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K-COMPONENTS FOR THE -1.4-, -1.6-,
AND - 1.7-MeV STRUCTURES IN THE FISSION OF 232Th+ n

by

G. F. Auchampaugh, S. Plattard, N. W. Hill, G. de Saussure,
. R. B. Perez, and J. A. Harvey

ABSTRACT

Neutron-induced angle-integrated tission cross sections of 232Thwere measured from
0.7 to 9 MeV with a nominal neutron energy resolution of 0.15 ns/m. Data were taken
for the angular intervals Oto 23.4°, 0 to 33.7°,0 to 51.7°, and Oto 90°. The structures
at -1.4, -1.6, and -1.7 MeV were interpreted in terms of rotational bands with K =
1/2, 3/2, and > 5/2. The approximate relative fission strengths for the K-bands are in
the proportion 1.7:2.4:1.0, 0.0:2.6: LO, and 1.0:2 .8:0.0 for the three structures, respec-
tively.

1. INTRODUCTION

The apparent “simple” structure (hereafter referred to
as structure) observed in subthreshold neutron-induced
fission of 231PA230Th,and 232This well established from
high-resolution fission cross-section measurements.14
The lowest energy structures occur at neutron energies of
-157, ~180, x350, and w370 keV in 232Pa, at .-J715
keV in 231Th;and at x1.4, z1.6, and NI.7 MeV in 233Th.
They have a full width at half maximum (FWHM) 2000
to 10000 times greater than the spacing of the levels at
the neutron separation energy in the first minimum of the
multihumped fission barrier. In addition, they appear to
be composed of many narrower structures (hereafler.
referred to as tine structure). Good examples of fme
structure are the 157-keV structure, and possibly the
370-keV structure in 23 lpao Fufie~Ore, on a ‘Uch

.

finer energy scale, the shape of the structure or fme
structure is modulated by low-amplitude structure
(ultratine structure) with a smaller spacing than appears
in that of the tine structure. This is evident in the fission
cross section of ZjzTh.

Theoretical calculations, including mass asymmetric
distortions, of the fission barrier for nuclei with N -142
by Mollers and MoUer and Nix6 predict, in addition to
the second minimum, a shallow third minimum at a
much larger deformation. Because the wave functions of
the states in the third minimum must be odd or even un-
der the parity operation on the octupole deformation
parameter 83,5 the states occur in pairs with opposite
parities. The separation between the states depends on
the coupling between the two minima at +C3. The
rotational bands built on these states have opposite
parities but the same rotational constant A = h2/26,
where 6 is the moment of inertia of the nucleus at the
third minimum, and the same absolute value of the
decoupling parameter a for the K = 1/2 bands; the sign
of a is different for the two bands. Invoking a shallow
third minimum that traps at least one vibrational state
and possibly its associated rotational band can explain,
at least qualitatively, the structure observed in the fission
cross section in the subthreshold region.



Blons et al.3 use the rotational model to interpret the
tine structure at 715 keV in 23]Th ~ terms of the mem-

bersofa K= 1/2- and a K = 1/2+ band. From a shape-
fitting analysis of just their fission cross-section data,
they obtain 1.90 + 0.06 keV for A and 2.28 + 0.10 for a
(both parities). When they allow the decoupling
parameter to be parity dependent and use, as well,
available anisotropy data, they obtain 2 keV for A, and
for a, either 1.3 (K = 1/2+) and – 1.5 (1/2-) or –1.1
(1/2+) and 1.1 (1/2-).7

Blons et al! use the model to interpret the structure at
1.6 MeV in 233Thin terms of two K = 3/2 bands with

rotational constants of 2.46 and 2.73 keV.
It is tempting, therefore, to associate these small

values for the rotational constant with the third
minimum. Typical values for the ground-state deforma-
tion are about 9 keV (Ref. 8) for nuclei in this mass
region. For the fission isomers that occur in the second
minimum of the fission barrier, Specht et al.g obtain 3.33
keV for the 4-ns 240Puisomer, and Backe et al.’” obtain
3.36 keV for the 8-ps 23gPuisomer. Because the average
thorium rotational constant is about 20% smaller than
that for the fission isomers, a larger moment of inertia is
required, consequently, the minimum occurs at a larger
deformation. However, it is not clear, particularly in
232Th, whether the fine structure used to deduce the
rotational constant is related to the members of a K-
band or to fractionation of the vibrational state into more
complex configurations.11

A high-resolution fission cross-section measurement
delineates the structure in the cross section, but the data
alone do not show unequivocally that the structure
belongs either to special states in the second minimum or
to vibrational-mode states in the third minimum. Ad-
ditiord information is needed about the character of this
structure, such as its angular momentum components K,
J, and parity n. A measurement of the angular distribu-
tion of the fission fragments can provide information on
K, J, and sometimes m Traditionally these measurements
fall into two categories: (1) differential measurements
with reasonable angular resolution, but at selected
energy intervals greater than the width of the fme struc-
ture and, in general, with poor resolution, or (2) integral
measurements (0° to tl~ for a few limiting angles 13~,but
at many energies over the tine structure with an energy
resolution comparable to that used in the fission cross-
section measurement.

In 231pabelow 370 keV, where the free-structure width

is greater than 2.5 keV,2 the differential angular distribu-

tion data]2!13 have an energy resolution AE = 2 to 40

keV. For the 715-keV structure in 231Thwhere the tine-
structure theoretical width is about 7 keV,3 the differen-
tial angular distribution data14’]5 have AE = 10 to 36
keV. The time-of-flight (TOF) data* at 55 and 80° have
AE < 10 keV at 715 keV. In 233Th,where the structures
have a width of about 70 keV, and the fine structure has
a width probably less than 10 keV, the difTerentiaI
angular distribution data 16117have AE = 50 to 100 keV,

And finally, the TOF integral angular distribution data’
for 0~ = 45° have AE = 2.3 keV at 1.6 MeV.

Therefore, in all differential angular distribution
measurements, with few possible exceptions (Veeser and
Muir, and Ref. 12), the neutron energy resolution is
much greater than the width of the tine structure. The
TOF measurements have the necessary energy resolu-
tion, but because the structure is more complex than at
first thought, a measurement of the anisotropy at one
angle, or for a rather large angular interval, does not
provide sutlicient information to determine K, J, and n.
However, such data on even-odd transition nuclei do
provide information on the relative strengths of the K =
1/2 vs K > 1/2 components in the cross section because
there are significant differences between these two
angular distributions: K = 1/2 distributions are peaked
in the fore-aft direction relative to the beam direction
whereas the K > 1/2 distributions are peaked more at
90° to the beam direction.

For differential measurements that use monoenergetic
neutrons from a charged-particle reaction, a further com-
plication that arises is knowing accurately the energy of
the neutron from the reaction. An error of 5 keV, which
is not unrealistic for such reactions, becomes important
when trying to measure the angular distribution for a fine
structure with a width of just a few kilovolts, or when
comparing differential and fission cross-section data
taken with different experimental conditions.

What is needed, therefore, is a high-energy resolution,
good angular resolution, differential fission cross-section
measurement. Such a measurement is virtually impossi-
ble with today’s neutron intensities. However, as a com-
promise, we have undertaken anisotropy measurements
of these isotopes at more than one limiting ang[e using
the TOF technique. This report describes the %%
measurement.

.

*

,

.

●Information providedby L. R. Veeserand b. W. Muir, 1976.
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II. EXPERIMENTAL DETAILS

A. General

The neutron-induced fission cross section and fission-
fragment anisotropy measurements for 232Thwere per-
formed at the Oak Ridge National Laboratory Electron
Linear Accelerator (ORELA) using the standard water-
cooled tantalum target for neutron production. The data
were taken using the TOF technique with a nominal time
resolution of 0.15 ns/m. The accelerator was operated at
either a pulse width of 5 ns (total data acquisition time of
-343 h) or a pulse width of 6 ns (-190 h) at a repetition
rate of 800 Hz and an
kW.

B. Fission Detector

The fission-fragment

average power on target of 8.5

detector, located at an average
distance of 41.68 m from the neutron source, consists of
a six-cell sealed gas scintillator fdled with a 98?40He, 2%
Nz mixture at STP. The chamber is pumped for several
days to a pressure of less than 10-7 torr before it is ffled
with the gas mixture. The gas is not circulated and
filtered during the measurement. The fission-fragment
pulse-height distribution recorded simultaneously with
the time information shows no pulse-height resolution
degradation because of impurity build-up in the gas or
breakdown of the molecules from alpha-particle radia-
tion (over a period of several months).

Five of the cells contain natural thorium and one cell
contains enriched uranium (93‘h 235U), which is used to
measure the neutron spectrum. Thorium oxide is painted
to an areal density of 2 mg/cm2 of 232Thon both sides of
a semicircular foil of titanium, 20 cm in diameter and
12.5 ~m thick, that is sandwiched between two 20-cm-
i.d., 0.5-mm-thick titanium rings. The uranium is elec-
troplated on both sides of a 50-~m-thick stainless steel
foil to an areal density of 0.5 mg/cm2. Each foil is placed
in the center of a cell that is optically isolated from the
others by aluminum reflectors on all sides of the cell. A
schematic diagram of the chamber is shown in Fig. 1.
Cell 3 contains the uranium foil, and cells 4, 5, and 6
contain Duralumin grids placed over the fissionable
deposits. Hexagonally packed holes machined into these
grids limit the maximum angle tl~ of emission of the tis-
sion fragments with respect to the beam direction. The

dimensional characteristics of the grids are given in
Fig. 2.

Each cell is viewed by two XP 2020 Q, 5-cmdiam
photomultiplier tubes manufactured by La Radiotechni-
que Compelec. The tubes are supplied with quartz flat-
face plates. The cell windows are made of quartz to
achieve the maximum possible ultraviolet transmission
from the scintillating gas to the photocathode surface of
the tube. The tube is mounted in direct contact with the
window and held in place by springs between the tube
base assembly and the chamber.

C. Electronics

A schematic showing the electronics for a pair of
tubes is shown in Fig. 3. The stop signal for the EG&G
TDC -100 time digitizer (TDC) is derived from a quadru-
ple coincidence between a signal from an ORTEC 934
constant fraction discriminator (CFD) that is used for
time information, signals from each of the tubes, and a
signal from another CFD that is used for the fission-
fragment energy bias. The range on the TDC is adjusted
to cover the neutron energy region of interest and to ex-
clude the time region of the gamma burst. The pretrigger
(PT), counted down by 1000, provides a gate to enable
storage of the gamma burst every 1000th beam pulse.
However, during these measurements, the PT/1000
feature was disabled. The zero flight-time channel for
each cell is obtained by disconnecting all stop signals to
the encoder except the one corresponding to the cell be-
ing checked, and increasing the range to allow storage of
the gamma burst. Also, in this way, the time drift in the
electronics for each cell is periodically monitored during
the measurement. This drift varied by less than a few
hundred picosecond over a period of months.

III. DATA REDUCTION

A. General

The TOF spectrum and fission-fragment pulse-height
spectra for selected TOF windows were stored in-
dividually for each cell in a SEL 810B computer. The
data were dumped to magnetic tape and the computer
memory was cleared daily. In this way, we could monitor
conveniently the time drift and time and pulse-height
resolution of the detector. The 5-ns burst-width data
were recorded with a time/channel of 1 ns, and the 6-ns
burst-width data with a time/channel of 2 ns. Because
the resolution of the fine structure in the 1-ns data did

3
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Fig.3.
Electronics for a pair of photomultipliers used for each ceU.

not improve perceptibly over that of the 2-ns data, the 1-
ns data were summed by 2 channels and added to the 2-
ns data. The data from cells 1 and 2 were combined to
form a single ungridded data set. All thorium data were
corrected for deadtime and for a small time-independent
background determined from the data in the region
below the fission threshold, where essentially no neutron-
induced fission events were expected. The uranium
background was obtained at low energy where Of is
known. The 23SUdata were repeatedly smoothed with a

.
third-degree seven-point smoothing polynomial before
forming ratios of the individual thorium data sets to the
uranium data set. And finally, the ratios were converted.
to cross sections using the ENDF/B-IV evaluation for
the 23SUfission cross section. A correction was included

for the contribution of 23sU (7Yo)to the 235U-cell data.

B. Normalization

The 23zThfission cross section at the neutron energy
En for the ith cell integrated over the deposit-grid
geometry (the ith integral fission cross section) is given
by

C~32(E~——
C23S(E~

Al u:3s(E~ , (1)

where i = 20, 30, 45, and 90° (Fig. 2); C~32and C235
refer to the net counts/charnel recorded for the ith 232Th
cell and 23SUcell; and Al is a normalization constant that

is related to the efficiencies for detection of fission frag-
ments and to the sample masses in the thorium and
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uranium cells. By choosing an energy region where the
angular dependence of the fission cross section f(a) and

the quantity #2/a~’s are known, the normalization con-
stant can be determined experimentally using the relation

~,, ~ C2JS W,(i)
Al=+

~~’ (2)

where the sum extends over all channels in the energy
region, and Wt(i) = ~ ~a)dfl(i).

The best measurement of U~32/tJ~3Sis that of
Behrens,*s who obtained an average value of 0.127 +
0.003 for the energy interval from 3 to 5 MeV. Lo Nigro
et al. *9measured the angular dependence of the fission
cross section at selected energies from 1.78 to 5.23 MeV.
For the energy region from 3 to 5 MeV, f(a) can be ap-
proximated by the even-order polynomial 0.932+ 0.205
COS2a. The calculated values of the Wt(i) using the
techniques described in Sec. 111.Eare Wt (20°) = 0.109,
W, (30°) = 0,260, W, (45°) = 0.701, and W, (90°) = 27r.

C. Sample Thickness Effects

The average range of a fission fragment in a thorium
dioxide deposit is u7.5 mg/cm2.20 Because the thorium
deposit is rather thick (2 mg/cm2, which represents a
large fraction of the average range), the average max-
imum angle of emission of fragments from the deposit is
-82°. In the normtdization of data, this afTectsprimarily
the accuracy of the cross section for the ungridded data
at energies other than in the normalization region, and
only if the cross section is anisotropic. This can be seen
by considering the correction to the cross section at an
energy E, which is given approximately by ~ fn(a)
d~/~flcqE)dfl. The limits on a are from O to -82°;
~a,E) is the anisotropy of the cross section at E; fn(a) is
the anisotropy of the cross section in the normalization
region. At E, this ratio is 1 if f(a,E) is isotropic, <1 if
~a,E) is peaked more fore-aft than in the normalization
region, and >1 if ~a,E) is peaked more at 90°.

We have ignored this correction because it depends on
knowing the anisotropy of the cross section as a function
of E, which is what we are trying to measure, and it af-
fects primarily the fission cross section for which there
are several high-quality measurements. However, this ef-
fect should be kept in mind when
cross section with those measured

6

comparing our fission
using thinner deposits.

D. F(a) Functions

If we assume that the fission fragments are emitted
along the axis of symmetry of the nucleus, and that K is.
a good quantum number from the transition state to scis-
sion, then the directional dependence of the fragments is
determined uniquely by the quantum numbers J, K, and
M (the projection of J onto the space-freed axis, normally
taken to be the direction of the incoming projectile). The
probability that a transition state defined by J, K, M
emits a fragment at an angle a relative to the beam direc-
tion into a conical volume defined by the angular incre-
ment da is given by21

dPwM(a) = ~ [d&(a) 12 dQ , (3)

where d~~(a) is the absolute value of the angular part of
the wave function of the Hamiltonian for a rigid rotor
and is defined by the relation22

d~~a) = {(J + M)!(J – M)!(J + K)!(J – K)!}”2

(-l)”[sin (a/2)] K-M+2n[cos(a/2)] U-K+M-2n
xx

n (J –K – n)!(J + M– n)!(n + K–M)!n! ‘

(4)

The sum is over n = O, 1, 2 ... and contains all terms for
which no negative values of the factorials occur in the
denominator of the sum. The angular distribution of the
fission fragments is given by dPKJM/d~ and is nor-
malized so that

J‘2J+1
z ld~K(a)12 sin a da = 1.

0

In general, both AK projections contribute qually to
the distribution. In addition, for unaligned nuclei and for
even targets, all projections of M carry equal weights.
Therefore, the distribution must be averaged over AK
and summed over all allowed values of M:

1
-XJM

x

‘0 dP ‘“M
T

~ (a)+% (a) =

M=-%

~ ~m01d~K(a)12 + ]d~_K(a)12 , (5)
-..

M=-”.



where mOis the minimum value of (J,I + 1/2) and I is the
target spin.

For an even target n10= 1/2, Eq. (5) can be simplified
to

(6)

using the symmetry relations23
.

And finally, multiplying Eq. (6) by 2n we arrive at the ex-
pression for the f-function

F(a) = 2’ J 1 [Idb,da)l’ + Idk-x(a)l’] . (7)

To reduce our data to cross sections and to calculate
theoretical cross sections for a specific K,J, we need to.
evaluate efficiently integrals of f“(a) over the geometry
of the grid in the chamber. Rather than deal with the d-
functions directly, we algebraically reduce Eq. (7) to a
polynomial in even powers of v = cos a. The absolute
value of the d-function can be written in terms of the
variables u and v, where
U = C0s2 a/2 = (1 + CO.Sa)/2
and
v = sin2 a/2 = (1 – cos a)/2.

The sum of the square of the d-functions contains terms
u%” and u“ + v“ (n = odd). Using the relations

[1I–L2 n
l’”v”. —

4

and

1

[

n(n – I)Lz
un+vn=— 2,-1 1 + 21

L

n(n – 1)(32– 2)(32– 3)y4
+

4!
+ ...

. 19
-1

Eq. (7) reduces to

t“(a) = cKJ~ a~~2” . (8)
n=o

Values of the coefficients ~’ and c“ for 1/2 < K, J <

9/2 are listed in Table I. Equation (8) is normalized so
that for a plane source ~~ ~a)d~ = 1. The range on J,
and therefore K, corresponds to a range on the neutron

orbital angular momentum of O s ts 4. Values oft >4
make a negligible contribution to the cross section in the
energy region of greatest interest in 232Th,namely, En <
3 MeV.

E. W?(i) Integrals,

These integrals depend on the angular momentum
quantum numbers K,J through the functions ~(a),
defined in Sec. 111.D, and cart be written as W~(i) =
~f’’(a) df2(i), where df2(i) is the solid angle subtended by
the ith grid for an infinitely thin source deposit. Lent24
presents a derivation of the solid angle for a source mul-
ticollimator detector system that can be adapted to the
grid problem by considering the entrance hole of the grid,
nearest the source, as an infinitely thin aperture of radius
rl at ZI and the exit hole of the grid as the detector of
radius R at z = O. For generality, we assume that r, # R.
The geometry for this problem is illustrated in Fig. 4.

The solid angle subtended by the detector at a point

(P,I$,z) in the source is defined by

f2(p,l$,z) =
JJ

cos a rdr d13, (9)

d(r,e,o)
I
I

kI

a

I#,z )

> DETECTOR RADIUS R

>

1(0,0,2, ) APERTURE RADIUS r,

2 SOURCE RADIUS P

hz’

Fig. 4.
Grid geometry for the numerical calculations. The
angle a detines the polar angle for a ray from the point
(P,+-) iII the sourcethrough the point (r,tl,()) in the
detector.
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TABLE I

VALUES FOR THE COEFFICIENTS CU AND a~
IN THE EXPANSION FOR THE ANGULAR

DISTRIBUTION OF THE FISSION FRAGMENTS
EMITTED FROM AN EVEN-ODD

TRANSITION NUCLEUS

KJ
~KJ a: a? a~J a~ ~

1/2 1/2
1/2 3/2
1/2 5/2
1/2 7/2
1/2 9/2

3/2 3/2
3/2 5/2
3/2 7/2
3/2 9/2

5/2 5/2
5/2 7/2
5/2 9/2

7/2 7/2
7/2 9/2

9/2 9/2

1
1/2
3/4
1/16
5/64

3/2
3/8

15/16
15/32

15/8
5/16

35/32

35/16
35/128

315/128

o
1
1

9
9

1
1
1
1

1
1
1

1
1

1

0 0 0 0
3 0 0 0

–2 5 0 0
45 –165 175 0

–36 294 –644 441

–1 o 0 0
14 –15 o 0

–7 27 –21 o
20 –126 252 –147

–2 1 0 0

33 –69 35 0
–12 66 –100 45

–3 3 –1 o
60 –186 188 –63

–4 6 –4 1

where

co’ a = [z’ + r’ + p’ - ~rp cos (0 - $)]”2 “ ‘ga)

If the source emits particles with an anisotropy ~(a),

then the weighted solid angle is given by

Qy(p,l$,z) =
~ ~ fw(a) cos a rdrde

— j fm(a)d(cos a) “
(lo)

Substituting Eq. (8) into Eq. (10) and remembering that
-~ ~J(a) d(cos a) = 1,

$Yy(p,$l,z) = Cw JJ x a: cos2n+1a rdrdO .
n

(11)

The W(i) integral is obtained by weighting nf (P,I$,z)
by the source distribution function s(p,$), which for a cir-
cular source of radius P is given by

~p~’x s(p,())@’(p,$,z)pdpd4
Wy(i) =

~f s(w$)vbd$
. (12)

If we assume that the source strength is uniform, then
s(p,$) = 1 and Eq. (12) becomes

(13)

The limits on the Oand r integrals can be determined
easily by projecting the aperture onto the detector plane
as shown in Fig. 5. The projected area has a radius ~

and an origin at (dl,y 1~0)~where



I r.,
I

0“ = 1$1~ + COS-l
(d: + R’ – r[z)

2d;R ‘
(14)

I 1 /~0 (p,lp, z) and the limits on r for all cases are~---- -~-
- .0”.-- r~ = max[O,r~(0)]

.-- //” - (;O,Z,)

I

/ and
rl’

t

/“

(;,;,0) ru = rnin[R,r~(13)] ,
APERTURE SOURCE

RADIUS r, RAOIUS P where

DETECTOR
RADIUS R

r~(0) = dl COS(VI– 6)

- [r(’ – d: sin’(~l - 0)]”2 ,

Sic view of gridgcometry~Tlredashed lines project the
radius r, of the aperture on the detectorplane from a r~(0) = dl COS(VI– 0)
point (p,&) in the source. The projected area has an
ofig~ at (d,,+,,O) in the dctsctor phme with a radius r:. + [rl’ – d: sin’(w, – 0)]1’2 , (15)

and max[,], and min[,] denote the maximum and
rlz minimum values of the variables in the brackets.

‘~=(z–z,)’ The limits f3~,u and r~,u are a function of the grid
parameters z – z,, the distance between the grid and the

dl=~ , source, Zl, the thickness of the grid, and r,, the radius of
(z – z,) the hole in the grid.

and Lent” does not consider case (c), and case (b) does

ly, =n+l$l.
not reduce to case (c) for dl > {~. How”ever,
case (c) is important for distributions that are side-

Diagrams of the projected areas superimposed on the ways-peaked, which in 232Thoccur for distributions with

detector area are shown in Fig. 6 for three possible cases: J,K > 1/2.

(a) d, < r(; (b) r;< d, < {R-z; ~d (c) d, >
The complete expression for the W integral is obtained

m. The limits 0“ e ~d r me those v~”es that
by substituting Eq. (11) into Eq. (13),

constrain the integration to the shaded portions in the
figure. If we denote the lower and upper limits on 0 and r
by the subscripts L and U, respectively, then the limits

w~(i)=$l’’rc:c::

on 0 for the three cases are
x a: Cos2“+la rpdrdpdOd$ , (16)

(a) (3,=0, n

0u=21t, where f3~,~i) and r~,u(i,Oj are calculated for each
grid i using Eqs. (14) and (15) and cos a is given by Eq.

()(b) f3L= V, – sin-’ ~ ,
1

(9a).

()
1. Trapezoidal Method. The ‘multiple integral in Eq.

(IU= tyl + sin-l I ,
dl

(16) is evaluated on a CDC 7600 computer using the
trapezoidal rule of numerical integration for each in-

and tegral. To reduce the calculation time for a single W!’(i),

(d: + R’ – r(’)
vector algorithms are used whenever possible. The ef-

(C) e,= v, – CoS-’ ficiency of a vector operation on a 7600 computer in-
2d;R ‘ creases with the length n of the vector because of the

overhead time associated with the start-up of the vector

9,



(a)

Fw. 6.
Projections of the aperture onto the detector area for

&

the CIMC%●) d, < r:, (b) r; < 4s ti~~ md (c) 4
> +r:.

.,.-
~2+ r12

rl’<d,_ I

.-ud,> R2+f2
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operation. Therefore, it is advantageous to make n as
large as possible and yet consistent with available core
memory. For reasonable values of t’ (the number of in-
tegration intervals), the improvements in run time are
marginal with vectorization if each integral is evaluated
separately. On the other hand, there is not enough core

. memory to evaluate all four integrals as one composite
integral because, in this case, n = P. Compromising, by
evaluating the radial integrals as one composite integral

.
and with t = 25 for all integrals, we were able to
calculate a W?(i) in about 2.5 s to an accuracy of about
10-3, essentially independent of the number of terms in
the expansion for P’(a), at least up to 5 terms.

2. Monte Carlo Method. The multiple integral in Eq.
(16) is evaluated also by using the Monte Carlo method.
To achieve the same accuracy requires considerably
more time, about 7 s per W~(i). However, the Monte
Carlo method allows us to confirm the results obtained
by the trapezoidal method and to investigate the effects
of the adjacent six holes in the hexagonal grid pattern
(Fig. 7) on the solid angle for the central hole. Because
the grid does not lie on top of the deposit (Fig. 2) but is
elevated from it by 0.5 mm, a fission fragment emitted
from an area just below any one of the adjacent holes
could pass through the central hole, thus increasing the
solid angle for the central hole.

In Fig. 7, the common source area (dashed line) for
hexagonal packing of circular holes is a hexagon of side
length equal to nlfi, where n is the separation between
the centers of the circles. To simplify the geometry for
the calculation, we replace the hexagon by a circle (dash-
dot line) whose area is equal to that of the hexagon. The
radius of this circle is given by r, = (@/2n)u2n.

The calculations are made in two steps, one with the
source centered below the central hole (W3 and the other
with the center of the source displaced by n(W~.
Therefore, the total solid angle W, = WC + 6W~.

To illustrate the effects of the adjacent holes on Wi(i),
we list in Table II values of W,(i), W~(i), and Wt(i) (i =.
20, 30, and 450, for an isotropic distribution fl’2 “2(a),
for a distribution peaked at 0°, fl’2 “2(a), and for a dis-
tribution peaked at 90°, f“2 “2(a). We see that the effects
are largest for the 450 grid and for sideways-peaked dis-
tributions.

Because the exact calculation of Wi(i) is time-
consuming, Eq. (16) is sometimes approximated by the
integral —2rt~ P’(a) d~. We have evaluated this integral
for the three functions considered in Table II and list the

results under the heading W,(i). The values of W~ are 3
to 5 times greater than Wt for the isotropic distribution,
and 9 to 16 times greater for the sideways-peaked dis-
tribution. In fact, W,/Wt is not the same for each grid.
Therefore, any theoretical calculations of the cross sec-
tion using W~ instead of Wt would not properly
reproduce the trend in the data with angle, even if the
calculations were normalized to a particular set of data.

Table III shows the values of W~(i) for the three grids
and for all the functions of F’(a) given in Table I.

IV. RESULTS

integral fission cross sec-The 232Thneutron-induced

tion in millibars for the grid angles 20, 30, 45, and 90°
are presented in Figs. 8a-d for the interval from 0.7 to
1.3 MeV, in Figs. 9a-d for the interval from 1.3 to 1.8
MeV, in Figs. 10a-d for the interval from 1.8 to 2.8 MeV,
and Figs. 11a-d for the interval horn 2.8 to 9 MeV.
Statistical error bars are given every 10th data point. The
curve through the data is obtained by applying a third-
degree, five-point smoothing polynomial, six times to the
data. We hope that, in this way, the true structure in the
data is revealed while suppressing that from statistical
fluctuations. Figures 9a-d and 10a-d have suppressed
zero ordinate scales to enhance the structure in the data.

The structure observed at -1.4 MeV, which is enhan-
ced in the 20 and 30° data, and the structures at -1.6
and -1.7 MeV have received considerable attention both
theoretically and experimentally. However, the structure
at z2.2 MeV, which has a peak height greater than the
1.7-MeV structure, has received very little attention.
Even above this energy there are observable structures
with nonnegligible peak heights. In fact at -2.4 MeV,
one structure appears as a dip in the 20 and 300 data
and disappears as the grid angle is increased. This
suggests a strong sideways-peaked (K - J > 1/2) com-
ponent in the cross section at this energy.

In addition to the pronounced single-ch,.nce fission
threshold at N 1.3 MeV, there are indications of
thresholds or highly damped vibrational states at about
0.9 and 1 MeV. Also, the plateau regions show tine
structure, particularly in the gridded data, that occurs at
approximately the same energies in all data.

At the second-chance fission threshold at approx-
imately 6 MeV (Figs. 1la-d), there are indications of
broadened structure that persists even above the
threshold, particularly apparent in the 20 and 30° data.
A strong forward-peaking in the angular distribution of



c

Fig. 7.
Grid Dattcm showing the hexagonal source area (dashed tine) and the circular approximation to this area (dash-dot
line). The radius of the circle r,= (@2rz)%s.

the fission fragments has been observed in earlier
measurements2s near the second-chance threshold.
Furthermore, statistical arguments about the fission
process support this observation: the elastically scattered
neutron in the n,n’fprocess leaves the transition nucleus,
in this case 232Th,in a rather low excited state. This state
is expected to have a K << J, which would
preferentially emit fragments in the fore-aft direction
relative to the beam direction. However, this is the
energy region, more appropriately the time region, where
we can expect electronic problems associated with the in-
tense gamma flash from the Iinac. And therefore, this
structure may be artificial.

The smooth curve reveals low-amplitude structure
throughout the entire energy region, particularly
noticeable in Figs. 9a-d, which occurs at all angles and
has a spacing of z 15 keV. Over the 1.6-MeV structure
the energies of the low-amplitude structure peaks agree

within 1 to 2 keV (our energy resolution at this energy is
-7 keV) with those observed in the recent high-
resolution fission cross-section data presented by Blons
et al.’

V. THEORETICAL CALCULATIONS

A. General

Figures 8-11 show considerable structure as well as
fine structure in the data at all energies, but particularly
in the 1- to 3-MeV regions. The interpretations of the
structures at -1.4, -1.6, and z 1.7 MeV in 133Th by

Abou Yehia et al.,26Blons et al.,4 and Caruana et al.lt re-
quire many K-vibrational states, each with a rotational
band to explain, at least qualitatively, the general
features in the fission cross section. The interpretation of

.
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TABLE II

VALUES OF WKJ(i)FOR AN ISOTROPIC
SOURCE DISTRIBUTION, FOR A

DISTRIBUTION THAT PEAKS AT 0°,
AND FOR A DISTRIBUTION

THAT PEAKS AT 90°

(i) W,(i)(a) 6W~(i)(b) Wt(i)(” w.(i)(d)

(0) (sr) (sr) (sr) (sr)

KJ = 1/2 1/2

20 0.092 0.004 0.096 0.517

30 0.214 0.019 0.233 1.056

45 0.549 0.085 0.634 2.355

KJ = 1/2 5/2

20 0.256 0.011 0.267 1.172

30 0.548 0.040 0.588 2.294

45 1.185 0.119 1.304 3.654

KJ = 5/2 5/2

20 0.00043 0.00008 0.00051 0.0082
30 0.0038 0.0012 0.0050 0.0655
45 0.0458 0.0222 0.0680 0.6118

‘WC is the value of the integral with the source
centered.
bwh iS the v~ue of the integral with the source
displaced by n.

‘W, = WC+ 6W~.

‘W, is for a dktribution with no grids and with the
maximum polar angle limitedto em(Fig. 2).

the fine structure at 715 keV in ZJITh by B]ons et al.3 re-

quires two K-bands of opposite parity. Furthermore,

numerical studies by Bjornholm and Lynn” of the cou-
pling of pure vibrational states to intrinsic states at the
deformation of the second minimum indicated that pure

? vibrational resonances are unlikely to occur in odd-mass
nuclei; some observable degree of fractionation of the
vibrational strength is to be expected; that is, the struc-
tures in the thorium isotopes, in particular for 233Th,may
be rather complex. For these reasons, and because the
statistical quality of the gridded data is poor, any
detailed theoretical analysis of our data or least-square
fitting of the structures is not warranted. However, it is

useful to derive values for the theoretical areas of in-
dividual K, J, x resonances and the total area for each K-

band (summed over all J > K components) to compare
with the experimental areas. The area of a resonance
with quantum numbers K, J, n for angle i is related to the
area at another angle i’ by just the ratio

W~”(i’)
w~’~(i) ‘

“whichis independent of the nuclear model chosen for the

cross-section calculations. This is in contrast to the total
K-band area, which is a sum over individual K,J”,
components with weights that do depend on the nuclear

13



TABLE III

OF W;’(i) FOR i = 20, 30, AND 45°,VALUES
AND FOR 1/2 s K, J < 9/2

W:K(20”) W{K(30”) W:K(45”)
J (sr) (sr) (sr)K

1/2
3/2
5/2
7/2
9/2

0.0964
0.1830
0.2670
0.3270
0.3830

0.2330
0.4290
0.5880
0.6760
0.7330

0.6340

1.0850

1.3040
1.3590

1.3730

1/2
1/2
1/2
1/2
1/2

0.0298
0.1050
0.2140
0.3490

0.1840
0.5430
0.8900
1.1010

3/2
3/2
3/2
3/2

3/2
5/2
7/2
9/2

0.0062
0.0225
0.0526
0.0933

5/2
5/2
5/2

5/2
7/2
9/2

0.0005
0.0029
0.0093

0.0050
0.0250
0.0710

0.0680
0.2710
0.5630

7/2
7/2

7/2
9/2

0.0000
0.0004

0.0010
0.0065

0.0280
0.1360

0.0002 0.01179/2 9/2 O.0000

model. However, this model dependence is weak, be-
cause for a particular K, the WKJ(9)functions for all J >
K (except J = J = 1/2) are very similar, either
forward-peaked (K = 1/2) or sideways-peaked (K >
1/2).

Vibrational-Resonance Width. To obtain an upper
limit on the vibrational-resonance area A~”, we need to

choose a reasonable value for r“lb. In 232pa the
resonance at 157 keV has an observed width of -2.7
keV (our resolution <1/2 keV.z The structure at -715
keV in *31This composed of resonances with theoretical
widths of -7 keV.3 In 233That -1.6 MeV, our 30° data
suggest a resonance width of less than 10 keV if we
assume that the structure, which has a total width of-50
keV, is composed of several resonances. In our calcula-
tions, we use rvi~ = 10 keV for all K, J, n resonances.

B. Vibrational-Resonance Area

If we assume that the energy dependence of the fission
cross section for a vibrational resonance located at an

energy E,lb with quantum numbers K, J, n can be
described by the Breit-Wigner function, then the area of

cross section at

the resonance

()

nA~m(~,b,i) = ~

where c7~(Evlb,i) is

is given by

O~n(Evlb,i)r%~ ,

C. Integral Fission Cross Section

Using the Hauser-Feshbach theoryz’ for compound
reactions, the integral fission cross section at an energy
En for the reaction with quantum numbers K, J, z is
given bythe integral fission

Evlb for the grid angle i, and r% is the FWHM of the
O&(En)T~(E~ W?(i) Sn,f

, (17)&’R(En,i) = ~(En) + T~(E~ + T%’(E.)resonance.

14
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Fig. 8.
Integral fission cross sections for the
energy interval 0.7 to 1.3 McV for 20, 30,
45, md 90° grids. The solid line is ob-
tained from smoothiig the data with a
five-point, thiiddegrcc polynomial applied
six times.
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Integral fission cross sections for the
energy interval 1.3 to 1.8 MeV for the 20,
30, 45 and 90° grids. The solid line is
obtained from smoothing the data with a
five-point, thiiddegrce polynomial applied
six times.
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Fig. 10.
Integral fission cross sections for the
energy interval 1.8to 2.8 MeV for the 20,
30, 4S, and 90° gri&. ‘l’he solid line is
obtained from smoothing the data with a
five-point, thirddegrce polynomial applied
six times.
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Fig. 11.
Integral fission cross sections for the
energy interval 2.8 to 9 MeV for the 20,
30, 45, smd 90° grids. The solid line is
obtained from smoothing the data with a
five-point, thirddegrec polynomial applied
six ties.
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where o~ is the compound nucleus formation cross sec-
tion, T? is the transmission coefficient for decay
through the multihumped fission barrier, T: is the
transmission coefllcient for radiative decay in the
ground-state well, T~” “N the transmission coefllcient for
neutron decay including elastic and inelastic scattering to
states in the target nucleus, and Sn,r is the level width-
fluctuation factor, which, in the present calculations, is
taken to be unity.

1. Compound-Nucleus Formation Cross Section. The
compound-nucleus formation cross section in the
channel-spin representation at an energy En can be writ-
ten as

where = ~n is the center-of-mass wavelength of a

neutron of energy En, g(J) = (2J + 1)/2(21 + 1), and ~
is the neutron transmission coefficient for the elastic
channel with orbital angular momentum t and channel
spin s. The neutron transmission coefficient is related to
the strength function r~D, (rfl/D <<1) in the following
way.

= 4nS:T((En) , , (18)

where S$ is the average reduced-strength function for

the channel ts and P( is the neutron penetrability for

neutrons of orbital angular momentum f. For larger

values of the strength function, a more correct

expression28’29 for T/$ is 1- exp (–47rS$ P{). This expres-

sion has the proper limiting values, namely, T$ = 1 for
S$ >>1 and T(s = 47tS$ P( for Sfi <<1. In our calcula-
tions, we use this form for T$ and ignore the channel-
spin dependence.

Values of ~~ (EJ at En = 1.6 MeV for l/2* s J“ s
. 9/2i are listed in Table IV. For S: we use 0.019 (Ref.

30) for even values of t and 0.028 (Ref. 30) for odd
values of f.

2. Radiative Transmission Coefilcient. To calculate
the radiative transmission coetlicient, we assume that
only dipole radiation contributes significantly to the
radiative process. Therefore, the radiative transmission

TABLE IV

FOR THE COMPOUND SYSTEM 232Th+ n,
VALUES OF THE COMPOUND-NUCLEUS
FORMATION CROSS SECTION CJ~;(En),

FISSION CROSS SECTION @I(En) (TY = 1),
IUDIATIVE TRANSMISSION COEFFICIENT

P;(En), AND TOTAL NEUTRON TRANSMISSION
COEFFICIENT (INCLUDING ELASTIC AND

INELASTIC REACTIONS) ~(E~,
FOR En = 1.6 MeV

1/2+ 6.9 0.45 199.9 23.9
3/2+ 12.0 0.87 280.3 20.2
5/2+ 15.4 1.22 420.5 23.9
7/2+ 16.3 1.48 78.2 4.16
9/2+ 17.2 1.64 97.7 4.93

l/2– 7.8 0.45 275.8 29.9
3/2– 13.8 0.87 551.7 35.2
5/2– 16.8 1.22 389.0 20.5
7/2– 18.2 1.48 518.6 25.1
9/2– 18.1 1.64 22.8 1.10

coellicient T~(E~, at an excitation energy EX in the
compound system ‘3Th, is given by

(19)

where

p’ (EX– LJ;f)

is the level density in the compound system at an
excitation energy E, – &for final states with total angular
momentum J~ and parity no and CY= 3.63 x 10-7. The
normalization constant is determined by using for slow
neutron capture (J = 1/2+) in 232Ththe measured values
21.2 meV and 16.7 eV (Ref. 30) for ~, and D,
respectively.

At high excitation energy, the contribution to the
nuclear level density comes from combinations of
nucleons independently excited from the ground state.
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This gives rise to the well-known independent particle
level density relation

~UJ7 = (2J + 1) exp[ – (2J + 1)2/862]

4fia3
x

(20)

where tsz= 0.0888 aTAV3, T = ~ and a = n2p$6.
The single-particle level density p, at the Fermi surface is
given approximately by A/12.5. U is the effective excita-
tion energy corrected for pairing effects in the nucleus
using the method proposed by Gilbert and Cameron,3 *
and is given by

U = EX – E – P(Z) – P(N).

For 233Th, P(N) = O, P(Z) = 0.78, and a = 31,6

MeV-l. In the calculations of T~, we use this form for
the level density and allow a to vary with energy ac-
cording to the above dependence on U through the
nuclear temperature T.

Values of ~yX(E~ at E = 1.6 MeV for 1/2s Js 9/2
are listed in Table IV. We have assumed implicitly that,
to fiust order, the nuclear level density is the same for
both parities.

3. Total Neutron Transmission Coefficient. The total
neutron transmission coefficient for elastic and inelastic
scattering to states in the residual nucleus at an excita-
tion energy EXis given by

‘I@R(Ex – s“ – &, f’)d& , (21)

where

is the level density in the residual nucleus at the
excitation energy EX— SN — q I = spin of the residual
nucleus with parity ZI = (—l)%, and SN is the neutron

separation energy in 233Th, which is equal to 4.789
MeV.30

Above an excitation energy EX– SN= 0.8 MeV in the
residual nucleus, pR is represented by the constant-
temperature level density relation pR(U)= Cne-u/o,
where (3 is the nuclear temperature and Cn is the nor-
malization constant that is obtained from fitting the in-
tegral distribution of known levels in 232Th(Ref. 32) up
to 1.6 MeV with the function

I
1.6

PR(U) dU .

The constant 1/2 implies that both parities contribute
equally to the level density. For O= 0.58 MeV and a =
5.3 (Ref. 29), Cn = 0.211. Below E, = 0.8 MeV, discrete
levels in 232Thare used to preserve the known spin and

parity of these levels.
Values of T~”(En) at En = 1.6 MeV for l/2* ~ Jn ~

9/2+ are listed in Table IV.

4. Fission Transmission Coefficients. Calculations of
fission barrierss’6 for the protactinium and thorium
isotopes show that the inner barrier is lower than the
outer barrier, and furthermore, that the outer barrier is
split into two barriers separated by a shallow minimum,
In fact, the inner barrier height may lie below the neutron
separation energy. Consequently, if we are interested
only in the properties of the states trapped in this shallow
well, then the effect of the inner barrier on these proper-
ties is minimal. Therefore, we can replace the triple-
humped barrier by a double-humped barrier.

The energy dependence of the penetrability of
transmission coefllcient through a double-humped poten-
tial represented by two inverted parabolas connected
smoothly to a third parabola can be calculated exactly
using the wave equation33 or approximately using the
WKB method.34

Using the WKB approximation, the relations between
the fission barrier parameters and the vibratiomd
resonance parameters are

(22a)
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11611*1
rvi~ = ~ (T, + TC) , (22b)*

Evlb= EI,l + hwIII (n + 1/2) , n = o, L 2 ... , (22c)

and

TB,C= 1

{[

, (22d)

1 + exp # (E,,c – Evl~)
B,c 1}

where E~ Ec are the inner and outer barrier heights, E1lI
the depth of the intermediate well, and hw~, hoc, and
hco,[l are the barrier curvatures. Therefore, six
parameters are required to define uniquely Tr,~*X,‘“lb!
and E,ib. Measuring Tf,~~Xand rv,b for one structure
does not determine the parameters of the barriers. Con-
versely, without information on the barrier parameters,

Tr,~., and r.lb can be chosen independently of each
other. Solving the wave equation produces similar results
as long as the trapped level is well below the height of the
lower barrier. To calculate a maximum resonance area,
we can set T~,~~X= 1.

D. Results For The Vibrational-Resonance Areas

Theoretical values of individual resonance areas
~“(En,i) for i = 20,30,45, and 90° (Om= 900), l/2i <

K, J“ < 9/2*, and En = 1.6 MeV are listed in Table V. In
calculating these areas, we use the values of
a$J~Tf,~aX= 1) listed in Table IV and let rwib=
10 keV. These areas can be scaled by Tf,~u x I’vl~10 for
other choices of rvl~ and Tf,mm.The areas for complete
K-bands,

1=912

A~”(En,i) = ~ A~’(E.,i) ,
J2K

are Listed in Table VI.
Tables V and VI, for i = 20 and 30°, show that the

most important contribution to the area of a structure in
the 1- to 2-MeV region comes from K = 1/2 and K =
3/2 components. The K > 3/2 components are minimal
even for i = 450 and become important only for i = 90°.

TABLE V

VALUES OF THEORETICAL
VIBRATIONAL RESONANCE AREAS
A~n(En,i) FOR i = 20, 30, 45, AND 90°,

l/2* s K, J“s 9/2*, rvlb = 10 keV,
AND T~&X = 1 AT En = 1.6 MeV

20” 30” 450 90”
KJ” (mb-keV)

1/2 1/2+
1/2 3/2+
l/2 5/2+
1/2 7/2+
1/2 9/2+

1/2 l/2–
1/2 3/2–
1/2 5/2–
1/2 7/2–
1/2 9/2–

3/2 3/2+
3/2 5/2+
3/2 7/2+
3/2 9/2+

3/2 3/2–
3/2 5/2–
3/2 7/2–
3/2 9/2–

5/2 5/2+
5/2 7/2+
5/2 9/2+

5/2 5/2–
5/2 7/2–
5/2 9/2–

7/2 7/2+
7/2 9/2+

7/2 7/2–
7/2 9/2–

9/2 9/2+

9/2 9/2–

5.8
9.2

16.0
3.4
4.7

7.2
16.1
13.7
20.5

1.1

0.3
1.5
0.5
1.1

0.5
1.3
3.3
0.3

0.0
0.0
001

0.O
0.2
0.0

0.0
0.0

0.0
0.0

0.0

0.0

13.9
21.7
35.1

7.0
9.0

17.4
37.8
30.1
42.4

2.0

1.5
6.3
2.2
4.3

2.6
5.4

13.4
1.0

0.3
0.3
0.9

0.3
1.6
0.2

0.0
0.1

0.1
0.0

0.0

0.0

37.8 375.4

54.8 317.3

77.9 375.4

14.1 65.3

16.9 77.4

47.3 469.7

95.5 552.9
66.8 322.0

85.3 394.3

3.8 17.3

9.3 317.3

32.4 375.4

9.3 65.3

13.6 77.4

16.2 552.9

27.8 322.0

55.8 394.3

3.0 17.3

4.1 375.4

2.8 65.3

6.9 77.4

3.5 322.0
17.0 394.3

1.5 17.3

0.3 65.3

1.7 77.4

1.8 394.3

0.4 17.3

0.0 77.4

0.0 17.3

*Gai et SI.34incorrectly givethe FWHM of the resonances as

h% (Tn + Tcl
211 2“
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TABLE VI

VALUES OF THEORETICAL K-BAND
AREAS A~”(Enj) FOR i = 20, 30, 45, AND 90°

l/2* s K“ s 9/2*, r“lb = 10 kev,
AND T~#,x = 1 AT En = 1.6 Me~

20” 30” 450 90”

Ku (mb-keV)

1/2+ 39.1 86.8 201.6 1210.9

3/2+ 3.5 14.3 64.6 835.5

5/2+ 0.2 1.4 13.8 518.2
7/2+ 0.0 0.1 2.0 142.8
9/2+ 0.0 0.0 0.1 77.4

l/2– 58.6 129.7 298.7 1756.2

3/2– 5.4 22.4 102.9 1286.5

5/2– 0.2 2.0 22.0 733.6
7/2– 0.0 0.1 2.1 411.5

9/2– 0.0 0.0 0.0 17.3

The gridded data (i = 20, 30, 450, are most sensitive to
the K s 3/2 components.

VI. COMPARISON OF EXPERIMENTAL AND
THEORETICAL AREAS

A. General

Experimental values for the areas of the structures at
1.4, 1.6, and 1.7 MeV are plotted in Figs. 12-14 as a
function of the angle 0~ (Fig. 2). The lower and upper
limits are 1.33 and 1.5 MeV for the 1.4-MeV area; 1.5
and 1.65 MeV for the 1.6-MeV area; and 1.65 and 1.75
MeV for the 1.7-MeV area. These values represent the
areas above a baseline drawn under the structures that
approximates the plateau region above the fission
threshold at -1.3 MeV. The errors plotted are conser-
vative estimates of how accurately we can define the
areas.

The solid lines in these figures represent the trend of
the theoretical areas listed in Table VI with angle for
complete K = 1/2- and K = 3/2- bands. The dashed
lines in Figs. 12 and 14 represent cases for combinations
ofa K

weights
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. 1/2- band and a K = 3/2- band with the
indicated in the figures.

We have normalized the theoretical areas to the ex-
perimental areas at 0~ = 33.70. We are allowed this
freedom as long as the ratio of the experimental to
theoretical areas times r,lb does not exceed the minimum
observed width of the structure. For instance, the
theoretical areas for the 1.6-MeV structure could be in-
creased by a factor of 5 [observed width of the structure
in the 30° data (-50 keV) divided by the actual width
used in Tables V and VI] before violating this constraint.
However, not all members of a K-band could have a
width of 50 keV and preserve an overall width for the
band of 50 keV. It is possible that the structure is com-
posed of several K-bands, in which case the theoretical
area would be a sum over these bands, and we would not
necessarily have to increase r“lIJto match the experimen-
tal areas.

In the following section, we do not explicitly specify
the parity of the K-band because both parity bands give
comparable results. In addition, we use the results in
Tables V and VI for En = 1.6 MeV and ignore the energy

dependence of these results.

B. Complete K-Band Area Results

1. 1.4-MeV Structure. For the 1.4-MeV structure, the
trend in the experimental gridded areas with angle can be
explained almost entirely by a K = 1/2 band. However!

the K = 1/2 band underestimates the 90° area by about
a factor of 2. This can be improved slightly by combining
a K = 3/2 band with a K = 1/2 band in the ratio of 2:1
as shown in Fig. 12 by the dashed line. These two bands
in this ratio more than account for the observed gridded
areas, which means Tf,~,x and/or rv{b can be smaller.
Also, if we normalize the theoretical areas for these two
bands in the ratio 2:1 to the 33.70 experimental area and
use the ungridded area to calculate the relative fission
strengths (integrated over polar angle) for K = 1/2, 3/2,
and z 5/2 bands, we fmd that they are in the proportion
of 1.7:2.4:1.0. A conservative estimate of the uncertain y
on these ratios is about +15%.

2. 1.6-MeV Structure. For the 1.6-MeV structure, the
gridded areas can be explained entirely by several K =
3/2 bands, as shown in Fig. 13 by the solid line labeled K
. 3/2. A single K = 3/2 band does not have sufficient

area, even if r“lb is greater than 10 kev> to account for
the experimental gridded areas. Likewise, these bands do
not account for all the 90° area; in fact, they account for

.

.
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Fig. 12.
Comparison of the experimentalareas with theoretical predic-
tions of complete rotational bands for the 1.4-MeV structure.
The solid lines connect the theoretical areas for a K = 1/2-
bsmdmd a K = 3/2- band. The dashed line connects the areas
for the combination (K= 1/2-) + AK= 3/2-). AUcurves are
normalized to the experimental area at 13m= 33.7°. The
predictions for the positive parity bands are sirniiar.

only about 3/4 of the area. Even if there is a significant
K = 1/2 component in the 1.6-MeV structure, it would
not help at 90°; A~’2(900)<<A~n(900). Therefore, we are
required again to invoke K > 5/2 components in the 1.6-
MeV structure. In this case, however, the unaccounted-
for 90° area, about 4 b.keV, would require many K >
5/2 bands because they have relatively weak strength at
90°. Assuming that most of the experimental area at
33.7° is a result of K = 3/2 bands, the approximate
relative fission strengths (integrated over polar angle) for

the K = 1/2, 3/2, and > 5/2 bands are in the proportion
of 0.0:2.6:1.0.

3. 1.7-MeV Structure. For the 1.7-MeV structure,
neither a K = 1/2 nor a K = 3/2 band separately ac-
counts for the gridded areas. However, if we combine
these bands in the ratio of 4(K = 3/2):/(K = 1/2), then
we can fit rather well all experimental areas, even the 90°
area, as indicated by the dashed line in Fig. 14. The sum
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Fig. 13.
Comparison of the experimental areas with theoretical
predictions of complete rotational bands for the 1.6-
MeV structure. The solid lines connect the theoretical
areas for a K = 1/2- band and a K = 3/2- band. Both
curves are normalized to the experimentalarea at 0. =
33.7°. The predictions for the positive parity bands are
similar.

of the theoretical areas for these two bands more than
accounts for all experimental areas, again suggesting
smaller values for Tr,~.Xand/~r rVl~.Using the 4:1 ratio
for the K = 3/2 to K = 1/2 strengths normalized to the
experimental area at 33.70, the approximate relative tis-
sion strengths (integrated over polar angle) for the K =
1/2, 3/2, and z5/2 bands are in the proportion of
1.0:2.8:0,0.

C. Individual Vibrational-Resonance Area Results

So far, we have tried to explain the observed areas in
terms of complete K-bands in which each rotational
member has the same Tf,~~Xand r“ltyparameters. This is
idealistic. It is more likely that the fission barrier
parameters of individual states are significantly dfierent
from each other, and that not all members of a particular
K-band would have sufficient strength to be observed in
the data. An analysis in terms of individual resonances

28



I0,

I

s
2
A.
a
I.sJ
u
a

(

o

I 1
I

1 I I
I

1

,

K=3/2-

(K=l/2-)+ 4 (K=3/2-)

.

I I 1 I I I I I
20 40 60 80

i

LAB ANGLE (deg)

Fig. 14.
Comparison of the experimental areas with theoretical
predictions of complete rotational bands for the 1.7-
McV structure. The solid tines connect the thsoreticat
areas for a K = 1/2- band and a K = 3/2- band. The
dashed line comsds the areas for the combination (K
. 1/2-) + 4(K = 3/2-). AU curves are normsdiied to
the experimental area at 0. = 33.7°. The predictions
for the positive parity bands arc simiiar.

with parameters unrelated to each other except in some
faverage sense would be unmanageable without ad-
ditional data and, therefore, any results would not be
very meaningful. It is worthwhile, however, to mention
two general observations based on the data in Table V
and the experimental areas. Let us concentrate on the
1.6-MeV structure because it is defined better in the grid-
ded data than the other structures. The experimental area
of the 30° structure is about 97 mb. keV. An inspection
of the K = 3/2 areas in Table V reveals that no single

resonance would exhaust this area even if rvlb is in-
creased to the observed width of -50 keV; for the 1.6-
MeV structure, many K = 3/2 resonances are required.
[n addition, the K = 3/2 areas would underestimate the
experimental 90° area, thus requiring K z 5/2 compo-
nents. A similar statement can be made for the other two
structures, namely, that many individual resonances are
required for each structure, and except for possibly the
1.7-MeV structure, K > 5/2 components are present in
the structures.
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VII. COMPARISON WITH DOUBLE- AND
TRIPLE-HUMPED BARRIER CALCULATIONS

TABLE VII

Two attempts have been made at a detailed channel
analysis of the structure in 233Th in the 1- to 2-MeV
neutron energy region using fission cross-section and
angular distribution or anisotropy data. Caruana et al.’b
compare the results from a triple-humped model with
those from a double-humped model by fitting their
angular distribution data and the fission cross-section
data of Blons et al? For the double-humped model, they
cannot fit both data sets with the same set of K-band
parameters, even after an extensive trial-and-error search
of many different sets. For the triple-humped model,
both data sets in the region of the 1.6- and 1.7-MeV
structures can be described adequately by either (1) the
set K = 1/2+, 5/2- (1.4 MeV), 312h, 3/2-, 3/2-, 512-
(1.6 MeV), and 1/2+, 5/2+ (1.7 MeV), or (2) the set K =
3/2+, 1/2+ (1.4 MeV), 512-, 3/2-, 312-, 5/2- (1.6 MeV),
and 5/2+, 1/2+ (1.7 MeV). The energy in parentheses in-
dicates the structures to which the preceding K-bands
apply. However, neither triple-humped set gives a

satisfactory fit to the 1.4-MeV region, although set (2),
which has K = 3/2 and 1/2 components, gives a better fit
to their 1.35-MeV angular distribution. In general, set (2)
agrees better than set (1) with our results, although we
require K = 3/2 components for the 1.7-MeV structure

and, most certainly, K a 5/2 components for the 1.4-
MeV structure.

A significantly better tit to the fission cross section
and to all 1(0°)/1(900) data is obtained by Abou Yehia et
al.zb for a double-humped model with’ the transition
states listed in Table VII. The values of r“[b and Tr,~~X
are calculated from their barrier parameters using Eq.
(22a-d). If we assume that our values of Orare about the
same as those used in the analysis in Ref. 26, and that TN

+ TY>>Tf [consequently their areas are equal to our
areas (Tables V and VI) multiplied by rvi~ X Tf,~.J 10],
then their predictions about the relative strengths of the
K-bands are in remarkable agreement with our results,
particularly for the 1.7-MeV structure. Their ratio of (K
= 3/2):(K = 1/2) fcr the 1.7-MeV structure is 3.6, and
we estimated about 4. For the 1.4-MeV structure, their
values for r,lb x Tf,mu give 1.95 for the ratio (K =
3/2):(K = 1/2). This is the source of the factor of 2 for
the dashed line in Fig. 12. And, for the 1.6-MeV struc-
ture, their parameters support our conclusion that very
little K = 1/2 component is required to account for the
areas at all angles.

TRANSITION STATE PARAMETERS

(Km ‘vib! Tf,mu) FOR THE STRUCTURES
AT -1.4, -1.6, AND -1.7 MeV’

Structure
(MeV) Kn (:::) ‘r f.max

1.4 1/2+ 75 0.29

3/2+ 80 0,53

1.6 1/2+ 107 0.11

3/2+ 82 0.42

3/2k 53 0.60

5/2* 83 0.49

1.7 1/2+ 47 0.10

3/2+ 42 0.40

“Based on the barrier parameters in Ref. 26.

VIII. SUMMARY

We now know from all analyses what the primary K-
components are of the fission strength of the structures
at 1,4, 1.6, and 1.7 MeV in zjjTh. From our results, we

can give the relative strengths of the K-components in
each structure. We find the approximate proportion of K
—— 1/2 to K = 3/2 to K z 5/2 strengths in the ratios Of
1.7:2.4:1.0,0.0:2.6: 1.0, and 1.0:2.8:0.0 for the structures
at 1.4, 1.6, and 1.7 MeV, respectively. Furthermore, if
the fine structure has a width of about 10 keV (with a
limit of <50 keV) then a great many states are required
to account for the area of each structure in the fission
cross section.

And finally, because our K-component strengths are
derived without assuming a particular shape for the fis-
sion barrier, they do not confirm the existence of the
shallow mass-asymmetric well predicted by Moller and
Nix,b even though they are consistent with recent triple-
humped barrier calculations.
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