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A COMPUTATIONALLY EFFICIENT
ZERO-TEMPERATURE ISOTHERM IN

by

E~I@S~ION FOR THE
EQUATIONS OF STATE

B. I. Bennett

ABSTWLCT

A varhtion on the Barnes’ modified Morse potential
is given with two methods for determining empirical param-
eters. The new expression does not require the evaluation
of a numerical integral to obtain the internal energy of
the solid. Hugoniots computed using these two methods are
compared with experimental data.
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INTRODUCTION

A pair of expressions were proposed by J. F. Barnes in reference 1

for the zero-temperature pressure and inte~nal energy of a solid. One of

the expressions was selected to pursue that investigation and that ex-

pression required one to numerically evaltiatean exponential integral to

obtain the internal energy. It is the pu’r~ose of this work to explore the

use of the discarded expression as appli~d to the analysis of shock data

since no numerical integration is necessary. This expression should be

computationally more efficient.

Two different schemes are used to evaluate

in the expression. The first approach uses the

the empirical parameters

asymptotic limit of

Thomas-Fermi theory to obtain the parameters and the second approach uses

the theoretical values of cohesive energy to evaluate the parameters.

THE MODIFIED MORSE POTENTIAL

The alternate expression that was proposed in Reference 1 for a

modified Morse potential for a solid was:

[

$ brv bav

E;(@=L qe - 2e
1

9 (la)

.

.-

where
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.-
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and

The quantity L represents the latent heat of vaporization for the solid

anclp. is its density at zero pressure. The quantities br and ba are

undetermined parameters. The above expression was discarded and instead

a modified Morse pressure expression (cf. Eq. 4 in Ref. 1) was adopted.

In this work, Eq. 1 is used directly to obtain the cold (T = O“K)

2 3
pressure and Hugoniot curves using the Slater, Dugdale-MacDon61d, and

free-volume4 relations for

The modified pressure

the Griineisen coefficient.

function obtained from Eq. 1 is given by

2
3

[(

brv bav b= ; brv b
)]
a

=ao qe -e
‘r ‘1 e ‘e

(2a)

with

ba = 1 + br/2 (2b)

and

a= ; LP (2C)
o“

This expression differs from that of Eq. 4 in Ref. 1 by the second

term in the square brackets which increases the pressure above than given

by the original expression. The relationship between ba and br given by

Eq. 2b is obtained from the requirement that the pressure vanish for v = 1.

In this section the quantities br and a will be treated as empirically

determined parameters evaluated from the experimental value of the iso-

3



thermal bulk modulus and the high compressio~ limit fo,rthe pressure of

a Fermi-Dirac gas.

The isothermal bulk modulus is defined as

(3)

Hence, we obtain, for T = O ‘K

In the limit than q + 1, we have

a 1[ 1
br

B =—
00 3

3+b -b
r ‘F [

2+b -ba
a r 1]

or using Eq. 2b,

This result differs from that of Ref. 1 by the addition of the second

square bracket in Eq. 5a.

In the very high compression limit,

lim v=l,

n“@

.1

that is ~
3 < < 1, the modified pressure tends to the limit

(5a)

(5b)

-.

.,

“.
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In this limit the pressure due to a Fermi-Dirac gas is:

(6)

(7)

-27 2
where C

f
= 3.5050 x 10 erg-cm , N is Avogadro’s number, Z is the atomic

o

number, and A

Equating

the parameter

with

is the atomic weight.

these two limiting expressions, we obtain an expression for

a in terms of b-. This, in conjunction with Eq. 5b yields,
L

B
00 = ‘2 [2+%+%1 (8a)

(8b)

Hence, given the values of p. and Boo from Table I of Ref. 1, we may obtain

values of a and br for the eight metals studied. These values are sum-

marized in Table 1.

With these parameters”, Eq. 2 gives the zero temperature isotherm, the

scl-called cold compression curve, Pc(rl). The energy along this isotherm

is given by

nL’c(rl’)
Ec(rl)= ; J ,2 dtl’ . “

Olt’1
(9)
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This may be evaluated directly, using Eq. 2, to yield

[

g
, brv bav

Et(q) =~~ q3 e

1

-2e+l.
o

The pressure along the Hugoniot curve ass~ing a Mie-Griineisen

of state is given by:

F’c(rl) - WY(n)Ec(n)
‘H(q) = ~ _ (q - l)y(tl)/2 ‘

where y(q) is the Griineisen coefficient. The three models for

(lo)

equation

(11)

Y(o)

2
commonly used are the Slater, Dugdale-MacDonald,3 and free-volume

theory.
4

These may be combined into a single expressions

(12a)

with

N(rI, t) = q
2 d2p(@ + $ (1

- 2 t) B(q)
dt12

- $ (1 + t) (1 - 2t) P(q)

(12b)

and

D(q, t) = B(q) - ~ (1 + t) P(q) . (12C)

The parameter

coefficient.

a

t is used to select the particular model for the Grtineisen

That is,

[

-1 ; Slater model

t = o ; Dugdale-MacDonald

+1 ; free-volume model

model

-.

‘-

. .

.-
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In the limit as t’I+ 1, the values of y(1) for the different models

differ by 1/3 proceeding from the largest value at t = - 1 and going to

lowest at t = 1. ‘Acomparison of the values obtained from the Dugdale-

the

MacDonald model in this work with those

wil;h the experimental “lattice specific

presented in Table II.

from Table II of Ref. 1, al’ong

heat” values given there, are

The Hugoniot and cold compression curves from Eqs. 2 and 11 are

evaluated using the parameter values from Table I to yield Figs. 1 through

4. The cold compression curves have the label “c,” whereas the Hugoniot

cu:rvesusing the various models for the Griineisen coefficient are labeled

with their appropriate value of t.

The figures contain some experimental information, referenced in an

abl~reviated form. A general feature of the Hugoniot results for these

materials is that below compressions of approximately 1.4, the different

Grfineisen coefficient models give essentially the same results. Above

this value of q, the spread in the Hugoniots

models becomes more pronounced.

The results produced by this method for

obtained for the different

Cu, Be, W, and Ni compared

with those of Ref. 1 are of equivalent quality when compared with experi-

mental data. As mentioned in Ref. 1, the results for Ti may not be

expected to agree well with experiment because of a phase transition

[a(hcp) + ~(bcc) at 880

to those of experiment.

and for Pb, the current

‘c]. However, Ref. 1 produces results closer

For Mo, Ref. 1 produces the best comparison

results are extremely poor in contrast to those

of Ref. 1. The most striking improvement of the current results lies

with the computation of the Al Hugoniot.
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In general, those results which disagree With the experimental data

do so by producing pressure curves which increase faster with compression

than the data. This would imply that a smaller value of Boo is necessary

when determining the parameter br in order tp improve agreement experiment.

In order to fit the experimental data for Mo, W, and Pb in the compression

range below 1.4, the values of Boo could be empirically adjusted down-

ward by 26%, 38~, and

with this adjustment,

in large disagreement

and B were taken as
00

35% respectively. Howpver, in the case of Pb, even

the Hugoniots above Compressions of 1.6 were still

with the data (see Fiq. 5). Since values of p.

those given at standard conditions (1 atm pressure,

and - 300°K) some adjustment might be warranted. However 25-40% may be

to large to be considered realistic.

PARAMETERS FOR MODIFIED MORSE POTENTIAL

FROM COHESIVE ENERGY DATA

From work with the Modified Morse Potential, we have a constant a to

be evaluated.

a = $LPO , (13)

where p. is the density at T = O and P = O atmospheres and L is the

cohesive energy. In that work “a” is obtained by fitting the isothermal

compressibility to experiment and ~ssuming that the pressure goes to the

limit of a free electron gas at high compressions. In this regard, the

value of L is never needed.

-.

-.



From Brewer’s work(’) we are given~ = L x A , where A = atomic
w w

weight. Then

(14)

Using Brewer’s values of~ and data from the CRC Handbook for PO

and Aw, we obtain values for the parameter a. These are presented along

with a comparison with those obtained using the Thomas-Fermi limit

(labeled FE) in Table III.

Since the equation for br is a quadratic, there are two solutions.

Of this pair of numbers, only the solution with the positive sign is

physically acceptable. These pairs of solutions are shown in Table IV.

Figures 5 through 8 show the cold pressure curves and sets of

Hugoniots using the new values of a and b Experimental data shown on
r.

these figures are the same as those given in Figures 1 through 4.

By comparing the results in equivalent figures, the overall quality

of agreement improves using the prescription of cohesive energies with the

exception of Cu and Mo. The results for Pb are greatly improved.
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Element

Be

Al

Ti

Ni

Cu

Mo

w

Pb

Element

Be

Al

Ti

Ni

Cu

Mo

w

TABLE I

PHYSICAL PROPERTIES AND PRESSURE

Po(8dcm3)
1.8450

2.7847

4.5065

8.8968

8.9206

10.2041

19.1571

11.3379

Boo(MbaF)

1.14

0.763

1.07

1.99

1.31

2.69

3.08

0.447

PARAMETERS

a(Mbar)

0.491

0.205

0.249

0.355

0.236

0.549

0.494

0.0545

TABLE II

GR~ISEN COEFFICIENTS FOR DUGDALE-MACDONALD MODEL

Y(this work)

1.443

1.768

1.887

2.079

2.158

1.999

2.234

XQ@zLD
1.09

1.35

1.36

2.10

2.22

1.44

1.81

Pb 2.542 2.15

b
r—

2.88

4.382

4.91

5.75

6.09

5.40

6.415

7.717

3!@Q
1.30

2.21

1.35

2.00

2.01

1.62

1.69

2.77

..

-.

,.
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TABLE III

PRESSURE PARAMETERS FROM COHESIVE ENERGIES

. ; & 0.04184a (Mbars), [~ is in kcal/mole].
Wo

~leinent

Be

a(Mbars)

0.43758

a/a(FE)

0.891

br
—

3.22138

br/br(FE)

1.119

0.22484Al 1.097 4.05989 0.926

Ti 0..29552

0.43322

1.187

1.220

4.28083

4.97346

0.872

Ni 0.865

0.31623Cu 1.340 4.92730 0.809

0.46732 0.851

1.217

6.06689 1.123

0.60101 5.58264 0.870

6.42802Pb 0.07149 1.312 0.833

- 6.66670Fe 0.38634 0.673 1.328

. .

-.
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Be

Al

Ti

Ni

Cu

Mo

w

Pb

TABLB IV

COMPUTATION OF b
r

Bo=~
[
8+4 b+b2

Tr I
,.

() 12 B.
b~+4br+ 8-— = 0=?+ 4b+ **C*’

a Pf r

II Mc
b
‘1- -

- 23.26285 - 7.22138

- 32.72229 - 8.05989

- 35.44884 - 8.28083

- 44.62915 - 8.97376

- 43.98748 - 8.92730

- 61.07472 - 10.06689

- 53.49648 - 9.58264

- 67.03147 - 10.42802

.

r

b
‘2

3.22138

4.05989

4.28083

4.97346

4.92730

~.06689

5.58264

6.42802

12



REFERENCES

1.

2.

3.

4.

5.

6.

7.

8.

9.

J. F. Barnes, Phys. Rev. 153, 269 (1967).’

J. C. Slater, Introduction to Chemical Physics, (McGraw-Hill Book
co., NY, 1939).

J. S. Dugdale and D. K. C. MacDonald, Phys. Rev. ~, 832 (1953).

J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of
Gases and Liquids, (John Wiley and Sons, ~, 1954).

L. V. A1’tshuler, Usp. Fiz. Nauk 8&, 197 (1965), [Soviet Physics
Uspekhi ~, 52 (1965)].

M. H. Rice, R. G. McQueen and J. M. Walsh, Solid State Physics,
ed. F. Seitz and D. Turnbull (Academic Press, Inc., NY, 1956)
Vol. 6, p. 1.

R. G. McQueen and S. P. Marsh, JAP ~, 1253 (1960).

Y. B. Zel’dovich and Y. P. Raizer, Physics of Shockwaves and High-
Temperature Hydrodynamic Phenomena? ed. W. Hayes and R. probstein
(Academic Press, Inc., NY, 1967) Vol. 2.

L. Brewer, “Cohesive Energies of the Elements”, Lawrence Berkeley
Lab. report LBL-3720.

. .

. .

13



10 , I I I I I II

(o)
9 –

fsl-

‘1 w(-l)
II Ref. 6, Table ~

7 0 Ref. 7, Toble 11 (n)
0 Ref. 8, Table 11.2 //”-’

1 I , I I I
1.0 1.2 1.4 1.6 1.8 2.0 2.2

9 ‘PIP.

Fig. 2.

Fig. 1.

‘r_T7
8

t

~} Ref. 6, Table IXI
o Ref. 7, Toble II
o Ref. 8, Toble 11.4 \

Cu

Be

ol~-- 1 1 I , I , I I I t I
1.2 [.4 1.6 1.8 2.0 2.2 2.4

14



..-.

b

,.

. .

Ic

9

8

7

6

G
&
=5
z
n

4

3

2

I

o

I

. . .

—, , I , I I i I I 1

(o)

Ni

y,,,,l,-
❑ Ref. 6, Tobk III
o Ref. ?, Toble B

o
0

&

1.2 1.4 1.6 1.8 2.0 2.2 2.4
7 ‘PIP.

Fig. 4.

Figures 1 through 4 display the zero
temperature isotherms and Hugoniots for
two materials. The isotherms were ob-
tained using the Fermi-Dirac electron
gas limit for determining the parameter
“a.”
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.“ Figures 5 through 8 show the equivalent
information as the first four figures,
but with the isotherm parameter “a” ob-

●. tained from Brewer’s cohesive energies.
The experimental data shown in these
figures are the same as those referenced
in Figures 1 through 4.
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