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HORIZONTAL DIFFUSION IN THE ATMOSPHERE:

A LAGRANGIAN-DYNAMICAL THEORY

by

F. A. Gifford

ABSTRACT

A form of Langevin’s equation is derived that is applicable
to the atmospheric diffusion problem. The resulting equation for
the particle displacement variance u; has limits at small and
large diffusion times equal to asymptotic predictions of statistical
diffusion theories but provides, in addition, estimates over the
broad, middle range of diffusion, which is important in regional
and larger–scale atmospheric applications. Predictions of the
theory compare well with standard atmospheric diffusion data sets
over a range of diffusion times, from seconds to days. When
parameters of the theory are determined from short-range plume
diffusion data, the theory predicts large-scale eddy diffusivity,
K, in the known atmospheric range, a striking confirmation of the
ability of this theory to describe atmospheric diffusion.

INTRODUCTION

Conventional wisdom is to the effect that there are three theories from

which useful working models of atmospheric diffusion can be derived by

analytical techniques. These are statistical theory, gradient-transfer or

K-theory, and similarity theory; see, for example, such applications-oriented

surveys as those by Pasquill (1975), Gifford (1975), Drake, et al. (1979), and

Barr and Clements (1980). This paper attempts to focus attention on a fourth,

alternative theory of diffusion and to demonstrate applications to horizontal

atmospheric diffusion over a wide range of diffusion times. The theory goes

by various names: the Brownian-motion analogy (Chadam, 1963; Lin and Reid,

1962); the Langevin model (Krasnoff and Peskin, 1971); the random-force method

(Novikov, 1963). It is probably fair to say that all these studies were to a

considerable extent motivated by the brief paper by Obukhov (1959), in which

he proposed that the evolution of a diffusing air particle’s motion in the

atmosphere forms a Markov process and can be described by the Fokker–Planck

equation in physical space.
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In this report, a form of Langevin’s equation will be derived

from an expression for the diffusing air particle’s motion, proposed

Smith (1968);

v(t ‘T) = R(~)v(t) + n(t) .

directly

by F. B.

(1)

The velocity, v, of a small volume of air (a “particle”) at a time T seconds

after the present time, t, is given according to this simple hypothesis by the

sum of a correlated part, R(~)v(t), and a purely random, uncorrelated part,

n(t). For a stationary, homogeneous turbulent flow, R(T) can be shown to be

the Lagrangian velocity autocorrelation function. The random increment to the

wind speed, n(t), satisfies the conditions that F = O and FiV = O; the overbar

indicates ensemble averaging. Smith derived a number of statistical-

kinematical consequences from (1) for diffusion in stationary, homogeneous

turbulence. In particular, he was able to show, by assuming an exponential

form for R, that if the particle statistics are conditioned by the requirement

that the initial velocity, v(0), have a constant value over the ensemble, then

the mean 7square particle displacement, O; = y , where y = dv/dt, is

proportional to t3. More recently, Reid (1978) and Hanna (1979) have made

equation (1) the basis of Monte-Carlo computer simulations of atmospheric

diffusion and have shown, again by assuming an exponential R, that asymptotic

results of statistical diffusion theory are reproduced by these calculations.

In addition, Hanna showed, by extensive direct comparisons with atmospheric

turbulence data, that equation (1) is widely applicable in the atmospheric

boundary-layer.

The Langevin equation for turbulent dif~usion.

The turbulent wind speed v(t + -r)can be expanded in series of powers of

‘c;

v(t + -c)= v(t) + ~dv/dt + (higher order terms). (2)

Since for small enough T, say -c= ~s, the higher order terms can be neglect-

ed, it follows directly from (1) that

2
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dv(t)/dt +{[1-R(TJ]/T~} v(t) =n(t),

a form of Langevin’s equation, where n(t) = n/-rs.

(3)

The exact magnitude of ~~ will play no specific part in the following

discussion. It is for our purpose most simply considered to be an averaging

(running mean) time of the “true” microscopic particle velocity, vi, which

in general

Considered

molecular

(1965, pp.

hypothesis

anemometer

erties of

is the sum of macroscopic and molecular components; thus

t+Ts

v(t) =T;l
1

vi(~)d~
+
L

from this point of view, TS has to be

irregularities in vi; see, for example,

. (4)

large enough to smooth out

Obukhov (1959) or Papoulis

514-517). Thus it plays a role similar to that of the continuum

of fluid mechanics. As a practical matter, even the most sensitive

measures v, not vi. Dynamical, as well as thermodynamical, prop-

the microstructure of vi are naturally of fundamental physical

concern; some aspects have been discussed by Novikov (1963). For present needs

it is adequate to assume that the ratio (1 - R)/T approaches a definite limit

as -rapproaches -cs. A similar assumption was introduced by G. I. Taylor

(1921) in discussing diffusion by discontinuous movements.

Langevin’s equation is usually presented in the form

dv/dt + Bv(t) =n(t) (5)

from which, with (2), it follows that B = [1 – R(Ts)]/rs. Comparison of

(5) with the Navier - Stokes equation (Lin and Reid, 1962) suggests that the

particle motion is nearly free, but is influenced by a small, random, non-

resistive force n which arises from the pressure terms, acting at large

scales, and by a smaller resistive force –Bv, associated with the viscous

terms, which acts as a local drag force on the particle. If (5) is multiplied

by v and averaged, the stationary condition, dv2/dt = O, implies that
‘2yv = Bv . This is interpreted to mean that m is the average rate of energy

supply to the particle due to work by the random pressure forces. Novikov
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(1963) states that its value should differ from the eddy-energy dissipation

rate, C, by at most a factor of order unity. This is balanced by the term

BV2, which equals the viscous dissipation rate.

The system of stochastic differential equations, (5) together with

and the boundary cond

V = dyldt, (6)

tions, Y = O and v = v o at t = O, possesses solutons

that are well known from studies of Brownian motion; see especially Chan–

drasekhar (1943) and Uhlenbeck and Ornstein (1930). Formulations in terms of

the turbulent diffusion problem are mathematically equivalent to these. How-

ever, the papers by Lin and Reid (1962), Chadam (1963), Novikov (1963), and

Krasnoff and Peskin (1971) bring out many important dynamical aspects that are

specific to the turbulent diffusion application and should be consulted

especially for these insights. The following discussion concentrates on the

applicability of these solutions to atmospheric diffusion, for which purpose

they have a number of interesting and potentially quite useful properties.

The mean-square particle displacement.

Equation (5) can be solved for v(t) by standard methods (variation of

parameters), with the result that

t
+3t + e-

J B(t-s)n(s)ds= dy/dt.v(t) = voe

o

(7)

Despite the complicated, stochastic nature of (5), due to the random-force

term n, existence and uniqueness of solutions are guaranteed by appropriate

theorems; see Yaglom (1962), for instance. Equation (7) can be integrated

once again to get the particle displacement, y;

t
-1 -f3t -lt

Y(t) = (vo/8)(1-e-Bt) - B e
[

e%l(~)d~ + B
I

n(~)d~ “

o 0

(8)

.
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If (8) is averaged, it is found that

fit) = (vo/jl)(l-e-Bt); (9)

and so in this model only for suitably large t does the mean particle’s axis

approach a constant value, ~= Vo/B.
7The mean-square displacement, ay, is found directly, by squaring

and averaging (8); the result is

2
a = (2~/B)t + (~/f32)(l - e-~t)z + (7/62) (-3 + 4e-Bt-e-2St). (lo)
Y

The limiting value of this equation for large t is

a;= (2V7/8)(t-3/2S) = (2VT/B)t,

from which it can be concluded by analogy with results from K-theory that

(~/B) = K, the (large scale) eddy diffusivity. Thus we may also write (10)

as

2 = 2Kt + (vo2/62)(1-e-Bt)2 + (K/B)(-3 + 4e-Bt - e-2Bt).
aY

(lOa)

Except that the parameters are defined in terms of the macroscopic turbulent

velocity, v, these results are mathematically identical to the corresponding

ones for Brownian motion.

The initial velocity, Vo, affects

not at large values of t. If, however, a

all possible values of Vo, equation (lOa)

()2aY V. = (Zhl%t -1

the dispersion near the source but

further averaging is performed, over

becomes (since then v: = V2)

+e -Bt) . (11)

Taylor (1921) obtained this result for stationary, homogeneous turbulence, by

assuming an exponential autocorrelation, R. Contrasting with

present theory, the autocorrelation function, R, can be derived

equation (5). The result, when the initial velocity V. has

value zero, is (Papoulis, 1965, eq. 15-17)

this, in the

directly from

the specific



R(t,~) = v(t+ ~)v(t)/v7= (1 - e-2Bt)e-BT. (12)

This time-dependent function approaches the steady value R = e-BT only after

diffusion ;mes equal to several times the Langrangian time scale,
~-l

‘L =
= K/v , which will ordinarily equal on the order of 102 to 103

seconds in the atmosphere. Thus, the influence of a specified initial veloci-

ty (even one equal to zero) persists for considerable travel times of the

particle. A simple exponential correlation thus defines the particle motion

only after a displacement of the time origin (equal, according to (9), to

Vo/8) Such that the velocity cm h considered to be a stationary random

process, i.e., when (corresponding to Taylor’s statistical theory) v(t) has

random values, unconditioned by Vo.

Limiting cases of the displacement variance.

Equation (12) can be written in a concise, nondimensional form by means

of the following substitutions; a = K/B,

b =T~/B2, 1: = a~/2a, c = 1 – bla, and T = Bt.

Then equation (lOa) becomes

z$=T - (l-e-T) - (c/2)(1-e-T)2. (13)

The nondimensional ized dispersion, X2, is thus seen to depend on a single

parameter c . 1 $- b/a = 1 - Vo/(BK) = 1 - v~/~. On the average,

this parameter varies between zero and unity depending on the yalue of b/a,

which, in effect, is the ratio of the instantaneous turbulence level at the

source to that of the entire flow.

For large values of T, equation (13) has the limit

(14)

.

.

4

.which is equivalent to
2

‘Y
= 2Kt.
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Thus, it reproduces the well–known constant K, or Fickian diffusion solution,

which is also the large-time limit of the statistical theory of diffusion, to

which reference has already been made.

If the exponential terms in (13) are replaced by their power series, it

develops that

~2~ = (b/2a)T2 + (1/3 - b/2a)T3 + h.o.t. (15)

Two distinct limiting cases for small values of T follow, depending on whether

b/a is large or near zero. For large values of b/a, equation (15) reduces to

x;= (b/2a)T2,

or

(16)

2 = v2t2
‘Ye”

(16a)

For 2 averaged al1 ~ =J
‘o

over possible values, i.e.,
o , (16a)

provides the usual small-time limit of statistical thory. However, when the

initial velocity, Vo, is specified to have a fixed value, (16a) equally

2 but resulting,indicates a small–time dispersion proportional to t in this

case, from an initial source effect. Thus (16a), with constant Vo, is

related to the corresponding result from the theory of relative diffusion, for

which the instantaneous cloud spreading is as t2 up to times large enough

that the effect of the initial source configuration disappears.

When b/a is small, i.e., when c approaches unity, the small-T limit

becomes

2
‘Y

= T313. (17)

Since tL = B-l = K/v2 is the Lagrangian time scale of the turbulent

flow, this is equivalent to

‘$ = (2/3)(r/tL)t3. (17a)

This result was derived by Smith (1968) as a consequence of his conditioned

particle motion diffusion theory, but by assuming an exponential autocorre–

lation. Relative diffusion theory also produces a result of this form for the

7



instantaneous cloud

are negligible, but

Consequently,

the time-averaged,

spreading, applicable after initial source–size effects

it involves an undetermined constant.

equation (13) includes all the asymptotic results of both

Taylor form of diffusion theory and the relative,

instantaneous–spreading form. Moreover, it is able to quantify some of these

by providing explicit coefficients. Since equations (1) and (5) imply one

another, equation (13) also reproduces results from the conditioned particle

motion model, such as equation (17a), as well as various results of recent

random–walk computer simulations based on equation (1) and an assumed

exponential velocity correlation. However, the exponential form of R is, in

the theory based on Langevin’s equation, deduced from equations (1) and (5),

rather than assumed; and the exponential form is shown to apply only when the

initial velocity is averaged. That is to say, the exponential correlation

applies only to the Taylor, or averaged, kind of diffusion. Instantaneous

particle spreading depends at first on the influence of a specified initial

velocity, Vo, and on the resulting, time-dependent autocorrelation. The

applicability of the exponential Lagrangian correlation function, which has

been assumed as a matter of expedience by most writers on atmospheric diffusion

starting with Taylor (1921), has been clarified recently in the interesting

papers by Neumann (1978) and Tennekes (1978). It is hoped that the above

results may serve to further specify the role of R in the particle dispersion

problem.

Equation (13) is illustrated in Fig. 1 for the extremes c = O and c = 1,

and for a typical intermediate value. All the preceding limiting forms can be

seen. The T1’2 regime of equation (14), which is independent of c, is

approached rapidly when T>l and is reached in all the curves by T-lO. For c =

O, that is for V. averaged over all possible values, (13) becomes

x~=T - (1 -e-T), (18)

which is the dimensionless, universal form of Taylor’s result, equation (11),

in which X 1/2
y varies at first linearly and later as T . At the other

extreme, when V. = O so that c = 1, the diffusion is of the instantaneous

type but without an initial size effect. In this case, Zy varies as T for

and as T1/2 for T~10.T~ 10-1 For intermediate values of c, the behavior

of the Zy-curve is complicated. Initial growth is as T because of the

8
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T

Fig. 1. Plot of nondimensional ized dis-
placement standard deviation,
Ey, vs. nondimensional ized time,
T, according to equation (13).

influence of

lowed by an

sion range

v
o“ This is fol-

accelerating diffu-

beginning when T

becomes greater than about

10-1 in this particular in–

stance, and reaching the value
T3/2 at about T=O.3. The

final T112 growth begins at

around T = 5.

Comparisons with atmospheric

diffusion data.

Horizontal diffusion:

Richardson (1926) was the first

to draw attention to a remarkable

property of horizontal diffusion

in the atmosphere, namely that

the phenomenon can be observed

to occur at an accelerating rate.

Particle clouds spread rapidly;

the bigger the cloud, the faster

it spreads. Subsequent summaries of horizontal cloud spreading data in the

atmosphere, by Heffter (1965), Hage (1964), Crawford (1966), and others (who

mainly based their work on these studies) have amply confirmed this finding.

This suggests that atmospheric diffusion results not solely from the compara-

tively small-scale, three-dimensional, inertial turbulence that is responsible

for the well-known micrometeorlogical energy-spectrum maximum, but in addition,

that it is augmented by the presence of much larger-scale turbulent wind-field

heterogeneities. These must necessarily be quasi-horizontal and may be caused

by large-scale surface inhomogeneities of various kinds. Additionally (or

alternatively), there may be a reverse transfer of energy, toward lower fre–

quencies (larger scales), from the micrometeorlogical maximum, as proposed by

Gage (1979). It seems that the Langevin model, which provides for distinct

small– and large-scale turbulence effects, might provide solutions to the

atmospheric diffusion problem of the type that are observed.

9
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Fig. 2. Plot of Crawford’s (1966) tropo-
spheric diffusion data (Gifford,
1977) and uy from equation
(lOa).

provide the solid curve in the figure.

0.9955 for these choices.

In Fig. 2, the standard

deviation of the instantaneous

particle position displacement,

aY’
according to equation (lOa),

is compared with a subset of Craw-

ford’s summary of horizontal atmos-

pheric diffusion data. This

particular selection includes only

tropospheric diffusion experiments;

all stratospheric data have been

removed, and the resulting data

are more homogeneous and broadly

representative of tropospheric

diffusion conditions. For a des-

cription of, and references to,

the several different data sets

that are combined in Fig. 2, see

Gifford (1977). The parameter
2 -1

values, K = 5 x 104 m s and V.
= .15 m s-l, were determined by

comparing data extremes with equa-

tions (14a) and (16a); together

with the value ~ = 10-4 they

The parameter c has the value c =

Figure 3, from Hage and Church (1967) illustrates an empirical curve of

horizontal atmospheric diffusion over the entire atmospheric range that has

been generally accepted as the best representation of the existing body of

data. It was obtained by Hage et al. (1966) by analyzing the data compila-

tions mentioned earlier, using standard curve–fitting techniques. The empiri-

cal equation (Hage et al., 1967) for this curve has the form (for av in
J

kilometers, t in seconds)

loglo ay = -2.81524 + 0.22880710glot + 0.274799(

i

.

Oglot)z - 0.0241565 (loglot)3 .

(19)
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i I I
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TRAVEL TIME

Fig. 3. Summary of data on horizontal atmospheric diffusion, from Hage and
Church (1967). The solid curve, see Hage et al. (1967), illustr-dtes

equation (19).
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If values of Oy are computed from equation (19) for short, medium, and large

dispersion times (t = 30, 105, and 107 seconds) and introduced into the

asymptotic equations (14a), (16a), and (17a), the physical parameter values

are found to be: K = ~ 235 ~ ~05 m2s-1 v. Y,. = 0.253 ins-l, and t, =

B-l = 2.13 X 105s. When these values are intr~duced into

the comparison with equation (19) displayed in Fig. 4 results.

The theoretical equation (lOa), which contains

parameters, is seen in Fig. 4 to reproduce the four-parameter

equation (19), quite faithfully. Although the small-scale
.

equation (lba),

three physical

empirical curve,

parameter, VO =

0.253 ins-L, is not much different from the value used in the previous com-

parison, both large-scale parameters, K and tL, are an order of magnitude

larger. This reflects the fact that Fig. 3 and equation (19) include the

109.

10’-

g ’04
s
b 10J-

10’-

10’-

,.~
10’ 10= 10’ 10’ 105 10“

t, (s)

stratospheric data points that were

excluded from Fig. 2. The quantity
Tv /tL measures the turbulent

energy dissipation. For these two

cases, 2 -3it has the values 5 cm s

for the tropospheric data of Fig. 2

and 0.16 cm2s-3 for the data of

Fig. 3, which includes the strato-

spheric points. Energy dissipation

in the troposphere has been shown by

various lines of reasoning to average

about ~ cm2s-3
9 and the smaller

value clearly indicates that strato–

spheric conditions dominate there.

Thus the values of tL and K asso-

ciated with Fig. 2 appear to be more

representative of tropospheric dis-

persion.

It can be concluded from

Fig. 4 that the present theory results

Fig. 4. Plots of theoretical curve, in a high–quality fit to data over a
equation (lOa), and empirical
curve, equation (19), of hori–

very wide range of atmospheric diffu–

●✎

✎

zontal diffusion. sion scales. Neither the asymptotic

12



predictions of other available theories, nor the often–quoted empirical power

law, &2
‘Y 9 provides this quality of overall agreement with the data.

Note iri particular that if typical short-range, averaged–diffusion a –values
.

are extrapolated to times corresponding to distances on the order {f 100–

200 km, the result will fall short of both observed values and the theoretical
.

curve, by amounts ranging up to nearly an order of magnitude. The practice of

extrapolating standard short–range values of au to estimate large-scale

values seems to be common among air–pollution m~delers, see, for instance,

Lange (1978) who treated horizontal diffusion in the well-known ARAC model

this way. Modelers should be wary of the effect on pollution estimates of

such brute–force extrapolations.

Averaged-to-instantaneous displacement variance ratio: The ratio of the

averaged cloud dispersion, equation (18), to the instantaneous value, equation

(13), is a quantity of interest. It is, in the first place, related to the

ratio of instantaneous peak to time-averaged concentration values, a quantity

of considerable importance in air pollution regulation. This ratio of the

dispersions is

o2
‘Y v

/ay2

o

A plot for a range

Measurements

= [T - (1 - e-T)] /[T - (1 - e-T) - (c/2)(1 - e-T)2] . (20)

of c–values is shown in Fig. 5.

of both instantaneous and time–averaged horizontal spreading

of smoke plumes have been made by several researchers, by combining instan–

taneous and time-lapse photography of a smoke plume. Experiments reported by

Hilst (1957), Byzova, et al. (1970), and Nappo (1979) can be used to determine

the variance ratio as a function of travel time, t. Since for each of these

experiments the quantitY ~, the mean square turbulent velOcitY, is either

given or can be estimated from the averaged plume dispersion near the source,

B = t~l can be estimated from equation (17a), using the instantaneous

4 plume variance values, a$. Then, from the resulting plots on Fig. 5, the

parameter c can be estimated for each plume. 7Since c = 1 - b/a = v tL/K,
J a large–scale eddy diffusivity is implied for each experiment, even though the

photographs upon which these determinations are based were necessarily

representative of fairly short travel times, a small fraction of T.

13
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Fig. 5. Plot of the ratio of the dis-
placement variance averaged on
Vo, equation (18) to the un–
averaged value, equation (13);
T = Bt is nondimensional ized
time.

A summary of the various

quantities entering the determi-

nations of K is given in Table I,

based on the ratios plotted in

Fig. 5. The K-values deduced in

Table I are certainly reasonable

for large-scale atmospheric diffu-

sion. They provide a convincing

demonstration of the general cor-

rectness of the Langevin–equation

model of atmospheric diffusion, in

that the estimated K-values are

based on diffusion data at only

very smal1 distances downwind.

The c–values used were based on

the smallest available values of T

because for these the variance

ratios are in theory nearly con-

stant; approximately, T values

were in the range 5 x 10-3 <

T < 5 x 10-2, typical of plume

spreading within a few hundred

meters of the source, at most. Yet

these values correctly imply the

TABLE I

Large-scale eddy diffusivity, K, determined from average-to-instantaneous

Odisplacement variance ratio, ci2
Y O1’J;

Reference

Hilst (1957)

Byzova et al. (1970)

Nappo (1979)

V2, m2/s tL, S b/a K,m2 s-l

.. .56 550 .02 1.5X 104

.. .18 4600 .04 2.1 x 104

.. .70 1350 .03 3.2 X 104

●

✎
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order of magnitude of the large–scale K, which controls diffusion only after

many hours of downwind cloud travel.

SUMMARY AND CONCLUSIONS

A form of Langevin’”s equation has been derived from a simple, linear

equation for the turbulent velocity. Solutions provide equations for the

horizontal mean square particle displacement, u$, for the case for which

the initial velocity is fixed and for the case of a random initial velocity.

These correspond to the familiar instantaneous and time-averaged cloud vari-

ances of statistical diffusion theory; and all the limiting cases of that

theory can be derived in terms of the physical parameters that appear in this

form of the Langevin equation, namely the initial velocity, the Lagrangian

time scale, and the large–scale eddy diffusivity. For reasonable choices of

these parameters, determined primarily by the small- and large-time limits,

the displacement equation demonstrates an excellent fit to atmospheric hori-

zontal diffusion data, over diffusion times ranging from seconds to days. The

fit is good not only at the upper and lower time limits, but also through the

broad middle range of times, corresponding to distances from the source in the

range of several hundred kilometers. It is pointed out that extrapolation to

these distances of commonly used short–range values of u can be in error by
Y

appreciable amounts. Finally, photographic observations of instantaneous and

time-averaged smoke plumes are compared with the theoretical spreading curves.

6y this procedure, which involves observations of plumes to only a few hundred

meters, all the parameters of the theory can be determined, including the

large-scale eddy diffusivity, K. Three independent sets of plume photographs

are analyzed in this way, and the large-scale K–values that are determined

compare well with typical atmospheric values. The theory appears to predict

horizontal atmospheric diffusion over a wide scale range quite well and

provides, in particular, a basis for estimating diffusion at regional scales

for modeling purposes, something that h’as not so far been achieved by other

methods.
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