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AN ANALYSIS OF PHYSICAL AND CHEMICAL EXPLOSIONS
INSIDE A FLOW PATHWAY

by
P. K. Tang and W. S. Gregory
ABSTRACT

This report summarizes work in our analytical investigation of
explosions inside a flow network, which emphasizes the explosive
event itself. A special finite-difference scheme known as Flux-
Corrected Transport has been adapted to solve gas-dynamic problems
with large flow gradients, including shocks and contact surfaces.
The results of this work can be used to supply the source or driving
force for our far-field analysis. A sample model of the problem of
shock and contact surface propagation is presented.

I. INTRODUCTION

In many industrial facilities the potential exists for both natural and
man-caused accidents. Some preventive actions in the areas of design, construc-
tion, and operation can reduce the risk, but in practice, any accident still
can occur because of the many unforeseen factors involved. The objective of
this report is to present a practical tool for analyzing an accident event (in
particular, an explosion inside a facility's flow network).

Because of the complexity of the problem, we decided to divide the region
of concern into two parts.1 In the first region, a detailed description of
the accident is of 1ittle significance--only the accident's effect on remote
regions of the facility will be investigated; this is known as the far field.
A computer code that can model this problem has been developed and docu-
mented.2 We now must develop some technique to analyze the effects of the




explosive event itself for the region where the accident actually takes place;
we call this second region the near field. In this report we are interested
mainly in shocks, contact surfaces, and detonations in one-dimensional flow
paths; the slower processes of diffusion can be ignored. This report will
provide the background information, the physical and chemical principles, the
mathematical formulation, the numerical technique, and some simple illustrative
examples for the near-field analysis.

II. FAR-FIELD ANALYSIS

We will review our far-field work briefly to shed some 1light on the
incentive for the current work. Information is available on the basic physical
principles and mathematical formu]ations,3 improved numerical techniques,4
and some experimental verifications.5

Using the principles of fluid mechanics and thermodynamics, we formulated
governing equations for the conservation of mass, energy, and momentum. In
applying these equations, we subdivided the complete network into two general
components——nodes and branches. The nodes represent boundaries and internal
junctions where the conservation of mass and energy applies. The branches can
represent ducts, valves, blowers, or filters. The equations for the time rate
of change then are transformed into finite-difference equations and are solved
numerically.

In the far-field analysis, the explosive event requires some form of
simulation where the detail of the event is not significant. Basically, an
explosion can be defined by a rapid pressure rise (sometimes along with a rapid
temperature rise). These pressure and temperature increases can result from
physical, chemical, or nuclear processes; for example, the rupture of a highly
pressurized vessel (physical), the combustion or detonation of explosive
materials (chemical), or the criticality excursion of fissionable nuclear
materials (nuclear) can cause a rapid pressure rise with or without a
corresponding rapid temperature rise. A1l these processes involve a rapid
addition of mass and energy to a system, which can be closed or open. Analyses
of explosions with rapid mass and energy additions are common and give good
results if sufficient rate information is available. These approaches are
useful for simulating an explosion inside a system and need detailed mass and
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energy source terms in the mass and energy equations. When the energy release
rate is not known, we can use other information such as pressure-time or
temperature-time profiles at a particular location in combination with mass
addition information. The last two approaches require experimental data on the
system that can be difficult to obtain. For an explosion outside a system, the
pressure- and temperature-time profiles can provide the information needed to
investigate a system response. The near-field work described in this report
will generate these source terms through a detailed mathematical formulation of
the event.

III. GAS DYNAMICS WITH CHEMICAL REACTIONS

We are interested mainly in explosions. caused by physical and chemical
processes. The dominant feature of these explosions is the gas flow with or
without chemical reactions. Thus, solid particles or liquid droplets can be
added to the stream without major complications. However, we will investigate
only the gas-phase explosion at this time. We will consider the method of
continuum mechanics as adequate to describe the situation without idealizing
the explosion front as a discontinuity as long as the physical laws of
conservation are satisfied. This approach will lead to a set of partial
differential equations that are applicable from deflagration to detonation.
Although we will investigate only the one-dimensional detonation problems, the
equations given below are genera].6

The total continuity equation is

.,
30 _J 3 _
2t | P X touy aX; =0, (1)

where p and u are mixture density and velocity, respectively, and t and x are
time and space, respectively. Cartesian tensor notation is used.
The chemical specie continuity equation is

o aYa ou aYa )
+ j = w - (pY v ) Py (2)
ot axJ. a axJ. a aj



Wwith « = 1, ... N and Ya being the mass fraction of specie a. w, is the
rate of production or destruction, and Vo is the diffusion velocity of that
specie. N is the total number of species presented. By definition,

%Y:l. (3)
a=1 ¢

Summing up all Ya to a total number of N, the result must be unity.
The momentum equation is

o i puU - - 2 (%u auk)*‘ 2 u(auj b , (4)
at J axj axi axi ax, X5 axi axj

where p is the pressure and u is the viscosity.
In the internal energy equation,

3 au, \ au U, au.\ au.
p§l+pu.i=_i_ p+_2_ _k_k+u__J.+_1_~]_ (5)
at J ax. AX 3 ax, J ax, aX; axj ax. °

where I represents the internal energy, including chemical energy, and g is the
heat flux.

We have neglected body forces and bulk viscosity in the above formulation.
Furthermore, we can assume the diffusion velocity,

V =-D=1nY |, (6)
. . a



which is the simplest mass diffusion relation, with D being the diffusion
coefficient. Finally, the heat flux is

oT N
q'i = - A T * paz=:l haYava ? (7)

i i

where A, T, ha are thermal conductivity, temperature, and enthalpy of specie
o, respectively.

The equations of state are needed (assuming an ideal gas mixture) to
complete the system.

N
p=eRT 35 (Y /W) , (8)
a =1
N
I = ag;]-vaha - , and (9)
T
h o=h + cp daT (10)
0 T a
0

where Ru is the universal gas constant, wa is the molecular weight, C;;a
is the specific heat at constant pressure for specie a, To is the reference

temperature, and ha is the enthalpy of specie o at that temperature. ha con-
0 0
tains heat of formation. The specie production w, can be defined based on chem-

ical kinetics, but we will not discuss that here.

We frequently would like to write an equation for the total energy instead
of the internal energy:

u
e=I+'2— . (11)



We can obtain a kinetic energy equation by multiplying Eq. (4) by us;. After
some manipulation,

2 2
pa_(ui>+pu L(ui>=_a(puk)+pﬂ_ 3 2uu.f_lg)+2u<au—k)2
st \ 2 J axy 2 3X| 83X, axi'§ 1 ax 3 3X)
(12)
au au. U au. \ au
+Luu(_3+_1>_u<3+ 1) J
X N aX X . aX. X aX.
i J i i
Adding Eqgs. (5) and (12), we have
a(pu,) oq au u. au.
; K ko %5\ K : i %%

which is the equation for the total energy.
Finally, Egs. (1), (2), (4), and (13) can be rewritten in the conservative

form:
ap 9
B (u) =0, (14)
J
3 (oY )
a 9 3
ot + BXJ- (pYaUJ-) = ma - W (pYaVaj) s O = 1,..., N, (15)
a(pu.) au u., au,
i, 8 ( ap 3 42 k 3 J 4 4
pU.u.) =————( M ) + in N (16)
at axj i'j TPRT 3 3X,. aX; aX; axj




and

. au.
2 [*“.(auJ + u‘)] . (17)
axi 1 axi BXJ..

The interesting feature of this formulation is that if the right-hand side is
zero, the product of the flow element volume and o, pYa, pu;, or pe will
not change following the movement of the flow element, which can be seen in
the total mass balance equation [Eq. (14)). Accordingly, the right-hand sides
of all these equations are considered as the sources that cause the changes in
the respective quantities within that element. This feature will have a

strong bearing on the numerical technique.

IV. FINITE-DIFFERENCE TECHNIQUE

After an extensive literature survey, we have concluded that the
Flux-Corrected Transport method7 is the numerical technique to use in the
development of the near-field code. Basically, this method has the feature of
handling sharp gradients such as shocks and flames without using artificial
viscosity or an upwind technique, which would introduce excessive damping.
The governing equations become

2oh) + 2 (pur) =0, (18)
(YA 4 3 (Y uA) =M L a=1, e, N, (19)
at ax @ @



agpuA} + %Y (puzA) - - agEA) , and (20)

ag:") + Z—X (pueA) = - %; (pur) . (21)

The above equations have the form of

2WAL 4 2 ) =5, (22)

where ¥ can be p, pYa, pu, or pe and is called the generalized density. A is
the flow cross-section area; S can be considered as the generalized source
term. We will describe the numerical technique using the Eulerian approach.

As can be seen in Eq. (22), the most prominent effect on the change of the
generalized density inside a flow element is a result of convection, so we
obtain

* 0 o] 0
Vi = Vabs - 8tWiigo Asery2 Yiergz ¥ 8512 Ail1y2 Vil o (23)

with
' =1 (U * ugyy) (2)
i+172 =7 Ui T U)o

Vi is the volume of cell i, W? and w: are the generalized density in cell at the
previous time and the updated value with the convective effect only,
respectively. &t is the time step used. Note that the half-index means that

the quantities are evaluated at the cell interface location.



After convection, the generalized density is modified because of the source
term,

T *
Vops = Vous *+ 8tV.S. . (25)

¢¥ is the generalized density with the source effect; the expression in the last
term assumes that the source is a volumetric effect. Other forms can be used
if the source is a result of gradients, divergences, and so on. A combination
of all these effects can be added up to obtain the total contribution.

The next step is to add a diffusfon stage so that the numerical solution
will be stable. The equation is

~ 0 0 0 0
Vibs = Vius ¥ Vi Viege (@i+1 - wi)'- Vi_1/2 Vi_1/2<?i - w1-1> . (26)

ii is the new cell generalized density (still a temporal value), and v is

defined by

2
1, %i+1/2
Vi)1/2=8 T3 > ‘ (27)
with
stf1l 1
. = A, u. Stfi & ) (28)
i+1/2 i+1/2 “i+1/2 2 <V1. Vi+1>

The expression used in Eq. (27) is to reduce the phase errors.




Because the diffusion process of Eq. (26) is an artificial one, we must
counteract that by an antidiffusion step. The flux is

T T
Fiersz = nivrg2 Visrg2 (?1+1 B lbi) ’ (29)
before any correction is made; n is defined by

2
1 € +1/2
Ni+1/2 =6 ~ "lir‘L‘ . (30)

The generalized density used here is the one before the diffusion stage. F is
further modified by using

Cc ~ ~
Fis1/2 = Six1f2 max{o, m‘"[JF1+1/2| » Sieg2 Viel (¢1+2 - ¢i+1) ,

Sirrf2 Vi (Wi - Wi-li]}

(31)

c
i F1.+1/2 is known as

the corrected antidiffusion flux. Finally, the new generalized density is
obtained.

~

Si+1/2 has the value of unity and the sign of <¢i+1 -

n -~ C C
Viwg = V505~ Foappe Y Filry2 o (32)

with W? being the new generalized density at the new time in element i.
The preceding procedure forms the basis of the current near-field analysis
code. In fact, the integration is performed at a half-time step Q% from which
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the source terms can be calculated before we carry out the full-time step (st)
integration. This process results in greater accuracy in time. Other
vériations are possible, but we will not discuss them here.

Although the above procedure gives excellent numerical stability without
excessive damping, its accuracy still depends on the element size, particularly
in the region where the gradient is large. The refinement of the cell size
must be incorporated as the condition requires, and it also should follow the
movement of shock, flame, or any contact surface. The current code does not
have any rezoning technique to accomplish this goal, but we will add this in
the future.

V. BURSTING DIAPHRAGM PROBLEM :

We will use the classical problem of the bursting diaphragm that generates
moving shock and contact surfaces to illustrate the capability of our computer
code, which is based on the technique we discussed earlier. A pipe is divided
into two regions with different pressures and densities by a diaphragm, and the
diaphragm is set to break. The pressure and density distributions at specific
time intervals following the break are shown in Figs. 1--14, Except for the
initial disturbance, the shock front is well defined (pressure and density
distribution plots), as is the contact surface, which is moving at a slower
speed (density plots); the reflection of the shock from the solid boundary on
the right is shown clearly in Figs. 3--6. Later, we see the interaction of the
reflected shock and the contact surface. The result is that the reflected
shock slows down (Figs. 7 and 8), and the contact surface becomes practically
stationary. A weak compression wave is traveling to the right after the
interaction. As the diaphragm breaks, a rarefaction wave travels to the left,
reflecting back from the solid boundary on the left. Eventually, the reflected
shock and the reflected rarefaction wave interact. This weakens the reflected
shock substantially; it becomes about the same strength as the initial shock
except that it is traveling toward the left boundary (Figs. 9--12). Because
there is no dissipation (physical or numerical), a shock can travel back and
forth inside the pipe with the same strength. The shock reflection from the
left boundary is shown in Figs. 13 and 14.
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We also can run a case with one end of the pathway open; the results should
include the mass and energy fluxes leaving that end, which are the source terms
we need to drive the far-field code. However, we will not discuss the work
here.

VI. FUTURE WORK

The computer code that we now have will provide the framework for our
future near-field explosion investigation. Some refinements will be made to
improve the numerical interpolation. The rezoning scheme will be added to
adjust for the variation in gas-dynamic gradients, and we will add the
capability to simulate chemical reactions so that we can study the propagation
of detonation.

Even with all the refinements we have cited, the near-field work should not
be limited to the areas we have discussed so far. In fact, a capability of
analyzing general detonation and deflagration for two- and three-dimensional
configurations and for multicomponent and multiphase flow should be developed.
Efforts will be made toward this goal.
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