
13	8.230E+05	4.98E-01	-2.182E+00	-2.182E+00
14	5.000E+05	5.01E-01	-2.779E+00	-2.779E+00
15	3.030E+05	4.99E-01	-1.028E+00	-1.026E+00
16	1.840E+05	1.00E+0 0	-9.157E-01	-9.157E-01
17	6.760E+04	1.00E+00	-3.388E-01	-3.338E-01
18	2.480E+04	1.00E+00	-2.913E-02	-2.913E-02
19	9.120E+03	1.00E+00	-5.571E-02	-5.571E-02
20	3.350E+03	9.98E-01	-1.565E-02	-1.565E-02
21	1.235E+03	1.00E+00	-1.011E-03	-1.011E-03
22	4.540E+02	1.00E+00	-7.138E-04	-7.138E-04
23	1.670E+02	1.00E+00	-5.138E-04	-5.138E-04
24	6.140E+01	9.99E-01	-3.988E-04	-3.938E-04
25	2.260E+01	9.99E-01	-2.445E-04	-2,445E-04
26	8.320E+00	1.00E+00	-1.219E-04	-1.219E-04
27	3.060E+00	9.96E-01	-5.763E-05	-5.7670-05
28	1.130E+00	1.00E+00	-2.551E-05	-2.551E-05
29	4.140E-01	1.00E+00	-1.162E-05	-1.162E-05
30	1.520E-01	1.11E+00	-I.005E-06	-1.0050-06
INTER			-5 3485.499	-5 3/05+00
10166			-J.J49E-00	-3.3-05-100

VARIANCE. (DELTA-R OVER R)-SQUARE	=	(DR/R)SQ.	=	6.317E-03		
RELATIVE STONDARD DEVIATION	=	DR/R	=	7.949E-02		
			=	7.948 <u>E+00</u> P	PER	CENT

TNS (POCH) MS-SENS, ANAL. FOR RI-DPA ADJ. * TEHE COLLS * IS6: CO.NI

MONOMOUS CONSISTING AND PROVIDED AND AND A CONSISTING THE ADDRESS OF A CONSISTING AND PROVIDED AND A CONSISTING AND A C

Fe (tot, el)

GROUF	UPPER-E(EV)	DELTA-U	P1(G)	P2(G)	
1	1.700E+07	1.25E-01	0.	0.	
2	1.500E+07	1.05E-0I	-1.454E+00	-6.624E-01	
3	1.350E+07	1.18E-0I	-4.512E-01	-2.154E-01	
4	1.200E+07	1.82E-01	-1.491E-01	-7.494E-02	
5	1.000E+07	2.50E-01	-1.203E-01	-6.497E-02	
6	7.790E+06	2.49E-01	-1.156E-01	-6.591E-02	
7	6.070E+06	5.00E-01	-1.089E-01	-6.351E-02	
8	3.680E+06	2.50E-01	-1.632E-01	-1.058E-01	
9	2.865E+06	2.50E-01	-2.398E-01	-1.745E-01	
10	2.232E+06	2.50E-01	-2.979E-01	-2.163E-01	
11	1.738E+06	2.50E-01	-3.803E-01	-2.911E-01	
12	1.353E+06	4.97E-01	-7.603E-01	-6.694E-01	
13	8.230E+05	4.98E-01	-2.182E+00	-2.177E+00	
14	5.000E+05	5.01E-01	-2.779E+00	-2.776E+00	
15	3.030E+05	4.99E-01	-1.028E+00	-1.026E+00	
16	1.840E+05	1.00E+00	-9.157E-01	-9.136E-01	
17	6.760E+04	1.00E+0 0	-3.388E-01	-3.303E-01	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
18	2.480E+04	1.00E+00	-2.913E-02	-2.904E-02	
19	9.120E+03	1.00E+00	-5.571E-02	-5.562E-02	
20	3.350E+03	9.98E-01	-1.565E-02	-1.564E-02	
21	1.235E+03	1.00E+00	-1.011E-03	-9.859E-04	
22	4.540E+02	1.00E+00	-7.I38E-04	-7.122E-04	
23	1.670E+02	1.00E+00	-5.138E-04	-5.121E-04	
24	6.140E+01	9.99E-01	-3.988E-04	-3.966E-04	
25	2.260E+01	9.99E-01	-2.445E-04	-2.422E-04	
26	8.320E+00	1.00E+00	-1.219E-04	-1.201E-04	
27	3.060E+00	9.96E-01	-5.763E-05	-5.620E-05	
28	1.130E+00	1.00E+00	-2.551E-05	-2.4490-05	
29	4.140E-01	1.00E+00	-1.162E-05	-1.066105	
30	1.520E-01	1.11E+00	-1.005E-06	-8.5449-07	
INTER	201		-5 348F+00	-5.0485+00	
********			3.3402.00	0.0-100	

VARIANCE, (DELTA-R OVER R)-SQUA	RE =	(DR/R)SQ.	=	6.317E-03
RELATIVE STANDARD DEVIATION	=	DRZE	=	7.948E-02
			×	7.948E+00 PER CENT
				and the second se

TNS (PGFR) XS-SENS. ANAL. FOR RI-DPA ADJ. * TF+E COILS * 156: CP.NI(FF) CU

Fe (ill, el.)

i

. . . .

•

MONOMONANT MONOMONANT SENSITIVITY PROFILES FOR CROSS-SECTION PAIRS WITH ID = 22 MANNANT MONOMONANT MONOMONANT MONOMONANT PAIRS WITH ID = 22 MANNANT MONOMONANT MONOMONANT PAIRS PAIR AND MONOMONANT PAIRS WITH ID = 22 MANNANT MONOMONANT PAIRS PAIR AND MONOMONANT PAIRS WITH ID = 22 MANNANT MONOMONANT PAIRS PAIR AND MONOMONANT PAIRS WITH ID = 22 MANNANT PAIRS MONOMONANT PAIRS PAIR AND MONOMONANT PAIRS WITH ID = 22 MANNANT PAIRS MONOMONANT PAIRS PAIR AND MONOMONANT PAIRS WITH ID = 22 MANNANT PAIRS MONOMONANT PAIRS PAIR AND MONOMONANT PAIRS WITH ID = 22 MANNANT PAIRS MONOMONANT PAIRS PAIRS WITH PAIRS WITH ID = 22 MANNANT PAIRS MONOMONANT PAIRS WITH PAIRS WITH ID = 22 MANNANT PAIRS MONOMONANT PAIRS WITH PAIRS WITH ID = 22 MANNANT PAIRS MONOMONANT PAIRS WITH PAIRS WITH ID = 22 MANNANT PAIRS MONOMONANT PAIRS WITH PAIRS WITH ID = 22 MANNANT PAIRS MONOMONANT PAIRS WITH PAIRS WITH ID = 22 MANNANT PAIRS MONOMONANT PAIRS WITH PAIRS WIT

GROUP	UPPER-E(EV)	DELTA-U	P1(G)	P2(G)
1	1.700E+07	1.25E-0I	0.	0.
2	1.500E+07	1.05E-01	-6.624E-01	-6.624E-01
3	1.350E+07	1.18E-01	-2.154E-01	-2.154E-01
4	1.200E+07	1.82E-01	-7.494E-02	-7.494E-02
5	1.000E+07	2.50E-01	-6.497E-02	-6.497E-02
6	7.790E+06	2.49E-01	-6.591E-02	-6.591E-02
7	6.070E+06	5.00E-01	-6.351E-02	-6.351E-02
8	3.680E+06	2.50E-01	-1.058E-01	-1.058E-01
9	2.865E+06	2.50E-01	-1.745E-01	-1.745E-01
10	2.232E+06	2.50E-01	-2.163E-01	-2.163E-01
11 -	1.738E+06	2.50E-01	-2.911E-01	-2.911E-01
12	1.353E+06	4.97E-01	-6.694E-01	-6.694E-01
13	8.230E+05	4.98E-01	-2.177E+00	-2.177E+00
14	5.000E+05	5.01E-01	-2.776E+00	-2.776E+00
15	3.030E+05	4.99E-01	-1.026E+00	-1.026E+00
16	1.840E+05	1.00E+00	-9.136E-01	-9.136E-01
17	6.760E+04	1.00E+00	-3.383E-01	-3.383E-01
18	2.480E+04	1.00E+00	-2.904E-02_	-2.904E-02
	9.120E+03	1.00E+00	-5.562E-02	-5.562E-02
20	3.350E+03	9.98E-01	-1.564E-02	-1.564E-02
21	1.235E+03	1.00E+00	-9.859E-04	-9.859E-04
22	4.540E+02	1.00E+00	-7.122E-04	-7.122E-04
23	1.670E+02	1.00E+00	-5.121E-04	-5.121E-04
24	6.140E+01	9.99E-01	-3.966E-04	-3.966E-04
25	2.260E+01	9.99E-01	-2.422E-04	-2.422E-04
26	8.320E+00	1.00E+00	-1.201E-04	-1.201E-04
27	3.060E+00	9.96E-01	-5.620E-05	-5.620E-05
28	1.130E+00	1.00E+00	-2.449E-05	-2.449E-05
29	4.140E-01	1.00E+00	-1.086E-05	-1.086E-05
30	1.520E-01	1.11E+00	-8.544E-07	-8.544E-07
INTEGR	AL		-5.048F+00	-5 0485+00
			3.3402.00	3.0-0-100

RACTIONAL RESPONSE UNCERTAINTY ANALYSIS FOR THIS CROSS-SECTION PAIR YIELDS THE FOLLOWING REPORTAINTY DUE TO XS-UNCERTAINTIES SPECIFIED IN THE COVARIANCE MATRIX FOR THIS ID:

VARIANCE. (DELTA-R OVER R)-SQUARE = (DR/R)SQ. = 6.478E-03 RELATIVE STANDARD DEVIATION = DR/R = 8.049E-02 = 8.049E+00 PER CENT

.

SENSIT SAMPLE 8, *FUSION REACTOR *VECTOR -XS.SEN+UNCERT. *RUN76 CR NI, FE, CU

Cr (tot, tot)

.

GROUP UPPER-E(EV)		DELTA-U	P1(G)	P2(G)
1	1.700E+07	1.25E-01	0.	0.
2	1.500E+07	1.05E-01	-3.186E-01	-3.186E-01
3	1.350E+07	1.18E-01	-1.071E-01	-1.071E-01
4	1.200E+07	1.82E-01	-3.735E-02	-3.735E-02
5	1.000F+07	2.50E-01	-2.811E-02	-2.811E-02
ĕ	7.790F+06	2.49F-01	-2.522E-02	-2.522E-02
ž	6.070F+06	5.00E-01	-2.191E-02	-2.191E-02
à	3.680E+06	2.50E-01	-3.254E-02	-3.254E-02
ă	2.865E+06	2.50E-01	-4.448E-02	-4.448E-02
าด์	2,232F+86	2.50E-01	-5.191E-02	-5.191E-02
iĭ	1.738E+06	2.50E-01	-6.916E-02	-6.916E-02
12	1.353E+06	4.97F-01	-1.403E-01	-1.403E-01
13	8.230E+05	4.98E-01	-3.153E-01	-3.153E-01
14	5.000E+05	5.01E-01	-5.170E-01	-5.170E-01
15	3.030E+05	4.99E-01	-4.105E-01	-4.105E-01
16	1.840F+05	1.00E+00	-8.189E-01	-8.189E-01
17	6.760E+04	1.00E+00	-3.433E-01	-3.433E-01
18	2.480E+04	1.00E+00	-1.914E-01	-1.914E-01
19	9.120E+03	1.00E+00	-1.415E+00	-1.415E+00
20	3.350E+03	9.98E-01	-3.159E-01	-3.159E-01
21	1.235E+03	1.00E+00	-4.703E-02	-4.703E-02
22	4.549E+02	1.00E+00	-3.094E-02	-3.094E-02
23	1.670E+02	1.00E+00	-2.874E-02	-2.874E-02
24	6.140E+01	9.99E-01	-2.356E-02	-2.356E-02
25	2.260E+01	9.99E-01	-1.575E-02	-1.57SE-02
26	8.320E+00	1.00E+00	-8.983E-03	-8.983E-03
27	3.060E+00	9.96E-01	-4.2715-03	-4.271E-03
28	1.130E+00	1.00E+00	-1.592E-03	-1.592E-03
29	4.140E-01	1.00E+00	-4.703E-04	-4.703E-04
30	1.520E-01	1.11E+00	-1.088E-04	-1.088E-04
INTEG	RAL		-4.067E+00	-4.067E+00

NONCENCIONAL RESPONSE UNCERTAINTY ANALYSIS FOR THIS CROSS-SECTION PAIR YIELDS THE FOLLOWING NONCHORONOMIC FRACTIONAL RESPONSE UNCERTAINTY DUE TO XS-UNCERTAINTIES SPECIFIED IN THE COVARIANCE MATRIX FOR THIS ID:

VARIANCE, (DELTA-R OVER R)-SQUARE	=	(DR/R)SQ.		3.216E-01
RELATIVE STANDARD DEVIATION	•	DR⁄R	-	5.671E-01 5.671E+01 PER CENT
				and the second

Cr(tot, el.)

1

GROUP	UPPER-E(EV)	DELTA-U	P1(G)	P2(G)
1	1.700E+07	1.25E-01	0.	0.
2	1.500E+07	1.05E-01	-3.186E-01	-1.449E-01
3	1.350E+07	1.18E-01	-1.071E-01	-5.174E-02
4	1.200E+07	1.82E-01	-3.735E-02	-1.915E-02
5	1.000E+07	2.50E-01	-2.811E-02	-1.569E-02
Ğ	7.790E+06	2.49E-01	-2.522E-02	-1.477E-02
ž	6.070E+06	5.00E-01	-2.191E-02	-1.331E-02
Ŕ	3.680E+06	2.50E-01	-3.254E-02	-2.313E-02
ğ	2.865F+06	2.50E-01	-4.448E-02	-3.354E-02
10	2.232E+06	2.50E-01	-5.191E-02	-4.286E-02
11	1.738E+06	2.50E-01	-6.916E-02	-6.298E-02
12	1.353E+06	4.97E-01	-1.493E-01	-1.368E-01
13	8.230E+05	4.98E-01	-3.153E-01	-3.134E-01
14	5.000E+05	5.01E-01	-5.170E-01	-5.164E-01
15	3.030E+05	4.99E-01	-4.105E-01	-4.101E-01
16	1.840E+05	1.00E+00	-8.109E-01	-8.179E-01
17	6.760E+04	1.00E+00	-3.433E-01	-3.420E-01
18	2.480E+04	1.00E+00	-1.9I4E-01	-1.898E-01
19	9.120E+03	1.00E+00	-1.4I5E+00	-1.411E+00
20	3.350E+03	9.90E-0I	-3.159E-01	-3.122E-01
21	1.235E+03	1.00E+00	-4.703E-02	-4.683E-02
22	4.540E+02	1.00E+00	-3.094E-02	-3.074E-02
23	1.670E+02	1.00E+00	-2.874E-02	-2.844E-02
24	6.140E+01	9.99E-01	-2.356E-02	-2.316E-02
25	2.260E+01	9.99E-01	-1.575E-02	-1.532E-02
26	8.320E+00	1.00E+00	-8.983E-03	-8.584E-03
27	3.060E+00	9.96E-01	-4.271E-03	-3.967E-03
28	1.130E+00	1.00E+00	-1.592E-03	-1.414E-03
29	4.140E-01	1.00E+00	-4.703E-04	-3.892E-04
30	1.520E-01	1.11E+00	-1.088E- 0 4	-7.107E-05
				4 0075.00
INTEG	RAL		-4.067E+00	-4.003E+00

i

VARIANCE. (DELTA-R OVER R)-SQUARE	(DR/R)50.	-	3.216E-01
RELATIVE STANDARD DEVIATION	DR/R		5.671E-01
		-	5.671E+01 PER CENT

SENSIT SAMPLE S. WUSION REACTOR WECTOR-XS.SENHUNCERT. WUN76: CP NI. FE. CU

Cr(el., el.)

THE NUMBER DENSITIES FOR THIS XS-PAIR ARE NDENI = 5.02000E-03 AND NDEN2 = 5.020002-03

GROUP	UPPER-E(EV)	DELTA-U	P1(G)	P2(G)
1	1.7C9E+97	1.25E-01	0.	0.
2	1.5C0E+07	1.050-01	-1.449E-01	-1.449E-01
3	1.3506+07	1.16E-01	-5.174E-02	-5.1745-02
4	1.200E÷07	1.82E-01	-1.915E-02	-1.915E-02
5	1.000E+07	2.505-01	-1.569E-02	-1.569E-02
6	7.7905+06	2.49E-01	-1.477E-02	-1.477E-02
7	6.070E+06	5.0CE-01	-1.331E-02	-1.331E-02
8	3.620E⊹ú6	2.500-01	-2.313E-02	-2.313E-02
9	2.865E+03	2.500-01	-3.354E-02	-3.354E-02
10	2.232E*06	2.50E-01	-4.286E-02	-4.206E-02
11	1.730E+06	2.502-01	-6.296E-02	-6.293E-02
12	1.353E+06	4.97E-01	-1.368E-01	-1.368E-01
13	8.2362.05	4.986-01	-3.134E-01	-3.1342-01
14	5.02CE+05	5.01E-01	-5.164E-01	-5.164E-01
15	3.0300-05	4,990-01	-4.I01E-0I	-4.101E-01
16	1.2<9E÷05	1.095.00	-3.179E-01	-8.179E-01
17	6.760E+04	1.005*00	-3.420E-01	-3.4205-01
18	2.4805+04	1.00E+00	-1.893E-01	-1.893E-01
19	9.120E∻03	1.00E+90	-1.411E⊹00	-1.411E÷00
20	3.350E+03	9.98E-01	-3.122E-01	-3.122E-01
21	1.235E+03	1.000+00	-4.6335-02	-4.683E-02
22	4.5-02+02	1.00E.00	-3.074E-02	-3.074E-02
23	1.6702+02	1.000:00	-2.844E-02	-2.8445-02
24	6.1<9E+01	9.99E-0I	-2.316E-02	-2.316E-02
25	2.260E+01	9.900-01	-1.532E-02	-1.532E-02
26	8.320E+00	1.050-00	-8.594E-03	-8.584E-03
27	3.060E+00	9.96E-01	-3.967E-03	-3.967E-03
23	I.130E+30	1.000+00	-1.414E-03	-1.414E-03
29	4.140E-01	1.00E-90	-3.392E-04	-3.892E-04
30	1.520E-01	1.11E+00	-7.107E-05	-7.107E-05
INTEG	RAL		-4.003E+00	-4.003E+00

VARIANCE. (DELTA-R OVER R)-SQUARE	-	(DR/R)SQ.	=	3.216E-01
RELATIVE STANDARD DEVIATION	-	DR/R	*	5.671E-01
			=	5.671E+01 PER CENT

.

SENSIT SAMPLE 8. ** USION REACTOR ** S.SEN *UNCERT. *RUN76: CR. (NI) FE. CU

Ni (tot, tot)

.

GROUP	UPPER-E(EV)	DELTA-U	P1(G)	P2(G)
1	1.700E÷07	1.25E-01	0.	0.
2	1.566E+07	I.05E-01	-2.299E-01	-2.299E-01
3	1.350E*07	1.10E-0I	-7.793E-02	-7.793E-02
4	1.2005+07	1.020-01	-2.722E-02	-2.722E-02
5	1.0002+07	2.50E-01	-1.900E-02	-1.960E-02
6	7.790E⊹06	2.49E-01	-1.692E-02	-1.692E-02
7	6.0702+05	5.0CE-01	-1.376E-02	-1.3765-02
8	3.6802+06	2.506-01	-1.003E-02	-1.883E-02
9	2.865E+05	2.502-01	-2.472E-02	-2.472E-02
10	2.232E+06	2.502-01	-3.00CE-02	-3.000E-02
11	1.7302.06	2.502-01	-4.301E-02	-4.301E-02
12	1.353E+05	4.972-01	-9.00SE-02	-9.005E-02
13	S.2I0E+05	4.93E-01	-1.9955-01	-1.995E-01
14	5.030E+05	5.01E-01	-4.126E-01	-4.126E-01
15	3.0306+05	4.99E-01	-4.239E-0I	-4.239E-01
16	1.840E+05	1.096:00	-4.970E-01	-4.970E-01
17	6.7905+04	1.00E+00	-3.614E-01	-3.614E-01
18	2.420E+04	1.03E.00	-1.054E÷00	-1.054E÷00
19	9.120E+03	1.00E+C0	-6.439E-01	-6.409E-01
20	3.3502.03	9.98E-01	-3.949E-0I	-3.949E-01
21	1.235E+03	1.00E+00	-1.056E-01	-1.056E-01
22	4.5492+02	1.000:00	-7.560E-02	-7.560E-02
23	1.6706+02	1.00E.00	-7.180E-02	-7.I80E-02
24	6.149E+01	9.952-01	-5.902E-02	-5.90EE-02
25	2.2600+01	9.92E-01	-3.936E-02	-3.936E-02
26	6.3262+00	1.005400	-2.222E-02	-2.222E-02
21	3.000-+00	9.96E-01	-1.039E-02	-1.039E-02
28	1.130E+00	1.00E*00	-3.768E-03	-3.768E-03
29	4.140E-01	1.505.00	-1.057E-03	-1.067E-03
30	1.520E-01	1.11E+00	-2.162E-04	-2.IG2E-04
INTER	001		-7.0055.000	-7 0055.00
11115,96	in L		-3.3856-30	-3.965E-06

VARIANCE. (DELTA-R OVER R)-SQUARE	E	(DR/R)SQ.	E	3.4546-02
RELATIVE STANDARD DEVIATION		DR/R	=	1.853E-01
			=	1.858F.01 PER CENT

су С SENSIT SAMPLE 9. WUSION REACTOR VECTOR -XS.SEN+UNCERT. WRUN76: CR. (NI) FE. CU

Ni (el, el)

.

FOR THE SUM OVER ALL PERTURBED ZONES. WHERE BOTH CROSS SECTIONS WITH THIS ID ARE PRESENT IN THE MODEL THE NUMBER DENSITIES FOR THIS X3-PAIR ARE NDEN1 = 3.20000E-03 AND NDEN2 = 3.20000E-03

GROUP	UFPER-E(EV)	DELTA-U	P1(G)	P2(G)
· 1	1.700E-07	1.25E-01	Ð.	0.
2	1.5002+07	1.055-01	-1.132E-01	-1.132E-01
3	1.350E+67	1.162-01	-4.053E-02	-4.053E-02
4	1.200E+07	1.82F-01	-1.493E-02	-1.493E-02
5	1.000E+07	2.505-01	-1.149E-02	-1.149E-02
6	7.790E+06	2.495-01	-9.99SE-03	-9.993E-03
7	6.0700+06	5.609-01	-8.011F-03	-8.011E-03
ġ	3.6505.06	2.505-01	-1.150E-02	-1.1500-02
- Ģ	2.8656:03	2.507-01	-1.9125-02	-1.812E-02
เค	2.232E+66	2.505-01	-2.415E-02	-2.415E-02
11	1.738E+05	2.502-01	-3.0905-02	-3.820E-02
12	1.383E+03	4.976-01	-8.9335-02	-8.9336-02
13	8.2305+05	4.936-01	-1.9845-01	-1.984E-01
14	5.650E+05	5.01E-01	-4.111E-01	-4.111E-01
15	3.030E+05	4.99F-01	-4.229E-01	-4.2295-01
16	1.849E+05	1.000.00	-4.954E-0I	-4.9542-01
17	6.760E+04	1.000-00	-3.602E-0I	-3.602E-01
18	2.430E+04	1.80E+00	-1.051E+00	-1.051E+00
19	9.1Z02+03	1.00E:00	-6.430E-01	-6.490E-01
20	3.3505.03	9.982-01	-3.941E-0I	-3.941E-01
21	1.235E+03	1.0GE+G0	-1.054E-01	-1.0542-01
22	4.549E+02	1.0%E-+09	-7.541E-02	-7.541E-02
23	1.6705+02	1.20E+30	-7.152E-02	-7.152E-02
24	6.1492-01	9.9SE-01	-5.871E-02	-5.871E-02
25	2.260E+01	9.99E-01	-3.895E-02	-3.895E-02
26	8.320E-C0	1.00E+00	-2.135E-02	-2.1850-02
27	3.050E+C0	9.96E-01	-1.010E-02	-1.010E-02
28	1.130E+00	1.00E-00	-3.601E-03	-3.6010-03
29	4.149E-01	I.00E+00	-9.911E-04	-9.911E-04
30	1.520E-01	1.11E+00	-1.8001-04	-1.803E-04
INTEG	RAL		-3.942E+00	-3.942E+00

VARIANCE, (DELTA-R OVER R)-SQUARE	0	(DR/R)SQ.	= .	2.697E-02
RELATIVE STANDARD DEVIATION		DR/R	•	1.642E-01
			c	1.642E+01 PER CENT

SENSIT SAMPLE 8, #FUSION REACTOR *VECTOR -XS.SEN+UNCERT. *RUN76: CR. NI, FE, CU

Fe (tot, tot)

GROUP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 21 22 24 26 28 29 20 29 20 20 20 20 20 20 20 20 20 20	UPPER-E(EV) 1.700E+07 1.500E+07 1.350E+07 1.200E+07 1.200E+07 7.700E+06 3.660E+06 2.865E+06 2.865E+06 2.232E+06 1.738E+06 1.353E+05 3.030E+05 3.030E+05 3.030E+05 3.030E+05 3.030E+05 1.20E+04 2.480E+04 2.35E+03 4.540E+04 2.250E+03 4.540E+01 2.260E+01 8.320E+00 1.130E+00 4.140E-01 1.520E-01	DELTA-U 1.25E-01 1.05E-01 1.05E-01 2.50E-01 2.50E-01 2.50E-01 2.50E-01 2.50E-01 2.50E-01 2.50E-01 2.50E-01 4.97E-01 4.99E-01 1.00E+00 1.00E+0	P1(G) 0. -1.285E+00 -4.305E-01 -1.524E-01 -1.125E-01 -9.801E-02 -1.117E-01 -1.527E-01 -1.527E-01 -1.609E-01 -2.381E-01 -4.558E-01 -1.445E+00 -2.163E+00 -2.246E+00 -2.246E+00 -2.246E+00 -2.246E+00 -2.246E+00 -2.246E+00 -2.264E-01 -2.700E-01 -2.700E-01 -2.700E-01 -2.700E-01 -2.700E-01 -2.700E-01 -2.700E-01 -2.700E-01 -2.708E-02 -3.803E-02 -3.891E-03 -7.813E-04	P2(G) 0. -1.285E+00 -4.305E-01 -1.524E-01 -1.524E-01 -9.801E-02 -1.128E-02 -1.117E-01 -1.527E-01 -1.527E-01 -1.527E-01 -1.558E-01 -2.381E-01 -2.485E+00 -2.038E+00 -2.038E+00 -2.201E+00 -2.201E+00 -2.201E+00 -2.201E+00 -1.032E+00 -3.539E-01 -2.700E-01 -2.700E-01 -2.700E-01 -2.70E-02 -3.803E-02 -1.376E-02 -3.891E-03 -7.813E-04
INTEGR	AL		-1.242E+01	-1.242E+01

.

#ORDERING PARTICLE AND A UNCERTAINTY ANALYSIS FOR THIS CROSS-SECTION PAIR YIELDS THE FOLLOWING #ORDERING PARTICLE AND A PARTICIPAL RESPONSE UNCERTAINTY DUE TO XS-UNCERTAINTIES SPECIFIED IN THE COVARIANCE MATRIX FOR THIS ID:

VARIANCE. (DELTA-R OVER R)-SQUARE = (DR/R)SQ. = 8.177E-03 RELATIVE STANDARD DEVIATION = DR/R = 9.043E-02 9.043E+00 PER CENT

SENSIT SAMPLE 8, *FUSION REACTOR *VECTOR -XS.SEN+UNCEPT. *RUN76: CR. NI. FE, CU

Fe(tot, el)

.

GROUP	UPPER-E(EV)	DELTA-U	P1(G)	P2(G)
1	1.700E+07	1.25E-01	0.	Θ.
2	1.500E+07	1.05E-01	-1.285E+00	-5.857E-01
3	1.350E+07	1.18E-01	-4.305E-01	-2.055E-01
4	1.200E+07	1.82E-01	-1.524E-01	-7.660E-02
5	1.000E+07	2.50E-01	-1.125E-01	-6.074E-02
6	7.790E+06	2.49E-01	-9.801E-02	-5.586E-02
7	6.070E+06	5.00E-01	-8.128E-02	-4.740E-02
B	3.680E+06	2.50E-01	-1.117E-01	-7.245E-02
ē	2.865E+06	2.50E-01	-1.527E-01	-1.111E-01
10	2.232E+06	2.50E-01	-I.809E-01	-1.313E-01
11	1.738E+06	2.50E-01	-2.38IE-01	-1.823E-01
12	1.353E+06	4.97E-01	-4.558E-01	-4.013E-01
13	8.230E+05	4.98E-01	-1.144E+00	-1.142E+00
14	5.000E+05	5.01E-01	-2.163E+00	-2.161E+00
15	3.030E+05	4.99E-01	-1.485E+00	-1.483E+00
16	1.840E+05	1.00E+00	-2.038E+00	-2.033E+00
17	6.760E+04	1.00E+00	-2.240E+00	-2.236E+00
18	2.480E+04	1.00E+00	-4.077E-01	-4.065E-01
19	9.120E+03	1.00E+00	-2.201E+00	-2.198E+00
20	3.350E+03	9.98E-01	-1.032E+00	-1.031E+00
21	1.235E+03	1.00E+00	-3.539E-01	-3.451E-01
22	4.540E+02	1.00E+00	-2.700E-01	-2.694E-01
23	1.670E+02	1.00E+00	-2.646E-01	-2.638E-01
24	6.140E+01	9.99E-01	-2.171E-01	-2.160E-01
25	2.260E+01	9.99E-01	-1.445E-01	-1.431E-01
26	8.320E+00	1.00E+00	-8.148E-02	-8.024E-02
27	3.060E+00	9.96E-01	-3.803E-02	-3.709E-02
28	1.130E+00	1.00E+00	-1.378E-02	-1.322E-02
29	4.140E-01	1.00E+00	-3.891E-03	-3.639E-03
30	1.520E-01	1.11E+00	-7.813E-04	-6.641E-04
INTEG	RAL		-1.242E+01	-1.216E+01

•

VARIANCE, (DELTA-R OVER R)-SQUARE		(DR/R)SQ.		8.175E-03
RELATIVE STANDARD DEVIATION	-	DR⁄R	-	9.042E-02
			-	9.042E+00 PER CENT

SENSIT SAMPLE 8. *FUSION REACTOR *VECTOR -XS.SEN+UNCERT. *RUN76: CR. NI, (FE) CU

Fe (el., el.)

GROUP 1 2 3 4 5 6 7 8 9 0 11 12 3 14 5 6 7 8 9 0 11 12 3 14 5 6 7 8 9 0 11 12 3 14 5 6 7 8 9 0 12 22 24 5 6 7 8 9 0 22 22 22 22 22 22 22 22 22 22 22 22 2	UPPER-E(EV) 1.700E+07 1.500E+07 1.500E+07 1.200E+07 1.200E+07 1.200E+06 3.600E+06 2.865E+06 2.865E+06 2.32E+06 1.738E+06 1.738E+06 8.230E+05 3.030E+05 1.840E+05 3.030E+05 1.840E+04 9.120E+03 3.355E+03 4.540E+02 1.670E+02 1.670E+02 1.20E+01 8.320E+00 3.060E+00 1.130E+00 1.230E+00 1.140E+00 1.130E+00 1.150E+00 1.150E+00 1.150E+00 1.150E+00 1.150E+00 1.520E+00	DELTA-U 1.25E-01 1.05E-01 1.05E-01 2.50E-01 2.50E-01 2.50E-01 2.50E-01 2.50E-01 2.50E-01 2.50E-01 4.97E-01 4.97E-01 4.99E-01 1.00E+00 1.00E+0	P1(G) 8. -5.857E-01 -2.055E-01 -7.660E-02 -6.074E-02 -5.586E-02 -1.111E-01 -1.313E-01 -1.823E-01 -4.013E-01 -1.142E+00 -2.033E+00 -2.033E+00 -2.035E+00 -2.365E-01 -2.190E+00 -1.031E+01 -2.634E-01 -2.634E-01 -2.634E-01 -2.639E-01 -2.639E-01 -3.709E-02 -3.709E-02 -3.639E-03 -6.641E-04	P2(G) 0. -5.857E-01 -7.660E-02 -6.074E-02 -5.586E-02 -4.74E-02 -7.245E-02 -1.111E-01 -1.313E-01 -1.42E+00 -2.161E+00 -2.033E+00 -2.36E+00 -2.236E+00 -2.236E+00 -2.236E+00 -2.638E-01 -2.199E+00 -3.451E-01 -2.638E-01
INTEGR	AL		-1.216E+01	-1.216E+01

•

VARIANCE, (DELTA-R OVER R)-SQUARE	=	(DR/R)SQ.	=	8.258E- 03
RELATIVE STANDARD DEVIATION	=	DR/R	52	9.087E-02
•			-	9.087E+00 PER CENT

SENSIT SAMPLE 8, *FUSION REACTOR *VECTOR -XS.SEN+UNCERT. *RUN76: CR. NI, FE. CU

Cu (tot, tot)

1

•

GROUP 12345678901123145678901122222222222222222222222222222222222	UPPER-E(EV) 1.700E+07 1.500E+07 1.350E+07 1.200E+07 1.200E+07 1.200E+07 7.790E+06 3.680E+06 2.865E+06 2.232E+06 1.739E+06 1.353E+06 8.230E+05 3.030E+05 3.030E+05 3.030E+05 3.030E+05 1.840E+04 9.120E+03 1.235E+03	DELTA-U 1.25E-01 1.05E-01 1.05E-01 2.50E-01 2.50E-01 2.50E-01 2.50E-01 2.50E-01 2.50E-01 2.50E-01 2.50E-01 2.50E-01 1.00E+00 1.00E+0	P1(G) 0. -3.156E+00 -1.060E+00 -3.690E-01 -2.651E-01 -2.220E-01 -1.781E-01 -3.870E-01 -3.870E-01 -5.172E-01 -1.172E+00 -2.950E+00 -3.998E+00 -4.462E+00 -4.462E+00 -5.170E+00 -5.170E+00 -5.170E+00 -5.805E	P2(G) 0. -3.156E+00 -1.060E+00 -3.690E-01 -2.220E-01 -2.220E-01 -1.781E-01 -2.220E-01 -3.870E-01 -3.870E-01 -3.870E-01 -5.172E-00 -2.950E+00 -2.950E+00 -6.075E+00 -6.075E+00 -6.075E+00 -6.075E+00 -7.186E-01 -3.805E+00 -7.186E-01 -3.549E-02 -3.549E
30	1.520E-01	1.11E+00	-1.452E-03	-1.452E-03
INTEG	KHL		-3.836E+01	-3.836E+01

.

VARIANCE. (DELTA-R OVER R)-SQUARE	=	(DR/R)SQ.	c	6.769E-02
RELATIVE STANDARD DEVIATION	=	DR/R	=	2.602E-01
			-	2.602E+01 PER CENT

SENSIT SAMPLE 8, *FUSION REACTOR*VECTOR-XS.SEN+UNCERT.*RUN76: CR, NI, FE, CU

(n (tot, el)

.

GROUP 1 23456789011123145167189012234567890 11123145167189012222242222230 22222222222222222222222222	UPPER-E(EV) 1.700E+07 1.500E+07 1.500E+07 1.200E+07 1.200E+07 1.200E+06 3.680E+06 2.965E+06 2.965E+06 2.938E+06 1.353E+06 8.230E+05 3.030E+05 1.226E+01 8.320E+00 3.060E+00 1.130E+00 4.140E-01 1.520E-01	DELTA-U 1.25E-01 1.05E-01 1.05E-01 2.50E-01 2.50E-01 2.50E-01 2.50E-01 2.50E-01 2.50E-01 2.50E-01 4.97E-01 4.99E-01 1.00E+00 1.00E+0	P1(G) 0. -3.156E+00 -3.690E-01 -2.651E-01 -2.220E-01 -1.781E-01 -2.379E-01 -3.094E-01 -3.094E-01 -3.870E-01 -5.172E-01 -1.172E+00 -2.950E+00 -3.998E+00 -3.998E+00 -3.998E+00 -3.998E+00 -5.772E+00 -5.729E+00 -5.729E+00 -5.885E+00 -5.885E+00 -5.885E+00 -5.885E+00 -5.885E+00 -5.885E+01 -3.826E-01 -3.826E-01 -3.826E-01 -3.826E-01 -3.423E-01 -2.324E-02 -2.324E-02 -2.324E-02 -6.719E-03 -1.452E-03	P2(G) 0. -1.478E+00 -5.142E-01 -1.861E-01 -1.261E-01 -1.261E-01 -1.385E-01 -1.905E-01 -1.905E-01 -3.849E-01 -1.905E+00 -2.923E+00 -5.056E+00 -5.056E+00 -5.056E+00 -5.129E+00 -6.629E+00 -5.129E+00 -6.629E+00 -5.13E-01 -3.513E-01 -2.382E-01 -1.296E-01 -2.96E-01 -2.916E-02 -5.916E-03 -1.079E-0
INTEGR	AL		-3.836E+01	-3.735E+01

VARIANCE. (DELTA-R OVER R)-SQUARE	=	(DR/R)SQ.	÷	6.682E-02
RELATIVE STANDARD DEVIATION	=	DRZE	Ŧ	2.5856-01
			=	2.585E+01 PER CENT

SENSIT SAMPLE 8, *FUSION REACTOR *VECTOR -XS.SEN+UNCERT.*RUN76: CR, NI, FE.

au (el, el)

•

4

GROUP	UPPER-E(EV)	DELTA-U	P1(G)	P2(G)
1	1.700E+07	1.25E-01	0.	0.
2	1.500E+07	1.05E-01	-1.478E+00	-1.478E+00
3	1.350E+07	1.18E-01	-5.142E-01	-5.I42E-01
4	1.200E+07	1.82E-01	-1.861E-01	-1.861E-01
5	1.000E+07	2.50E-01	-1.439E-01	-1.439E-01
6	7.790E+06	2.49E-01	-1.261E-01	-1.261E-01
7	6.070E+06	5.00E-01	-1.019E-01	-1.019E-01
8	3.680E+06	2.50E-01	-1.385E-01	-1.385E-01
9	2.865E+06	2.50E-01	-1.905E-01	-1.905E-01
10	2.232E+06	2.50E-01	-2.596E-01	-2.596E-01
11	1.738E+06	2.50E-01	-3.849E-01	-3.849E-01
12	1.353E+06	4.97E-01	-1.062E+00	-1.062E+00
13	8.230E+05	4.98E-01	-2.923E+00	-2.923E+00
14	5.000E+05	5.01E-01	-5.056E+00	-5.056E+00
15	3.030E+05	4.99E-01	-3.983E+00	-3.983E+00
16	1.840E+05	1.00E+00	-6.050E+00	-6.050E+00
17	6.760E+04	1.00E+00	-4.439E+00	-4.439E+00
18	2.480E+04	1.00E+00	-5.129E+00	-5.129E+00
19	9.120E+03	1.00E+00	-6.629E+00	-6.629E+00
20	3.350E+03	9.98E-01	-5.773E+00	-5.773E+00
21	1.235E+03	1.00E+00	-6.102E-01	-6.102E-01
22	4.540E+02	1.00E+00	-3.704E-01	-3.704E-01
23	1.670E+02	1.00E+00	-4.012E-01	-4.012E-01
24	6.140E+01	9.99E-01	-3.513E-01	-3.513E-01
25	2.260E+01	9.99E-01	-2.382E-01	-2.382E-01
26	8.320E+00	1.00E+00	-1.296E-01	-1.296E-01
27	3.060E+00	9.96E-01	-6.017E-02	-6.017E-02
28	1.130E+00	1.00E+00	-2.148E-02	-2.148E-02
29	4.140E-01	1.00E+00	-5.916E-03	-5.916E-03
30	1.520E-01	1.11E+00	-1.079E-03	-1.079E-03
_				
INTEG	RAL		-3.735E+01	-3.(.SE+01

WORKNOW WORKNOW WORK AN UNCERTAINTY ANALYSIS FOR THIS CROSS-SECTION PAIR YIELDS THE FOLLOWING WORKNOW W

VARIANCE. (DELTA-R OVER R)-SQUARE	=	(DR/R)SQ.	8	6.626E-02
RELATIVE STANDARD DEVIATION	=	DP/R	=	2.574E-01
			-	2.574E+01 PER CENT

P6 (tot, tot)

GROUP	UPPER-E(EV)	DELTA-U	P1(G)	P2(G)
1	1.700E+07	1.25E-01	Θ.	0.
2	1.500E+07	1.05E-01	-5.691E+01	-5.691E+01
3	1.350E+07	1.18E-01	-1.060E+01	-1.060E+01
4	1.200E+07	1.82E-01	-2.945E+00	-2.945E+00
5	1.000E+07	2.50E-01	-1.725E+00	-1.725E+00
6	7.790E+06	2.49E-01	-1.380E+00	-1.388E+00
7	6.070E+06	5.005-01	-9.193E-01	-9.193E-01
8	3.680E+06	2.500-01	-1.0780+00	-1.078E+00
9	2.865E+06	2.50E-01	-1.206E+00	-1.206E+00
10	2.232E+06	2.50E-01	-9.907E-01	-9.907E-01
11	1.7385+06	2.5PE-01	-9.497E-01	-9.497E-01
12	1.353E+06	4.97E-01	-1.027E+00	-1.027E+00
13	8.230E+05	4.98E-01	-1.151E+00	-1.151E+00
14	5.000E+05	5.01E-01	-7.689E-01	-7.689E-01
15	3,030E+85	4.99E-01	-6.793E-01	-6.793E-01
16	1.840E+05	1.000+00	-4.932E-01	-4.932E-01
17	6.760E+04	1.00E+00	-3.103E-01	-3.103E-01
18	2.480E+04	1.005+00	-2.152E-01	-2.152E-01
19	9.120E+03	1.000+00	-1.691E-01	-1.691E-01
20	3.350E+03	9.986-01	-1.300E-01	-1.358E-01
21	1.235E+03	I.00E+00	-7.506E-02	-7.506E-02
22	4.540E+82	1.00E+00	-3.312E-02	-3.312E-02
23	1.670E+02	1.09E+00	-2.624E-02	-2.624E-02
24	6.140E+01	9.99E-01	-6.665E-03	-6.665E-93
25	2.260E+01	9.99E-01	-6.052E-04	-6.052E-04
26	8.320E+00	1.00E+00	-4.239E-04	-4.239E-04
27	3.060E+00	9.965-01	-2.883E-03	-2.893E-03
28	1.1305+00	1.005.+00	-2.035E-03	-2.035E-03
29	4.140E-01	1.000+00	-1.150E-03	-1.150E-03
30	1.520E-01	1.110+00	-7.773E-04	-7.773E-04
INTEGF	RAL		-1.336E+01	-1.336E+01

•

VARIANCE. (DELTA-R OVER R)-SQUARE		(DR/R)SQ.		7.489E-02
PELATIVE STANDARD DEVIATION	=	DR/R	-	2.737E-01
				2.737E+01 PER CENT

Pb (tot, el)

.

HOW HOW HERE SUN OVER ALL PERTURBED ZONES. WHERE BOTH CROSS-SECTIONS WITH THIS ID ARE PRESENT IN THE MODEL THE NUMBER DEHSITIES FOR THIS XS-PAIR ARE NDENI = 3.93000E-02 AND NDEN2 = 3.93000E-02

GROUP	UPPER-E(EV)	DELTA-U	P1(G)	P2(G)
1	1.760E+37	1.25E-01	Ο.	0.
2	1.5002+07	1.05E-01	-5.691E+01	-3.05GE+01
3	1.350E*07	1.13E-01	-1.0500-01	-5.565E+00
4	1.200E+67	1.62E-01	-2.945E+00	-1.533E+00
· 5	I.060E.07	2.50E-01	-1.725E÷00	-9.10GE-01
6	7.79GE+06	2.495-01	-1.386E∻00	-8.129E-01
7	6.0765*85	5.0)E-01	-9.193E-0I	-6.331E-01
8	3.6305+85	2.50E-01	-1.0782+00	-8.885E-01
9	2.865E*06	2.50E-01	-1.20GE+00	-1.072E+00
10	2.232E+05	2.50E-01	-9.907E-01	-8.953E-01
11	1.7392+05	2.50E-01	-9.497E-01	-8.7842-01
12	1.3536+06	4.97E-01	-1.027E+00	-9.787E-01
13	8.230E+C5	4.982-01	-1.151E∻00	-1.143E+00
14	5.000E*C5	5.01E-01	-7.689E-01	-7.683E-01
15	3.0200+05	4.992-01	-G.793E-01	-6.790E-0I
16	1.8-00+95	1.00E+00	-4.932E-01	-4.9300-01
17	6.760L+U-1	1.005+00	-3.103E-01	-3.101E-01
18	2.4:0E+04	1.005-20	-2.152E-01	-2.151E-01
19	9.1206-203	1.005-00	-1.691E-01	-1.69IE-01
20	3.3305+93	9.92E-01	-1.35CE-01	-1.3416-01
21	1.235E-US	1.00E+00	-7.50GL-02	-7.5056-02
22	4.5402+02		-3.312E-02	-3.311E-02
23	C 140E+01	1.00E~30	-2.6246-02	-2.623E-02
24	2 2005-01	9.555-01	-0.00000-03	-6.663E-03
20	2.2000-001	3.39E-01	-0.0020-04	-0.0436-04
20	7 0665-60	9.002+00	-4.2396-04	-4.2340-04
20	1 1705-00	1 005-00	-2.0030-03	-2.0//2-03
20	A 1466-01	1 005+00	-1 1505-03	-2.0296-03
20	1 5205-01	1 115-00	-7.7776-04	-7 6765-04
50	1.0101 01	**11CT09	-1.1136-04	
INTEG	RAL		-1.336E+01	-9.037E+00

THE COVARIANCE MATRIX FOR THIS DR THIS CROSS-SECTION PAIR YIELDS THE FOLLOWING THE SECTION AL RESPONSE UNCERTAINTY DUE TO XS-UNCERTAINTIES SPECIFIED IN THE COVARIANCE MATRIX FOR THIS ID:

VARIANCE. (DELTA-R OVER R)-SQUARE	=	(DR/R)SQ.		7.489E-02
RELATIVE STANDARD DEVIATION	-	DR/R	0	2.737E-01
				2.737E÷01 PER CENT

Pb (el., el.)

FOR THE SUM OVER ALL PERTURBED ZONES. WERE BOTH CROSS SECTIONS WITH THIS ID ARE PLESENT IN THE MODEL THE NUMBER DENSITIES FOR THIS XS-PAIR ARE NDENI = 3.93000E-02 AND NDEN2 = 3.93000E-02

GROUP	UPPER-E(EV)	DELTA-U	P1(G)	P2(6)
1	1.700E+07	1.25E-01	0.	<u>я.</u>
2	1.50CE-07	1.05E-01	-3.056E+01	-3.056E+01
3	1.350E+07	1.1GE-01	-5.5656+00	-5.565E+00
4	1.2006+07	1.825-01	-1.5355-02	-1 533E+00
5	1.000E+07	2.502-01	-9.1066-01	-9.106E-01
6	7.7902+03	2.49E-01	-8.129E-01	-8.129F-01
7	6.0700+06	5.000-01	-6.331E-01	-6.331E-01
8	3.6802*06	2.50E-01	-3.885E-01	-8.835E-01
9	2.065E*C6	2.500-01	-1.072F+90	-1.072E+00
10	2.232E+06	2.505-01	-8.953E-01	-8.9536-01
11	1.7382+06	2.502-01	-8.7345-01	-8.784F-01
12	1.353E⊹06	4.97E-01	-9.737E-01	-9.797F-01
13	6.230E+05	4.95E-01	-1.143E+00	-1.143E+00
14	5.6302+65	5.01E-01	-7.593E-01	-7.683E-01
15	3.030E÷95	4.99E-01	-6.790E-01	-6.7900-01
16	1.6402+05	1.00E+00	-4.9395-01	-4.930E-01
17	6.760E~04	1.002:00	-3.101E-01	-3.101E-01
18	2.420E+04	1.000400	-2.151E-01	-2.151E-01
19	9.126E+03	1.000:00	-I.691E-01	-1.691E-0I
20	3.350E+03	9.90E-01	-I.341E-01	-1.341E-01
21	1.235E+03	1.002+00	-7.505E-02	-7.505E-02
22	4.540E+02	1.002400	-3.311E-02	-3.311E-02
23	1.670E*32	1.09E-00	-2.6230-02	-2.623E-02
24	6.149E+01	9.99E-01	-6.663E-03	-6.663E-03
25	2.260E+01	9.996-01	-6.048E-04	-6.0480-04
26	8.3200+00	1.00E+00	-4.234E-04	-4.2345-04
27	3.060E+00	9.96E-01	-2.877E-03	-2.877E-03
28	1.1306400	1.00E+00	-2.029E-03	-2.029E-03
29	4.1495-01	1.00E+00	-1.145E-03	-1.145E-03
30	1.5202-01	1.1IE+00	-7.676E-04	-7.676E-04
INTECO				
INCOM	riL.		-9.037E⊹90	-9.087E+00

.

YARIANCE, (DELTA-R OVER R)-SQUARE RELATIVE STANDARD DEVIATION	7 8	(DR/R)SQ. DR/R	 1.161E-01 3.407E-01 3.407E+01 PER CENT	

TNS (PGFR) XS-CENS.-AXALYSIS FOR RS=TT-COIL KERMA ** SHIELD * 175: H.D.

Pb (inel, inel)

•

.

-

GROUP	UPPER-E (EV)	DELTA-U	P1(G)	_P2(G)
1	1.766E∻07	1.25E-01	0.	0.
2	1.500E+07	1.05E-01	-3.727E400	-3.727E+03
3	1.350E+07	1.136-01	-9.491E-01	-9.481E-01
4	1.2605-07	1.82E-01	-5.141E-01	-5.1416-01
5	1.00000407	2.502-01	-6.059E-01	-6.0000C-01
Ę.	7.75UE*CG	2.455-01	-5.6736-01	-3.0(35-01
	7 0000-100	3.602-01	-2.0510-01	-1 0005-01
8	3.6801706	2.506-01	-1.3900-01	-1 3/75-01
10	2.8036500	2.002-01	-1.3436-01	-9 5275-02
10	1 739520	2.332-01	-3.3276-02	-7 1055-02
12	1.7576-00	A 975-01	-1 91/5-02	-4 8147-02
17	0.2700-05	4 905-01	-7 2945-93	-7.4945-03
14	5.0000305	5.016-01	л.	0.
15	3.05000.05	4.995-01	й.	Ő.
16	1.649E+05	1.005.00	0.	0.
17	6.700E+04	1.05E:00	0.	0.
18	2.400E+04	1.00E+00	ē.	0.
19	9.1205+03	1.0CE-00	0.	0.
20	3.3500+03	9.23E-01	0.	0.
21	1.235E*03	1.005.00	0.	0.
22	4.540E÷02	1.002+30	0.	0.
23	1.670E+02	1.005*00	0.	0.
24	6.140E+01	9.90E-01	0.	0.
25	2.260E+01	9.99E-01	0.	Ø.
26	8.320E+00	1.00E.00	0.	U.
27	3.060E-UU	9.96E-01	U.	Ø.
28	1.13064809	1.005-00	ы.	ย .
29	4.140E-01	1.005.00	Ø.	ы. С
30	1.5201-01	1.11F-200	ы.	U.
INTEG	RAL		-1.134E+00	-1.184E+00

VARIANCE, (DELTA-R OVER R)-SQUARE = (DR/R)SQ. = 2.792E-02 RELATIVE STANDERD DEVIATION = DR/R = 1.671E-01 = 1.671E-01

2.792E-02
 1.671E-01
 1.671E+01 PER CENT

APPENDIX B

The following 11 tables are reproduced from the SENSIT printout of our SED uncertainty analysis for those cases where the response uncertainties exceed 10%. The title lines are self expalanatory and the nomenclature coincides with that used in the theory section (Sec. II) of the text. Only for the first case (Cu in TF+F coils for response function R_1) the detailed neutron cross-section and SED sensitivity profiles are also reproduced. The gamma ray sensitivity profiles are all zero for this case because R_1 is a dpa cross-section which has no gamma ray component.

TNS(PGFR) XS-SENS.-ANAL. FOR DPA-ADJOINT *TF+E COILS* I56SED: CR.NI.FE

XONORDINGCO

G	-IN (I	MEDIAN G-OUT OF SED FROM INPUT)	INTEGRAL SED-UNCERT. F (FROM INPUT)	HOT INTEGRAL SENS. COEFF. S-HOT	COLD INTEGRAL SENS. COEFF. S-COLD	NET INTEGRAL SED SENSCOEFF. S (SHOT - SCOLD)	RESPONSE UNCERT. DR/R DUE TO SED-UNCERT. (F * S)
	12345678910112131451678920122222222222222222222222222222222222	88745678901123456000000000000000000000000000000000000	. 1100 .1000 .1000 .0500 .0700 .0700 .0700 .0700 .0700 .0700 .0400 .0400 .0400 .0400 .0400 .0200 .0200 .0200 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000	0. 1.810E-01 6.2508E-02 2.803E-02 3.093E-02 5.977E-02 4.297E-02 6.331E-02 9.101E-02 1.352E-01 8.612E-01 2.792E+00 3.297E+00 2.716E+00 0. 0. 0. 0. 0. 0. 0. 0. 0.	8. 7.677E-02 2.933E-02 1.014E-02 2.005E-02 1.911E-02 3.645E-02 3.942E-02 3.907E-02 4.832E-02 1.071E-01 1.159E-01 1.094E-02 3.045E-02 0.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0. 1.042E-01 3.325E-02 9.933E-03 1.233E-02 1.183E-02 2.332E-02 2.424E-02 4.269E-02 4.269E-02 4.269E-02 5.151E-01 2.676E+00 3.183E+00 1.487E+00 0.487E+00 0. 0. 0. 0. 0. 0. 0. 0. 0.	0. 1.042E-02 3.325E-03 9.279E-04 9.040E-04 8.279E-04 1.632E-03 2.577E-03 2.577E-03 3.017E-03 3.017E-02 5.372E-02 C.375E-02 2.817E-02 5.370E-02 5.370E-02 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
TOTAL	INTEGRAL			1.186E+01	7.952E-01	1.107E+01	2.563R-01

25.626 PER CENT

—

	DEFINITIONS OF SENSIT SENSITIVITY PROFILE NOMENCLATURE
AXS	 SENSITIVITY PROFILE PER DELTA-U FOR THE ABSORPTION CROSS-SECTION (TAKEN FROM POSITION IHA IN INPUT CROSS-SECTION TABLES), PURE LOSS TERM
NU-FISS	 SENSITIVITY PROFILE PER DELTA-U FOR THE CROSS SECTION IN POSITION IHA+1 IN INPUT XS-TABLES, WHICH IS USUALLY NU-TIMES THE FISSION CROSS SECTION. PURE LOSS TERM
SXS	 PARTIAL SENSITIVITY PROFILE PER DELTA-U FOR THE SCATTERING CROSS-SECTION (COMPUTED FOR EACH ENERGY GROUP AS A DIAGONAL SUM FROM INPUT XS-TABLES). LOSS TERM ONLY
TXS	 SENSITIVITY PROFILE PER DELTA-U FOR THE TOTAL CROSS SECTION (AS GIVEN IN POSITION INT IN INPUT CROSS-SECTION TABLES). PURE LOSS TERM
N-GA IN	 PARTIAL SENSITIVITY PROFILE PER DELTA-U FOR THE NEUTRON SCATTERING CROSS-SECTION. GAIN TERM FOR SENSITIVITY GAINS DUE TO SCATTERING OUT OF ENERGY GROUP G INTO ALL LOWER NEUTRON ENERGY GROUPS. COMPUTED FROM FORWARD DIFFERENCE FORMULATION.
G-GAIN	 PARTIAL SENSITIVITY PROFILE PER DELTA-U FOR THE GAMMA SCATTERING CROSS-SECTION. GAIN TERM FOR SENSITIVITY GAINS DUE TO SCATTERING OUT OF GAMMA ENERGY GROUP G INTO ALL LOWER GAMMA ENERGY GROUPS. COMPUTED FROM FORWARD DIFFERENCE FORMULATION.
N-GAIN(SE D)	 RE-ORDERED PARTIAL SENSITIVITY PROFILE PER DELTA-U FOR SCATTERING CROSS-SECTION. GAIN TERM FOR SENSITIVITY GAINS DUE TO SCATTERING INTO GROUP G FROM ALL HIGHER NEUTRON ENERGY GROUPS. COMPUTED FROM ADJOINT DIFFERNCE FORMULATION. CORRESPONDS TO SINGLE-DIFFERENTIAL SED SENSITIVITY PROFILE, PSED(G-OUT) PER DELU-OUT. INTEGRATED OVER ALL INCIDENT ENERGY GROUPS.
NG-GAIN	 PARTIAL SENSITIVITY PROFILE PER DELTA-U FOR THE GAMMA PRODUCTION CROSS-SECTION AT NEUTRON ENERGY GROUP G. PURE GAIN TERM FOR SENSITIVITY GAINS DUE TO TRANSFER FROM NEUTRON GROUP G INTO ALL GAMMA GROUPS.
SEN	NET SENSITIVITY PROFILE PER DELTA-U FOR THE SCATTERING CROSS-SECTION (SEN=SXS+NGAIN)
SENT	NET SENSITIVITY PROFILE PER DELTA-U FOR THE TOTAL CROSS-SECTION (SENT=TXS+NGAIN)
SENR	SENSITIVITY PROFILE PER DELTA-U FOR THE DETECTOR RESPONSE FUNCTION R(G)
SENQ	SENSITIVITY PROFILE PER DELTA-U FOR THE SOURCE DISTRIBUTION FUNCTION Q(G)
-	

.

.

•

TNS(PGFR) XS-SENS.-ANAL. FOR DPA-ADJOINT *TF+E COILS* 156SED: CR.NI.FE/CU

			NORMONO R LI R	E LOS	S TERM	S xokokokokokok	*norman PUR	E GAIN TERMS	xolololololok
GDUID	HPPER-F(FV)	DEL TA-LI	AXS	NU-FISS	SXS	TXS	N-GA IN	N-GAIN(SED)	NG-GAIN
1	1 7005-07	1 255-01	а.	Я.	0.	0.	0.	0.	0.
-	1 5005-07	1 055-01	0 1065-00	ă.	-4, 182E+00	-3.509E+00	2.447E+00	1.341E+90	Θ.
<u> </u>	1.3005 107	1.000-01	0.4000100	o. o	-1 2015-00	-1 1025+00	7 80/0-01	5.40BE-01	0.
5	1.350E+07	1.185-01	2.1/45-100	0.	-7.5765-01	-7 5975-01	2 5755-01	1 7075-01	Ř.
4	1.200E+07	1.82E-01	5.880E-01	Ø.	-3.3300-01	-3.0576-01	2.0000-01	1 /505-01	ă.
5	1.000E+07	2.50E-01	3.887E-01	0.	-2.770E-01	-2.852E-01	2.0900-01	1.4000-01	0.
6	7.790E+06	2.49E-01	3.140E-01	0.	-2.573E-01	-2.632E-01	2.0000-01	1.4395-01	0.
7	6.070E+06	5.00E-01	2.262E-01	0.	-2.322E-01	-2.360E-01	1.92.E-01	1.7195-01	0.
ġ	3 680F+06	2.50F-01	2.712E-01	0.	-3.410E-01	-3.454E-01	2.892E-01	2.689E-01	и.
ă	2 9655+06	2.50F-01	3.053E-01	0.	-4.796E-01	-4.840E-01	4.101E-01	3.771E-01	0.
10	2 2725-06	2 505-01	3 164E-01	Й.	-6.327E-01	-6.364E-01	5.5/0E-01	5.170E-01	0.
10	1 7700-00	2.500 01	3 1205-01	ñ.	-8.454F-01	-8.488E-01	7.540E-01	7.182E-01	0.
	1.7385700	4 075 01	1 0000-01	о. О	-2 070E+00	-2 078F+00	1.949F+00	1.932E+90	0.
12	1.3535+06	4.9/5-01	1.330C-01	0.	-6 0725-00	-6 0/95+00	5 8355+00	5.908E+00	Ø.
13	8.230E+05	4.98E-01	5.0865-02	0.	-0.032E100	-7 0175-00	C 0015-00	6 9205+00	Ř
14	5.000E+05	5.01E-01	2.2015-02	0.	-0.9900 +00	7 1405,00	2 0005-00	7 2055-400	a.
15	3 .0 30E+05	4.99E-01	1.064E-02	и.	-3.139E+00	-3.1490+00	0.7405-00	3.2030100	0. a
16	1.840E+05	1.00E+00	1.163E-02	0.	-2.7996+00	-2.811E+00	2.742E+00	2.7000-700	0.
17	6.760E+04	1.00E+00	3.448E-03	0.	-6.797E-01	-6.833E-01	6.594E-01	6.724E-91	0.
18	2 480F+04	1.00F+00	2.492E-03	0.	-3.205E-01	-3.231E-01	3.112E-01	3.24/E-01	U .
10	9 1205+03	1 005+00	1.849E-03	0.	-1.351E-01	-1.370E-01	1.342E-01	1.381E-01	0.
20	7 7505-07	9 995-01	1.192E-03	<u>й.</u>	-8.073E-02	-8.198E-02	8.008E-02	8.120E-02	0.
20	3.3300103	1 005-00	2 4995-94	ă.	-1.667E-03	-1.915E-03	1.649E-03	1.754E-93	0.
21	1.2336703	1.000000	2 7215-05	ă.	-9 174F-04	-9.4185-84	2.062E-04	9.197E-04	0.
22	4.540E+02	1.005-00	2.3210-03	0.	-6 0175-04	-6 8555-84	6.795E-04	6.800E-04	0.
23	1.670E+02	1.00E+00	3.5835-06	0.	-0.01/C-04	-6.63JE-04	5 A65E-0A	5 5155-04	й.
24	6.140E+01	9.99E-01	4.296E-06	Ø.	-3.4/65-04	7 5405 04	7 4005-04	3 53/5-04	ă.
25	2.260E+01	9.99E-01	4.924E-06	и.	-3.480E-04	-3.0495-04	3.40000-04	1 0075-04	а. а
26	8.320E+00	1.00E+00	5.724E-06	0.	-1.941E-04	-2.0010-04	1.9446-04	1,3335-04	o.
27	3.060E+00	9.96E-01	4.480E-06	0.	-9.122E-05	-9.591E-05	9.185E-05	9.4605-05	0.
28	1.130F+00	1.00E+00	3.249E-06	0.	-3.980E-05	-4.320E-05	4.047E-05	4.198E-05	0.
29	4 140F-01	1.00F+00	2.381E-06	0.	-1.766E-05	-2.016E-05	1.722E-05	1.900E-05	U .
20	1 5205-01	1.11E+00	5.257E-07	0.	-1.3876-06	-1.938E-06	1.3 <u>56E</u> -06	1.567E-06	0.
30	1.3202 01	1.112.00							
INTER			2.001F+00	Ø	(-1,460E+01)	-1.459E+01	(1.335E+01)	(1.385E+01)	0.
INICO			210012.00					\sim	
			NOR NET PRO	FILES NORPOR					
CDOUD	UDDED-E(EV)	DEL TO-LL	GEN	SENT					
GRUUP			0	a					
1	1.700E+07	1.255-01	1 7765 100	-1 1495-400					
2	1.500E+07	1.05E-01	-1.736E+00	7 2105 01					
3	1.350E+07	1.18E-01	-4.210E-01	-3.219E-01					
4	1.200E+07	1.82E-01	-1.001E-01	-1.062E-01					
5	1.000E+07	2.50E-01	-6.715E-02	-7.537E-02					
6	7.790E+06	2.49E-01	-5.670E-02	-6.267E-02					
7	6.070E+06	5.00E-01	-3.989E-02	-4.377E-02					
Ŕ	3.680F+06	2.50E-01	-5.180E-02	-5.621E-02					
ă	2.865E+86	2.50E-01	-6.950E-02	-7.393E-02					
10	2.2325+06	2.50E-01	-7.572E-02	-7.945E-02					
11	1 7705-06	2 50F-01	-9.130F-02	-9.480E-92					
11	1 7575100	A 975-01	-1 226E-01	-1.298F-01					
12	1.3335-705	4.000-01	-1 0725-01	-2 1/75-01					
13	8.230E+03	4.705-01	1 0505-01	-2 16/5-01					
14	5.000E+05	3.01E-01	-1.9300-01	-2.1046-01	1				
15	3.030E+05	4.99E-01	-0.3035-05	-0.02(0-02					

.

50

,

16 17 18 20 21 22 23 24 25 26 27 28 29 30	1.849E+05 6.760E+04 2.400E+04 9.120E+03 3.350E+03 1.235E+03 4.540E+02 6.140E+01 2.260E+01 8.320E+00 3.060E+00 1.139E+00 4.140E-01 1.520E-01	1.00E+00 1.00E+00 1.00E+00 9.90E-01 1.00E+00 1.00E+00 1.00E+00 1.00E+00 9.99E-01 1.00E+00 9.99E-01 1.00E+00 1.00E+00 1.00E+00 1.11F+00	-5.6392-02 -9.2587-03 -8.5262-04 -6.4662-04 -1.3202-05 -1.1182-05 -1.2295-06 -1.0882-06 -8.3212-07 6.3742-07 6.6762-07 -3.4622-07 -3.4622-07	-6.822E-82 -2.385E-02 -1.105E-02 -2.787E-03 -1.894E-03 -2.656E-04 -3.551E-06 -5.994E-06 -5.993E-06 -5.633E-06 -2.737E-06 -2.737E-06 -2.942E-07
INTEGR	1,520E-01	1,116+00	-3.104E-08 	-5.820E-07 -7.392E-01

.

51

•

•

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1 125163 0.
2 185361 0. 1.27E+01 0.
3 117783 0. 1.27E-01 3.65E+00 0.
3 .117783 0. 0.256-01 3.052-00 0. 0
1 .18232 0. 2.58E-02 1.18E-01 0.45E-01 0.
3 .249744 0. 7.195-02 2.60E-02 2.57E-02 5.19E-01 0.
6 .249482 0. 1.17E-01 4.14E-02 0.38E-03 2.697E-01 0.
7 .500446 0. 2.64E-01 7.69E-02 2.59E-02 1.79E-02 2.46E-02 2.39E-01 0.
8 .258344 0. 3.79E-01 1.24E-01 4.33E-02 3.43E-02 2.78E-02 3.96E-02 6.96E-01 0. 0. 9 .249670 0. 3.92E-01 1.31E-01 5.03E-02 4.19E-02 3.71E-02 3.34E-02 8.46E-02 1.02E+00 0. 10 .250163 0. 3.79E-01 1.21E-01 5.10E-02 4.28E-02 3.04E-02 3.34E-02 1.02E+00 0. 11 .250411 0. 3.64E-01 1.21E-01 5.10E-02 3.73E-02 3.64E-02 6.78E-02 1.02E+01 1.45E+00 12 .497123 0. 3.64E-01 1.21E-02 3.65E-02 3.76E-02 3.60E-02 4.33E-02 1.10E-01 1.27E-01 13 .498348 0. 3.12E-01 9.02E-02 1.69E-02 1.66E-02 2.57E-02 4.55E-02 3.63E-02 1.19E-01 1.27E-01 14 .500875 0. 1.55E-01 4.71E-02 8.18E-03 5.42E-03 6.48E-03 2.51E-03 2.38E-02 3.71E-02 4.83E-02 15 .498797 0.
9 .249670 0. 3.92E-01 1.31E-01 5.03E-02 4.19E-02 3.71E-02 3.34E-02 9.46E-02 1.02E+00 0. 10 .250163 0. 3.79E-01 1.21E-01 5.10E-02 4.28E-02 4.09E-02 3.44E-02 7.53E-02 1.32E-01 1.45E+00 0. 11 .250411 0. 3.64E-01 1.06E-01 4.21E-02 3.65E-02 3.73E-02 3.64E-02 6.78E-02 1.02E-01 1.63E-01 12 .497123 0. 3.41E-01 9.21E-02 2.99E-02 2.74E-02 3.60E-02 4.33E-02 1.02E-01 1.63E-01 13 .498348 0. 3.12E-01 9.00E-02 1.99E-02 1.66E-02 2.57E-02 4.55E-02 3.63E-02 1.19E-01 14 .500075 0. 1.55E-01 4.71E-02 8.18E-03 5.42E-03 6.44E-03 9.55E-03 2.38E-02 3.71E-02 4.83E-02 15 .498797 0. 1.55E-01 4.71E-02 2.82E-03 1.41E-03 1.64E-03 2.51E-03 6.50E-03 9.02E-03 9.39E-03 1.33E-03
10 .250163 0. 3.79E-01 1.21E-01 5.10E-02 4.28E-02 4.08E-02 3.40E-02 7.53E-02 1.32E-01 1.45E+00 11 .250411 0. 3.64E-01 1.06E-01 4.21E-02 3.65E-02 3.73E-02 3.64E-02 6.78E-02 1.32E-01 1.63E-01 12 .497123 0. 3.41E-01 9.02E-02 1.99E-02 2.74E-02 2.99E-02 3.64E-02 6.78E-02 1.07E-01 1.63E-01 13 .490348 0. 3.12E-01 9.00E-02 1.99E-02 1.60E-02 2.57E-02 4.55E-02 3.63E-02 1.19E-01 14 .500075 0. 1.55E-01 4.71E-02 0.18E-03 5.42E-03 6.48E-03 9.55E-03 2.38E-02 3.71E-02 4.83E-02 15 .498797 0. 1.55E-01 4.71E-02 2.82E-03 1.41E-03 1.64E-03 2.51E-03 6.59E-03 9.02E-03 9.30E-03 16 1.001328 0. 1.34E-02 4.84E-03 7.45E-04 2.87E-04 4.59E-04 1.21E-03 1.7E-03 1.33E-03 1.34E-03
11 .250411 0. 3.64E-01 1.06E-01 4.21E-02 3.65E-02 3.73E-02 3.64E-02 6.78E-02 1.02E-01 1.63E-01 12 .497123 0. 3.41E-01 9.21E-02 2.99E-02 2.74E-02 2.99E-02 3.60E-02 4.33E-02 1.10E-01 1.27E-01 13 .499348 0. 3.12E-01 9.00E-02 1.99E-02 1.60E-02 1.86E-02 2.57E-02 4.55E-02 3.63E-02 1.19E-01 14 .500875 0. 1.55E-01 4.71E-02 8.18E-03 5.42E-03 6.48E-03 9.55E-03 2.38E-02 3.71E-02 4.83E-02 15 .498797 0. 5.56E-02 1.79E-02 2.82E-03 1.41E-03 1.64E-03 2.51E-03 6.50E-03 9.92E-03 9.30E-03 16 1.001328 0. 1.34E-02 4.84E-03 7.45E-04 2.68E-04 2.87E-04 4.59E-04 1.21E-03 1.75E-03 1.33E-03 17 1.002764 0. 6.26E-04 3.55E-04 6.90E-05 7.19E-06 9.91E-07 8.66E-06 2.23E-05 3.46E-05 <t< td=""></t<>
12 .497123 0. 3.41E-01 9.21E-02 2.98E-02 2.74E-02 2.99E-02 3.60E-02 4.33E-02 1.10E-01 1.27E-01 13 .498348 0. 3.12E-01 9.00E-02 1.99E-02 1.66E-02 2.57E-02 4.55E-02 3.63E-02 1.10E-01 1.27E-01 14 .500875 0. 1.55E-01 4.71E-02 8.18E-03 5.42E-03 6.48E-03 9.55E-03 2.38E-02 3.71E-02 4.83E-02 15 .498797 0. 5.56E-02 1.57E-01 1.34E-02 2.82E-03 1.41E-03 1.64E-03 2.51E-03 6.50E-03 9.02E-03 9.98E-03 16 1.001328 0. 1.34E-02 4.84E-03 7.45E-04 2.69E-04 2.87E-04 4.59E-04 1.21E-03 1.33E-03 17 1.002764 0. 6.26E-04 3.55E-04 6.60E-05 7.19E-06 9.91E-07 8.66E-06 2.23E-05 3.445E-05 6.14E-05 18 0002764 0. 6.26E-04 3.55E-04 6.90E-05 7.19E-06 9.91E-07 8.66E-06 2.23E-05 6.14E-05
13 .498348 0. 3.12E-01 9.00E-02 1.99E-02 1.60E-02 1.60E-02 2.57E-02 4.55E-02 3.65E-02 1.5E-01 14 .500075 0. 1.55E-01 4.71E-02 0.18E-03 5.42E-03 6.48E-03 9.55E-03 2.38E-02 3.71E-02 4.83E-02 15 .498797 0. 5.56E-02 1.79E-02 2.82E-03 1.41E-03 1.64E-03 2.51E-03 6.58E-03 9.02E-03 9.30E-03 16 1.001328 0. 1.34E-02 4.84E-03 7.45E-04 2.87E-04 4.59E-04 1.21E-03 1.74E-03 1.34E-03 1.34E-03 1.64E-03 2.87E-04 4.59E-04 3.65E-03 9.30E-03 17 1.002764 0. 6.26E-04 3.55E-04 6.80E-05 7.19E-06 9.91E-07 8.66E-06 2.23E-05 3.45E-05 6.14E-05 18 0002764 0. 6.26E-04 3.55E-04 6.80E-05 7.19E-06 9.91E-07 8.66E-06 2.23E-05 3.45E-05 6.14E-05
14 500075 0. 1.55E-01 4.71E-02 0.10E-03 6.48E-03 9.55E-03 2.38E-02 3.55E-02 1.15E-01 15 .498797 0. 5.56E-02 1.79E-02 2.82E-03 1.41E-03 1.64E-03 2.51E-03 6.50E-03 9.02E-03 9.02E-03 16 1.001328 0. 1.34E-02 4.84E-03 7.45E-04 2.68E-04 2.87E-04 4.59E-04 1.21E-03 1.75E-03 1.33E-03 17 1.002764 0. 6.26E-04 3.55E-04 6.00E-05 7.19E-06 9.91E-07 8.66E-06 2.23E-05 3.46E-05 6.14E-05
15 .498797 0. 5.56E-02 1.79E-02 2.82E-03 1.41E-03 1.54E-03 2.38E-02 3.71E-02 4.83E-02 16 1.001328 0. 1.34E-02 4.84E-03 7.45E-04 2.68E-04 2.87E-04 4.55E-03 6.50E-03 9.02E-03 9.38E-03 17 1.002764 0. 6.26E-04 3.55E-04 6.80E-05 7.19E-06 9.91E-07 8.66E-06 2.23E-05 3.45E-03 6.14E-03 18 0002764 0. 6.26E-04 3.55E-04 6.90E-05 7.19E-06 9.91E-07 8.66E-06 2.23E-05 3.45E-03 6.14E-05
16 1.001328 0. 1.34E-02 4.84E-03 7.45E-04 2.68E-04 2.68E-04 4.59E-04 1.21E-03 1.74E-03 1.34E-03 1.34E-0
17 1.002764 0. 6.26E-04 3.55E-04 6.80E-05 7.19E-06 9.91E-07 8.66E-06 2.23E-05 3.46E-05 6.14E-05 18 1002764 0. 6.26E-04 3.55E-04 6.00E-05 7.19E-06 9.91E-07 8.66E-06 2.23E-05 3.46E-05 6.14E-05
18 1 002764 0. 0.000-04 0.000-05 (1)50-06 5.510-07 0.662.230-05 3.450-05 6.140-05
19 19 19 19 19 19 19 19 19 19 19 19 19 1
1.0011003 0. 1.002-00 1.022-00 1.022-00 1.012-00 2.302-00 2.008-07 5.35E-07 8.20E-07 2.81E-07
50 57(6:19 U. 5.35E-06 1.91E-06 3.6/E-07 3.69E-08 5.42E-09 4.72E-88 1.21E-87 1.88E-87 3.09E-98
1.000/29 0. 2.42E-0/ 1.38E-0/ 2.65E-08 2.61E-09 3.91E-10 3.40E-09 8.71E-09 1.35E-03 1.147-09
52 1.000103 0. 5.35E-08 3.98E-08 (.62E-09 8.0/E-10 1.12E-10 9.83E-10 2.53E-09 3.93E-09 0.
23 1.000584 0. 1.79E-08 1.03E-08 1.97E-09 2.08E-10 2.90E-11 2.55E-10 6.59E-10 1.02E-09 0.
44 .999460 0. 6.37E-09 3.76E-09 (.22E-10 (.65E-11 1.06E-11 9.33E-11 2.4IE-10 3.74E-10 0.
22 · 999288 0. 2·36E-09 1·36E-09 2·29E-10 0. 0. 0. 0. 0. 0. 0. 0.
20 1.000247 0. 9.16E-10 4.68E-10 7.93E-11 0. 0. 0. 0. 0. 0. 0.
9 24 <u>24248</u> 2 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
250344 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
<u>, 9</u> ,249670 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
1º 250163 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
11 • 250411 2.16E+00 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
14 497123 1.81E-01 3.48E+00 0. 0. 0. 0. 0. 0. 0. 0. 0.
13 498348 1.51E-01 2.99E-01 1.12E+01 0. 0. 0. 0. 0. 0. 0. 0.
14 •500875 6.54E-02 7.48E-02 4.52E-01 1.31E+01 0. 0. 0. 0. 0. 0.
13 498797 1,96E-02 3.87E-02 0. 4.38E-01 5.90E+00 0. 0. 0. 0.
15 1.001328 5.74E-03 8.75E-03 5.38E-03 0. 1.24E-01 2.71F+00 0. 0. 0.
1,002764 5.88E-04 6.51E-04 8.96E-04 0. 0. 3.03E-02 6.39E-01 0. 0. 0.

18 20 21 22 24 25 26 27 28 29 30	1.000374 1.00109 .997839 1.000729 1.000103 1.000534 .999460 .999208 1.000247 .996197 1.004107 1.001985 1.111858	4.98E-05 2.44E-06 1.77E-07 4.78E-09 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	6.02E-05 3.75E-06 3.97E-07 1.10E-08 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	8.91E-05 5.16E-06 4.74E-07 9.62E-09 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0 00 00 00 00 00 00 00 00	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	1.84E-02 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	3.06E-91 5.08E-93 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0. 1.73E-01 1.75E-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0. 0. 8.01E-02 1.40E-04 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
12345678901112341516718901222234567890	.125163 .105361 .117783 .182322 .249744 .249492 .500446 .250344 .249670 .250411 .497123 .498348 .500875 .498797 1.001529 .997889 1.007584 1.001509 .997889 1.007584 1.00584 .99248 1.009584 1.009584 1.009247 .996197 1.001985 1.001985 1.001985 1.001985	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0

How SINGLE-DIFFERENTIAL PROFILES. PSED How PSED(G-OUT) PSED(G-IN) G-IN OR G-OUT PER DELU-OUT PER DELU-IN

1 2 3 4 5 6 7 8	0. 1.341E+00 5.490E-01 1.707E-01 1.450E-01 1.459E-01 1.719E-01 2.002E 01	0. 2.447E+00 7.804E-01 2.535E-01 2.093E-01 2.096E-01 1.923E-01
6 9	1.719E-01 2.683E-01 3.771E-01	1.923E-01 2.892E-01

10 11 12 13 15 16 17 18 19 20 21 22 23 24 22 23 24 25 26 27 28 29 30	5.170E-01 7.1827-01 1.932E+00 5.908E+00 3.205E+00 2.785E+00 2.785E+00 1.381E-01 8.120E-02 1.754E-03 9.197E-04 6.800E-04 5.515E-04 3.534E-04 1.9937-05 4.198E-05 1.9067-05 1.9067-05	5.570E-01 7.540E-01 1.948E+00 5.835E+00 3.069E+00 2.742E+00 6.594E-01 3.112E-01 1.342E-01 8.008E-02 1.649E-03 9.062E-04 3.465E-04 3.465E-04 1.944E-04 9.185E-05 4.047E-05 1.356E-06
30	1.3615-06	1.3305-00
TO THE INTEGRAL	(1.385E+01)	1.385E+01

.

.

			SED UNCERTAINTY ANALYSIS # CONCIDENCIDENCIDENCIDENCIDENCIDENCIDENCIDE				
G- IN	MEDIAN G-OUT OF SED (FROM INPUT)	INTEGRAL SED-UNCERT. F (FROM IMPUT)	HOT INTEGRAL SENS. COEFF. S-HOT	COLD INTEGRAL SENS. COEFF. S-COLD	NET INTEGRAL SED SENSCOEFF. S (SHOT - SCOLD)	RESPONSE UNCERT. DR/R DUE TO SED-UNCERT. (F * 5)	
1 2 3 4 5 6 7 8 9 10 11 12 13 4 15 16 7 18 9 20 22 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 2 34 5 6 7 8 9 10 11 2 34 5 6 7 8 9 10 11 2 34 5 6 7 8 9 10 11 2 12 14 15 16 7 18 19 10 11 2 12 11 12 11 2 11 12 11 2 11	10 10 11 12 6 7 8 9 10 11 12 13 14 15 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	. 1289 . 1809 . 1909 . 8903 . 8889 . 8689 . 8689 . 8599 . 8599 8 . 8998 8 . 8998 8 . 8998 8 . 8988 8 . 8988 8 . 8988 8 . 8989 8 . 8988 8 . 8989 8 . 8980 8 .	0. 1.252E+00 2.890E-01 1.219E-01 9.572E-02 7.111E-02 1.320E-01 9.907E-02 1.377E-01 1.536E-01 1.536E-01 4.598E-01 4.598E-01 4.598E-02 6.958E-02 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0. 1.257E-01 3.661E-02 1.629E-02 6.247E-03 2.197E-02 3.360E-02 3.586E-02 3.586E-02 3.586E-02 4.560E-02 2.531E-02 9.968E-03 3.665E-04 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	8. 1.126E+00 2.504E-01 1.056E-01 8.944E-02 4.913E-02 9.07E-02 7.314E-02 1.016E-01 1.372E-01 4.375E-01 4.375E-01 1.8**2E-01 4.3*5E-01 1.8**2E-01 4.3*5E-02 6.9**1E-02 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0. 1.126E-01 2.504E-02 9.545E-03 7.159E-03 2.940E-03 6.879E-03 4.3%3E-03 6.110E-03 5.705E-03 6.910E-03 2.24RE-02 1.738E-02 1.738E-02 5.555E-03 6.921E-04 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	
TOTAL INTE	GRAL		3.820E+90	4.647E-01	3.355E+00	2.340E-01	

23.478 PER CENT

.

.

TNS(PGFR) XS-SENS.-ANALYSIS FOR AL-DPA-ADJ. *** F-COIL * 164SED (CU)

G	-IN (MEDIAN G-OUT OF SED FROM INPUT)	INTEGRAL SED-UNCERT. F (FROM INPUT)	HOT INTEGRAL SENS. COEFF. S-HOT	COLD INTEGRAL SENS. COEFF. S-COLD	NET INTEGRAL SED SENSCOEFF. S (SHOT - SCOLD)	RESPONSE UNCERT. DR/R DUE TO SED-UNCERT. (F * S)
G	- IN (1 2 3 4 5 6 7 8 9 10 11 1 12 3 4 5 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FROM INPUT) 8 7 4 5 6 7 8 9 10 11 12 13 14 15 16 0 0 0 0 0 0 0	(FROM INPUT) . 1100 . 1000 . 1000 . 0900 . 0900 . 0900 . 0700 . 0700 . 0700 . 0700 . 0700 . 0700 . 0600 . 0500 . 0200 . 0200 0. 0900 0. 0000 0. 00000 0. 00000 0. 00000 0. 00000 0. 00000 0. 00000 0. 00000000 0. 0000000000	0. 4.630E-01 8.145E-02 3.699E-02 4.943E-02 4.943E-02 9.737E-02 9.737E-02 9.392E-02 9.392E-02 9.387E-	0. 2.241E-01 4.331E-02 2.668E-02 3.407E-02 3.237E-02 6.140E-02 4.361E-02 4.365E-02 4.655E-02 4.655E-02 4.640E-02 5.801E-02 3.824E-02 2.711E-02 2.210E-02 4.352E-03 0. 0. 0. 0. 0.	(SHOT - SCOLD) 0. 2.389E-01 3.814E-02 1.031E-02 1.537E-02 1.672C-02 3.597E-02 2.031E-02 2.031E-02 4.531E-02 4.531E-02 4.531E-02 4.536E-01 7.169E-01 6.371E-01 3.795E-01 5.042E-01 0. 0. 0. 0. 0.	(F * 5) 0. 2.389E-02 3.814E-03 9.275E-04 1.229E-03 1.171E-03 2.518E-03 1.219E-03 1.219E-03 3.597E-03 1.310E-02 1.434E-02 1.274E-02 1.274E-02 1.274E-02 1.274E-02 0. 0. 0. 0. 0. 0.
	22 23	0 0	0.0000 0.0000	Ø. Ø.	Ø. Ø.	0. 0.	0. 0.
	24	0	0.0000	Ø.	Ø. 0	Ø.	Ø.
	20	0	0.0000	0. 0	0. 0	0.	คื
	27	0	0.0000	а. А	<u>я</u> .	о. Я.	
	28	D D	0.0000	<u>й.</u>	Й.	<u>й.</u>	0
	29	R R	0.0000	й.	<u>й.</u>	0.	ø.
	30	ø	0.0000	Ø.	0.	ø.	0.
TOTAL	INTEGRAL			3.956E+00	7.588E-01	3.197E+00	1.007E-01

10.074 PER CENT

-

TNS(PGFR) XS-SENS.-ANAL. FOR TF-KERMA *TF+E COILS* 176SED: CR.NI.FE

			o lolo lolololololololololololololok	SED UNCERTAINTY	ANALYSIS XOROOOO	iojokakiejejejejejejejejejejejejejejejejejejej	, , , , , , , , , , , , , , , , , , ,
	G-IN	MEDIAN G-OUT OF SED (FROM INPUT)	INTEGRAL SED-UNCERT. F (FROM INPUT)	HOT INTEGRAL SENS. COEFF. S-HOT	COLD INTEGRAL SENS. COEFF. S-COLD	NET INTEGRAL SED SENSCOEFF. S (SHOT - SCOLD)	RESPONSE UNCERT. DR/R DUE TO SED-UNCERT. (F * S)
	1 2 3 4 5 6 7 8 9 0 11 12 13 4 5 6 7 8 9 0 11 12 13 4 15 16 7 18 9 0 12 22 23 4 5 6 7 8 9 0 11 12 3 4 15 16 7 18 9 0 12 22 23 4 5 6 7 8 9 0	8 87 4 5 6 7 8 9 11 12 13 4 5 6 8 9 8 9 11 12 13 4 5 6 8 9 8 9 8 9 8 9 8 9 11 12 13 4 5 6 8 8 8 8 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9	. 1 1 00 . 1 000 . 0 900 . 0 900 . 0 7 00 . 0 7 00 . 0 6 00 . 0 6 00 . 0 6 00 . 0 6 00 . 0 2 00 . 0 2 00 . 0 2 00 . 0 2 00 0 2 00 0 2 00 0 0 0 0	0. 1.576E-01 5.899E-02 2.894E-02 2.641E-02 2.641E-02 2.950E-02 2.950E-02 4.038E-02 5.164E-01 1.464E+00 2.565E+00 2.165E+00 2.165E+00 2.165E+00 2.165E+00 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0. 5.179E-02 2.028E-02 1.257E-02 1.337E-02 1.244E-02 2.331E-02 1.917E-02 2.566E-02 3.054E-02 3.054E-02 7.853E-02 9.655E-02 1.578E-01 2.017E-01 2.017E-01 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0. 1.058E-01 3.871E-02 1.628E-02 1.711E-02 1.398E-02 2.150E-02 1.033E-02 1.472E-02 2.484E-02 4.758E-02 4.378E-01 1.368E+00 2.407E+00 1.984E+00 5.840E+00 0.840E+	0. 1.058E-02 3.871E-03 1.465E-03 1.369E-03 9.783E-04 1.505E-03 6.196E-04 1.490E-03 2.379E-03 1.751E-02 2.736E-02 4.814E-02 3.969E-02 1.166E-01 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
TOTAL	INTEGRAL			1.327E+01	9.183E-01	1.235E+0I	2.746E-01

· _ _ _ _

-

27.464 PER CENT

57

•— —

THS(PGFR) XS-SENS.-ANALYSIS FOR TF-COIL KERMA * SHIELD * 175SED: H.O

	MEDIAN G-OUT OF SED	INTEGRAL SED-UNCERT. F	HOT INTEGRAL SENS. COEFF. S-HOT	COLD INTEGRAL SENS. COEFF. S-COLD	NET INTEGRAL SED SENSCOEFF.	RESPONSE UNCERT. DR/R DUE TO SED-UNCERT
G-IN	(FROM INPUT)	(FROM INPUT)			(SHUT - SUULD)	([* 3)
	10	1200	8.	0.	0.	0.
2	10	1000	1.224E+00	1.453E-01	1.0790+00	1.079E-01
2	10	1000	2.917E-01	4.449E-02	2.472E-01	2.472E-02
3	11	. 8988	1.276E-01	2.044E-02	1.071E-01	9.643E-03
	12	. 0800	9.860E-02	I.011E-02	8.8500-02	7.089E-03
c S	16	. 8688	6.959E-02	2.326E-02	4.6330-02	2.780E-03
7	7	. 8788	1.251E-01	3.726E-02	8.785E-02	6.149E-03
í –	6	BEBB	9.328E-02	2.913E-02	6.4I5E-02	3.843E-03
	ä	9699	1.285E-01	4.040E-02	8.811E-02	5.287E-03
10	10	.0500	1.461E-01	4.521E-02	1.009E-01	5.0476-03
10	10	0500	1.742F-01	4.535E-02	1.209E-01	6.4435-03
12	12	. 0500	5.100E-01	6.094E-02	4.491E-01	2.2465-02
17	17	. 8499	5.293E-01	4.853E-02	4.808E-01	1.9235-02
13	14	. 0300	3.584E-01	3.331E-02	3.25/E-01	9.752E-03
15	15	. 8288	2.487E-01	2.224E-02	2.265E-01	4.52°E-03
15	16	.0100	3.976E-01	6.827E-03	3.900E-01	3.90AE-03
17	Â	0.0000	0.	0.	0.	0.
19	ă	0.0000	ø.	0.	0.	0.
19	ă	0.0000	0.	0.	0.	ю.
20	ă	0,0000	ē.	0.	0.	n.
21	ă	0.0000	0.	0.	0.	e.
22	ด้	0.0000	0.	0.	0.	ø.
23	ñ	0.0000	0.	0.	0.	<u>o</u> .
24	Ā	0.0000	0.	0.	0.	Я.
25	ē	0.0000	0.	0.	0.	Fi.
26	ñ	0.0000	0.	0.	0.	9.
27	ē	0.0000	0.	0.	0.	0.
28	ē	0.0000	0.	0.	Θ.	0.
29	ē	0.0000	0.	0.	Θ.	0.
30	ē	0.0000	0.	0.	0.	и.
			4.523E+00	6.127E-01	3.910E+00	2.388E-01

🖈 U.S. Government Printing Office: 1980 – 677 – 115/89

Printed in the United States of America, Available from National Technical Information Service 1:S Department of Commerce 5285 Port Royal Road Springfield, VA 22161

•

Mittoficht \$3.00

001-025	4,00	126-150	7.25	251-275	10.75	376-400	13.00	501-525	15.25
026-050	4,50	151-175	8.00	276-300	11.00	401-425	13.25	526-550	15.50
051-075	5,25	176-200	9.00	301-325	11.75	426-450	14.00	551-575	16.25
076-100	6,00	201-225	9.25	326-350	12.00	451-475	14,50	576-600	16.50
101-125	6.50	126-250	9.50	351-375	12.50	476-500	15 00	601-up	

Note: Add \$2,30 for each additional 100-page intrement from 601 pages up,